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MAGNETICALLY-DRIVEN METAL LINERS FOR PLASMA COMPRESSION*
James W. Shearer and William C. Condit
University of California, Lawrence Livermpre Laboratory

P.0. Box 808, Livermore, CA. 94550, USA

1. INTRODUCTION

A well-known fusion resctor proposal is the compression of
deuterium-tritium plasma to themmonuclear temperatures by means of an

1.2,3

imploding metallic liner. Today the Targest liner study programs

are located in the USSR4, and at the Naval Research Laboratory, USA.5

In this paper we shall formulate an approximate analytical
model of liner compression in cylindrical geometry, and apply the
results to reactor applications. The emphasis will be on the imploding

metal liner itself as a means of energy compression for fusion.

Figures 1 and 2 show the essential features of the cylindrical
liner system under consideration, A large energy outer magnetic field
implodes the metal liner, whizh surrounds a DT plasma, which is in-
sulated from the liner by a magnetic field. The outer magnetic field
energy is converted to kinetic energy of the liner, and is then con-
verted again to plasma and field energy in the interior. A lithium
blanket surrounds the reactor for two purposes: to capture the neutron
reaction energy, and to regenerate tritium. The overall objective of
the system is to heat the plasma to fusion temperatures and contain it
Tong enough for sufficient reactions to occur te provide a net energy

gain.

*This work performed under the auspices of the United States Atomic
Energy Commission.
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In our version of the scheme, the 14 meV neutrons from the
reaction penetrate the liner and the container to reach the 1ithium
blanket where their energy is absorbed. This is in contrast to
other proposals which assume that the liner itself is lithium which
is thick enough to stop the neutrons before they reach the wal1.2
When tha thick Jithium Tiner is used, it protects the container wall
from damage by the 14 meV neutron flux. Unfortunately, the density
of Tithium is so low that it provides poor inertial containment faor

the reacting plasma. It may be possible to overcome this objection
by alloying lithium with a heavier meta1.5

The model developed here is more suitabhle for our thin
heavy Tiner concept, ulthough it may be applicable to some composite

Tithium-heavy metal liners.




1I.  NON-NUCLEAR ENERGIES AT TURNAROUND

At turnaround, where the liner radius reaches its minimum
radius T (see Figure 2), the energy has three major components:
the plasma energy, the axjal magnetic field energy, and the com-
prassional energy of the liner. The kinetic energy remaining in
the liner is independent of radjus r. These should be good approx-
imations because the sound velocity {(or Alfven velocity) of the hot
plasma is much greater than the sound velocity of the cold dense
Tiner. In addition, we shall neglect the diffusion of the magnetic
fjeld through both the liner and the plasma; this will be justified

in a later section.

The total pressure Po inside the liner can be written (see

Figure 2):
2

o-~2ﬂ—=2nkT+L (1}

where n js the jon or electron density of the DT plasma, and T is
its temperature. Define the pressure ratio B in terms of the ex-

ternal magnetic field:
- 2
8 = 167nKT/By, )

KRisc, define the geometrical fill factoer ff in terms of the area

ratio:
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Then the plasma energy Ep per unit length is:

E, = 3nkT f, wr 2 = (3/2) Bf; 2 P (4)

The magnetic energy EM per unit length is:

2 2
B, (1-f.) +B_° T
M f f o

=M - F e 2. . 2
8 3] v Bff) ™a Po (5)
In order to find the compressional energy of the liner,
we must make a fit to published compression data, and we must also
estimate the pressure and density distribution in the liner. The
data for many meta‘ls7 can be fitted by an equation of the form:
p -P/P.
LY - T a.e 1 (6)
PV 4t
For example, for copper two terms suffice to make a close fit over
the pressure range 0-4,5 Megabars:
G_) - 0.3e°P/-65 4 g 7e-P/15. )
%/cu

Let W be defined as the energy of compression per gram.

Then one can find:

P
. 9 gp o -0 ElePrPy
N--j; P g5 dP Vo),.:aipi [] (] +Pi>e 1] (8)

To estimate the pressure and energy distribution in the
liner, it is convenient to define a mass thickness parameter n in
units of gm/cmz:

dn = pdr (9)




At the cutside of the liner {r = r0(1+fL), see Figure 2] where the
pressure is zera, we define n = 0. At the inside of the liner

(r=ro), we define n = = where % is called the total mass thick-

ness. For the pressure distribution to be consistent with the
impulse-momentum theorem, we write:

Pin = Pla, (10)

This approximate formula for the pressure distribution neglects
the inertia of the plasma, convergence effects in the cylindrical
geametry, and liner heating.

Next, we need a relation between the total mass thickncss
o, and the thickness parameter fL (Figure 2). This is found by

integration:

[ro(1+fL)
. dran o Yo% “PofPs)
£ ¥, " Fol 5 E a; Py \1-e 5 v,9, z(PD) (1)

[}
where we have used equations {6), (9), and (10), and where we have
defined the "first compression function® z(P).

Now we are ready to calculate the liner compressional

energy per unit length EL:

UU
EL =~[0- 21rr0 Wdn (12)

Substitute equations (8) and {10), and carry out the integration:

P. ) -P /P,

1 [ ]
a.-"p—[e +1

o

EL = 2nrocovoP° ?

P ~P /P,
Fep )
]

(13)
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Finally, we wish to express the energy EL in a form similar to
equations (4) and (5), and as a function of fL rather than Tyr

Substitute equation {11) into equation (13):

- 2
EL = fL s(Po) mr, P°

where the "sccond compression function” s(P) is given by:

s(P) = E%ET ‘; a; ;i-[e-P/P1 +1+2 ;i (e-P/Pi —1)]’
i

where z(P} was defined in equation (11).

As an example, for copper (equation 7), one obtains the
compression functions shown in Pigure 3.
To obtain the total non-nuclear energy per unit length

Er, add eguations (4), (5), and (14):
= - . 2
£ = Ep +Eyt EL =[1+ (1/2) Bfe + fLs(Po)] " Py
Most of this energy must be provided by the external energy supply

that implodes the liner; this aspect of the problem will be con-

sidered in a later section,

(14)

(16)
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I11. TURNARODUND DYNAMICS AND NUCLEAR ENERGY OUTPUT

Consider the time-dependance of the Tiner motion up to
the time of turnaround (see Figure 2). HWe ignore the subsecuent
espansion, because Rayleigh-Taylor instabilities on the inner sur-

face of the liner would probably destroy the s:mmetry at later

times.8 For the thin Yiner approximation we have:
2 2y-1
d2r_ = r02 1 r =Po "o
oL A | o B Bl oy a7)
dt 0 0 <]

where we have approximated the dynamics of the plasma/field com-
bination by adiabatic compression of a simple gamma-law gas.
The first integral of equation (17) is obtained by

introducing the velocity u = dr/dt:

d ° 12 jro d

rode = . Y r

——z-dt—f udi =L — (18)
.[dt u 20 r rzy]

where the hydrodynamic time constant To is defined by:

T, = (o, ro/po)”2 (19)

Integration of equation (18) leads to the following equation for the

velocity u:

2(v-13]'2
votr |y ) o

Tg‘ (Y_-l ro
For most values of y (such as 3/2 or 4/3), the integration

of equation (20) leads to transcendental 2quations for r which are




analytically awkward. However, for the value y = 2, one finds a
simpler result:

E) -+ (&f @

0

For our approximate analytic model, we will use this simple result,
although most plasma-field systems would be expected to be "softer”
(lower y). Systems with large magnetic energies would be closest

to having an effective gamma of 2. Plasma-dominated systems would

be closer to a gamma of 5/3; an additional heating source, however,
such as a laser or electron beam, could be used to raise the effective

gamma during the liner compression.

Now consider the nuclear energy output Y from the DT

reaction in the plasma near turnaround (see Figure 4):

2 ? n2 —
Y= Ey L e | T ov (T) dt (22)

where EDT is the useful energy release per reaction, where ov (T) is
the nuclear cross-section averaged over the Maxwellian velocity
distribution at temperaturs T, and where we have assumed a 1:1 mix-

ture of deuterium and tritium ions.

S (T) will be approximated

The reaction cross-section
by a quadratic fit which is accurate to about 20% in the temperature

range 7 keV < T < 20 keV:

o 2
ov (T) = 0.4 (kT} (23)
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Combining equations (1), (2), (17), (21}, (22}, and (23) we obtain:
0 ;
1 2 2, 2 dt :
Y = g Epy o fe BP j_-w ————-——-7[ 2] (24) :

1+(§_o)

Using the substitution u = (t/ro)2 the integral can be rewritten

in the following form:

T ® -1/2 T \
-0 J( u du _ 0 AT
T 2 = _—— B(=, =)= .491 1 (25)
z J, (I+u)4 (2’ 2} 0
(AW " 5o 10 s 3
where B(f, 7] is a "Beta Function", 7 is the effective nuclear

reaction time constant; it is smaller than the hydrodynamic time
constant T, because the nuclear reaction rate is a steep function

of both plasma density and plasma temperature.

Combining equatiors (24) and (25), ore obtains:

Y= (0123 £y B F, Pt Z ey (26)

where the nuclear cnergy output Y is written in the same form as
the total non-nuclear energy E. (see equation 16}. This result

for the output energy Y will be an underestimate for those cases

where the effective y of the plasma-field mixture is less than 2,
In those cases the total pressure will not fall as rapidly when
the radius is increased; consequently, there will be a few more

reactions at large radii then have been calculated here. However,

this conservatism is offset by the fact that we have not taken

radiative losses into account.
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IV. ENERGY MULTIPLICATION AND ENERGY PER UNIT LENGTH

We define the energy multiplication « for the total system

involving plasma, field, and liner:
2
3 ffPOTO

Y
a == .0123 E v
ET DT T+ (1/2) B ff + fL SIPOE

(27)

where we have used equations (16) and (26). If we set Epp = 17.6 mev

and solve fo~ the product P0 Ty We find:

P T, = 2.89 x 10° rarl UNNUCERT RN (28)
f

Equation (28) can be compared with Lawson's nt criterion

at T = 10 keV, by means of equations (1), (2). and (25):

(E7o)( 491 ) a0 10 21+ (1 f
ot = (o2 01 )= 4.0 1 [0+ (172) B F + £, s()] (29)

2kt B Tp

As a specific example, choose "breakeven" (a = 1) for a field-free
{3 = 1) plasma contained inside a rigid nonconductin wall (ff =1,

s(P,) = 0). Then we find
T = 6.66 x 10'° (30)

This value ic consistent with the Lawson criterion.]]

In order to consider specific models, it is interasting to
find the final system radius LA far a given choice of plasma and

liner parameters o, R, fF, fL, and Po). ro is obtained from equations

(11) and (19):




\IZ(P )
%2=Qlf IPO]GOTJZ (31)

where we can substitute for LA from equaticn (28). The total
ron-nuclaar energy ET (see equation 16), can then be rewritter in

terms of this solution:

Ep = EOJ—T [z(Po)] s ro)z [1 +(1/2) B+ £, s(P,) (32)

Combining equations (28) and (32), we obtain:
n \'3
13 z(Po) {1+ (/7)) 8 fe+ fL s(ro,j a2

= 2.624 x 10
T o fi 8* fe

E (33)

Equation (33) is an important result of this approximate analysis;

it is the energy per unit length that the Tiner system must have

as a function of the plasma model B8, ff; of the desired energy

multiplication a; of the final pressure PO; of the linzr parameters

Poe fL; and of the liner compressibility functions z(P), s{P).
Consider again the idealized rigid wall example of

equation (30) [a = B = fe = z(Po) =1, s(Fo) = 0]. Then equation

(32) becomes:

Ep = (ggs/pofL) megajoules (34)

meter

Nate that this result is independant of the final pressure Po‘ The

coefficient is a large amount of energy; a dense liner (higqh pc) is

desirable to reduce Eq- A thick liner (high fL) would also seem

%{
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desirable; however, it must be remembered that this approximate

thcory only holds for comparatively thin lipers. Choosing a max-

AR - ow

imum value of FL = 1, and a maximum practical liner density of
- 10 - 20, we find that the jdeal minimum possitie value of the

non-nuclear energy Ep approaches 50 - 100 megajoules/meter.
Next, consider a somewhat more realistic breakeven (o = 1)
case. Choose 8 = f, = 0.707, and <cnsider copper liners for which

pg = 8.93 and fL = 1. Then we find:

£, =(460) z(P)) [1 + 0.8 s(p))® Tesaioules (35)

In this case the more realistic plasma model causes the minimum
value of the non-nuclear energy to be about 5 - 10 times higher
than the previous example. The compressibility function z(PO)

tends to lower this value by increasing the effective liner density,

but the corresponding energy function s(Po) tends to cancel the
effect. The overall result is a gentle variation in the value of

ET as a function of Po’ as shewn in Figure 4. 1In addition to the

total energy Ers Figure 4 also shows the compressional energy in

the liner for this case. i

Other important parameters of the liner compression are

! the Tiner mass my and initial velocity U The mass m, per unit :

length is most easily determined from equations (19) and (28):

r, TD)Z
my = ano g, = 2m 5

(36)
)
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The approximate initial liner velocity u is foaund by neglecting

the initial energy of the plasma and field:

2. P z(P)
2_"T_'o 0
w? - Cabhr s 01+ (1/2) 8 + £ s(P)] (37)

where we have substituted equations (32) and (36). Note that the
required initial velocity u is an increasing function of the
final pressure Po. This method of finding the initial velucity
u, s more exact than differentiation of equation (21), because it

does not assume y = 2,

The final radius s and the initial Tiner velocity u
are platted in Figure 5 for the plasma breakeven case previously
considered in equation {35) and Figure 4. From this figure it
appears that the most practical breakeven copper liner experiment
vould have a final pressure PO near one megabar. Lower pressures

imply large radii, and higher pressures imply large liner velocities.

It should be remarked that an energy ET of 450 megajoules/
meter is comparable to the energy release from 9) kilograms of TNI
per meter. Such large energies imply very larje systems; further-
more Ep v az, so it is of considerable interest to investigate

methods of keeping practical iiner devices smali. Possible ways of

daing this will be considered in a later sectiar of this paper.
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Y. MAGNETIC DIFFUSION IN THE LINER

As mentioned above, we have thus far neglected the
diffusion of the magnetic field into the metallic liner. Now we

shall estimate the size of this effect. To do this we make use

of a previously published shin depth & approximation:12
2
d 2y g g
& ) =06 g grp e, (38)

vihere ny is the metal liner resistivity at temperature To, py Is
its density, and < is its specific heat. For the copper liner
aof cur previous example, we obtain:

L (6% = 262 x 10710 42 (39)

when B is in gauss.
As a first approximation we substitute the flux-conserved

value of B {no diffusion), and integrate over time:
o
RZ dt . (40}
0 Jo t 42
1+ (9
To

6t = 2.62 x 10710

where we have substituted equation (21). The integral is 7/4,

and the skin depth & becomes:

6 = 018347, B, = 0718 (P 1)/ (a1)

A L e e A T
eI

o
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R TI

where we have used equation (1). By comparison with equations (28)-(30)
one finds that the skin depth & is almost independent of the pressure ;
Po’ or the size o For the example plotted in Figures 4 and 5, the
skin depth is computed to be about 0.25 cm, which is small compared

to the final inner liner radius o at all pressures except P z 10 MB

where the compressional energy is also rising.

This skin depth estimate neglects the decrease in metailic
resistivity due to compression, and so it may be an overestimate, On
the other hand, the metal vapor cloud observed at high fields]3 may
blow across the void gap and contaminate the DT plaswa. Such effects

require further investigation.

Overall, we find that the comparatively small value of the
skin depth in the liner justif.es our neglect of magnetic diffusion
in these large liner systems. Magnetic diffusion in the plasma is
also neglected; its effects can be roughly taken into account by

adjustment of the plasma parameters 8 and ff.
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VI. NUMERICAL COMPUTATIONS OF LINER SYSTEMS

An independent evaluation of this analytical model can
be made by comparing it to numerical computations of cylindrical

liner compression., Several such calculations have been done in
14

15

cylindrical geometry = using the multizone, two-temperature hydro-

dynamic code LASNEX.

To the basic code, an axial magnetic field (BZ) has
been added, similar to the MAGPIE code.]6 The equation of state
of the copper liner that was u.ad is more elaborate than the
approximation of equation (6). If p > Py it uses a Gruniesen
formu1at1'on.7 If p< Ppr @ virial expansion is made which is

7 In addition,

matched to the estimated critical point parameters.
the energy of the alpha particles produced in the DT reactions is
redeppsited in the plasma, using approximate formuli for the range

and time delay of the alpha particle.

Most of the code problems cannot be compared with this
model because they used thick Tiners; however, one problem had a
thin Tiner for which fL = 1,16, when the liner kinetic energy was
minimum. At this time the inner liner radius ro = 1.04 cm, the
total pressure P0 = 1.65 MB, the fill factor fg = .55, and the

plasma 8 = .95.
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In Table 1 we show a comparision of the energies com-
puted by the code and by the approximate mcdel. The agreement
is seen to be fairly good except for the nuclear yield parameters
a and Y. The principal reason for this discrepency is believed
to be the fact that diffusion of the magnetic field into the
plasma is neglected. Consequently, most of the plasma has a lower
effective B than the value g = .95, which was computed at the
plasma center. A lower value of B8 would bring both the plasma

energy Ep and the nuclear parameters a and Y into better agreement.

Another important result that was shown by the computer
r'uns]4 is that the nuclez: yield near breakeven does not increase
for liners thicker than fL T 1.0, if one holds the total problem
energy sonstant. The significance of this result is that our approx-
imate thin liner model is a good way of estimating the total ene gy
reguirements for breakeven given by the more exact computations,
even for thicker linars beyond the range of validity of the initial

thin liner assumptions.

Thus, it is concluded that the computer runs support the

results of this approximate model for Tiner compression.

|
1
i
)
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VII.  LENGTH AND TOTAL ENERGY

In addition to the radial compression, a complete system
analysis must also consider axial flow of the plasma out of the
ends of the cylindrical Tiner. A complete two-dimensional com-
putation of this problem has not yet been undertaken; therefore,
we shall adopt a simple approximate criterion for the length of
the liner system which should illustrate the magnitudes of the
quantities invoived. The craterion is that the reaction time T
must be at least as short as the time it takes the plasma to escape

from the ends:

L2 v, T Y2108+ (42)

where L is the lenoth of the 1iner-plasma system, and Va is the
acoustic velocity in a 10 keV DT plasma.

For the "ideal" plasma of equation (30), we find:

L 1022
L2 133210 (43)

For a dense theta pinch (n = 10]7), one obtains a length of 1.33
kilometers, which is within a factor of two of other estimates.]B’lg’zo
For the dense liner systems considered here, the length is consid-

erably shorter.
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A more general result for L is found by combining equations
{25), (28), and (42):
2.838 x 10} o .
L=288X 0 51+ (1/2) Bfc + L s(P (49)
0 B fe
The total non-nuclear energy Emin for the whole length of the liner

is then found from equations (33} and (44):

4
z(P ) [1 + {172} Bf + f, s{P )]
E . =LE = 7.847 x 1027 5—2 t’o

min T PopofL Bﬁffa

o (45)

Inspection of equations (44} and (45) shows that to first approx-
mate, fhe required total energy is inversely proportional to the
final pressure Po. Detailed calculations of L and L ET for the
more realistic plasma model are plotted in Figure 6, which confirm
the 1/PD relationship except at the highest pressures where the

liner compressibility becomes important.

. . 3 N .
Since Py v Mgy We find Emin Vv o /ng as stated in the

abstract. Note, however, the importance of the parameters 8 and

ff. Low values of B and ff require much Targer values of Emin for

breakeven.

It is interesting to compare equation (45) witk the ex-

pressior. for the minimum energy EL p required for ignition of a

spherical laser-heated DT pel]et:Z]

3
CRIL (46)
€N

EL.p.

T N — e



. -~ 20 - >

where £ is the efficiency of laser light absorption, and n is the
compression ratio p/Pa(DT) for solid deuterium-tritium, One sees :
the same power of a for both inertial systems. The density factor
in equation (46) is replaced by the product ng 0 in equation (45),
where ne is the plasma density and Py is the liner density. The
efficiency factor EA is related to the reciprocal of the fourth
a power of the bracketed term in equation (45). Thus, inertial con-
tainment follows similar laws in either cylindrical or spherical

cases.

3
H
AE
E
£
i
H
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VITI. SMALLER LINER SYSTEMS

Figure 6 shows that breakeven for the DT plasma example
will require a total liner energy of the order of a gigajouie.
Pulses greater than this (a > 1) will require even larger energies,
in proportion to a3, as given by equation (45). One gigajoule is
approximately equivalent to the energy release from 200 kilograms
of INT explosive. The applicaf ‘on of such very large explosions to
electrical power production would require extraordinarily large

containers, and novel engineering solutions,

In this section we will describe some possible ways in
which this large size of explosion can be reduced to more manage-
able size. The first of these is a hybrid system in which the
1ithium blanket is replaced by a composite blanket containing both
lithium and fissionable material, such as uranium. Such blankets

22

have been calculated“® to be capable of both breeding tritium {(from

the lithium), and yielding an energy multiplication (from the uranium)

of more than 10 times the energy release of the DT reaction.

Thus, breakeven for the ovarall hybrid system would re-
guire o = 0.1 in equation {45). 1In that case the emergy Enin
would only be of the order of one megajoule, or 200 gm. of TNT
equivalent. Contaimment of such an explosion is guite conceivable

within current engineering practice. This radical improvement for




T R L

i
;
i
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the hybrid system is a consequence of the cubic power law for a
in eguation (45), Of course, all the other parameters of the
system {radius, length, Tiner mass, etc.) will be reduced according

to the various equations developed above.

Another possible approach to reducing the liner size is
to form a "two-component” p]asma23 inside the liner. In this case
some of the ions are non-Maxwellian, having energies of 50-200keV.
As these ians slow down, they contribute additional in-flight
nuclear reactions which would add an additional term to our ex-
pression for the nuclear energy output Y (see equation 26)., It
has been estimated23 that such a plasma might have an effective
nt which is 2-3 times lower than for a Maxwellian plasma. Thus,
one might conceive of lgwering Emin by a factor of about ten.

This would still be a rather large explosion, however,

A third approach is to lower the required liner
length L by changing the design of the ends of the system, where
24,25 26,27

the plasma escapes. End p1ugs,]B muitiple mirrors, CUSpS,

and (in the USSR} toroidal p)asmas28 have been suggested for this
purpose. These designs would reduce the overall length require-

ment, but would not affect the cylindrical calculations of section IV.

A fourth possibility, recovering some of the liner energy,
is described in the next section. Further attempts to minimize the
size of the 1liner system are desireable; the cubic power law for o

offers hope that such an effort can Yeaa to smaller systems.
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IX. MAGNETIC IMPLOSION OF THE LINER

A complete system calculation should als~ include additional
energy losses arising from the inefficiency of the method of liner
implosion. In the case of the magnetic field implosion concept (see
Figure 1), we must choose between the usual "e-pinch" (Bz) driving
field and a "z-pinch" (Be) driving field. 29,30 Figure 7 illustrates

the practical geometry of the two concepts.

It has been shown that the Be system is inherently more
efficient because the local magnetic field is largest at the smaller

30

radius of the liner. The simplest way to demonstrate this is to

consider the Jiner kinetic erergy W:

WeE -E (47)

where Emi is the initial magnetic energy in the driving field, and
Emf is the final energy. (A1l quantities are per unit length, and
resistive effects are neglected.) The magnetic energy ﬁn is given
by:

2
E, = 1/2 ﬁL (48)

where ¢ is the flux, and L is the inductance per unit length. But
the flux ¢ is a constant; therefore, the driving efficiency n can be

written:

—

_=1- (49)

nzH
Em

-
-+

1
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Substituting the appropriate inductance formuli for the two cases,

one obtains:

=1 (50a)

L (ri/rf)

"o~ Tn TR/Te) (50b)

where R is the radius of the container. Comparing the two efficiencies,
one finds that ng > Ny, as was to be shown.

In addition to its higher efficiency, the Be container
geometry {Figure 7) may permit the construction of a higher pressure
vessel due tc toe possibility of having a higher hoop stress in a

cylinder which is unbroken in the azimuthal direction.

In a complete Fusion system one must compensate for the
inefficiency 1 - n by specifying a higher o (equation 27). However,
it has been suggested 31 that if the liner maintains its integrity
after the implosicin, its outward moticn (explosion) will pump energy
back into the driving field, thus reducing the required a. It is

not presently known whether such stability is possible.
The power supply for the driving magnetic field is the

main energy source for the liner implosion. For a radius ratio of

30 (corresponding to an adiabatic temperature ratio of 90 and an

i
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initial plasma temperature of 200eV), the liner implosion time 4
is roughly 30r°/uL, where v, is given by equation (37). Thus to
first order T3 varies as 1/PD. At Po = 6 MB, T z 50 usec, which
requires a very fast system. For the larger energy systems, T4
is longer. In that case one can consider inherently slow power

supply systems, such as inductive energy storage.
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X. LINER FORMATION

Consider a small fusion reactor pover requirement of 108

watts average power. Extrapolating from Figure 6, a 1 meter break-
even system at 6 megabars pressure would have Y = 4 x ]DB joules
per explosion. If a reactor system operated at the same final
pressure (6 MB) with a multipiication of a =\/§: then the yield

Y per explosior would be

Y =« %nin = 1010 Joules/exnlosion

A power of 708 watts would require a new explosion inside the
container every 100 seconds (36 explosions per hour). Within
this cycle time one would have to pump out all of the debris from

the previous explosion, and form the next Tiner-plasma system.

We can suggest two possible methods of forming the Tiner
which might be investigated further. The first is the continuous
casting of a solid cylinder in place inside the container. As a
result of a brief contact with the Tight metals industry, we esti-
mated that the capability to cast 36 metal liners per hour would
cost about $1.2 x 107. If interest plus payment of principal
amounts to 20% per year, then the casting cost would come to about

$275 per hour. For a 108 watt output, this would be $.00275 per

kw-hr.

(51)
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A similar cost estimite can be made for the contairmont
shell, and amounts to $.0010 per kw-hr. No complete system cost
estimates have been made, but the sum of these two costs is Tess

than the market value of $.01 per kw~hr,

A second possible method is gravity flow of a Tiquid
liner. This would require that the axis of the Tiner system be
vertical, and that the mass flow rate through the annular orifice
at the top of the container be varied in time so that the thick-
ness of the liner would be constant (as a function of axjal position
z) at the time of the magnetic implosion. A simple calculation
shows that a linearly decreasing mass flow rate will meet this
criterion. Any low melting point metal can be used. No cost

estimates have been made for this method.

Other practical problems needing further assessment are
the pump out problem and the question whether the explosing
liner (at late times after turnaround) will damage the container.
This Tatter problem will be particularly severe if the liner breaks

up into chunks of metal shrapnel.
Additional studies are needed to clarify these practical

reactor problems.




4
4
)]
i

- 28 -

X{I. CONCLUDING REMARKS

Trkis model is a good approximation for thin cylindrical
compressible liners. Comparison with sumerical calculations
suggests that its usefulness can be extended to thick compressible
liners. Thick incompressible liners (at lower pressures) can best

be treated by the method of Robson.32

These calculations of cylindrical metal liner compressions
for fusion purposes have shown that very large energy explosions
will be needed to surpass breakeven if the usual long theta pinch
plasma geometry is employed. However, the structure of the equations
arouses hope that other plasma configurations may reduce the energy
per explosion. If such reductions can be achieved, then metal liners

should be taken seriously as a methed for achieving fusion.
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Table I: Comparison of Approximate Model

with a Computer Calculation, at turparound:

g= .95, f. = .55, fL = 1.186, T, ® 1.04cm, P, = 1.65 MB

Camputer

Run

Piasma Energy Ep (MJ/m) 37.8
Field Energy EM {(M)/m) 26.9

Liner Compressional Energy EL (Mi/m) 11.6

Total Non-nuclear Energy E; {MJ/m) 76.3
Energy Multiplication o Al

Nuclear Energy Output Y (MJ/m} 23,5

Tt T

Approximate
Model

43.9

26.7

9.1

.59 e

i
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FIGURE CAPTIONS

Figure 1: Contained Liner Concept.

Figure 2: Time & Radius Dependance of Plasma, Magnetic Field, and

Liner near Turnaround.

; Figure 3: Copper Compression Functions versus Pressure. (See
H equations {6), (?), (11), and (15).

! Figure 4: Breakeven Energies for DT Plasma Example (e = fL =1,
i g8 = ff = 0.707).
i Figure 5: Radius and Velocity for DT Plasma Example {a = fL =1,
B=f = Q.707}.

Figure 6: Length and Total Energy for DT Plasma Example (a = fL =1,
g = ff = 0.707).

Figure 7: Schematic Arrangements of Power Supplies for Driving the

Liner.
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Figure 1
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Figure 2
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Figure 7
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