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INTRODUCTION

Shortly after the turn of the century Benjamin and Sluka (1908)

discovered that whole body irradiation (WBR) of animals prior to the
administration of an antigen would suppress antibody production. Hektoen
(1915) confirmed this pioneering observation and currelated the suppres-
sion of antibody production with damage to the thymus, lymph nodes and
spleen. The first observation on what was later to be called "cell
mediated immunity" was made by Murphy and Taylor (1918) who discovered
that irradiation of animals prior to the transplantation of tumors
allowed their prolonged growth. They correlated the growth of the
foreign tissue with the suppression of lymphocyte production. Dempster
et al. (1950) discovered that skin allografts survived substantially
longer in rabbits that had been given WBR as compared to non-irradiated
rabbits. Thus the influence of radiation upon cell mediated immunity
was established early in the century.

In this pzper there will be a selective review of: (1) effect of

radiation on lymphocyte survival in vivo; (2) effect of whole body and

local irradiation on lymphocytic populations and their restoration;
(3) effect of whole body irradiation on cell mediated immunity; (4) effect
of extracorporeal irradiation of the blood and lymph upon lymphocytic
populations; (5) effect of local, whole body and extracorporeal irradia-
tion on allograft rejection; (6) influence of whole body and extracorporcal
irradiation of the blood on hemopoietic cell proliferation.

In order to better understand the topics to be discussed, an

appreciation of the heterogeneity of lymphocytic populations, their



migration pathways and proiiferation {s required. It {s commen knowlecdge
that lymphocytes arc being producced fn the bone marrow, thymus, lymph
nodes and spleen. It is gencrally beliceved that lymphocytic stem celis
arise in the yolk sac and bonc marrow during embryonie lif¢ and preduce
progeny which populate the thymus in the eabryo. Bone-marrow-derived
lymphocytes repopulate the thymus during regeneration from radiation
injury and probably provide a continuous steady state source of stem
cells for the thymus throughout iife. The thymus produces a large
number of cells, a substantial fraction of which =igrates into the
peripheral tissues such as lymph nodes, spleen and the gut associated
lymphoid tissuces (GALT). There is controversy about the degrec of
intrathymic death of newly preduced cells. Most thymic and a variable
proportion of thymus-derived (T-cells) cells are characterized by the
presence of membrane associated alloontigens such as the theta.

Bone marrow derived cells that have probably bypassed the thyrus during
their transit to peripheral lymphoid organs are considered cquivaient
to the cells of the avian Bursa of Fabricius and are called B-cells.
These cells arc characterized by their casily detectable surface
immunoglobulins. In the peripheral lymphoid tissues, B-cells are
intermixed in varying degreecs with T-cells.

The paracortical area of lymph nodes has been termed the “thymic
dependent arca" (Parrott end de Sousa 1971). T-cells are predominant
in this arca. Mowever, T-cells arce also found in the outer cortex and

in the medullory cords to a lessey extent. 1n the spleen, Tecells are
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found most commonly in the dense white pulp, but they are also preseat
in the loosc white pulp and the red pulp of the spleen {lorio ct al.
1$70). The predominant cell in GALT is a T-cell (Joel ct al. 1972 and
Chanons et al. 1974).

About 5-107% of lymphocytes excrging from lymph nedes arze acwly
produced while 90-95% arc lymphocytes cither recycling from bleod to
iymph through the posteapillary venules and the paracortical arcas of
the lymph node or are on terminal tissue migrations. A comparable
recycling of iymphocytes proceeds through the spleen and the GALT
{Ford and Simmonds,1972). In addition to functional differcnces in
tymphocytes suck as T-cells (ccllular fmmunity) and B-cells (humoral
immunizy), the heterogencity of lymphocytes concerns 1ife span of a
fow hours to scveral years (Everett ¢t al. 1964; Norman et al. 1965;
Buckton et al. 1967; Robinson ct al. 19565), the tissuc of origin and
proliferative and migrational behavior.

The proliferation of lymphocytes per unit time is cnormous. Joel
et al. (1974} cstimate that in rodenes about 5 x IO‘ cells are producced
per milttigram of thymus per heur. The average volume of small lympho-
cytes in man 15 approximately 250 umj. Due to normal invelutionary
chanpes, lymphoeytes will represent only a fraction of thymus weight
arcund and after puberty. Assuming a thymus weight in man of 15 grams
(lammar, 1926}, arbitrarily cstimating lymphocytes to be 107 of thymic
weight and production rate comparable to that of rodents, a standard
man of 70 kg would produce 1.8 x ldg or 0.45 gm of thymic cells per doy.

Tine production rate 1o bone marrow and spleen §s not well established.
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One can estimate 2 mintmum production fn lymph nodes since 5-107% of
thoracic duct lymphocytes are flash labeled with tritiated thymidine
and hence are fn the production pathway. The output of thoracic duct
lymphocytes in man is 10? fkp/hr (Yoffey and Courtice 1956) or 70 x
10? /ar in standard man of 70 k. The daily output thercfore is 1.68
x 10‘0 Iymphocytes. Bascd on a thymidine labeling index of 5%, 0.084

10

x 10 is the daily output of lymphocytes in the production pathway.

Each lymphocyte in DNA synthesis produces twe cells so the production
is J.168 x 10'0 new cells or 0.42 g per day in lymphoid tissues drained
by the thoracic duct. This minimum value for lymphocyte production and
lymph nedes and daily thymic production adds up to approximately 0.9 g
of lymphocytes/day. Bone marrow, and splenic production will add to
this by an undetermined amount.

Let us assume that there are about th aatigens for which T-cells
have & unigue genctic recognition capabilfity. There are 1.8 x 109
thymocytes being produced/day in standard man and accordingly there

5 cclls/day being produced that can reeegnize a specific

arce 1.8 x 10
antigen. Uf the mean life span is even 1 day. the total body content

in the stecady state will be 1.8 x 105 cells that can recognize a specific
antigen. Accordingly, to climinate the last T-cell in the mature pool
that c¢apn recognize 3 specific antigen requires greater than a 5 log kill.
The practical probicm with allocantigens is apparently much more extroeme.

Ford and Atkins (1973) have shown that at lcast 7% of T-cells in their

parcent to Fl hybrid system respond to streng alioantigens and are removed
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from thoracic duct recirculation by tissues. This would require greater
than a 9 log kill for extermination. The problem is further complicated
by regeneration of thymic stem cells. With longer mean life spans, the
total number increases proportionately and the eradication process ig
more impractical.

Anatomic studies indicate that T-cells recirculate rapidly from
blood through the paracortical areas of the lymph node. A similar
migration takes place through the spleen (Ford and Simmonds 1972). 1In
addicion, the presence of lymphocvtes in afferent lymph proves that
there is also a continvous flow of lymphocytes through tissues in
general. Whereas it is not possible to estimate the actual concentra-
tion of T-cells per g of tissue, the stcady migration from blood to

lymph through tissues is unquestioned.

Field et al. (1972) estimate that the total exchangeable pool of
lymphocytes is about 30 times that of the blood lymphocytes or 45 x 1010
cells, Wich on average cell volume of 250 ¢m3 this would represent 112,5 g
of lymphocytes. From the studies of Ruchti et al. (1970) it would appear
thot not more than 107 to 607 of the lymphocytes are casily mobilizable from
tte diverse lympheid tissues. Assuming a mean value of 257, the total
lymphoid mass would then represent about 450 g. The carlier minimum
production of 0.9 g of lymphocytes/day lcads one to suggest a maximum
average turnover time of tissue lyvmphocyte pool to be 125 days, In marked
conzrast are the observations and estimates of Norman et al. (1965) and

RBuckton ¢t al. (1967) who cultured human blood lymphocvtes at intervals

following termination of radiotherapy and observed
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the incidence of lethal acentric chromosomal aberrations when the
lymphocytes were forced to divide in vitio. They estimated mean 1life
spans of 530 and 1574 days respectively. These estimates {f applied to
the daily lymphocyte production, would result in a prohibitively large
pool of total body lymphocytes. It is possible that radiation influ-
enced surviving small lymphocytes so that they are not susceptible

to in vivo mitotic stimuli and are thus detected Zor long periocds in

the blood by in vitro culture methods that force them into a mitosis.

Consequently this technique may overestimate mean lymphocvytic 1ife span.
Virtually nothing is known about factors that regulate proliferation
of lymphocytes in the thymus and bone marrow. However, it is reasonable
to believe that at least a fraction of cells proliferating in the lymga
nodes are responding to antigenic stimuli. The studies of Janett et al.
(1966); Wagner et al. (1967); Safier et al. (1967); Vincent et al. (1969)
and Sordat et al. (1972) indicate that the DNA synthesis and the generation
time of proliferating bovine thoracic duct lymphocytes is 4-5 hours and
5-6 hours respectively. These estimates of generation time indicate that
in a 60-hr period, population of stimulated lymphocytes can cxpand by a
factor of 1,000 from 10 serial mitoses. The periodic antigenic stimulation
of proliferation is superimposed on a continual non-antigenic proliferation.
A commensurate periodic death of cells is required to keep the fluctuating
population in bounds thus a large fraction of progeny from antigenic
stimulation must be short-lived.
At this point some further speculation may be useful. In the case

of erythropoiesis and granulocytopoiesis there are reasonably well defined



humoral feedback 1loops that regulate production vate and concentration
of cells in the peripheral blood, namely erythropoietin and possibly the
colony stimulating factor. In the case of lymphocytopoiesis, humoral
feedback loops are not so well established. Thymic lymphocytopoietic
factors such as thymosin and lymphopoietin have been proposed as
candidates for humoral regulation (Klein et al. 1966; Metcalf 1958 and
Timson 1969). Antigens on the other hand can trigger cells into
proliferation, (Hail and Morris 1962; Hall 1967; and Pedersen and Morris
1970).

Let us assume that the steady state production of cells by the thymus
is autonomous and determined only by the delivery of stem cells to the
thymus. Limited self replication of stem cells within the thymus would
be followed by amplifying mitotic divisions within the thymic stroma.
Osoba (1974) reviews the evidence for a continuous flow of stem cells
to the thymus from the bone marrow both for steady state production and
for regeneration after thymic injury. The thymus lacks the capacity
for compensatory hyperplasia after partial thymectomy (Borum 1969).
Furthermore after partial irradiation of the thymus the regeneration
of the irradiated portion is not accounted for by migration from the
adjacent thymi~ tissue (Engeset and Schooley, 1968). One can postulate
that an influx of stem cells from the blood is responsible for renewed
mitotic activity and restoration of the thymus. Metcalf (1963) has
reported autonomous growth of multiple thymic grafts. Furthermore,
studies of Ford et al. (1966) also support the notion that there is a

stcady flow of stem cells into the thymus. MNHumoral stimuli for thymic
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proliferation appear unlikely because there is no compensatory hyperplasia
after surgical removal and no thymic enlargement after peripheral lympho-
cyte depletion. Therefore, the following working hypothesis is proposed.
The number 65 T-cells produced is the product of the stem cell influx
into the thymus, intra-thymic stem cell proliferation and the intra-thymic
amplification factor. This leads to the notion that thymic size is a function
of the stem cell influx and the amount of thymic stroma available in which
thymocytes can proliferate. The studies of Borum (1969) and Metcalf (1963)
also point out that the medulla is required for proliferation in the thymic
cortex. This may be related to the fact that the point of entrance of cells
into the thymus appears to be the corticomedullary junction. The thymic
production rate is estimated at 1.8 x 109 /day in man., Sainte-Marie
and Leblond (1965) propesed that there are 8 serial mitoses from the
stem cell for an amplification of 256. With a 6 hour generation time
this takes 48 hours which is consistent with transit of labeled cells
through the thymus (Craddock et al, 1964). If the 256 amplification
factor applies to man and all stem :~lls are immigrants the influx of
stem cells is 1,8 x 109 7 256 or 7 x 106 /day. 1If there is some self
replication of stem cells in the thymus the influx is less.

In the steady state the following are evideni:

Birth rate (KB) = Death rate (KD)

KB=E=-N1‘=[%

ts t

where NS = numbey in DNA synthesis
t. = DNA synthesis time



-10-

number in thymus-derived lymphocyte pool

2
[}

[}

average life span in pool

g

I1f it is assumed that there is an autonomous fixed production
rate of lymphocytes some notion about the recovery patterns after
depletion can be obtained. 1f the mature pool is depleted by a
method that doces not impair the autonomous production of cells KD
would decrecase in proportion to the depletion. KB will be greater

and repletion commences and will continue until K; again equals

and KD decreases with time hence the

KB. The difference between KB

rate of repletion decreases giving a repletion curve that rises
rapidly at first and then more slowly. With no feedback loops
sensing depletion and accelerating production there will be no

overshoot in repletion.

Studies on the Radiation Sensitivity of Lymphocytes 1un Vivo

The notion that lymphocytes are highly radiosensitive is due to
the rapid appearance of advanced morphological damage in lymphoid
tissues following irradiation that produces interphase death of
the lymphocytes. This is also expressed in a rapid decrease in
the size of lymphocytic organs such as the thymus, lymph nodes and
spleen after total body irradiation. A commonly used measure of
radiation sensitivity is the incorporation of radioactive precursors
into DNA. However, this is not a true mcasurement of radiation
sensitivity of proliferative cells because they may retain the

capability to undergo one or more divisions or at least to incorporate
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the tagged precursors into DNA after injury by radiation. The best
techniques for measuring suppression of cell mediated immunity are those
which messure the reproductive integrity of the cells of interest -- the
B- and T-cells after irradiation. In considering the dose-effect
relationship based for example on thymic or splenic weight, one is
concerned with dynamic overlapping processes of necrosis and removal

of dead cells and regeneration. Regeneration commences after a variabie,
dose-dependent time. The quantitative relationship of the degree of
weight loss in thymus and spleen to dose of radiation has been used
effectively to determine the relative biological effectiveness (RBE)

of neutrons compared to x-rays {(Carter et al. 1954). The killing

effect of WBR on thymic and lymph node cells has been studied by
measuring the weight and number of cells in the lymph nodes and thymus
24 hours following graded doses of radiation (Sato and Sakka, 1969). At
this time interval regeneration is insignificant and hence the quantitative
measurements represent "killing doses" on combined interphase and cycling
lymphocytes. Using these end points, two classes of lymphocytes were
identified with different radiosensitivity. The D37 was 135 R and

425 R for small lymphocytes and 57 R and 520 R for medium and large
lymphocytes in the thymus. The D37 values for small and larger lympho-
cytes in lymph nodes were 213 R and 200 R, respectively. A commonly
used measurement of cell proliferation is the incorporation of 3H-

thymidine in vivo and in vitro. It was shown by Fliedner (1967) that

800 R of x-rays to human lymphocytes in vitro does not prevent their

response to PHA transformation and incorporation of 3H-thymidine. However,
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the stimulated cells, when attempting mitosis, had obscrvable mitoiically
connected abnormalities which in all probability would have resulted in the death
of the daughter cells. Similar observations have been made in vivo show-

ing that incorporation of 3H-thymidine measures abortive regeneration at

an early stage after irradiation and later true sustained regeneration.

A study perhaps pertinent to cell mediated immunity is that of
Whitelaw (1965) who was concermed with the relative radiosensitivity of
old lymphocytes vs. newly produced lymphocytes. In his studies he gave
repeated injections of 3H-thymidine over a 2-week period, a procedure
which resulted in labeliug 337 of the circulating small lymphocytes.

Then animals were exposed to 208 R of whole body irradiation. The
proportionate decreaseinihe-JH{hymidine labeled newly formed lymphocytes
and the unlabeled older lymphocytes was equivalent. These studies suggest
that newly formed lymphocytes committed to allograft rejection or some
other form of cell mediated immunity would be equally responsive to
radiation as lymphocytes in general. Miller and Cole (1967) immunized
mice and rats by giving primary and secondary antigenic stimuli in the
footpads. Commencing 16-96 hrs after the secondary antigenic injections
they intermittently injected 3H-thymidine into the same footpads. Thir ty-
one days after the last dose of 3H-l:hymidine, mice were divided into 3 groups
and given cither BSOR or SOR WBR with one group serving as non-irradiated
controls. Despite the marked atrophy of the popliteal and aortic lymph
nodes, the percentage of labeled small lymphocytes was significantly
higher in the irradiated than in the control animals. Labeled Plasma

cells also persisted. These studies concerned with humeral immunity
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show that the progeny of immunologically stimulated and proliferating
cells are able in part to survive the stated doses of radiation. Pre-
sumably lymphocytes concerned with cell mediated immunity would also
survive in part.

The essential role of specifically sensitized cells in the rejection
of allografts has been shown by numerous investigators (Billingham et al.
1954 and Strober and Gowans 1965, as examples). In addition an integral
part of cell mediated immunity and in particular allograft immunity is
the proliferation of cells either in lymph nodes draining the graft site
(Hall, 1967) or within a renal allograft itself (Pedersen and Morris,
1970). The radiosensitivity of cells producing a graft vs. host reaction
has been determined by Vos (1967). The number of lymphocytic cells
killing 50% of the recipients by GVH reaction was determined. Since
the onoumber required increased with dose of radiation a dose-effect
curve could be established. The D37 for lymphocytic cells, irrespective
of anatomic site, irradiated in vivo or in vitro was about 85 R. The D37
of anoxic cells is substantially greater -- of the order of 230 R with
an oxygen enhancement ratio of 2.7. Makinodan et al. (1962) and Kennedy
et al. (1966) estimated the D37 for antibody producing cells to be 70 R
and 80 R, respectively, independent of the time of injection of antigen
and measurement of proliferation potential. Katz et al. (1970) and
Kettman and Dutton (1971) have produced data suggesting that there is
a very marked radioresistance (upto 5000 rads) of the "helper” function
of T-cells. The results of these studices suggest that the T-cell helper

function is not dependent upon proliferative integrity. Anderson et al.
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(1972) also investigated the radiosensitivity of T-cells. These
investigators fnjected irradiated paremtal thoracic duct lymphocytes

into F, heavily irradiated mice. Doses of radiation from 0 - 300 R

1
progressively decreased the capability of the transfused cells to
incorporate 3H-thymidine and above 300 R there was no significant
incorporation. The helper function of carrier primed thoracic
duct lymphocytes was abolished by exposure to 1000 R in vitro. 1In
these systems presumably the type of helper function that is being

measured has varying radiosensitivity.

The Effect of Whole Body and Local Irradiation on_Lvmphocytic Orgaas

and Their Repletion:

The heterogeneous family of lymphocytes described earlier has a
defined semsitivity to radiation. Schrek (1947) and Trowell (1952)
have shown that doses as small as 15-20 rads can kill a small fraction
of lymphocytes directly as indicated by pyknosis and other cytological
changes. The D0 for all proliferating hemopoietic cells is circa 100
rads. Exposure to doses of radiation thatincreases the acceptance
time of allografts or suppreswms other types of cell mediated immunity
are substantially larger and result in a marked depletion of ail
lymphocytic organs. In addition, germinal centers in lymph nodes and
spleen are severcly depleted. The population of small lymphocytes in
the bone marrow (the probable source of stem cells for repletion of
lymphocytic organs) diminishes within 4-5 days after doses of the

order of 300 rads whole body irradiation. The lymphoreticular tissue
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fs almost devold of smail lymphocytes, germinal centers and proliferating
lymphocytes in all areas of the body. The depletion of the lymphoreticular
tissues is roughly dependent upon the dosce of radiation as messurcd by
weight of thymus and spleen and histologic appearance. Histologic depletion
is almost maximal within the lethal dose range. Scquentially, commencing
within onc hour or even less after exposure to an LD50 dose of x-ray,
extensive pyknosis, necrosis, and karyorrhexis of lymphocytes im the
spleen, lymph nodcs, and the thymus is visible. The clearance of this
necrotic debris is rapid. By 24 hours the organs are depopulated proportion-
ate to the dose and only traces of nuclcar debris can be seen in the
phagocytes. The residual injury of the proliferating cells is expressed
in two ways. The more seriously imjured cells are able to go through

a few mitotic divisions and account for a temporary diffuse regeneration
that is manifested by cells with abnormal size, bizarre shape, mitotic
abnormalities, chromosomal bridges, and fragmentation similar to the
injury to cells in tissue culturce that results in micro-colonies that
cannot sustain continued growth. Later sustained regencration arises

from cells that have not suffered a fatal injury to their genctic
apparatus. The time between irradiation and commencement of sustained
regeneration is dose-dependent and may not commence for 20-39 days

after very high exposu;es. The dosec-effect curves for cell killing

and reproductive integrity generaily show an initial shoulder followed

by an cxponential decline in the fraction of surviving cells over a

large dose range. The Do for reproductive integrity is in the vicinity
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of 100 rads. After doses of the erder of 1,000 rads, the probablility of
survival of the common hemopoictic stem cell {s between 10-3 and 10.4.
With a production rate of 1.8 x 109 T-cells per day and an assumed mean

1ife span of 100 duys the total body T-cells in 70 kg man would be 1.8 x
2011 hence 1000 rads would reduce this population to 107 - 108 cells.
Presumably the reproductive capability of survivors will return after a

dose-dependent time interval. However, an unknown fraction of these cells,

when triggered into mitosis in wvitro culture will show lethal chromosomal

abnormalities. Vos (1967) investigated the Elkind type recovery by split
dose irradiation. There was a small degree of recovery within 2 hours of
the conditioning irradiation. At &4 hours a further increase was observed.
Vos observed no appreciable differcnces in radiation sensitivity of lymph
node and spleen cells. The lymph node cells of preimmunized mice were only
a trifle more resistant to radiation than cells from normal mice.

In reviews and text books therce are many statements about the
prolonged time required for lymphocyte repopulation in the diverse
lymphocytic organs following WBR. There is very little in the
iiterature in the way of quantitative measurements of histologic
repopulation. Systematic studies were, however, performed by
man» investigators during the development of the nuclear bomb. These
are reviewed by Bloom (1948). It is stated that after a mid-lethal
dose of 800 R in the rabbit reconstitution of the spleen is by
artive mitotic proliferation of the iymphocytes and takes from i0
days to 4 wecks and that at lower doses the regencration is more

rapid. Below 175 R there is only transient debris and very little
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destruction of the structural pattern which returas to normal in a very
short time. In the lymph nodes and intestinal lymphatic tissue the great
majority of the nodules are destroyed resulting fn a "nodule-frec" period
until about 3 weeks after irradiation when new nodules begin to fornm.

The thymus atrophles rapidly exposing a condensed cpithelial stroma in
the cortex and lecaving a few surviving lymphocytes in the medulla. For
two to nine days after irradiation the shrirkage continues and the
coennective tissue becomes prominent. The phase of regeneration commeaces
10 days after irradiation and continues to completion by 4 wecks with
repopulation of lymphocytes proceeding cutward from the medulla. This

is an interesting observation, since this is the point at which an
occasional labeled lymphocyte returns to the thymus (Cronkite and
Chanana 1970).

Vos (1967) using induction of GVH reaction studied the long term
repopulation of immunocompetent lymphocytic stem cells (antigen sensitive
T-cells) in sublethally and lethally irradiated animals. After irradiation
cell numbevs decreased for 1-2 weeks. Repopulation was very slow and was
incomplete 100 days after irradiatiom.

Sato and Sakka (1969), in studies that lasted only 12 days showed
that the degree of depletion of murine thymocytes was a function of the
radiation dose becoming maximal at 700 R. Takada et al. (1969) studied
regeneration for a longer period. They demonstrated that 30G-400 R of WBR
to mice rersulted in precipitous fall in thymic weight which was followed

by an increase in the mitotic index and an almost complete restoraticn of



-18-

thymic mass at 10-15 days. This abortive restoration was followed by a
secondary fz2ll and later sustainced recsvery to normat values 30 or more
days after i{rradiation. Injection of syngeneic bone marrow cells or

teg shiclding diminished the degree of the secondary decrease. These
studics were interpreted as indicating 2 need for a continuous migration
of cceils from t..: bone marrow to the thymus for the maintenance of its
cell poputation. In another series of experiments Takada et al. (1971)
studied marrow, spleen and thymus regeneration and concluded that the
spieen requires stem cells from bone marrow for recovery from radiation
injury and that the recovery is delayed until the irradiated bone marrow
can seed the spleen with a sufficient number of stem cells. Blomgren

et al. (1970 and 1971) and Decleve et al. (1972) also observed the
biphasic thymic regeneration and demonstrated the alleviation of the
secondary degeneration by bore marrow transplants. Blomgren observed

that thynus and bone marrow repopulatjon with lymphocytic cclls were
parallel and cyclic. If animals were transplanted with non-irradiated
bone marrow, the recovery was continuous rather than cyclic. In additionm,
bonc marrow stem cells in mice recovering from x-irradiation were found

to have a decreased proliferative activity since they produced significantly
smaller spleen colonies in lethally irradiated recipients than marrow cells
from unirradiated mice. The author interpreted this as indicating that
bon¢ marrow lymphocytic cells act as thymic cell precursors and that
thymic lymphopoiesis is dependent on the presence of these cells. He
also concluded that the need for granulocytic production produces

competition for stem celtls which results in a cyclic variation in the
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production of bone marrow lymphocytic cells.

Order and Waksman (1969) have studied cellular differentiation
in the repopulating thymus following f{rradiation. Their studies
show that bone marrow cells migrate to the thymus by four days after
irradiation. Following this the total number of thymic cells begins
to increase rapidly. Bone marrow-derived cells also appear in lymph
nodes and Peyer's patches at 6 days. Cells removed from the repopulated
thymus at 6 days and injected into irradiated recipients homed promptly
on the irradiated bone marrow in considerable numbers. Of great interest
is the fact that the progeny in the marrow were all lymphocytic amnd that
the short-term residence of the bone marrow-derived cells in the thymus
apparently prevents them from being able to differentiate down the
erythrocytic, granulocytic and megakaryocytic pathways.

Benninghoff et al. (1971) irradiated rats with 300 R and then
measured the size of the mobilizable lymphocyte pool by draining the
thoracic duct lymph. They concluded that the long-lived lymphocyte
pool was in the process of recovery by one month after WBR and took
2-3 months for complcte recovery.

Volkman and Collins (1968) studied the recovery of delayed hwner-
sensitivity in sensitized mice which were irradiated with 400 R W'R.

For 8 days after irradiation delayed hypersensitivity reaction was
almost totally suppressed. Following this, restoration commenced but
was not complete at 10 days after exposure.

Regeneration after Localized Irradiation:

Engeset and Schooley (1968) observed that the partially irradiated
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thymus apparently regencrates without migration of cells from the
adjacent non-irradiated thymus. This fmplies, but does not prove,
that thymic regeneration s initiated by migration of cells into
the thymus. However, in concert with other studies on thymic
regeneration after whole body irradiation with and without bone
marrow transplantation one reaches the nearly inescapable cenclusion
that thymic integrity is maintained by a continuous influx of stem
cells from the bone marrow.

The question of repopulation of the locally irradiated lymph

nodes has been investigated by Hall and Morris (1964) who have
shown that local irradiation of the lymph node only temporarily
suppresses outpnt of cells in the efferent lymph. Subsequently,
Benninghoff ct al. (1969) have shown that the locally irradiated
lymph node is very rapidly repopulated following 300 rads, There is severe

and prclonged depletion of the same lymph nodes after the same
dose of WBR, showing that there is a rapid repletion of the lymph
node by the population of long-lived recirculating lymphocytes that
had not been irradiated.

Application of Whole-Body Irradiation in Preparing Patients for

Kidney Transplantation:

Murray et al. (1960) expressed the issue clearly: "The original
requirements for adaptation of the experimental design of 'irradiation,
marrow, and homograft' to man appcared to be a heavy dose of x-irradiation
to the entire host to destroy its immune mechanism, a source of hemato-

poietic cclls capable of self-reproduction and of subsequent graft from
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the marrow donor. These three requirements are difficult to meet

in man. The dose of x-ray needed to destroy aill the host's immune
system is not yet determined. Because of limitations on the amount
of marrow which can be cbtained from a living patient at one time,

the same living donor cannot give the marrow and then donate a

kidney within the allotted time interval of 72 hours following irradiation.”
The results with WBR throughout the world were so discouraging that by
1965 almost all clinical investigators ceased the use of the whole-
body irradiation to prepare patients for kidney allografts. This
result is not surprising. As discussed earlier 1,000 rad WBR will
only decrease the proliferative potential of 1lymphopoietic cells by
10-3 to lO‘A leaving 107 or more cells of which perhaps 5-10% are
able to engage in allograft reactions and proliferation. In addition,
the residual surviving pool of lymphocytic cells is slowly repleted
with time.

The extension of allograft acceptance following WBR is related to
the decreased number of cells available, the delay in being able to
resume proliferation and reduced capacity to sustain proliferation.

In view of the huge size of the pool of immunocompetent cells, its
capability of slow but sustained regeneration and the large fraction
of cells capable of detecting and reacting against alloantigens one
wonders why WBR has had any measurable effect. One is led to believe
that it must be related to the long term effect of radiation on
surviving cells which impairs their reproductive efficiency thus

reducing the intensity of the allograft reaction.
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Local Irradiation of the Graft: The use of this modality has been

reviewed by Cronkite and Chanana (1968). Some investigators used irradia-
tion of thc graft to change its antlgenicity. This was doomed to failure
since it was subsequently shown that histocompatibility antigens are
resistant to as much as 13,000 R in vitro. Local irradiation was also

used to suppress the adjacent lymphatic tissue. This also was unsatisfactory
since there is rapid repopulation by lymphocytes from elsewhere in the

body as described earlier. Local irradiation of the renal homograft could
by killing passenger lymphocytes result in some suppression of the afferent
arc of the immune response (Kauffman et al. 1966). In view of the
observations of Pedersen and Morris (1970) in which it was shown that

the entire cellular process of allograft rejection can take place in

the renal homograft, one might expect local irradiation of the kidney

to be of some value in control of rejection episodes or postioning the

time of rejection. However, this would have a limited effectiveness

since the kidney will not tolerate more than approximately 3,000 R

before developing radiation nephritis. .The usefulness of local

irradiation of the kidney has apparently been demonstrated in reversal

of acute rejection by Fidler et al. (1973) who found that rejection

was completely reversed by several external radiation doses of 150 R

for a total of 300-900 R.

Influence of Extracorporeal Irradiation of the Blood and Lymph

on Lymphocytic Populations and Their Restoration:

The history of extracorporeal irradiation of the blood (ECIB) and

extracorporcal irradiation of the lymph (ECIL) was reviewed by Cronkite



-23-

et al. (1964) and Cronkite (1968). The induction of a lymphopenia by
prolonged ECIB was established by Crorkite et al. (1962). The effective-
ness of ECIB on the depletion of the lymphoreticular orzans of the calf
was reported by Cottier et al (1964) and elaborated upon by Ruchti et al.
(1970). The favorable effect of ECIB before and after skin allografts
has been reported by Cronkite et al. (1965) and Chanana et al. (1966,
1969a). The influence of ECIL on skin allografts was described by Joel
et al. (1967) and Chanana et al (1969b). The influence of ECIB before
and after renal allograft has been reported by Chanana et al. (1971b).
Calculation of radiation dose was presented by Slatkin et al. (1963).
The underlying principle of ECIB is to utilize the difference in
susceptibility to injury by irradiation between the radiosensitive
circuiating lymphocyte and the radioresistance of the other formed
elements in the blood. Thus, radiation kills the radiosensitive cells
which are then removed from the circulation by the lymphoreticular
system :nd does little harm to the other cells. ECIB is accomplished
by diverting a fraction of the cardiac output through irradiation
fields by means of semipermanent artery-to-vein shunts composed of
Teflon and Silastic. The amount of radiation received by a cell
during one circuit through the radiation source is referred to as a
transit dose and can experimentally be varied from a fraction of a
rad to several thousands. Cells remaining in the circulating blood
may pass through the irradiator one or more times depending upon their
probability of remaining in the circulation, the shunt volume, flow

rate and blood volume. ECIB given continuously or in short repetitive
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sessions (Sipc et al. 1965) has been shown to produce a lymphopenia,
the degree of which is a function of the duration of ECIB, the
transit dose, the number of blood volumes passed through the irradiator
per treatment and the rate of exchange of tissue lymphocytes with the
blood lymphocytes. Depending upon the preceding, the recirculating
pool of lymphocytes can be drastically depleted as manifested by a
low blood lymphocyte count and a markedly decreased output of cells
in the thoracic duct. In quantitative histologic studies performed
after 3-50 hours of continuous ECIB, it was shown that the degree

of depletion with time of lymphoreticular tissues followed an
exponential function with two components. The first component
corresponded to a relatively rapid fall and the second to a slow
reduction in lymphocyte content. The former is related to the
elimination of an easily mobilizable pool of lymphocytes while the
latter corresponds to a more sessile mass of lymphocytes which
exchange with blood lymphocytes very slowly. Effective elimination
of the easily mobilizable pool of lymphocytes by ECIB from all
tissues studied was observed within 10-15 hours, indicating that the
rate of .hange with blood is similar for this group of cells in
various lymphoreticular tissues. The size, however, of the easily
mobjilizable vs. the more sessile pool of lymphocytes may vary
considerably, the best estimate for the former being less than 10%
in the lymph node medulla, 18% in the lymph node cortex and para-
cortical zone, 37% in the red pulp of the spleen, 55% in the demsely

populated white pulp of the spleen and 60% in the loosely populated
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white pulp of the splcen. Prolonged ECIL results in marked lympho-
cytopenia and a reduction of lymphocytes in tissues which has not
becn studied quantitatively.

The size distribution of lymphocytes in the thoracic duct has
been studied. The small recirculating lymphocyte is depleted to the
greatest degree. However, larger cells are also reduced. Continuous
ECIL results in a two-component decrease in the output of thoracic
duct lymchocytes. The first component has a half time of about 1.2
days, corresponding to the elimination of the easily mobilizable
pool of lymphocytes and the second component with a half time of
approximately 30 days presumably corresponds to the more sessile
mass of lymphocytes described above. Calculations based on these
data, indicate the size of the easily mobilizable pool to be
approximately 10 times the number of circulating blood lymphocytes,
or 3-5 x 109 lymphocytes/kg body weight in the calf.

Recovery'from lymphocyte depletion induced by ECIB or ECIL is
very prolonged indeed. Depending upon the degree of depletion, blood
lymphocyte counts may remain below the pre-irradiation levels for 6
montns or more. This is mainly due to a lag in recovery of small
lymphocytes. Large 1ymphocyte levels return to normal in approxi-
mately 3 weeks.

These studies indicate that EC1IB and ECIL are effective in
depleting the body of an easily mobilizable pool of lymphocy tcs

(the recirculating pool). This pool is composed principally of
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small, non-dividing, long-lived lymphocytes which in part at least,

are thymic in origin. 1n the calf, studies oun the emigration oif thymic
cells with a specific surface antigen or radicactively labeled cells
Chanana et al (1971a) indicate that a sufficient number of lympho-
cytes leave the thymus to replace the easily mobilizable pool in less
than 5 days. Accordingly, a large fraction of thymic migrants in
calves do not eanter the long-lived recirculating pool.

In view of the preceding one would predict that lymphocyte
depletion by ECIB and ECIL might suppress immune response and may
prolong allograft acceptance. Repetitive ECIB given prior to skin
grafting prolonged the graft acceptance time by 2-3 days and changed
the normal violent skin allograft rejection to a chronic milder
reaction. With repetitive ECIB continued after skin allografting
the acceptance time was further prolonged. When ECIB was combined
with small doses of Azothioprine, which in itself had no effect on
rejection, the acceptance was prolonged even longer. This suggests
that ECIB and immunosuppressive therapy may be synergistic. Thymectomy
combined with ECIB was no more effective than ECIB alone.

Continuous ECIL resulted in a longer skin allograft acceptance.

Of particular interest is the fact that the effect of ECIL was

dependent upon the anatomical location of the graft. When the grafts
were placed in the drainage bed of the thoracic duct (posterior grafts),
the grafts were retained in general for the duration of ECIL, while

skin grafts on other parts of the body {(anterior grafts) were rejected

provided that: (1) lymphatic-venous communications other than the
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thoracic duct are absent; and (2) anterior and posterior grafts are
from two unrelated donors. These experiments suggest that viable
cells emerging from regiocnal lymph nodes are essential for skin
allograft rejection and these cells can be killed by irradiation
of thoracic duct lymph. In addition, the entry of lymphocytes
committed to allograft rejection into the bleood appears to be
exclusively through the efferent lymphatics. If the cells could
enter directly into the blocd stream they would escape irradiation
and the posterior skin grafts would be rejected at the same time
as the anterior grafts.

ECIB has been used to prepare human beings for renal transplants
(Weeke 1973 a and b). The survival of remal grafts was prolonged only
slightly but the rejection episodes were reduced and hence the quality
of 1ife for the patients improved. It is of interest that after ECIB
lymphocytes retain unimpaired reactivity to PHA but their response to
antigens and allogeneic cells is suppressed for months after ECIB.
(Andersen et al. 1970, and Weeke 1972).

Whole body irradiation exposes all body cells and would be expected
to kill a larger fraction of the lymphocytic pool of cells than ECIB.
Accordingly, one asks the question of why ECIB has any effect on cell
mediated immunity. The answer is not at all clear. It is conveivable
that a large fraction of the surviving lymphocytic pool of cells have
received a non-fatal injury. These T-cell survivors may be able to
recognize antigen but cannot indulge in sustained, vigorous proliferation

of clones of cells directed against the alloantigens thus reducing the

intensity of the allograft recjection.
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Effect of Yhole-Body Irradiation on Growth of Cells in Diffusion
Chambers Implanted in the Peritoncal Cavity:

Another seri~s of studies have shown that bonc marrow and peripheral
blood cells grow more rapidly in diffusion chambers implanted fnto the
peritroneal cavity of irradiated animals than when implanted into the
normal animals (Boyum et al. 1970, Cronkite et al. 1974, Laissue et al.
1974). The stimulation is directed at pluripotent stem cells (CFUs of
mice); granulocytic, erythrocytic and megakaryocytic series; and the
lymphocytic and plasmacytic series particularly when the implanted
cells are from the peripheral blood. The enhancement of growth in
irradiated recipients may have been related to the suppression of
host immune responses in isogeneic and xXenogeneic culture systems;
alternatively, growth enhancement in autologous irradiated recipients
is better understood if specific and/or nonspecific humoral factors
are assumed to diffuse into the culture chamber containing normal
hematopoietic cells. In fact, serum of such animals obtained at a
time when growth in the in vivo culture proceeded at a faster rate than
in non-irradiated recipients has been shown to stimulate granulocytopoiesis
in-vitro (Laissue.et al. 1974). One can perhaps explain erythropoietic,
granulopoietic and megakaryocytic prouliferation on the basis of specific
"poietins" for cell lines concerned acting at the committed stem cell.
The apparent humoral stimulus of the pluripotent stem cell to replicate
in the diffusion chamber is of great basic interest and potential
practical application. One can hypothesize that after WBR the surviving

stem cells are receiving a strong humoral stimulation to proliferate and
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thus replete all hemopoietic pools in a hierarchical progression most
compatible with survival of the animal. After ECIB there may not be
depletion at the common stem cell level or a common humoral stimulation
to the stem cell and consequently little to accelerate repletion. In
addition the remaining pool of lymphocytic cells, not subjected to a
lethal dose of irradiation, may bave an impaired proliferative response
to antigenic stimulation and hence is not taken out of circulation as
rapidly. This line of reasoning suggests that there is a feedback loop
from the peripheral pool to formative organs, but other lines of logic
discussed earlier leads to a probable autonomous proliferation at a

set rate. The resolution of these questions is mandatory before
further progress can be made in attaining a more effective control of

suppression or stimulation of immunity with fewer harmful effects.

SUMMARY
The effects of whole-body, local and extracorporeal irracdiation on

lymphocytic populations, cell-mediated immunity, allograft rejection
and hematopoietic cell proliferation are reviewed. Emphasis in this
review is placed on (1) the heterogeneity of lymphocytes with respect
to origin, function, migrational patterms, anatomic distribution and
1ife span and (2) on the relatively large production rate for thymic
and extrathymic lymphocytes. The conclusfon is reacldthat eradication
by irradiation of any functional subpopulation of lymphocytes is a
practical impossibility. At least a 5 log kill would be necessary

to eliminate specific antigen recognition and even a gre-Z:r log kill
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would be required in case of allograft recognition. It is pointed out
that when mecasuring irradiation suppression of a cell population it

is vitally important that the methods employed establish the reproductive
integrity of the cells of interest. Incorporation of DNA precursors as
an indication of survival may be misleading.

Recovery of lymphoid organs following irradiation is time-dose
dependent. Of particular importance, however, is the 'degree' of
total body exposure. Locally irradiated lymphoid tissues recover
rapidly. Bone marrow shielding markedly enhances recovery due apparently
to migration into the irradiated tissues of lymphocytic stem cells.

Total body irradiation as a immunosuppressant prior to kidney
allografting in man is not practical. Irradiation of kidney allografts
may however be helpful in preventing rejection crises since the entire
process of detection, proliferation and attack by lymphoid cells can
all occur within the graft.

Extracorporeal irradiation of blood (ECIB) and/or thoracic duct
lymph (ECIL) is effective in depleting the body of the easily mobilizable
pool of lymphocytes. There remains, however, a relatively large pool of
sessile lymphocytes which varies in size in different peripheral lymphoid
tissues. ECIB has been shown to be moderatively effective in prolonging
skin and kidney allografts in animals. ECIL is more effective in
prolonging skin allograft rejection particularly if the skin grafts are

placed within the drainage bed of the thoracic duct.
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