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LEGAL NOTICE

This report was prepared as an account of Government spon-
sored work. Neither the United States, nor the Commission nor
any person acting on behalf ofvthe Commission:

A. Makes any warranty or representation, expressed or
lmplied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, apparatus,
method, or process disclosed in this report may not
infringe privately owned rights; or :

B. Assumes any liabilities with respect to the use of, or
- for damages resulting from the use of any information,
apparatus, method, or process.disclosed in this report.

“As used 1in the above, "person acting on behalf of the Com-
mission"” 1ncludes any employee or contractor of the Commission,
or employee of such contractor, to the extent that such employee
or contractor of the Commission, or employee of such contractor
prepares, disseminates, or provides access to, any Information
pursuant to his employment or contract with the Commission, or
his employement with such contractor. :
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ABSTRACT

The work of D.R. Miller* on the hydraulic collabse or instab- -~
ility of flat plates has-beeﬁ extended by considering flow redis-
tribution and the effect of unequalufriction drops in the deflected
region of the channels. A general formula for the pressure distrib-
ution over a plate as a function of the plate deflection is derived.
From this general formula, linearized formulas for small deflections
(1ess than about 30% channel area change, and less than about one=- |
half the plate thickness) are derilved for tl;le pressure distribution
and the crifical Veiocity. Graphs of—pressure distributioh for
various assumed deflection curves are presented. Formulas and
curves are given for the magnification of initial deflections as

a function of approach to the critical velocity

‘*Critical Flow Velocitles for Collapse of Reactor Parallel-Plate
.Fuel Assemblies, to be published in an ASME Journal.
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I. INTRODUCTION -

- In Miller‘s'original work on the instability problem, it is
assumed that (1) the length of the plates 1s large compared to
the length of the deflected reglon, (2) that thepfriction drop
in the deflected region 1s'sma11, and (3) the plate stiffness is

- equal to that of a wide beam subject to a uniform load;

In many reactor plate designs the length of the plates is of
the order of 6 tc 15 times the plate width. Any local deflection
oflthe plates must extend over a length of the order of a plate
width or more, or there would be a large increase in the stiffness
of the piates for this deformation because of axial bending.
Therefore, in many cases the deflected reglon 1s an appreciable

portion of the total length, and some redistributicn of flow 1is

to be expected

As a local region deflects, the friction drop in tne con=
stricted channel will be more rapid.than'in the expanded channel.
This causes a - pressure difference over the deflected region which
is in addition to the Venturi effect considered by Miller. This
pressure difference adds to the Venturi effect for deflectlons
near the inlet, and subtracts for'deflections_near the e#it.

If the deflected region‘extends -over an aXial 1ength less
than about three plate spans, axial bending stresses are not neg-
ligible compared to the transverse bending stresses. This increases

the stiffness of the plate.
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In the analysis presented here these effects are considered.
A general expression for the'pressure distribution‘caused by an
arbitrary plate deflection ;s obtained. This expression 1is linear-
ized by considering defleétiohs corresponding to about 30% chan- |
nel area change or less. Using this linearized expression, crit-
lcal veloci%ies can be found for various assumed positions of a
deflected region.

In the design of plate fuel assemblies, large deflections
are to be avoided. Large deflections wlll cause flow redistribu-
tion, resulting in overheating and/or departure from nucleate
boiling 1n the adjacent plates. The exaét limltation on deflection
will depend on the ‘particular design, but deflections equal to 30%
of the channel thickness or channel area chénge3vof 30% would be
excessive. If the discussionAisvlimited to such deflections, the

linearized theory presented here will be reasonabiy accurate. 1In

~addition, with the linearized theory, magnification of initial

deflectlons by ﬁhe hydraulic forces becomes a simple function of
the approach to the critical‘velocity._;Tben one can design with

respeét to the critical veloclty by setting some limlt on permis-

sible deflection, estimating the expeéted7in1tial deflections,

and calculating the factof'by which these def;ectigns_are multiplied

as a function of the velocity.

The problem of 1arge.def1éctioﬁs is much more complex, and
will not be considered. " Such factors enter as: (1) stiffening

of the plates by membrane stresses; «(2) variation-of flow across
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the span of the plates, (at the mid-span where the plates nearly
tOuéh, flow may be choked off); (3) the pressure as a function .
of déflegtion beéomes highly non;linear. Such effects make
interpretation of experimental data.very difficult at velocities

near and above the critical.

Assumptions

1. The pressure drops thru all channels are equal. That 1s, the
sum of the exit and entrance losé plus the integral of the local
friction drop over the length bf channel, 1s the same for all
channels. -

2. The static pressure distribution across the span of a plate is
uniform at each axial 1ocation. |

. Small deflection elastic theory holds for the plates; membrane

Lo

stresses are negligible.

4, The water is incompressible and no voids or bubbles exist.

ﬂ
:
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II. NOMENCLATURE

- distance along plate length - in,
plate length - in.
- dimensionless dilstance along plate.

channel area for undeflected plates - in.?2

change in channel area as a function of distance along
channel - in.Z2,

é&.— dimensipnless channel area change.

static pressure = psi.

dynamlc pressure - psi.

total pressure - pSi.

pressure dfop across fuel assembly.
local velocity in channel - in./sec,
average veloclity thru channels, based on original area.
critical velocity;

critical velocity és_deriVéd by Miller,
’flow»rate - in.3/sec.

£luid mass density - 1b. sec.2 in.-t
friction factor.

channel thickness - 1n,

plate thickness - in.

plate.span,- in.

inlet loss coefficient.

-exit loss coefficient

stiffness of plate considered as a wide beam subject
to uniform pressure - psi. /in. of deflection at midspan.

parameter which corrects for axilal bending stiffness of
the plates ("short plate effects").

07
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mid-span deflection of plate.

ratio of plate deflection averagedover span of plate
to mid-span deflectlon.

number of plates deflecting into a channel.

axial length of deflected region.

éxial distance from inlet to start of deflected region,
axial distance-from inlet to middle of deflected region.
modulus of elasticity - psi.

Poissont's ratio.

-3
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III. RESULTS

Pressure Distributions
The‘general"expression for axial varlation of the static

pressure acting on the plates, as a function of the deflectlon

curve g(z) 1is

Py x +,zA"-‘ ‘*Jﬂ/;f/)‘/z' *‘Zf/‘)
bivhe + 25 45 1L f;/)/e

A bs

ap.

i

_ [ty f.ug-—J,uf/(é)/Z-_ 25(3)
B . o | , ‘éféeft‘-jé///;)/} '

The pressure is assumed to be uniform over the plate width.

For 8small deflections this reduces to

A,é ?’f 2 {‘///H é,ze/i/"/‘/‘ - e ///‘/*/”‘é = ,;]} &
where £ = @L - ' (3)
. L _ | | - é?*éé .
Figures I thnu IV'ghowiplotS'of this relation for various assumed'
. deflections;n The deflections are aésuﬁed to beiunmodified-by,the
“pressure diStribution.~ In Figure I,aueinusoidal deflection curve
n_with'an 1ntegral number of wavee oyeh:theefull length of the plate
uas.éssumed,'so_tnat'the two channels are identicgl with respect

to total friction drop, In this case there is no flow redistribu-

; @ ) -,;tion.

3
2
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The following parameters were used in the calculations for

Figures I thru IV:

.ol0  k.=036 =20

= 307 | L/b;- 8:75_

B

I.n,Figure II a deflection curve of the form J= % dm (1- e v}ﬁ?ﬁ)
was used, and Zwas_ taken as two plate »spans. The deflectlion starts
just peyond the inlet. Figure III shows the results for the same
deflection curve,~but starting near the middle of the plate length.
Figure IV considers a deflection starting at the inlet.

Plate Stiffness

If a uniform pressure acts over length of the plate which is
large compared to the plate span, the plate acts as a wide beam

and its stiffness 1s given by

D : : .
K = 3(24 ' for a clamped beam. - (4)
’ . 3810 for a simply supported
Ka 4 beam. (5)

where D isfthe flexural rigidity of the plate. If the properties

of the plate are homogeneous and isotropic throughout the thickness,
D =. ﬁ%%:;g ", . If these assumptions do not apply, the flexursal
rigidity of the plate must be evaluated on the basls of the spec-
ific materials used and service environment., There is some |

experimental evidence which indicates that fuel may exhlbit very

low creep strength during irradiation.
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If the deflected region is not long, there is an additional
stiffness due to axial bendingt .This is accounted for in an
approximate manner by defining a parameter ol. The lecal stiff-

ness of a deflected region of length (j) is approximately
‘K= K,,(u-ae) * . (6)

where o has the-valuea listed_below

7/

.. &éf

s | 0.2l
L0 0./0
25| 0.06
20 0.04

In deriving the values for «, 1t was assumed that the central
deflection over the length;([) Qaried in smooth manner, being zero
at each end. It waS-also:aeeumed that tne'locallpressnfe wae T
apprekinately prqportional to tne deflection. Tbe values of «

were found by analogy to the problem of determining~the natural

-frequencies of plates.

Critical Veloclty -

The condition for instability is the following' at the ceriti-

calvvelocity, the pressure caused by a small plate deflection 1is

Jnst e@ual te_the reetbring-fbrce of the plate at that deflection.

*The local stiffness is defined as the maximum Ap divided by max-
imum deflection.

sty
b
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Gii A deflected reglon of length ([), at a distance 16 from the inlet
.having the shape shown on-Figures'Ii and ITI was assumed. Appll-

cation of the instability criterion gives:

,zA/(

Ve = (/-fa?) - / (7)
°* /mcf‘f'*-“%. 2h lf/e 1.[ é +'££.;7?£]}

For a clamped plate, C.= 8/15; for a simply—supported plate
C = 16/25. If only one pléte deflects into a channel, n = 1. L If
an assembly of plates deflects such thaf alternate channels ére
opened and closed at the same axial position, then n = 2. ‘fbis is
the lowest mode of instability. "

The critical velocity found by Miller is

3
Vcrm = / '/fgt A 2 for fixed edges (8)
. pbtli-vy) m ' ' _ :
. 3
= sELA 2 for simply supported (9)
Crm Zlé A"(I-V‘) M © edges )

The ratio of thls critical velocity to the one'found'by Miller

is
Ve /4t
‘ér,q,
{ﬁii | ///+ é’fi- (“ﬂ)‘n/cfég _l:_£i§£{]
- (10)

’ e )
[
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‘This retio is 1ndependent_of the plate edge cohditions and

the mode of instability.

The above relations for critical velocity apply for instab-
ili¢y downstream of the entrance. A relation for entrance
instabllity was obtained using the deflection curve of Figure IV.

The result is

Ver 4
Form
" 1//*/’73 c?(/fP)L[é +g—2£fj

The critical velocity ratios are plotted on Figure V as a

(11)

functlon of the distance of the middle of the deflected region to
the 1hlet. Curves are given for eeverai-values of the ratio (g/b),
If one assumes a sinusolidal deflection curve over the full
1ength of the plate, as in Figure I, a slightly different critical
velocity is obtained. There is.ne flow redistribution and-ﬁhe

‘eritical velocity is the same as Miller‘s critical velocity,

except for axial bending effects

Ver

=L - i ' : . '
. = /7% - (12)

Effect of Flow on Initial Deflections

If initial’ deflections extending over an axial distance of

about 1/3 the plate 1ength or less are present, they. are magnified

by the hydraulic forces.

If all the plates in an assembly have 1n1t1a1 deflections
at the same axlal location, such thatvalternate channels are

increased and decreased in area,
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'5?,- | ,.‘ 6&)& | S (13)

This relation was siven by Miller in Reference (1)

1f two adJacent plates are deflecteﬂ towarﬂs each. otber at n

_the eame axial location,

P o oam

- »_%v - g/}_eﬁgg(' o
| wh‘ere = a(—ﬂ')[/- /——-—@:—’ i ‘_(15):‘

If one plate in an aeeembly has an 1n1t1a1 deflection
%.;»e,__ .

B e

If a eingie plate centered 1n a rigid duct has an 1n1t1a1 :

'deflection, equation (13) applies. The critical velocity is, )

however, Jﬂntimes the critical velocity for an assembly of plates
‘ .: These relations are given in graphical form on Figure VI. ,
These relations apply at any axial 1ocation, and for any length

of deflected region (up to about 1/3 the plate lengch) 2

These relatione aleo apply to a sinueoidal 1nitial deflection' 
over the full plate 1ength If a uniform defleetion exiets over f |

"the full plate 1ength, the hydraulic foree tenﬁe to supprees thia £H“=

deflection.-

*The effeet of axial position and length of defleetea region are

-~ taken into dccount by . eelecting the appropriate critical velocity,

using equation (lO) or- (11)
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" "Effect of In~Plane Compressive Loads.

If the plateé'are subjéct to an in-plane compfessive load,
the eritical veloclty 1s reduced. Such loading coﬁld result from
residual stfesses assoclated with welding of plate assemblies,
differences in average temperaturés of adjacent plates, and
differential 1rradiationvgr6wth of fuel plétes relative to each
other and Eo_poison and_nonéfuel bearing plates.' The condition

for 1nstability is

) (Kzr = | | | | (17)

wherePcr i1s the critical load for column buckling alone, and Ver
1s the critical velocity for flow with no compressive load. This
relation is plotted on Fig. VII for the follow1ng cases: (a) all
 plates in an assembly under combressibn; (v) onevpiate in an |
assembly under compression; (c¢) one plate blsecting a rigid duct.
" The above relation and Fig. VII were presented by Millér in

Reference (1). They are included here for compléteness.

e 1S

s
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IV. DISCUSSION

Pressure Distributions

Figures I thru IV were derived by consldering an initial
deflection and calculating the pressure distribution caused by
this deflection. If the plateé were rigid, this would be t@e
final pressure distribution. With non-rigid plates, this pfes-
sure wlll cause a further‘deflection, and;this'deflection will
generate>an iﬁcrement of pressure, If thé Velocity is below the
critical thié process converéeé, and if the velocity is at or
above the critical the pfocéss diVerges to large deflectilons.

Examination of Figures I thru V points out several interest-

ing effects. The pressure.distribution of Figure I can be thought

of as a sinusoidal distribution plus-a uniform distribution. The

" uniform pressure tends to bilas theventife plate to one slde. How-

éver, as soon as the uniform deflection begins, the flow redis-

tributes and stabilizes this component of the deflectlion. The

sinusoidal component of the pressure, however, will magnify the

sinusoidai defiection shapé; |
In Figuré II the pressure over thé,ehtiré plate is in the

same direction as the deflectlion except at the very end. Thus,

’there_;s a tendency to spréad“the deflected region downstream.

Such a motion would cause further flow redistribution, and a
decreasé in the pressﬁre;_ Th1s'effect was not considered in
the analysis. In Figure III"the pressure upstream of the deflec-

tion acts in the opposite direction to the'defléction.' In the

.deflected region,and downstream it acts in the same direction.
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_Again‘there.is a tendency to_epreed‘the deﬁlected region down=-

stream, and perhaps to movefthe defleeted*region downstream.

Critical Velocitles

Figﬁre'V'shows that the critical veloclty is lowest at the

inlet. The different rates of friction pressure drop in the

deflected and opened channels causes the critical velodity to
increase with distance from the inlet. Comparing Figures II and
III, it 1s seen that a deflection near the inlet generates a

larger pressure difference than one downstream} At the inlet.

'there 1s a further reduction'infcritical veloclty because of the

“reduced plate stiffness wlth respect to e pressure load at the

inlet.

Effect of Inlet Support Comb

. Tﬁe addition of a support comb at the inlet will greatly
increase the local etiffness there, and faise the locel'critical
veloclty by a factor of three to four. Then the most critieal
region moves to about one or two spans beyond the inlet. For the

particular geometry used in the'caICUIations, the addition of an

* inlet support comb raises the minimuijriticai veloclty by apprdx-'

imately 20%. Without the sﬁpport comb the miﬁihum critical vel-
ocity for this'geometry"is about 80% of<M111er's-value, and with
the support comb 1t is approximately equal.to'Miller's value.

Two other factors contribute to ‘making thelinlet the most

‘eritical region: (1) lack of perfect f;ow‘distpibutidn~1mpqses -

-pressure loads at the inlet, (2) the vena'codtraeta between the
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plates at the inlet causes the channel thickness to be effectively'

.ismaller. Thls lowers the critical velocity. Streamlining of the

leading edges minimizes this effect.

Exit 31enum

In the calculations for the flgures, an exlt loss coefficilent

of k93¢ was used. This is based on flow discharge from the

l}plates to a duct of the same dimensions as the plate assembly. If

the discharge 1is to atmosphere, as might occur in some experimental
work on plate instability, then there can be no static preSSure

differences between the channels at the exlt. This effect can be

"accounted for by setting b =1 ., The quantity R = 4%%%; becomes
1

larger. Examination of the critical velocity formulas then shows

that the critical velocity is increased by the lack of an exit

plenum.

‘Experimental Investigations

-tation of data extremely difficult.

It is recommended that future experimental work be directed

toward ‘determining the deflection of plates as a function of the -

ratio (’Va), Both the_plate deflection;and the static pressure

difference should be measured along?the plate"length, A knowledge
of the initial deflection (deviations from flatness) of the plates

as assembled 1n the test fixture is-nedeSsary to interpret the data.

Investigations‘should concentrate on deflections less than

"about one-half the plate thickness and channel ‘area changes of 1ess

than about 30% to 40%, for the following reasons: (1) heat transfer.

'considerations require that deflections of reactor fuel plates be

limited;'(2) the additional complications which occur with large

deflections (as discussed in the Introduction) will make interpre-

{:«.wr : . “ 38
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Derivation of Static Pressure Acting on the

Plate as a Functlon ol the Plate Deflection

rConsider.a‘single'plate in'the middle of a channel bdunded

by two rigid plates. Let the plate have'an arbitrary deflection

shape. Let the change 1n‘cross-sectional aree of Channel 1 as a

- function of distance from the inlet be expressed as

JA, = (%) - ;/Z)
w%ﬁl Z - xi

In Channel 2, the change in area 1s then

éﬁi - ;Q;(Q)

(18)

(19)

At any point along the length of the plate, the static pres-

sure acting across the plate 18 given by
A;% = ﬁk "/Zf:f‘ (UéJf/éJ)'

The dynamic preSsuresrare-simply

b s e Ht P = e

where I/ and | ¥ are.the local"veloelties.~

be written as

A/‘S T lble ﬁat RF([V l/)

(20) :

Then (20) can

(21)

i wml b.e are equal upstream of the plate and downstream '

-of the plate. They are not equal along the plate, except in the

case of no plate‘deflection. -At any point along;the plate, the =

total“pressure‘ls equal to the total pressure Just ahead ofvthe“ﬂ-'

plate, minus the’losses up to the poiht considered . 1In Channelilp

e by 0
;rl’-."g .

[
fch
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pe = mf-b, Yoty / vt Sy (22)

-The second term on the right is the inlet loss. The integral

. i -/ ‘
represents the friction drop. The factor G’* é%%), corrects
the hydraulic diameter from the undeformed channel to the

deformed channel . In Channel 2,

m,-p.- ,'4(04,—-/# £ (- 227 e

(23)
Substituting (22) and (23) into (21). gives
Dps = kKo (hi-1) - f’éf (- Y) e
| z S .y
,".[;gfh“g(//f ’.Tf"/)‘/z - 4p /K—K) (24)

The local veloclities can be exbressed in terms of the flow thru

each channel and the local area'cbange.

v (1+ G)A = @
..Ayz’(-,_- 5_/4:,){74' . @y
Substituting'tbeée éxpteésiohs‘into'(24):gives.
=4 /pé‘)//* %)t éf(a‘)(” )

("" //--—//z-v/f NE W”') L
[(%/uf—’-’) (")// )]

- . . K,
L T N L &
ST
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Let Q be the flow thru each channel with an undeflected

plate.— Multiply thru by (A p

T - wBI B @O %)
+(% f(/ Mj)/*'(d %zf(,“w)/z

C? )(]+ @ﬂ (?z - J%/

Now we determine the ratios of the Q's by imposing the

(25)

condition- that the pressure drops thru the two channels must be

equal. Let Aﬁ be the pressure drop thru the channels. For

Channel 1
FV» zz/sr(/*"")"/c | +ée bole = dh

Substituting for Vl in terms of Ql and multiplying by <;m)(})

glves

Gl (0' f/wd"’) 2 we(% (% he)’ - 44 o

Solving for ( _ gives

o sk 4)¢)

U B e R )

In order to simplify the analysis, we will neglect the effect

of area changes at the exit and inlet on the exit and inlet losses,
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_,‘, @

and exlt are still accounted for 1n the frictlion drop terms;

@ . enll®
] . i _1{1 g (26)

kivkes 53 [0+ %)

Similarly, the flow in Channel 2 is

Gfg)z =. o -fhjzéf)A

@ k+be+’cl‘ J(l— S_él

Substitute>for Q1 and Qp from (é6)-end (27) into (25). 1In
(25) set (5/4{" = -5/421'. =0 . |

ab b [0 R e o (10 F)T

W mﬂff/z/*aw-vz I

L [0 P e s (- B)
‘é'*éa * EZﬂ/k”‘éfy Wz

This expression gives the pressure distribution over the plate
'és'a-fuhction ofﬂthe:channel area change, and as a function of the

pressure drop zLé thru the channels. If thevtotal flow is fixed,

B rather than the pressure drop, then it is necessary to determine

.AAL 1n terms of the total flow, or average velocity. The total

oy
{q¥)

That is, we set kA= BSAe =0 However, deflections at the inlet




flow 1s simply Q; + Q -

Q1@ = Yoh(®

The average velocity is

VWJ:

Ao

@ +Q.
24,

Solving for Ak‘ gives

B, = e Ve

When

/

_[Avépf—gffh+§é)zk.}%

S~ Yo T

KAPL-M-EJ=-9

From (26) and (27)

As

+
lkf*é? t 7 2h Jk' SA|

(ter & o ]+ ot B AT s

54-0

(12) reduces to

b= 50V Lo + M]

In many cases 1t may be sufficlently accurate to use the

(30)

e ]

expression and neglect the increase in pressure drop due to the

deflectlon.
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APPENDIX II

Plate Stiffness - Effect of Length of Deflected Reglon

It 1is assumed that the pressure distribution is8 uniform over

the span of the plate at any axial position. If the deflected
reglon 1s long compared to the plate span and 1f the transition
from the deflected region to the undef1ected region 1s smooth,
axial bending can be neglebted. Then the deflection at any axlal

position is related to the pressure acting at that position by

2 f ‘
S(z) = S,(z) + ;‘;‘; ‘E'é"[ d,él[z) ' (31) ‘ \

where é(%)is the initial deflection of the plate. Let

K, = 384ET
=or (32)
Then (18) can be written as
c(2)
s@) - s+ AEE (33)

1
Now we ccjn's,ider' how K must be mocdified to account for axial
bendingfin'tbe-case of short deflected reglons. If the pressure

acting on the plate were propértional to the plate deflection, the

modification could be made very easily by an analogy to the prob-

lem of determining frequencies of plates.

With small friction drops per inch, and small deflected

'fegions (or a plate deflection curve having neably equal deflections

[
in each direction, such that J%@dk‘<¥1 ), Equation (16) becomes

Bh2) = Yy - 490

02
o
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L

Then the pressure becomes very nearly proportional to the
deflection; the ~ = curve of pressure versus length has nearly
the same shape as the cufve of'deflectiqn versus length.

In the actual case the friction drop in the deflected region
shifts the pressure curve downstream slightly, and causes a pres-
sure in the opposite direction upstream, and in the samé direction
downstream. Also the friction drop and the flow redistribution
affect the average pressure over the deflected'region, increasing
the pressure for a deflection near the inlet and éecreasing the
pressure for deflectlons away from the inlet.

To a first approximation we neglect the shift of the curve
downstream. The higher pressure downstream of the middle'of the
deflected region compensates for tﬁe lower pressure upstream. Then
the pressure at sach polnt 1s considered to be'proportional to the
deflection.

This lbading is the same as the 1lnertla loading in a_vibra-
tion pfoblem.. The plate stiffness in @hg pressure loading problem
is modified by axial bending in precisely the same way as it ié-
1n'ﬁhe:vibfati§h’prqblem. We consider'é deformation shape of

the form

Se 5 (1= cr 23L)

This 1s the deflection curve used in obtaining Flgures I thru III. -
The deflected region 1s cons1dered as a_plate_clamped on all four

edges, of span (b) and 1ength/e{ Then the ratio of the stiffness

B3
o
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of this plate to one of infinite length.is given by
Ko _LQ.Y' |
Ko & |\ We
where w = angular frequenCy of plate of length
and W = angular frequency of plate of infinite length.

~ We introduce a parameter a(, defined by
W= Wy (lfﬂC):

A = f*@%_*f

Using values of (%%) for'various‘vaiues of /o, the table
of o« versus l/b in-the Results. section is derived.

Now (33) can be modified to account for axial bending by
substituting K for K_ | -

If the deflection occurs at the inlet, and no inlet comb 1s
present, the changeiin stiffness is sonewhat'different. Here we
'lvmust consider a plate clamped on- three sides and free on the fourth .
side. Frequency calculations for the combination are not readily
' available. However, for the same 4/b, the stiffening effect must
.be smaller than for the fully clamped plate. Therefore, to be'

'_conservative we take no credit for increased stiffness, and use

oc Ofor entrance deflection.

ﬁ,'*Young, Dana, “Vibration of Rectangular Plates by the Ritz Method",
Journal of Applied Mechanics, Vol 73, -June, 1951, p. 229
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'Finally we introduce a constant C which gives the average

deflection over the,span in tefms of the deflection at mid-span
b
: /
C = T/J/u)/w

The change 1n channel area daused'by plate deflection 18 then

A CS4 | -
szT—:/ﬂc;/h n = 1 for a single plate

n = 2 for two plates deflecting
toward each other

Substituting in (34) for & gives

4

,,(Iw():' (35)

A [5A ¢
@ z (%—o+ ‘ﬁzg ,

21
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APPENDIX IITI

Magnification of Initial Deflections as a Func-
tlon of the Approcach to the Critical Velocity

Consider plots of AF@ versus channel area change. Plot the
hydraullc force curve and the plate stiffness curve on the same
graph. Allow some 1lnitial channel area change. The plate stiff-
ness curve then starts at (;/L s Whereas the hydraulic force curve
starts at the origin.' These_curves are approximately straight

lines for the range of inter-

est.
T HYDRAILIE. The'plate will reach equiQ
@ ForeE — 1ibrium at the point where
N lf— PLATE the twe lines intersect.

STIFANESS

AT

The plate stiffness line 1s given by

a4 = ’(‘((’:’"‘)a i2-&)]

At the critical velocity the slopes of the two lihes are. equal.

Then at a velocity V, the hydraulic force line is

sh - TG

Setting the pressure equal gives

clally @]~ e

IS
ges ptd f,« U
‘ ’
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Divide thru by 8A,
& -/ —_— —-‘-/-.;\ é:é}
JA, - Wr SA

4 /
A, Y \R
/- Vcr)

The above derivation applles to elther a single plate bisecting
a rigid duct, or to an assembly of plates in which all the plates
at an'axial position are-defiected so as to give alternafely opened
and closed channels, .

If only one pléte in an assembly has an initial deflection,
the situatlon 1is somewhat differentwand must be considered in more
detail. _Consider a multiple plate assembly with one plate initilally

deflected. A portion of such

— —_ -_— — -’
—p \ -1 €) an assembly 1s shown in the
- @)
- o figure. Plate #1 has an
— (2) , . .
B @) initial deflection &, . This
R ——— (3 ° ) .
—— , @) @ deflection causes the other
== = = “) ’
‘ . plates to deflect as shown
by the dashed lines. The
bpressure acting on plate #1 1is
R I (36)

In the‘following derivation we go baék té the}assdmptions of no
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flow distribution’and small friction drop. Then the velocities

"~ are related to the veloclty for the undeformed channel by

7 RE VR I
ifi- ¢ Y- ] = v (37)

5 ,
l{,-[/fc‘% + C %]3% 7 (38)
Substituting into (25) and using the series approximatioh :

glves
2C .
dbs, = KM 75(45:*45-1) (39)
The plate stiffness provides a restcriig force

AAJ/ = K('S\'-S‘)

Setting these pressures equal and collecting terms gilves

' 2 2
40V C7_ 4 4elC o _ 40
J,/—/“4 /t/‘( ] 4—7‘;—5‘1 = J; ( )

Now we consider the pressure on piate #2. Proceeding in the

same manner, we obtain
ZC) I~ —
Loy = p W Jo /20, + 95 425 ]

The plate stiffness provides a restoring force
A/és‘a = KJ‘I

Setting the pressures edqual gilves

- __;__._'_ p %tc ’ ‘{1(. 1y Voe _
EVATE S B Rt S R
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Applying the same procedure to the other plates we obtain

the general relation

plC |
é%/—(—-—g' [ # th ]w/ - < "f_/(—" dhsa = O (42)

The lowest mode of collapse for the assembly occurs when all
the plates deflect an equal magnitude (but alternate in directions).
In this case J;=d, in (39). Substituting d;=§, and setting the

" hydraulic force equal to the plate restoring force with no initial

deflection gives the critical velocity

ek
heler = o (43)

Uslng this relation, we write (42) in terms of the ratio of

the velocity to the critical velocity.

- %(%;)152' * [" ,/2(%")’“ c)'“ I/(V Siea = O

A general solution of the set of difference equations is
e 7 ' . ’
5i = kg - (44)
‘ ' Ver 2
Substituting into (33) and multiplying by 7 glves
— 2 . '
4 é’fy—’) -2[g+1 =0
Ve ri4 e
<)==/ 4( #(%]
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%iii

As 1 becomes large (the plate considered 1s far from the
initially deflected plate), the deflection kﬂ’ must become small.
Then @ must be less than one. Thls requires that we use the minus

s8ign in front of the square root
o= - VT ) [ -1 (45)

When Gé)-apo s f+0 . This means that the plate with the
initial deflection causes very small deflections of the other
plates at low flow, When %)—»l, ,3-71. Thus, at the critical
velocity, all the plates deflect equally. As the critical velocilty
1s approached, the lnitial deflection of the one plate affects

w3

plates further away.

Writing (40) in terms of the critical veloclty gives

5[/—//’/ s E)s - o (L6)
- From our solution (44)

5= kg 5.c ke’

Then
Si= S8

Substituting for & in (46) and solving for %/ gives

. ' / .
o= CEIEF (¥7)

e

Cw
&2
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Next we consider the case of two adjacent plates deflecting

towards each other. For this case

—

9
— @ @) v/ i-ac %l =¥
(3 )
=== )
& k1/6f>0 %Z/fc ézﬁj"/{
= 4l E[es 28] (48)

Setting this equal to the plate restoring pressure gives

oyl wonl :

The'relations'for the other plates are the same as 1n the
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previous case. Then we again obtaln -
)
=k€ Mw/ J&’ﬂgl
Substituting the latter relation into (49) gives

LoVie oy .
5'[-"6 e AK]’S"

In terms of the critical,velocity this becomes

S/ < (_; 21 |
(50)



4T

20

| PERIOD OF DEFLEGTION CURVE =2b
Aps SHOWN FOR AXIAL LENGTH, y=2b
CURVE REPEATS FOR y>2b ‘

-1.0%

FIGURE 1 Aps GENERATED BY A SINUSOIDAL
DEFLECTION CURVE
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Aps
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FIGURE IT Aps GENERATED BY A DEFLECTION
- NEAR THE INLET
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FIGURE IIT Aps GENERATED BY A DEFLECTION
: NEAR THE MlDDLE OF THE PLATE

LENGTH
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FIGURE IL Aps GENERATED BY A DEFLECTION
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Lal Wb=15 458 ‘
o b= 20, L/%=4.4
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12
/
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!
\Of= sy \-wb=25, L/ 35
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(
Rz = DISTANCE TO MIDDLE OF
DEFLEGTED REGION
06 L 1 | l |
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F|GURE E RATlO OF CRITICAL" VELOClTY TO
MILLER CRITICAL VELOCITY AS
FUNCTION OF POSITION OF DE-
FLECTED REGION FOR SEVERAL
VALUES OF L/ AND b
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- (1) MULTIPLE PLATE ASSEMBLY (1)

INITIAL DEFLECTION OF ALL (@)
AT ONE AXIAL LOCATION 1.

40 (2) MULTIPLE PLATE ASSEMBLY (&)
1 7 INITIAL DEFLECTION OF TWO
'ADJACENT PLATES (3)

g (3) MULTIPLE PLATE ASSEMBLY
3 " ONE PLATE INITIALLY DEFLEC-
30 30— ' TED - - : ‘
(4) SINGLE PLATE IN CENTER

OF RIGID DUCT.. (Vcr FOR
1 THIS CASE IS V2 TIMES
5 Ol— VgR OF MULTIPLE PLATE
- ASSEMBLY).

1.0

0 L L | . 1
0] 0.2 04 0.6 08 - LO 1.2
L Vor

FIGURE MI MAGNIFICATION OF INITIAL DEFLECTION AS

A FUNCTION OF APPROACH TO THE CRIT-
ICAL VELOCITY"

KS-26384
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LEGEND: P

A- ALL PLATES UNDER COMPRESSION

B- ONE PLATE UNDER COMPRESSION IN MULTI-PLATE
ASSEMBLY ~

C- ONE PLATE BISEGTING A RIGID DUCT.

FIGURE YII COMBINED EFFECT OF FLOW AND

MEMBRANE COMPRESSION OF FLAT

PLATES. KS-200573
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