INFORMAL REPORT

TRIPLET: A Two-Dimensional, Multigroup, Triangular Mesh, Planar Geometry, Explicit Transport Code

> This report was prepared as an account of work spansored by the United states Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any wartanty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, produrt or process disclosed, or represenis that its use would not infring, privately owned rights.

In the interest of prompt distribution, this !-AMS report was not edited by the Technical Information staff.

Printed in the United States of America. Available from National Technical Information Service
U. S. Department of Commerce

5285 Port Foyal Hoad
Springfield. Virginia 22151
Price: Printed Copy $\$ 5.45$; Microfiche $\$ 1.45$

TRIPLET: A Two-Dimensional, Multigroup, Triangular Mesh, Planar Geometry, Explicit Transport Code

Wm. H. Reed
T. R. Hill
F. W. Brinkley
K. D. Lathrop

CONTENTS

Abstract 1
I. INTRODUCTION 2
II. THEGRY 3
A. The Analytie Transport Equation 3
B. Energy and Angular Approximations 4

1. Spherical larmonic Expansion of Source Terms 4
2. Muleiproup Equations 5
3. Discrete Ordinateo iqquations 5
C. Discretization of Spatial Yoriables 6
D. Solution Migoritime 11
4. Boundary Condifions 11
a. Vacuum Boundary Condition 11.
b. Reflective Boundary Condition 11
c. Special Boundary Condition 11
d. Source Boundary Condition 12
5. Mesh Suceps 12
6. Adjoint Problems 13
7. Iterative Processes 13
8. Convergence Aecelcration Hethods 14
a. Inner Iteration Rebalance 14
b. Ouser Iteration Rebalance 15
9. Convergence Tests 16
III. A GUIDE TO TJSER APPLICATIOM 16
A. Overall Progran Flow 17
B. Detaile of Program Options 17
10. Cross Sectiona 17
a. Input Foranes 17
b. Cross-Seccion Hixing 18
c. Anisotropic Cross Siections 19
d. Adjoine Cross Sections 19
e. Cross-Section Checking 19
11. Finice Element Approximation Specification 19
12. Gcosetry and Boundary Condicion Specifieation 20
a. Spacial Keah 20
b. Boundary Condieionn 21
13. Angular Guadrature Coefficient Specifications 21
14. Source Options 23
15. Source and Flux Input Opetons 23
a. Source Input Opeions 23
b. Flux Input Opt ions 24
16. Flux Dumpe and Rescart Procedures 25
17. Rebalance Acceieration of Itcrations 26
18. Eipenvalue Searches 26
19. Adjoint Computations 27
20. Edic Optiont 28
a. Zone Eslat 28
b. Point blit 29
C. Data Input Rules 29
D. Description of Input Data 30
21. Job title Cards 30
22. Input of Control Numbers 30
23. Problew Dependent Data 31
24. Edit Input 33
E. Output Desctiption for a Teat Problea 34
IV. PROGRAMMING IAPORMATION 50
A. Program Structure 50
25. Role and Function of Subprograms 50
26. Program Flow 50
27. Relation of Problew Variables and Program Mnemonics 50
28. Definition of Vartables in Common Blocks 50
29. Machine Dependent Suiprogram 63
a. LiA System Routines 63
b. Gencral System Routines 64
B. External and Internal Data Files 64
C. Hardware Requirenents 65
D. Softuare Requiremente 65
30. CDC Machines 65
31. TAIPLET for the IER-360 65
E. Profiratming Considerations 66
32. Storage Managenent 66
a. Variable Dimensioning 66
b. Allocation of Large Cers Memory 67
c. Computation of Required Stcrage 67
d. Temporary Storage Requirements 67
e. Overstorage of Daza in Core 68
33. Restart Tape Composition 68
34. Standard Interface Files 68
Referonce: 68
FICIJRES
Fig. 1. A typleal regular triangular aesh. 2
Fig. 2. The ertangular point arrangement for a fow lou-order 8 polynomisis.
Fig, 3. The two possible orizatations of e criangle uith 8
respece to a direction n_{m}.
Eif. 4. The standard right eriangle and the $x^{\prime}-y^{\prime}$ coordinate 8
systen.
Fif. 5. Use of the special boundary condition to represent 11
a hexagonal cell.
Fig. 6. Typical order of solution on a band of triangles for 12direction $\{$.
Fib. 7. Simpilfied logical flow dhagran for TRIPJET. 17
Fip. 8. Exampic of x-coordinate and Eriangic indexing. 20
Fig. 9. Indexiag of poines on a ertangle for $\mathrm{NP}=2$. 21
Fif. 10. S_{i} quadrature directions. 22
Fig, 11. Example of quadrature set for leff or right reflecting 22boundary.
Fig. 12. Variation of λ during a hyporhetical eigenvalue search. 27
Pig. 13. Amplified form of flow diagram in Fig. 7 showing sub- 50 routine names in overall program logic.
TABLES
TABLE I. Ordering of Anisotropic Distributed Source Compenents 23
table II. Options for Speciel Rear Formats 29
table ini. Scructure of the tRIPLET Program 51
TABLE IV. Function of TRIPLET Subroutines 52
table V. Relation of Problem Variables to Program Mnemonics 54
TABLE VI. Contents of Blank Comm Block IA 55
TABLE VII. Contents of Named Corwon Block Fibcil 61
table vili. Contents of Named Common Block PWBGN2 62
table IX. Contents of kamed Comon slock local 62
table X. Contents of Named Cormon Block CSuEEP 63
TABLE KI. Contents of Named Common Block UNITS 63
table XII. TRIPLET File Requirements 64
TABLE XIII. LCM Storage Parameters 67

TRIPLET: A THO-DIMENSIONAL, MULTIGROUP, TALANGULAR MESH,

 PLANAR GEOMETRY, EXPLICIT TRANSPORT CODEby
th. H. Reed
T. R. Hill
F. W. Brinkley
K. D. Lathrop

ABSTRACT

1. Program Idencification: TRIPLET (LP~0142)
2. Computer for whieh program is designed and others on winch it is operactonal: CDC-7600, CDC-6600, IBM-350/195.
3. Deacription of Function: TRIPLET solves the two-dirensional multigroup transport equation in planar geometries using a regular ℓ irisigular mesh. Regular and adjoint, Inhomogeneous and homogeneous (Keff and elgenvalue searchea) problems subject to vacuun, reflective or source boundary conditions are solved. Gerseral anisotropic scactering is allowed and anisotropie distributed sources are permitted.
4. Mechod of Sclution: The discrete ordinates approximation is used for the angular variables. A finite element method in which the angular flux is assumed to be given by a low-order polyaomial in each triangle is used to solve the disercte ordinates equations. Argular fluxes are allowed to be discontinuous acrosa triangle boundaries, and the order of the polynomial is input daca to the code. Both inner (wichin-group) and outer iteracion cycles are accelerated by eicher syaten or fine aesh rebalance.
5. Restrictions: Variable dimensioning is used sc that any combination of problem parametera leading to a container array less than MAKLEN can be accormodated. On CDC machines MAXLEN can be about 40,000 words and peripheral atorage is used for mose group-dependent data. On IRH machinea TRIPLET will execute in single precision (4 bytes per word) so that maxiEN can be aeveral hundred thousand and most problems can be core contained.
6. Running Time: A six Rroup, $S_{2}, 1700$ triongle, Keff calculation of an EBR-II core requires about 4.4 minutes of CDC-7600 time. Rutaing times vary almost ineariy with the cotal bumber of unknowns.
7. Unusual Features of the Program: Source, fiuxes, S_{n} constancs, snd crose sections my be input from standard interface Elles. Creation of atandard interface output Eiles for f_{n} constants and scalar and angular fluxes is optionsl. All binazy data transfers are localized in abroutinea called KEFt and RITE. Plexible edit options, including dumps and restart capability, are provided.
B. Machitie Requirements: Six cutput (scratch) units, five interface unit: (use of interface units is optional), and two ayatem inpur/ outpist unif:s aze required. A large oulk memory is necesaary if core starage is inadequate, as on the CDC machines.
8. Related Programs: TRIPLFT $2=$ bised in large part on the twodimensionai orthogonal mesh code THOTRAN-II, thich is an fmproved vernion of the THOTRAN prograni.
9. Heterial Available: Source deck, teat problema, resulta of exacuted test probleas, and this report are available for the Argonne Code Center.

I. INTRODUCTION

TRIPLET is a program for solving the two-dimensional neutron transport equation in planar geometries using a triangular spatial mesh. Planar geometries are infinite in extent in one dimension with material properties depending only on the other two dimensions. In other words, every planar slice through the sjatem perpendicular to the dimension of infinite extont is identical. Examples of such geometries are the (x, y) and (r, θ) orthogonal geometries.

The advantages of a triangular mesh in such geometries are several. Systems of physical interest are often of complicated, curved design. While the description of such systems with an orthogonal mesh is always possible, these shapes are often deacribed tc greater accuracy by a triangular mesh with many fewer mesh cells. Hexagonal lattice geometriea are often of interest, and such lattices can be described exactly by a triangular grid. Nonrectangular system tourdarles can be treated with triangles while preserving convexity, often with a large saving in number of mesh cell.s.

The incressed flexibility of a triangular meah is not without added cost. Degcription of the mesh itself is difficuit, and users of the TRIPLET program must expect that preparation of the input data for this code will be more idfficult than for the orthogonal grid codes. Complexities in the TRIPLET solution algorithms cqused by the triangular mesh lead to execution times that are about tuice as long as those for the orthogonal mesh code TwOTRAN, ${ }^{1}$ on a per mesh cell basis. Thus it is clear that TRIPLET is complementary to, not a replacement for, the TW0TRAN code and should be used only when an orthogonal miesh is incapable of giving accurate answers efficiently.

The regular triangular mesh used by TRIPLET is almost as flexible as a general triangular mesh but is much easier to deacribe. A regular triangular wesh is defined by the following properties:

1. Adfacent srlangles must share two comon vertices.
2. All trianglea must lie on horizontal bands extending across the system. Equivalently, all triangle vertices must lie on horizontal lines extending across the syscem.

Fig. 1. A typical regular triangular mesh.
3. Each interior vertes must be common to six adjacent triangles.
Note that we do not require that triangles be equileteral or outer boundaries be rectangular. An example of a regular triangle mesh is illustrated in Fig. 1.

Thert are two reasons why TRIPLET uses a regulat mesh. First, specification of a regular triangular mesh is much simpler than specification of a general trlangular mesh. Only four pieces of data need be input to the code: the number of trianglea on each band, the band widths (Ay), (see Fig. 1), the x coordinates of the vertices along each horiwontal line, and the orientation of the first triangle on each band. This orientation is specified by indicating whether che triangle points up or down. A triangle is said to be upward pointing if tt has two vertices on the lower line and one on the upper line forming the band, and vice versa. A regular triangular mesh is determined uniquely by the above data.

The second reason a regular mesh is used by TRIPLET is related to our decision to use explicit methods for solving the discrete ordinates equations. Explicit methods necescarily sweep the mesh in the direction of the characteristics (the direction of neutron travel), so that there is a definite order in which the triangles must be solved. This order dcirands upon the direction of neutron flow across triangle boundaries and is not straightforward as for an orthogonal mesh. Thus the direction of flow across boundaries must be determined and decisions made as to how to progress through the mesh. These
decisions are much more complicated and time-consumIng for a general triangular mesh than for a regular triangular mesh. Since the order in shich the mesh Is swept differs with each discrete ordinate direction, these decisions must be made repetitively in the innermost iteration loops of TRIPLET. If complicated, such decisions would be prohibitively expensive. We restrict to a regular mesh to simplify these decisions as much as possible while retaining most of the flexibility of a general mesh.

In addition to its triangular mesh geometry, TRIPLET is unique in its use of explicit finice element methods for solving the discrete ordinates equations. Thege methods assume a piecewise polynomial representation for the angular flux in each direction. Specifically, the angular flux is assumed to be given by a low-order polynomial within each triangle; the order of the polynomial is input data to the code. The angular flux is allowed to be discontinunus across triangle boundaries and is determined Within each triangle by requiring that the residual be orthogonal to the low-order polynomials. This procedure has been found to yield a very accurate and stable method.

Most other features and options of the TRIPLET program are similar to those of TWOTRAN. TRIPLET was written by modifying TWOTRAN, and the codes share the same overlay structure and have many common subroutines. The major features of TRIPLET include:

1. direct or adjoint capability,
2. anisotropic scatterisig of any order,
3. built-in S_{n} constants (nonsymmetric quadrature sets can be input if desired),
4. vacuum, reflective, or source boundaries on all sides (a special boundary condition, useful for hexagonal cell calculations, is allowed on the righthand boundary),
5. nonrectangular domains,
6. source, $k_{e f f, ~ a l p h a, ~ o r ~ c o n c e n t r a t i o n ~ s e a r c h ~}^{\text {, }}$ problems,
7. whole system or fine mesh rebalancs convergence acceleration for inner and outer iterations,
8. optiona? print suppress for large input arrays,
9. space dependent buckling height,
10. flexible edit and restart options,
11. optional input of flux, source, S_{n} constants, and cross sections from standard interface files,
12. optional output of scalar and angulsifluxes and S_{n} constants in standard interface format.

Because TRIPLET is similar to the TWOTRAN code from which it was derived, much of the TWOTRAN manual applies directly to TRIPLET. To obtain a unified and self-contained presentation for the convenlence of the reader of this report, we have reproduced many portions of the TWOTRAN manual in what follows. The next section of this report contains the theoretical development of all the methods and approximations used in TRIPLET. Section III is a users guide and Sec. IV contains detailed programming information. The contents of this report follow the guidelines ${ }^{2}$ for documentation of digital computer programs preposed as an American Nuclear Society standard.

II. THEORY

In this section the energy, angular, and spatial variables of the transport equation are discretized to obsain a set of linear algebraic equations. The exact transport equation is written and discussed in Sec. II.A. The spherical harmonic expansion of scattering sources, the maltigroup treatment of the energy variable, and the discrete ordinates approximation for the angular variables are all treated in Sec. II.B. Section II.C is devoted entirely to a discussion of the finite element methods used to solve the discrete ordinates equations on a triangular mesh. The solution of the linear algebraic system obtained by these approximations is discussed in Sec. II.D.

A. The Analytic Transport Equation

The time-independent, inhomogeneous transport equation is written
$\nabla \cdot(\underline{\Omega} \Psi)+\sigma_{t}{ }^{\Psi}(\underline{\underline{r}}, E, \underline{\Omega})=$

$$
\begin{equation*}
\iint \mathrm{d} E^{\prime} \mathrm{d} \Omega^{\prime} \Psi\left(\underline{r}, E^{\prime}, \Omega^{\prime}\right) \sigma_{S}\left(E^{\prime} \rightarrow E, \underline{\Omega}^{\prime} \cdot \underline{\Omega}\right) \tag{1}
\end{equation*}
$$

$+X(E) \iint d E^{\prime} d \Omega^{\prime} \Psi\left(\underline{\underline{I}}, E^{\prime}, \underline{\Omega}^{\prime}\right) v \sigma_{f}\left(E^{\prime}\right) / 4 \pi+Q(\underline{\underline{r}}, E, \underline{\Omega})$,

In which Ψ is the particle flux (number density of particles times their speed) defined such that
$\Psi \mathrm{dVdEd} \Omega$ is the flux of particles in the volume element dV about $\underline{\mathrm{r}}$, in the element of solid angle $\mathrm{d} \Omega$ about Ω, in the energy range $d E$ about E. Similarly, QdVdEdis is the number of particles in the same element of phase space emitted by sources independent of Ψ. The macroscopic total interaction cross section is denoted by σ_{t}, the marroscopic scattering transfer probability (from energy E ' to E through an angle with cosine $\underline{\Omega} \underline{\prime}^{\prime} \cdot \underline{\Omega}$) by σ_{s}, and the macroscopic fission cross section by σ_{f}. All of these quantities may depend on \underline{r}, but we have omitted this argument for simplicity. The number of particles emitted isotropically ($1 / 4 \pi$) per fission is v, and the fraction of these liberated in the range $d E$ about E is $X(E)$. This fraction may actually depend on both \underline{r} and the fissioning species, but such possibilities are not admitted in the TRIPLET program.

The homogenecus transport equation is written In the same manner as Eq. (1) except that Q is zero and the term representing a source of neutrons due to fission is divided by the eigenvalue $k_{\text {eff. }}$. In this report the inhomogeneous problem will be referred to as a source problem and the honogeneous or eigenvalue problem will be referred to as a $k_{\text {eff }}$ problem. The TRIPLET program will solve both types of problems.

Throughout this report we will use the (x, y) form of Eq. (1). Here the operator $\nabla \cdot \underline{\Omega}$ is given by

$$
\begin{equation*}
\nabla \cdot \underline{\Omega} \Psi=\mu \frac{\partial \Psi}{\partial x}+\eta \frac{\partial \Psi}{\partial y}, \tag{2}
\end{equation*}
$$

where μ and n are the directio: cosines of $\underline{\Omega}$ with respect to the x and y axes, thus

$$
\begin{aligned}
& \mu=\hat{e}_{x} \cdot \underline{\Omega} \\
& n=\hat{e}_{y} \cdot \underline{\Omega}
\end{aligned}
$$

B. Energy and Angular Approximations

In this section the spherical harmonic expansion of the scattering sources is presented, and the multigroup discrete ordinates equations are derived.

1. Spherical Harmonic Expansion of Source Terms
In the TRIPLET program, the scattering transfer probability is assumed to be represented by a finite Legendre polynomial expansion:
$\sigma_{B}\left(E^{\prime} \rightarrow E, \mu_{0}\right)=\sum_{n=0}^{I S C T} \frac{2 n+1}{4 \pi} p_{n}\left(\mu_{0}\right) \sigma_{B n}\left(E^{\prime} \rightarrow E\right) \quad$, where $\mu_{0}=\underline{\Omega} \cdot \underline{\Omega}^{\prime}-\mu \mu^{\prime}+\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(1-\mu^{\prime 2}\right)^{\frac{1}{2}} \cos (\phi-$ ϕ^{\prime}). If this expansion is inserted in Eq. (I), and if the addition theorem is used to expand $P_{n}\left(\mu_{0}\right)$, we can write

$$
\begin{gather*}
\iint \mathrm{d} \Omega^{\prime} \Psi\left(\underline{r}, E^{\prime}, \underline{\Omega} \underline{\Omega}^{\prime}\right) \sigma_{s}\left(E^{\prime} \rightarrow E, \mu_{0}\right)=\sum_{n^{\prime}=0}^{\text {ISCT }} \frac{2 n+1}{2 \pi} \sigma_{s n}\left(E^{\prime} \rightarrow E\right) \\
\cdot \sum_{k=0}^{n} R_{n}^{k}(\mu, \phi) \int_{-1}^{1} d \mu^{\prime} \int_{0}^{\pi} d \phi^{\prime} R_{n}^{k}\left(\mu^{\prime}, \phi^{\prime}\right) \Psi \quad . \quad(3) \tag{3}
\end{gather*}
$$

In deriving this expression, the ϕ symetry of Ψ is used, reducing the domain of $\underline{\Omega}$ to a hemisphere and eliminating expansion terms odd in ϕ. The functions $\mathrm{R}_{\mathrm{n}}^{\mathrm{k}}$ are defined by

$$
\begin{equation*}
R_{n}^{k}=\left[\frac{\left(2-\delta_{k o}\right)(n-k)!}{(n+k)!}\right]^{\frac{1}{2}} P_{n}^{k}(\mu) \cos k \phi \tag{4}
\end{equation*}
$$

where $\delta_{k o}$ is the Kronecker delta (equal to 1 when $k=0$, and vanishing otherwise) and the R_{n}^{k} are the associated legendre polynomials. These functions are orthogonal; i.e.,

$$
\begin{equation*}
\int_{-1}^{1} d \mu \int_{0}^{\pi} d \phi R_{n}^{k}(\mu, \phi) R_{m}^{\ell}(\mu, \phi)=\frac{2 \pi}{2 n+1} \delta_{n m} \delta_{k R} \tag{5}
\end{equation*}
$$

Hence, if the angular flux is expanded in a serfes of these functions,

$$
\begin{equation*}
\Psi=\sum_{n=0}^{\infty}(2 n+1) \sum_{k=0}^{n} R_{n}^{k_{\psi} k}, \tag{6}
\end{equation*}
$$

the expansion coefficients are given by

$$
\begin{equation*}
\Psi_{n}^{k}=\int_{-1}^{1} d \mu \int_{0}^{\pi} d \phi R_{n}^{k_{\Psi / 2 \pi}} \tag{7}
\end{equation*}
$$

Using this formula, we can rewrite Eq. (1) as
$\nabla \cdot(\underline{\Omega} \Psi)+\sigma_{t}{ }^{\Psi}=$

$$
\begin{align*}
& \int_{0}^{\infty} d E^{\prime} \sum_{n=0}^{\text {ISCT }}(2 n+1\rangle c_{s n}\left(E^{\prime} \rightarrow E\right) \sum_{k=0}^{n} R_{n}^{k}(j, \phi) \Psi_{n}^{k} \\
& +x(E) \int_{0}^{\infty} d E^{\prime} \nu \sigma_{f}\left(E^{\prime}\right) \Psi_{0}^{o}+\sum_{n=0}^{\text {LQAN }}(2 n+1) \sum_{k=0}^{n} R_{n}^{k} Q_{n}^{k} . \tag{8}
\end{align*}
$$

As implied by the sum in this equation, we have assumed that the source Q is represented by IQAN+1 terms of an expansion like Eq. (6).
2. Multigroup Equations

The energy domain of interest is assumed to be partitioned into IGM intervals of width $\Delta E_{g}, g=$ $1,2, \ldots$, IGM. By convention, increasing g repreBents decreasing energy. If we integrate Eq. (8) over ΔE_{g} we can write
$\nabla \cdot\left(\Omega_{g}\right)+\sigma_{t g}{ }_{g}=$

$$
\sum_{h=1}^{\text {IGM }} \sum_{n=0}^{\text {ISCT }}(2 n+1) \sigma_{s n h+g} \sum_{k=0}^{n} R_{n}^{k} \psi_{n h}^{k}
$$

$$
+x_{g} \sum_{h=1}^{I G M} v \sigma_{f h} \psi_{o h}^{o}+\sum_{n=0}^{I Q A N}(2 n+1) \sum_{k=0}^{n} R_{n}^{k} Q_{n g}^{k} .
$$

Here, the flux for group g,

$$
\begin{equation*}
\psi_{g}=\int_{\Delta E_{g}} \psi d E \tag{10}
\end{equation*}
$$

is no longer a distribution in energy, but is the total number of particles in the energy interval. For this reason, when group structures are changed, the effect on results must be evaluated by comparing ${ }_{\psi_{g}} / \Delta \mathrm{E}_{\mathrm{g}}$. Because of Eq. (10), energy integrals in TRIPLET are evaluated by simple sums.

The cross gections subseripted with g are averages, e.g.,

$$
\begin{equation*}
\sigma_{t g}=\int_{\Delta E_{g}} \sigma_{t} \Psi d E / \int_{\Delta E_{g}} \Psi \mathrm{dE}, \tag{11}
\end{equation*}
$$

but, of course, $\Psi \pm s$ not known and must be approximated by some means. If in Eq. (11) the angular dependence of Ψ is nonseparable, then $\sigma_{t g}$ will depend on angle. No provision for such dependence is made in TRIPLET. Recipes for taking this dependeace into account, as weil as for improving the averages $\sigma_{s n h \rightarrow g}$ when scattering is severely anisotropic, are given by Bell, Lansen, and Sandmeier.
3. 2iszreve Crínates Equations

The three terms on the right-hand side of Eq. (9) represent sources of neutrons due to scattering, fiasion, and inhomogeneous sources, respectively. All coupling between the IGM multigroup equations is contained in these terms. To simplify notation for the following anelysis, we write all three sources simply as S_{g}, winich we will treat as a known quantity. of course, S_{g} depends on the unknown flux Ψ_{g}, but we will generate S_{g} iteratively using lateat values of F_{g}. For details of the iterative processes In TRIPLET see Sec, II.D.4. Dropping the group subscript g and using the form of the divergence operator given in Eq. (2), we have

$$
\begin{equation*}
\mu \frac{\partial \psi}{\partial x}+\eta \frac{\partial \Psi}{\partial y}+\sigma_{t} \Psi=S . \tag{12}
\end{equation*}
$$

where the furctions $\%$ and S depend upon the variables x, y, u, and n. We will. now be concerned with the discretization of Eq. (12) with respect to the variable 3μ and n.

We first assume that a set of MM quadrature points (μ_{m}, η_{m}) has been selected on the unit disk $\left(\mu^{2}+n^{2} \leq 1\right)$, aiong with a set of quadrature weights w_{m} normalized so that $\sum_{m=1}^{M M} w_{m}=1$. The user of TRIPLET may input this quadrature to the code or may use standard built-in sets, if desired. Although the built-in quadrature sets are symmetric under 90° rotations, for vacuum boundaries there are no symmetry requirements on input quadratures, and MM may be any positive integer greater than or equal one. If built-in quadratures are used, MM must equal one of a selected set of values for which quadratures are available (see Sec. IIt.B.4). If reflecting or
special boundaries are used, then input quadratures must meet certain symetry requirements which are also discussed in Sec. III.B.4.

The source S that is the right-hand side of Eq. (9) involves moments Ψ_{n}^{k} of the angular flux Ψ. With the aid of the above quadrature, these moments can be approximated as
$\psi_{n}^{k}(x, y) \stackrel{\approx}{\ddot{M M}} \sum_{m=1}^{W_{m}} R_{n}^{k}\left(\mu_{m}, \phi_{m}\right) \Psi\left(x, y, \mu_{m}, \eta_{m}\right)$,
where Φ_{m} is defined in TRIPLET by

$$
\begin{align*}
\phi_{\mathrm{m}} & =\tan ^{-1}\left(1-\mu_{\mathrm{m}}^{2}-n_{\mathrm{m}}^{2}\right)^{\frac{1}{2}} \eta_{\mathrm{m}} \quad, n_{\mathrm{m}}>0, \\
& =\tan ^{-2}\left(1-\mu_{\mathrm{m}}^{2}-n_{\mathrm{m}}^{2}\right)^{\frac{3}{2}} n_{\mathrm{m}}+\pi, n_{\mathrm{m}}<0 . \tag{14}
\end{align*}
$$

With the definition of an approximate angular flux in the m'th direction as

$$
\Psi_{m}(x, y) \approx \Psi\left(x, y, \mu_{m}, \eta_{m}\right),
$$

we may write the following set of equations as an approximation for Eq. (12):
$\mu_{m} \frac{\partial \Psi}{\partial x}+\eta_{m} \frac{\partial \Psi_{m}}{\partial y}+\sigma_{t}{ }^{\Psi}{ }_{m}=S_{m}, m=1,2, \ldots M M$,
where the angular source S_{m} in the m 'th direction is computed from

$$
\begin{align*}
& S_{m}=\sum_{h=1}^{I G M} \sum_{n=0}^{I S C T}(2 n+1) \sigma_{B n h \rightarrow g} \sum_{k=0}^{n} R_{n}^{k}\left(\mu_{m}, \phi_{m}\right)_{n h}^{\Psi_{n}^{k}} \\
& +x_{g} \sum_{h=1}^{I G M}{ }^{V} \sigma_{f h} \Psi_{o h}^{0}+\sum_{n=0}^{\text {IQAN }} \quad 2 n+13 \\
& \cdot \sum_{k=0}^{n} R_{n}^{k}\left(\mu_{m}, \phi_{m}\right) Q_{n g}^{k} . \tag{16}
\end{align*}
$$

The approximate moments ${\underset{n}{n}}_{k}^{n}$ appearing above are computed from the approximate angular flux in group h as
$\Psi_{n h}^{\Psi_{k}}(x, y)=\sum_{m=1}^{M M} w_{m} R_{n}^{k}\left(\mu_{m}, \phi_{m}\right) \psi_{m}^{h}(x, y) \quad$.

Eqs. (15) are known as the discrete ordinatea equations, and these equations represent a coupled set of first-order differential equations for the approximate angular flux $\Psi_{m}(x, y)$. All coupling in this set of equations, both energy and angle, is contained in the source term S_{m}.
C. Discretization of Spatial Variables

The approximations that have been nade so far in this report are independent of the form of the spatial mesh used by a transport code. These approximations are in fact identical to those used in the orthogonal grid code THOTRAN. In this section, however, we will depart from the standard diamond difference scheme used in that code and will develop a set of finite element methods for spatial discretization of the discrete ordinates equations on a triangular mesh.

The diamond difference scheme is an example of an explicit difference scheme. Difference schemes for the transport equation fall into two broad categories, which we will refer to as implicit and explicit methods. In an implicit method no attempt is made to solve in the direction in which neutrons are streaming. Instead, variational or Galerkin methods are used to determine a set of linear algebraic equations for all the untnowns. This set of equations is then solved, usually by direct methuds, to obtain the final solution. An explicit method, on the other hand, sweeps once through the mesh, solving for the unknowns in the direction in which seutrons are streaming, Of course, this is also equivalent to solving a set of linear algebraic equations, but here the matrix to be inverted is triangular, or at least block triangular. Perhaps the clearest distinction between the two types of methods can be made in the following way. In an explicit method a particular mesh cell is coupled only to those mesh cells visible when looking backward along the direction in which neutrons are traveling. This direction is determined for each discrete ordinates equation by the direction cosines u_{m} and η_{m} appearing in Eq. (15). An implicit method couples all adjacent mesh cells with no regard for the direction of neutron travel. The finite elsment methods developed below, like the diamond difference scheme, are explicit in nature.

Our task is now the development of a discrate (in x and y) approximation to Eq. (15) on a triangular mesh. We note again that the MM discrete ordinates equations are coupled only through the source term S_{m}, which is computed in an iterative context usiag previous values of the angular fluxes. Hence, for the sake of the present analysis, we may treat S_{m} as a known quanticy. Let us fix our attention upon a particular discrete ordinates equation, which we write without the angular subscript mas
$\dot{\sim} \frac{\partial \psi}{\partial x}(x, y)+\eta \frac{\partial \psi}{\partial y}(x, y)+\sigma_{t}(x, y) \psi(x, y)=S(x, y)$

Finite element methods for solving partial differential equations like Eq. (18) usually involve the assumption that the unknown function, in this case Ψ, can be approxinated by some member of a finite-dimensional set of finctions. This set of functions is often referred to as the trial space. A particular member of this space of functions is selected by some procedure like minimizing a functional or requiring the residual to be orthogonal to a set of weighting functions. The selected member is the desired approximate solution to the paitial differential equation.

The finite element methods used in TRIPLET are derived as indicated above using a weight and integrate technique. The trial space consists of functions that are piecewise polynomial and discontinuous across triangle boundaries. More precisely, If $\tilde{\psi}_{i}(x, y)$ is our approximation for the exact solution $\Psi(x, y)$ within the 1 th triangle, then we assume that
$\tilde{\psi}_{i}(x, y)=\sum_{j=0}^{N} \sum_{k=0}^{N-j} A_{j k}^{(1)} x^{j} y^{k}$,
where N is the polynomial order and the coefficients $A_{j k}^{(1)}$ represent unknowns to be determined by a weight and integrate procedure. To complete the specification of our trial space, we must assign a unique value to the approximate flux on the triangle boundaries. It is essential to the following analysis that we assume that the flux on a irlangle boundary is the limit of the flux as one approaches the boundary in the direction in which neutrons are streaming.

There are many ways in which a polymomial in x and y can be expressed. The represencation of Eq. (19) is certainly the most conmon, but it is inconvenient for our purposes because the coefficiencs $A_{j k}^{(i)}$ have little physical meaning. We prefer, instead, to use a Lagrange representation of the polynorials with which we work. Let us assume that a set of $K \equiv(N+1)(N+2) / 2$ distinct points $\left(x_{k}, y_{k}\right)$ have been placed on the triangle of interest, where N is the order of the polynomial to be represented. The placement of these points is discussed belos. He use R points because there are \mathbb{X} linearly independent polyamiais of order less than or equal N . We define the polynomial $L_{i}^{(k)}(x, y)$ as the unique polynomial of order less than or equal N that is unity at the point (x_{k}, y_{k}) and is zero at the other $K-1$ points on the 1 'th triangle. We refer to the K polynomials as lagrange polynonials. If the points (x_{k}, y_{k}) have been chosen properly, then the Lagrange polynomials exist, are linearly independent, and form a basis for the space of polynomials of order less than or equal N. Thus we can replace Eq. (19) by the following equation with no loss of content:
$\tilde{\psi}_{1}(x, y)=\sum_{k=1}^{K} \tilde{y}_{1}(k)_{L}(k)(x, y)$.
 the unknowns $A_{j k}^{(1)}$ of Eq. (19), can be interpreted as the values of the approximate solution $\Psi_{1}(x, y)$ at the points $\left(x_{k}, y_{k}\right)$ in the 1 'th triangle. It is this physical interpretation for ${\underset{i}{w}}_{\sim}^{i} k$) which leads us to the Lagrange representation for ${ }_{\Psi}^{2}(x, y)$.

There are many arrangements of k points on a triangle that will guarantee uniqueness and linear independence of the Lagrange polynomials. We choose a particular placement of these points which makes the treatment of the triangle boundaries simple. For an N 'th order polynomial, we place $N+1$ equally spaced points on each face of the triangle, with a point at each vertex. The remaining points are discributed uniformly within the interior of the triangle. Fig. 2 iliustrates the placement of these points for a few low-order polynomials. Because a polynomial in x and y of order N is uniquely determined on a straight line by values at $N+1$ distinct points on the line, the flux along the triangle boundary is determined by the $\mathrm{N}+1$ points on that boundary, without regard

Orientation 1 (one face visible)

Orientation 2 (two faces visiblu)

Fig. 3. The two possible ortentations of a criangle with respect to a direction $\underline{4}_{\square}$.
when soiviag for the unknown fiuxes $\tilde{p}_{i}^{(k)}$ on a particular trangle, to rap every triangle to a standard form. Such a mapping can be accomplished by a innear change of independent variables from x and y to x^{\prime} and y^{\prime}. Thus we assume chat

$$
\begin{align*}
& x^{\prime}=a x+b y+c \\
& y^{\prime}=d x+e y+f \tag{21}
\end{align*}
$$

where the confficients a through f are chosen so that every point (x, y) on the triangle of interest is mapped in a one-to-one fashion onto a point (x '. $\left.y^{\prime}\right)$ of a right triangle uith legs of unit length. The $x^{\prime}-y^{\prime}$ coordinate syatem is illustrated in Fig. 4. The transformation of Eq. (21) is not unique, but ve do observe the additional convention that the hypotenuse repredents the incoming boundary for triangles of orientation 1 and she legs represent the incoming boundaries for criangles of orientation 2.

The change of variables of Eq. (21) gives a transport equetion with alzered direction cosines. He have

Fig. 4. The stancard righe triangle and the $x^{\prime}-y^{\prime}$ coordinate syatem.

$$
\begin{aligned}
& \frac{\partial y}{\partial x}=a \frac{\partial F}{\partial x^{\prime}}+d \frac{\partial \psi}{\partial y^{\prime}} \\
& \frac{\partial y}{\partial y}=b \frac{\partial \psi}{\partial x^{\prime}}+c \frac{\partial \psi}{\partial y^{\prime}} .
\end{aligned}
$$

so that

$$
\begin{equation*}
u^{\prime} \frac{\partial F}{\partial x^{\prime}}+n^{\prime} \frac{\partial y}{\partial y^{\prime}}+\infty=S \text {. } \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
& \mu^{\prime}=a_{u}+b_{n} \\
& n^{\prime}=d \mu+e n \quad . \tag{23}
\end{align*}
$$

This change of variables is therefore easily accomplished by a simple change of 4 and n as indieated above.

He may now solve Eq. (22) for the unknown fluxes $\underset{\sim}{ } \boldsymbol{\sim}(k)$ on the right triangle of fig. 4 , inscead of solving Eq. (18) for these same fluxes on the original triangle. He again assume thst

$$
\begin{equation*}
y_{i}^{2}\left(x^{\prime}, y^{\prime}\right)=\sum_{k=1}^{k} y_{1}^{2}(k)_{i}(k)\left(x^{\prime}, y^{\prime}\right) \tag{24}
\end{equation*}
$$

where the Wagrange polynowials are defined on the standard right triangle and are independent of the subseript 1.

We will now derive a set of K equations for our K unknowns, Let us assume that we are dealing with a triangle of ortentation 2 , so that the legs of the right triangle of Fig. 4 represent incoming boundarles. Therefore, the flux on these boundaries is known from boundary conditions or from prior calcuiation in adjoining cells, and the function ${ }_{i}\left(x^{\prime}, y^{\prime}\right)$ of Eq. (24) represents the flux in the interior of the triangle and on the hypotenuse by continuity. The fiux may be discontinuous along $x^{\prime}=0$ and along $y^{\prime}=0$. We assume the flux on the bottom boundary is given by $f\left(x^{\prime}\right)$ and the flux on the left boundary is $g\left(y^{\prime}\right)$. Substitution of this discontinuous fiux into che transport Eq. (22) gives

$$
\left.\omega^{\prime} \quad \sum_{k=1}^{K}\left[\begin{array}{l}
\eta \\
y_{1} \\
i
\end{array}\right)_{L}(k)\left(0, y^{\prime}\right)-g\left(y^{\prime}\right) \right\rvert\, \varepsilon\left(x^{\prime}\right)
$$

$$
\begin{align*}
& +n^{\prime} \sum_{k=1}^{K}\left|\sum_{i}^{\sim}(k)_{L}(k)\left(x^{\prime}, 0\right)-f\left(x^{\prime}\right)\right| 6\left(y^{\prime}\right) \\
& +\sum_{k=i}^{K} \left\lvert\, u^{\prime} \frac{\partial L^{(k)}}{\partial x^{\prime}}\left(x^{\prime}, y^{\prime}\right)+n^{\prime} \frac{\partial L^{(k)}}{\partial y^{\prime}}\left(x^{\prime}, y^{\prime}\right)\right. \\
& +\left.0_{E^{L}}^{(k)}\left(x^{\prime}, y^{\prime}\right)\right|_{i} ^{\eta}(k)=S\left(x^{\prime}, y^{\prime}\right) \\
& \equiv R\left(x^{\prime}, y^{\prime}\right) . \tag{25}
\end{align*}
$$

where $R\left(x^{\prime}, y^{\prime}\right)$ are referred to as the residual. The two tema concaining the Dirac delta functions $\delta\left(x^{\prime}\right)$ and $\delta\left(y^{\prime}\right)$ are due to the boundary discontinuities. It should be noted that the function $L^{(k)}\left(0, y^{\prime}\right)$ Is identically zero unless the k 'th point is located on the left boundary and the function $L^{(k)}\left(x^{\prime}, 0\right)$ is identically zero unless the k 'th point is located on the bottom boundary.

We observe that, in general, the residual R cannot identically equal zero for any choice of $\underset{\sim}{f}(k)$, since the ekact solution is rarely given by a low-order polynomial. We introduce a set of K innearly independent weight fuactions $H_{j}\left(x^{\prime}, y^{\prime}\right)$, $f=1,2, \ldots K$, and insist that

$$
\begin{equation*}
\left(W_{j}, R\right)=0, j=1,2, \ldots K \tag{26}
\end{equation*}
$$

Where (a, b) represents an integration of abover the right triangle. Equation (26) repregents a K by K linear algebraic system of equations for the unknowns $\Psi_{i}^{(k)}$. With a proper choice of weight functions, this system is nonsingular and can be solved by any of a Variecy of methods appropriate for small innear systems. In TRIPLET, the weight functions W_{f} are chosen to be the low-order polynomials of the form $\left(x^{\prime}\right)^{\text {m }}\left(y^{\prime}\right)^{n}$ which span the space of polynomials of order less than or equal N, and Eq. (26) is solved by Gaussian elimination witt partial pivoting.

For triangles of orientation 1 , the linear system solved by TRIPLET to obtain the K unknowns ${\underset{Y}{i}}_{(k)}^{(k)}$ is the same as iq. (26) above, except for boundary terms. In this case, the hypotenuse is an incoming boundary and the legs are outgoing boundaries, so that the flux discontinuity occurs along the line $x^{\prime}+y^{\prime}=1$. We assume that the incoming boundary
flux is given by $f(z)$, where $z=0$ at the laver right-hand corner of the triangle and $2=\sqrt{2}$ at the upper corner of the triangle. The residual 1 s now given by

$$
\begin{aligned}
R\left(x^{\prime}, y^{\prime}\right)= & \frac{\mu^{\prime}+n^{\prime}}{\sqrt{2}} \left\lvert\, f\left(\left|\left(1-x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right|^{\frac{1}{2}}\right)\right. \\
& -\sum_{k=1}^{K}{\underset{Y}{i}}_{i}^{(k)} L^{(k)}\left(x^{\prime}, y^{\prime}\right) \mid \cdot \delta(x+y-1) \\
& +\sum_{k=1}^{K} \left\lvert\, \mu^{\prime} \frac{\partial L^{(k)}}{\partial x^{\prime}}\left(x^{\prime}, y^{\prime}\right)+\eta^{\prime} \frac{\partial L^{(k)}}{\partial y^{\prime}}\left(x^{\prime}, y^{\prime}\right)\right.
\end{aligned}
$$

$$
\begin{equation*}
+\left.\sigma_{t^{L}}{ }^{(k)}\left(x^{\prime}, y^{\prime}\right)\right|_{i} ^{r_{1}(k)}-S\left(x^{\prime}, y^{\prime}\right) \tag{27}
\end{equation*}
$$

The weight functions are again chosen to be loworder polynomials of the form $\left(x^{\prime}\right)^{m}\left(y^{\prime}\right)^{n}$ spanning the space of polynomials of order less than or equal N, and the unknowns $\psi_{i}^{(k)}$ are determined by solvirig the K by K linear system of the form of Eq. (26).

Numerical experiments ${ }^{10}$ have shown that the finite element methods described above are capable of yielding accurate solutions of the discrete ordinates equations. These methods are theoretically capable of yielding high order (greater than second order) accuracy for $N>1$, but in practice the angular flux is not sufficiently smooth for this to happen. First derivatives of the angular flux almost always fail to exist along certain characteristics, so that all methods are first-order accurate in predicting local fluxes. We find experimentally that eigenvalues and region-averaged quantities are predicted to second-order accuracy by all these methods. Because of this, TRIPLET is usually most efficient when run with $N=1$.

One disadvantage of these methods that are based on discontinuous representations of the angular flux is the large amount of core storage required. It is necessary to store the scalar flux and enough moments of the angular flux to generate the scattering source at all KI points on the spatial grid. Even for $N=1$ we have $K=3$, and $3 I$
words of storage are required for each poment of the angular flux. Orthogonal mesh codes using the diamond difference scheme need only I sords of storabe for each monent, where its the total number of spatial mesh cells. Such a large increase in storage requiraments can mean that some large problems will not fit in avallable core.

To ainimize core storage requirements, on opelon is allowed in TRIPLET so that the user may select a less elegant and less accurate solvtion method. This solution acthod assumes that che angular flux is given within each triangle by a linear polynomial and imposes sufficient flux continuity actoss triangie boundaries to elininat: two of the three unknown in each rilangle. The equation solved for the single remaining unknown is always the balance equation obtained by integrating Eq. (22) over the triangle. For triangles of orientation 1 the procedure is straightfortard. We simply tropose continuity across the single incuming boundary, so that the two fluxes on that boundary are decermined. The third flux is obtained by solving the balance equation. Strict continuity cannot be imposed for triangles of orientation 2 , however, since that would fully determine all three points within the eriangle, and neutron balance could not be guaranteed. For triangles of orientation 2 we follow this prescription. We first impose continuity across one of the two incoming boundaries and solve the balance equation for the remaining flux. We then impose continuity across the other boundary and again solve the balance equation for the third flux. The final solution is then obtained by averaging the two fluxes obtained at each of the three points. In every case we solve only the balance equation, which in turn involves only cell-average sources. For this reason, only cell-average £luxes need be stored to generate these sources. Therefore, core storage requirements for flux and source arrays are reduced by the factor $1 / 3$ when TRIPLET is run with this continuous method.

The continuous method is almost as accurate as the discontinuous method but a great deal less stable. Negative flux values can be produced by either method, but negative fiuxes are encountered much more of ten with the continuous method. There is no negative flux fixup in TRIPLET, and if the user is
unhappy gith such fluzes the muse switch to the disconelmuous method, use a fincr mesh, or both.

p. Solucion Algorichns

1. Boundary Conditions

The equations and methods of Sec. II.C determine the angular flux within a criangle provided the incoming liux on triangie boundaries is known. This incoming fiux any be known from prior calculation in adjacent cells. If an incoming criangle boundary is a system boundary, then the fincoming flux zust be determined frow the appropriate boundary condition. In TRIPLET, one of the following boundary condieions must be applied to the top, bottom, and each of the two sides of a syster. The top and bottem boundaries are defined to be those parts of the system perimeter coinciding with the top and bottom horizontal 11 nes (node lines), respectively. Note chat the top and battom boundaries axe always flat, but side boundaries may approximate some curved surface. It is possible for the top or botcom boundary, or both, to fall to exist. This happens, for examile, if chere is a single uphard pointing ertangle on che top band. In these cases the boundary condichons are meaningless and are not used.

a. Vacuum Bouncary Condiztion

The value of the angular flux on the boundary is set equal to zero for ail incoming directions.

b. Reflective Boundary Condition

Reflective boundary condicions tay be applled to each of the four sides in any combination. TRIPLET users are cautioned, however, to note chat, if the external boundary is not rectangular, the wise of reflective boundaries may lead to a nonconvex domain of interest in which reentrant neutrons are not properly accounted for. Furtherwore, a reflective boundary must be parailel with one of the coordinate axes, and the quadrature must possess certain symetries (see Sec. III.B.4). If either of the side boundaries is reflective, the quadrature must be symmetric about the line $n=0$, whereas if either the top or botcom boundary is reflective, the quadrature must be symmetric about $\mu=0$, These requirements are necessary to guarantee that all reflections of directions are contained In the quadrature set.

For a reflective boundary condition, the value of the incoming flux on the boundary is set equal
to the value of the outgoing flux at the gane tipatial posicion in the dircetion corresponding to specwhar reflection. At the right-hand boundary, for example, we set

$$
\begin{gathered}
\text { Yincoming }(-u, n)=\nabla_{\text {outgoing }}(1, n) \\
\nu>0
\end{gathered}
$$

c. Spectal Boundary Condition

A special boundary condition useful for hexagonal cell calculations is provided in TRIPLET. This boundary condition can be used on the righthand boundary only and eust be used $1 n$ conjunction with reflective boundary conditions on the other cinsee sides. When a special boundary condition is used, the band uidthe must be symetric about a hoz-* 1zontal line ehrough the aiddle of the system. There may be an even or odd nuaber of bands; if there is an odd number of bands the cenecmost band is unpaired and may be any size.

Figure 5 illustrates the use of the special bousdary to represent an hexagonal cell. This boundary condition is implemented in the following way. He assume there are a total of JI wands. The incosing flux or the J'th band in the direction $(-\mu,-n)$ is set equal to the outgoing flux on band JT $+1-J$ In the dizection (u, n). Furthermore, the spatial variation of the flux within the band is reversed.

Fig. 5. Use of the special boundary condition cc represent a hexagonal cell.

Hence the special boundary condition is really a 280* reflection combined wieh a spatial cransposifion about the horizontal centerline of the system.

d. Source Roundary Condition

The user of TAIpLET may specify the incozing, angular flux in each quadrature direction for eant of the four sides in any combination. It is not necessary when using chis boundary condition that sides be parallel to coordinate axes. Because it is therefore impossible to guarancee which directions are incoming along a certain boundary, and becanse
ivicoming direction at one point on the boundary may be an ouzgoing direction at ather points, the uger mint enter a value for all directions at euary point along a source boundary. (An option $1 s$ proUided whereby the user need enter only one value per triangle.) TRTPLEI then selects and uses only the values corresponding to inconing directions. Foundary sources represent a source of particles and are treated as sources by the code.

2. Mesh Suceps

In an orthogonal grid code like twothan, the mesh sweeps are usually orsanized so that a quadrant of dircetions is treated simultaneously. This can be done because neutrons streaming in all directions within a single quadrant move through the spatial mesh in the same order. Consider, for example, the positive quadrant ($u>0$ and $n>0$). For all directions in this quadrant, the left and bottos boundarics of each rectangular mesh cell are incomins boundaries and the cop and ripht boundaries are outpoing boundaries. Therefore the sparial mesh can be solved in a straightforward manner beginning with the lower left corner and ending with the upper right corner.

The manner in which a criangular mesh must be swept is less simple. First, for a given direction the order in which the spatial mesh is solved is no longet straightforward but involves testing the direction of flow across eriangle boundaries. Second, this order in which the mesh is swept is not the same for all directions within a quadrant but may be differen for each direction. These tests must therefore be repeated for every quadrature direction (and for every proup, of course).

The regular triangular mesh used by TRIPLET simplifies this testing. A regular triangular mesh retains a regular mesh structure in the y dimension
so that the order in which the bands are solved is straightforsard. If $n>0$. the neution flos is upward and the bands are solved in order beginning with the boteon band. if $n<0$, this ordez is zeversed. If $n=0$. there is no vertical flou and thus no coupling between bands; the bands nay in this case be solved in any order. For chese reasons we need oniy consider the order in which the triankles are solved on a single hand.

Let us assume that μ is positive. The direction of flow across the left boundary of the left-most triangle is then computed. The direction of flou actoss this boundary does not influence the order in which the band is solved but is needed to determine whether the left-most eriangle 15 of orientation 1 or of ofientation 2. The direction of flou across the zight side of each triangle is then computed, moving from left to right until an outgoing fight boundary is encountered. The first triangle encountered whose afith boundary is outgoing ean then be solved, occause the flux en all incoming boundartes $1 s$ known. After the fluxcs in this triangle have been deremined, all triangles to the left can be solved in order moving from right to left. This process of skipping several triangles and then solVing from ripht to left is continued until the flux on all triangles on the band has been determined. If $u<0$, just the reverse of the above procedure is followed. This procedure is illustrated in Fig. 6 for a typical band of triangles. The numbers indicase the order in which the triangles are solved, and the arrows indicate the direction of particle flow.

The direction of flow actoss the side of a triangle is not very difficult to compute. let us assume that the x coordinate of the upper node is x_{u} and the x coordinate of the lower node is x_{i} (the

[^0]triangle side 15 a graight line connecting these two nedes). Ke assupe the band width is Cy . The following quantity is then coaputed:
$$
A=w \Delta y+n\left(x_{2}-x_{u}\right) .
$$

If $A>0$, the flow across this brundary is froe left to right. By left to right we nean that neutrons stream from the triangle to the left of the boundary into the triangic to the right of the boundary. This may occur when $u<0$ and the flow is in a leftrard dizection. If $A<0$, the flow across chis boundary is from right to ieft.

In TRIPLET the space-angle mesh is fwept in the following way. The first quadrature direction is selected and thie entire space mesh is solved for this direction in the mannez specified above. The same process is then repeated for eacl: of the remaining quadrature directions in curn. Because TRIPLET does no: treat curved geometies, there is no anguiar derivative in the transport equation and the quadrature directions can be solved in any order. Note howper that the presence of reflective boundaries does place certain requirements on the order in which a quadrature must be input to the code. These requirements are discussed in Sec. III. B.4.

3. Adjoint Problems

The TRIPLET program solves the adjoint transport equation by transposinf! the scattering and flssion matrices and inverting the group order of the problem. The solution of the resulting problem in the direction $\underline{\underline{O}}$ is then identified with the adjoint sriution in the dizection ,catterinf matrix converts the normal, predominantly downscattering problem to an upscattering problem. Group order inversion restores this domscattering, dominance and eliminates unnecessary upscattering iteration.
4. Iterative Processes

We assumed in deriving the methods of See. II.C for solving Eq. (15) on a triangular mesh that the source S_{m} appearing in that equation was a known function. It is clear from fiq. (16) that, if scattering or fission ts present, this source function is not known but depends upon momente of the angular flux. In TRIPLET, this source is generated in an iterative context using the latest approximations
for the angular flux. For the initial iterate, a flux guess aust be input that peraits the generation of the source function.

Sources in TRIPLET are represented, like the angular flux, by plecewise polynemial functions discontinuous across eriangle boundaries. A Lagrange represcntation of these sources is used, so that a source is computed at each of the node points within a triangle (see Fig, 2). The spatial variation of the source vithin the triangle is given by the loworder polynomial interpolating these values. An exception to this strategy occurs when the continuous inear method is used to save core storage. Here a single cell-average source is computed for each triangle, and the spatial variation of the source cannot be detenained.

In the following analysia ve develop the iterative strategies used in TRIPLET for solving the discrete transport equation by writing these strategies for the analyife multigroup equations. We believe that decalls of the iteration process are clearer when presenced in this manner, but the reader must keep in aind that all implied operations are actually performed in the discrete domain by wethods described earlier in this report.

The aultigroup cransport equations can be written in operator notation as

$$
\begin{equation*}
L \vec{\psi}+\Sigma \vec{\psi}=\left(S_{s}+S_{d}+S_{u}\right) \vec{\psi}+\vec{F}+\vec{\psi} . \tag{28}
\end{equation*}
$$

where the matrix operators $L, \Sigma, S_{s}, S_{d}, S_{u}$, and F represent sereaming, absor;tion, in-group or selfscattering, domscattering, upscattering, and fission processes, respectively. The g'th elements of the vectors $\vec{\psi}$ and \vec{Q} contain the unknown fluxes and the sources, respectively, in the g'th energy group. The form of the operators appearing in Eq. (28) can be inferred by comparing that equation with Eq. (9).

TRIPILET uses a dual iteration strategy for solving the discrete analog of Eq. (28). The two nested iterations are referred to as outer and inner iterations. The outer iteration represents a sweep through all the groups, while the inner iteration is performed within each energy group. Let us assume that the angular flux $\vec{\psi}^{k}$ is available from a previous outer iteration or from the input flux guese, if $k=0$. The outer iteration then takes the form

$$
\begin{align*}
L^{+\dot{F}^{k+1}+\left[\vec{\gamma}^{k+1}\right.}- & \left(S_{s}+S_{d}\right)_{\psi^{k+1}} \\
& +\left(S_{u}+P\right)^{k}+\vec{Q} \tag{29}
\end{align*}
$$

Note that upscatter and fission sources are computed from the old flux $\vec{\psi}^{k}$ but that self-scatter and downscatter sources are computed using the new flux $\vec{\psi}^{k+1}$.

We can solve Eq. (29) for this new flux in the following manner. We first note that the matrix S_{d} is lower =riangular, so that if the groups are solved in order beginning with the first group this term causes us no difficulty. That is, the dewnscatter source into group g involves only the new flux in groups g^{\prime} such that g^{\prime} < g. An effective source Q_{g}^{k} to the g^{\prime} th group can then be computed as

$$
\begin{equation*}
Q_{g}^{k}=\left(S_{d} \vec{\psi}^{k+1}\right)_{g}+\left(S_{u} \vec{\psi}_{g}^{k}\right)_{g}+\left(\overrightarrow{F F}^{k}\right)_{g}+(\vec{Q})_{g} \tag{30}
\end{equation*}
$$

where the notation () g_{g} signifies the g th component of the vector in parentheses. Having calculated Q_{g}^{k}, we must solve the following equation for the new flux ψ_{g}^{k+1} in the g^{\prime} th group

$$
\begin{equation*}
L_{g} \psi_{g}^{k+1}+\Sigma_{g} \psi_{g}^{k+1}-S_{s g} \psi_{g}^{k+1}=\eta_{g}^{k} \tag{31}
\end{equation*}
$$

The operators L_{g}, Σ_{g}, and $S_{s g}$ represent the g th component of the diagonal matrix operators L, Σ, and S_{s}. The above equation cannot be solved easily because of the presence of the self-scatter term, which couples all directions. The methods developed In Sec. II. B and Sec. II.C are capable of solving the discrete form of Eq . (31) if scattering sources are assumed known. Thus a second iteration, the inner iteration, is suggested. In TRIPLET, this iteration takes the form

$$
\begin{equation*}
\left(L_{g}+\varepsilon_{g}\right) \psi_{g}^{k+1, \ell+1}=S_{s g} \Psi_{g}^{k+1, \ell}+Q_{g}^{k}, \tag{32}
\end{equation*}
$$

where the index ℓ is the inner iteration counter. The discrete form of the operator $L_{g}+\Sigma_{g}$ can be inverted easily by a sweep through the space-angle mesh as described earlier in this section.

The inner and outer iterations have been described above for an inhomogeneous source problem. The inner iteration remains unchanged for a ${ }^{\text {eff }}$
problem, but che outer iteration is altered slightly. In place of eq. (29) we have

$$
\begin{equation*}
L \vec{\psi}^{k+1}+\varepsilon \vec{\psi}^{k+1}=\left(S_{s}+S_{d}\right) \vec{\psi}^{k+1}+\left(S_{u}+\frac{F}{\kappa k}\right) \vec{\psi}^{k} \tag{33}
\end{equation*}
$$

In the above equation we have divided the fission source by the parameters k_{k}. These parameters are computed as

with $k_{0}=1$ and <"> repregenting an integration over group, angle and space variables. The parameters k_{k} approach $k_{\text {eff }}$ for the system:

$$
\kappa_{k} \rightarrow k_{\text {eff }} \text { as } k \rightarrow \infty
$$

5. Convergence Acceleration Methods

In most problems the inner and outer iterations described in the previous section of this report converge rapidly. There exist problems, however, for which these algorithms require excessive iteration for convergence to a satisfactory degree of accuracy. The TRIPLET program uses the acceleration method known as rebalance to accelerate the convergence of both inner and outer iterations. The code user may select one of two versions of rebalance. We call these two versions of rebalance fine mesh and whole system rebalance. The application of these convergence acceleration methods to the inner and outer iterations is discussed below.

a. Inner Iteration Rebalance

When Eq. (15) is multiplied by w_{m}, summed over all M directions, and integrated over the 1^{\prime} th triangle we obtain the following equation:
$-\mathrm{FI}_{1}^{(1)}-\mathrm{FI}_{1}^{(2)}-\mathrm{FI}_{1}^{(3)}+\mathrm{FO}_{i}+\mathrm{AB} \mathrm{A}_{1}=\mathrm{Q}_{1}$.

The quantities appearing in the above equation are defined as follows:
$F_{i}^{(k)}$ The inward partial flow of neutrons across the k 'th boundary of the 1 'th triangle.
$\mathrm{FO}_{1} \quad$ The total outward partial flow of neutrons across all three boundaries of the 1'th triangle.
AB_{1} The total absorption rate of neutrons in the 1'th triangle.
Q_{1}
The total source of neutrons in the i 'th triangle to the particular group at hand from all other groups and from inhomogeneous sources. Self-scatter sources are not included.

We note that self-scatter sources do not enter Eq. (34), which is a balance equation for the 1 'th triangle. We can obtain a balance equation for each triangle. These balance equations are satisfied if the flows and absorptions appearing in them are computed with a fuily converged flux. The balance equations will not usually be satisfied by the unconverged fluxes obtained at some stage of the inner iteration.

The object of the fine mesh rebalance acceleration method is to find a set of rebalance factors f_{i}, one for each triangle, by which all fluxes are multiplied so that the balance equations are satisfied. We assume, in particular, that the absorption and all outflows are multiplied by the rebalance factor in the given triangle. Inflows, which are really outflows from other adjacent triangles, are multiplied by the rebalance factors corresponding to the triangles from which the flow originates. We then obtain a set of equations for the rebalance factors f_{i} which take the form

$$
\begin{gather*}
-\mathrm{FI}_{i}^{(1)} \mathrm{F}_{\mathrm{i}_{1}}-\mathrm{FI}_{i}^{(2)} \mathrm{f}_{\mathrm{i}_{2}}-\mathrm{FI}_{i}^{(3)} \mathrm{f}_{\mathrm{i}_{3}} \\
+\left(\mathrm{FO}_{i}+A \mathrm{~B}_{i}\right) \mathrm{f}_{\mathrm{i}}=Q_{i} \tag{35}
\end{gather*}
$$

The subscripts $1_{1}, 1_{2}$, and 1_{3} designate the three triangles that are adjacent to the i^{\prime} th triangle. If the i^{\prime} th triangle is adjacent to a system boundary, then the above equation must be altered in a manner which depends upon the boundary condition.

With a consistent ordering of the triangles, Eq. (35) represents a block tri-diagonal system of equations for the rebalance factors f_{i}. This system of equations is solved iteratively in TRIPLET, and the resulting rebalance factors are applied to all the fluxes.

Whole system rebalance is similar to Eine mesh rebalance, except that a single rebalance factor is determined by which all fluxes are multiplied. This factor is easily seen to be the ratio of the total source to the sum of the leakage plus the absorption.

We observe experimentally that fine mesh rebalance almost always yields a large reduction in computing time over that required for the unaccelerated iteration. Fine mesh rebalance is usually more efficient than whole system rebalance, although it requires more core storage for the flows and absorptions shat appeer En Eq. (35). There are isolated problems in which the use of fine mesh rebalance can lead to an unstable algorithm. This instability is often connecred with use of the continuous linear method. If the user encounters such difficulty, ne is advised to use whole system rather than fine mesh rebalance.

Two methods have been incorporated in TRIPLET for the stabilization of fine mesh rebalance. The first method checks the set of Eqs. (35) for dlagonal dominance. Diagonal dominance of this set of equations is guaranteed by adding factors to the diagonal entries and to the sources. This procedure changes the rebalance factors so that they are closer to unity. The second method adds another factor to both the diagonal and the source. This factor is chosen to be a small fraction of the largest diagonal element. This second method also forces the rebalance factors to be closer to unity and tends to damp oscillations that sometimes develop in the application of this method.
b. Outer Iteration Rebalance

To accelerate the convergence of the outer iteration process; we determine a different set of scale factors, f. We collapse the entire group structure to a single group, accumulating the flows from each group. We also calculate the total absorption using an effective $\sigma_{a g}$ calculated from the input cross secticns by

$$
\left(\sigma_{a g}\right)_{\text {eff }}=\sigma_{t g}-\sum_{h=1}^{I G M} \sigma_{s 0 g+h}
$$

When we are performing an adjoint calculation we must, because of the cross-section transposition, calculate a different effective absorption,

$$
\left\langle\sigma_{a g}\right)_{\text {eff }}=\sigma_{t g}-\sum_{h=1}^{I G M} \sigma_{s o h+B}
$$

The source for over-all-group rebalance consists of the group sum of the inhomogeneous source (if any) and the group sum of the fission source (if any). If there is a fission source, we perform a scurce iteration to determine the rebalance factors. If there is no inhomogeneous source, this iteration can also be used to estimate an eigenvalue, say $k_{\text {eff }}$. We choose to do this only for the first two outer iterations, thereafter considering the fission source to be a known inhomogeneous source.

The outer iteration rebalance process is advantageous because it accelerates all types of problems, e.g., inhomogeneous source problems with upscatter and/or fission, or eigenvalue problems with or without upscatter.

In both the within-group and over-all-group rebalancing calculations, the scale factors all usually approach unity in a few inner or outer iterations.

6. Convergence 'Tests

There are three levels of iterative processes in the TRIPLET program: (1) the inner iteration, in which the within-group scattering source or the boundary flux at an implicit boundary changes, (2) the outer iteration in which the fission or upscattering source changes or which is caused by artificial inner iteration limitation (usually in inhomogeneous source problems), and (3) the parametric eigenvalue search iteration in which, after a converged outer iteration, the value of a material concentration or a time absorption is changed. Two additional iterations are required for the calculation of fine-mesh rebalance factors, one for the factors themselves and one for the fine-mesh rebalance eigenvalue.

Two convergence precisions are input: EPS and XLAX. In a parametric eigenvalue search, two values of (x indicates iteration nuber)

$$
\begin{equation*}
\lambda^{(r)}=\frac{\text { Fission Source }{ }^{r}+\text { Inhomogeneous Source }}{\text { Fission Source }{ }^{r-1}+\text { Inhomogeneous Source }} \tag{36}
\end{equation*}
$$

are required to differ by less than XLAX before a new eigenvalue guess is computed. All other processes are tested against precisions derived from EPS. These precisions are

EPSO = EPS outer iteration convergence
EPSI = EPS inner iteration convergence
$E P S R=10^{-4}$ fine-mesh rebalance numbers
EPSX = EPS collapsed group fine-mesh convergence, both factors (10*EPSX) and eigenvalue (EPSX).

In the inner iteration process, we require

$$
\max _{1}\left|1-\frac{\phi_{1}^{r-1}}{\phi_{1}^{r}}\right|<\operatorname{EPSI}
$$

for the r 'th iteration where ϕ_{i} is the average scalar flux in the 1^{\prime} th triangle before application of the rebalance factors. If the number of iterations is greater than the input value IITL, the inner iteration is terminated.

For the iterative computation of the fine mesh rebalance factors in the inner iteration, we require
$\max _{i}\left|1-\frac{f_{i}^{T-I}}{f_{i}^{r}}\right|<E P S R$

In the outer process, if both
$|\lambda-1|<E P S O$ and $\underset{i}{\max }\left|1-f_{i}\right|<10^{\star}$ EPSX \quad,
the problem is terminated afcer one final outer iteration. In the fine-mesh iterative process (denoted with iterative superscript. r) ve require
$\left|\begin{array}{l}(r) \\ \text { Fine Mesh }\end{array}-1\right|<$ EPSX,
if $\operatorname{IEVT}=1$ ($k_{\text {eff }}$ calculations) and
$\left|1-\lambda_{F M}^{(r)} / \lambda_{F M}^{(r-1)}\right|<E P S X$,
if IEVT $\& 1$ (parametric eigenvalue or inhomogeneous source plus fission problems).

IIL. A GUIDE TO USER APPLICATION

In this section we provide information needed by the user to understand TRIPLET options and to prepare input for the code.
A. Overall Program Flow

A schematic flow chart for TRIPLET is given in Fig. 7. A more detailed flow chart is provided below in the section on programming information.

B. Details of Program Options

1. Cross Sections
a. Input Formats

The TRIPLET program accepts cross sections either from the standard file ISOTXS, ${ }^{4}$ in FIDO format, ${ }^{5}$ or in the standard Los Alamos format. In upscattering problems, the program does not need the special $\sigma^{\text {Up }}$ cross section which is required in earlier Los Alamos programs. ${ }^{6}$ In TRIPLET, it is assumed that $\sigma^{u p}$ is present, and $\sigma^{u p}$ is automatically removed from card input cross-section sets unless the user tags the input number IHT with a minus sign. Cross sections read with the FIDO format may not contain $\sigma^{u P}$.

The Los Alamos cross-section format assumes that each nuclide is described by a block of cross sections of IHM rows for IGM group columns. The row position of cross sections is specified relative to the total crose section, O_{t} (row IHT), and the within-group scattering cross section, $\sigma_{s, g \rightarrow g}$, (row IHS). It is assumed that the row order of the cross sections is as follows:

Fig. 7. Simplified logical flow diagram for TRIPLET.

In this format, group g+1 corresponds to a group of lower energy than group g. The symbol $\sigma_{g, g-2 \rightarrow g}$ denotes the scat tering transfer probability from group g-2 to group g. The format allows N groups of upscatter and M groups of downscatter; $1 . \in$., the scattering matrix need not be symmetric. However, all cross-section blocks must have the same values for $I H M$, IHS, and IHT. The fission cross section, σ_{f}, times the mean number of neut rons per fission, v, must be located in row IHT-1, and the absorption cross section, σ_{a}, inust be entered in row IHT-2. If a scattering matrix is used to represent ($n, 2 n$) react ions, that is, if $\sigma_{s, g \rightarrow h}$ contains 2 times the $(n, 2 n)$ transfer probability $a_{n, 2 n ; g}$, then the value,

$$
\sigma_{n, 2 n}=\sum_{a 11 \mathrm{~h}} \sigma_{n, 2 n ; g \rightarrow h},
$$

must be entered in IHT-4. The user is free to enter additional cross sections at the top of the format. These extra cross sections are not used in the calculation, but are available for reaction-rate computations after the particle flux is obtained. It is sometimes convenient to locate the transport cross section, $\sigma_{t r}$, in IHT-3 and use thib cross section instead of σ_{t} in the calculation of buckling corrections.

b. Gross-Section Mixing

The user is free, in TRIPLET, to enter macroscopic cross sections and bypass the mixing algorithms; specification of the input value MS $=0$ is all that is required for this. If MS $\neq 0$, the user must provide three sets of MS numbers which are stored in the vectors MIXNOM, MIXCOM, and MLXDEN. These numbers are used in the following algorithm to maripulate cross sections blocks:

```
DO 315 M = 1,MS
N = MIXNUM(M)
L = MIXCOM(M)
AD = MIXDEN(M)
DO 315 I = 1, IHM
IF(L. EQ.0) GO TO 310
IF((AD.EQ.O.0).AND.(IEVT.EQ.3)) CO TO 313
C(I,N ) = C(I,N) + AD*C(I,L)
GO TO 315
```

313
$C(I, N)=E V * C(I, N)$
GO TO 315
$310 \mathrm{C}(\mathrm{I}, \mathrm{N})=\mathrm{AD} \mathrm{A}_{\mathrm{C}}(\mathrm{I}, \mathrm{N})$
315 CONTINUE

In this algorithm, cross-section block N is sreated or altered by adding multiples of block L or by multiplying the block N by a factor. Let us consider some examples.

Suppose we have entered 45 cross sections as input. Then any mixtures that are made must be given block numbers higher* than 45 . Suppose we enter:

MIXNUM (N)	MIXCOM (L)	MIXDEN (AD)
46	0	0.0
46	1	0.0478
46	20	0.0333
47	0	0.0
47	2	0.75
47	3	0.25
47	0	0.1179
48	0	0.0
48	15	0.0049
48	14	0.0078
48	48	0.0
49	0	0.0
49	33	0.5
49	34	0.5
49	0	0.187
49	49	0.0
49	46	0.1

For this example we have MS = 17 instructions, In the first three instructions, block 46 is cleared (set to zero) and then made up of 0.0478 parts of block 1 and 0.0333 parts of block 20. If block 1 and 20 are microscopic cross sections in barns, then 0.0333 and 0.0478 times 10^{24} are the atomic densities. In the second set of instructions, block 47 is cleared and then made up of 0.1179 times the result of adding

[^1]three-fourths of block 2 to one-fourth of biock \vdots. In the next set of instructions, block 48 is ceared and made up of portions of blocks 15 ard 34 . If IEVT (the input eigenvalue type option) is 3 , then the resulting black 48 is multiplied by EV (the iaput eigenvalue guess). In this type of problem the program attempts to find a value of EV such that the resulting concentration of block 48 renders the system critical. If IEVT $\neq 3$, the line of instructions $48,48,0.0$ would not alter the composition of block 48. In the final sequence, block 49 is made up of 0.187 times one-half of block 33 and block 34 , and provision is made to search for the concentration of this portion of 49 to which is zlways added 0.1 of the previously mixed block 46 . It should be clear that there are many possibilities not covered in these examples, but by examining the FORTRAN instructions above, the user should be able to prepare his own sets of mixture instructions.

c. Anisotropic Cross Sections

In the TRIPLET program it is assumec tiset the scattering transfer probability can be represented by a rinite Legendre polynomial expansion; i.e., that

$$
\begin{equation*}
\sigma_{s}\left(E^{\prime} \rightarrow E, \mu_{0}\right)=\sum_{n=0}^{\text {ISCT }} \frac{2 n \div 1}{4 \pi} P_{n}\left(\mu_{0}\right) \sigma_{s n}\left(E^{\prime} \rightarrow E\right) \tag{37}
\end{equation*}
$$

where ISGT is an input control integer. Thus $1 f$ ISCT > 0, additional blocks of scattering =ransfe: cross sections must be entered for those nuciides for which anisotropic scattering sources are to be computed. In these blocks, the rows 1 through ILTT are zero, and $\sigma_{s n, g+h}$ (the energ) e erage of $\sigma_{s n}\left(E^{\prime}+E\right)$ in groups g and h) is (ncered as for the fsotropic component of the cross section. It is assumed in TRIPLET that blocks of anisotropic cross sections which are used in the calculation have block numbers in ascending sequence, starting with the isotropic cross-section black. For example, suppose that block 50 is the isotropic cross-section block for hydrogen and that $\operatorname{ISCT}=3$. Then, block 51 must be $\sigma_{s 1}$ for hydrogen, block 52 must be $\sigma_{s 2}$ and block 53 must be $\sigma_{6} 3^{\text {. }}$ If a material is made by mixing two anisotropic scatterers, then the anisotropic blocks must al so be mixed vith the same densities to form anisotropic blocks for the material.

Anisotyopis scattering sources may be computed selectively within eaca zone, but in all zones in which suck scurcas occur: the number of anisotropic scattering blocks (ISCT) must be the same.

d. Adjota: Cross Sections

In adjoint cãaulatfons, cross sections are entered finst as for a direct caicuiation. The program then tzensposes the scatzering matrices and,

 order of tis blocks. Eurfiner, the effective absorp-
 to σ_{a}. That is, the eifect?re absorption is normally

$$
\begin{equation*}
\left(\sigma_{a}\right)_{o £ f}=\sigma_{t}-\sum_{2 l 1} \sigma_{s o, g+h} . \tag{38}
\end{equation*}
$$

But when the scatter $\pm n g$ matrix has been transposed, the effective ebsorption is

$$
\left(\sigma_{a}\right)_{e f f}=\sigma_{t}-\sum_{a i I h} \sigma_{s o, h+g} .
$$

In regian sni éjoint ozoblems, these quantiries are Calculatad 三ac proseseai fe zixfag aperations for use in the zobalancing algoritrins.

e. Cross-Section Ciecking

As inpus cross sections are processed, Eq. (38) is computed and compared to the input value of σ_{a}. If the relative difference jetween the input total cross section and the computed total cross section exceecis EPS (outer convezgence precision), the user is so informed.
2. Einite Element Approximation Specification

The finite element spatial discreciza:ion is discussed in detaii in Sec. In.C. The nature of the spatia: approximation is deternined by two faput parameters, NP and ISDS. These two parameters provide the TRIPLET user conssderable freedom in the selection of the spatial approximation.

The quantity NP is the order of the polynomial representation of the angular $£ l u x$ and may be chosen to be any positive integer ($N P 21$). For an NP'th order polynomial, $N P T=(N P+1)(N P+2) / 2$ angular fluxes must be determined on each triangle on each sweep through the space-angle mesh. Because NPT
increases rapidiy with NP, the higher order methods are expenaive in terms of computing time. Furthermore, the solution algorithm for the linear case (NP = 1) has been extensively optinized. The linear option is recommended for most problems in which computation time is a significant considerarion.

The parameter ISUS selects either the continuous or discontinuous form of the spatial approximation. For ISDS $=0$, continuity of the angular flux across triangle boundaries is enforced in the manner discussed in Sec. II.C. For ISDS $=1$, discontinuity of the angular flux across triangle boundaries is allowed. The ISDS $=0$ option (continuous method) is provided to minimize core storage requirements for large problems, with only a slight reduction is accuracy. The discontinuous method requires the storage of the scalar flux and moments at all NPT points on each triangle whereas the cont inuous method requires storage of only the cellaverage scalar flux and monents on each triangle. Furthermore, the solution algorithm for the continuous method is simpler than for the discontinuous method, resulting in a $10-20 \%$ reduction in computation time. The continuous method is available only for the 1 inear ($N P=1$) order approximation.
3. Geometry and Boundary Condition Satisfaction a. Spacial Mesh

The input of information necessary to specify the spatial mesh is greatly simplified by the restriction to the regular triangular mesh discussed In Sec. I. The first three items necessary for complete specification of the mesh are:
(1) The number of bands of triangles: JT .
(2.) The number of triangles on each band: IT array, JT entries, from the bottom band to the top band.
(3) The orientation of the first triangle on each band: ITT array, JT entries, from the bottom band to the top band.
With the above data, the subroutine KSET calculates the total number of triangles (NTC), the total number of triangle vertices (NTX), the number of upward pointing triangles on the bottom band (NUPB), the number of downward pointing triangles on the top band (NDNT), and two required indexing arrays

Fig. 8. Example of x-coordinate (small numbers) and triangle (large numbers) indexing.
(KC and $K X$). The remaining mesh specification items which must be input are:
(4) The height of each triangle band: HY array, JT entries, from the bettom band to the top band.
(5) The x-coordinates of the triangle vertices: x array, NTX entries.
(6) The cross-section material identification number for each triangle: IDCS array, NTC entries.

The x-coordinates are numbered sequentially from the lower left corner to the upper right corner, as indicated in Fig. 8, and are input in this order. Each triangle has an identification number associated with it. These triangle id.'s run from left to right, starting with the bottom band and proceeding upward, as illustrated in Fig. 8.

After all of the problem input has been read by TRIPLET, the above information is converted into a pictorial represencation of the mesh by subroutine MAPPER. An 8 triangle example is shown.

The material Identification number is printed within each triangle. For this example, the system is homogeneous in material 1. The y-coordinate is printed to the left of each node line (line of triangle vertices). The arrow beside the band index denotes the orfentation of the first triangle on each band. The triangle vertices on each node line are numbered from left to right. The triplet user may draw lines between the vertices to complete the picture of the spatial mesh, as illustrated in the example. Furthemmore, a table of the x-coordinates is printed impediately before the material map and numbered to give the x-coordinate of the vertices along each node line. The material map is drawn to scale in the x-direction, with a uniform band height. For large meshes with many triangles, the material map is automatically continued onto additional pages. Additional characters are used to indicate those boundaries that are reflecting or special.

For input of the distributed source or flux guess with the discontinuous mode the TRIPLET user can specify a pointwise variation over each triangle. The placement of each interpolation point on a triangle is shown in Fig. 2 for several low-order polynomials. The indexing of these points on a triangle depends upon whether the triangle is upward or downward pointing. For upward pointing triangles, the numbers start with the left-most point on the botiom row and proceed to the right, from the bottom row of points to the last point on the top vertex. For downard pointing triangles, the numbers start with the right-most point on the top row and proceed to the left, from the top row of points to the last point on the bottom vertex. This is illustrated in Fig. 9 for a second order ($\mathrm{NP}=2$) polynomial example.

Fig. 9. Indexing of points on a triangle for $N P=2$.

\therefore 3oundary Conditions

The RTINET user must select one of the following four boundary conditions for each of the system boundaries.
(1) Vacuum boundary conditions - the angular flux on the boundary is set to zero for all incowing directions.
(2) Reflecitive boundary conditions - the angular flux on the boundary for incoming directions is set equal to the outgoing flux in the direction corresponding to specular reflection.
(3) Boundary sources - the angular flux on the boundary for incoming directions is set equal to a user-specified value.
For the right boundary, the user is allowed the
(4) Special boundary condition - the angular flux on the boundary of the j 'ch band for incoming firections ($-\mu, \eta$) is set equal to the outgoing flux on band JT-j+l for directions ($\mu,-\eta$).
Use of reflecting or special boundary conditions imposes certain requirements on the S_{n} quadrature set, as discussed in Sec. III.B.4. Side boundaries must be vertical if reflecting or special boundary condftions are applied. For a special boundary condition, the band heights must be symmetric about the centerline ($\pi Y_{J T-j+1}=H Y_{j}$).
4. Angular Quadratere Coefficient Specifications.
The TRIPLET user has the option of obtaining the angular quadrature coefficients from interface file ISNCON or from a built-in set in subroutine SNCON, or the user may enter these coefficients as card input. The input parameter ISN is used to specify the source of these coefficients.

The built-in constants are the standard S_{n} constants of TWOTRAN-II. ${ }^{1}$ If one of these built-in sets is used, the total number of quadrature angles, im, must be entered as $4,12,24,40,60,84,112$, or 144 , corresponding to $S_{2}, S_{4}, \ldots, S_{16}$. The ordering of the built-in sets is illustrated in Fig. 10 for the $S_{\dot{o}}$ constants.

Considerable freedom is allowed the TRIPLET user in the input of quadrature sets. Two requirements must be met. The weights, w_{m}, must be

Fig, 10. S_{6} quadratura directions.
correctly normalized $\left(\sum_{m=1}^{M M} w_{m}=1\right)$, and the quadrature set must correctly incegrate the first ISCT moments. For vacuum and source boundary conditions, the ordering and symmetry of the directions are not required to conform to that of the standard built-in set. For reflecting and special boundary conditions, the following symmetry conditions must be satisfied:
(a) Top or bottom reflecting boundary condition - the directions must possess symmetry about the μ axis.
(b) Left or right reflecting boundary condiLion - the di:ections must possess symmetry about che n axis.
(c) Special boundary condition - the directions must possess sybmetry about both the μ and n axes. For hexagonal cell calculations using the special boundary condition, the left, top, and bottom sides must be reflecting.
In addition to symmery requirements for reflecting and special boundary conditions, the quadrants must be entered in the order shown in Fig. 10. That is, all ordinates for $\mu>0, \eta>0$ are entered firgt;

Fig. 11. Example of quadrature set for left or right reflecting boundary.
then ordinates for $u>0, n<0$; then ordinates for $\mu<0, n<0$; and ordinates for $\mu<0, n>0$ last. In addition, the directions within a quadrant must be "consistent," as described below. An example of a special quadrature set for use with either left or right reflecting boundaries is illustrated in Fig. 11.
"Consistent" ordering of the quadrature directions is defined as that ordering which permits the correct operation of the indexing algorithm for storage of the outgoing angular flux on a reflecting or special boundary. The indexing algorithm is based on the four quantities NPQ1, NPQ2, NPQ3, and NPQ4; the number of points (or directions) in quadrants 1, 2, 3, and 4, respectively. These quantities are calculated in subroutine SNCON. The ordering is "consistent" for
(a) reflecting top or bottom boundaries if
$\mu_{\mathrm{m}+\mathrm{NPQ1}}=\mu_{\mathrm{m}}, \quad$ for m in quadrant 1,
$\eta_{\mathrm{m}+\mathrm{NPQ1}}=-\eta_{\mathrm{m}}$, $\mu_{m-N P Q 4}=\mu_{m}, \quad$ for m in quadrant 4,
$\eta_{m-N P Q 4}=-\eta_{m}$,
(b) reflecting left or right boundaries if

For example, consider the quadrature set
shown in Fig. 11. Here $N P Q 1=6, N P Q 2=2, N P Q 3=2$, and NPQ4 - 6. For an outward direction, m, on the right boundary in quadrant 2, the reflected direction is $m^{\prime}=m+N P Q 2$. Thus an outward directed flux on the right boundary in the direction (μ_{8}, n_{8}) must be stored in the position for the inward direction (μ_{10}, n_{10}).
5. Source Options

The TRIPLET user may specify an anisotropic distributed source or the boundary flux at any boundary of the system. The inhomogeneous distributed source must be represented by the finite spherical harmonic expansion

$$
\begin{equation*}
Q_{g}(\underline{r}, \mu, n)=\sum_{n=0}^{I Q A N} 2 n+1 \sum_{k=0}^{n} R_{n}^{k}(\mu, \phi(\nu, \eta)) Q_{g n}^{k}(\underline{\Sigma}) \tag{39}
\end{equation*}
$$

In which IQAN is an input number designating the order of anisotropy of the source, and R_{n}^{k} is the spherical harmonic defined in Eq. (4) above. In these terms,

$$
Q_{g n}^{k}=\frac{1}{4 \pi} \int_{-1}^{1} d \mu \int_{0}^{2 \pi} d_{\phi} Q_{g}(\underline{r}, \mu, n) R_{n}^{k}(\mu, \phi(\mu, n))
$$

We have written the integral in this equation over the entire range of ϕ and used a 4π normalization of the integral, but it should be clear that Q_{g} must be symmetric in $\phi\left[0_{g}(\phi)=Q_{g}(-\phi)\right]$, and this we have noted by writing Q_{g} as a function of p and η alone.

In addition to specifying IQAN, the user must enter $[($ IQAN +1$)($ IQAN +2$)] / 2$ components of Q_{g} multiplied by $(2 n+1)$; that $i s$, the user must enter

$$
\begin{array}{rl}
(2 n+1) q_{g n}^{k} & k=0,1, \ldots, n \\
n & =0,1, \ldots, \text { IQAN }
\end{array}
$$

in the order shown in Table I.

TABLE I
OROERING OF ANISOTROPIC
DISTRIBUTEU SOURCE COMPONENTS

Component Number	$\underline{\sim}$	k
1	0	0
2	1	0
3	1	1
4	2	0
5	2	1
6	2	2
7	3	0
8	3	1
9	3	2
10	3	3
-		
-		
-		
etc.		

When using the anisotropic distributed source option, the order of anisotropic scattering, ISCT, must be at least as large as LQAN so that the requisite number of scattering coefficients R_{n}^{k} is computed.

The TRIPLET user is also allowed to specify the value of the incoming flux along any or all boundaries. If the source boundary condition integer is -3, the boundary flux is assumed to be constant along the face of each boundary triangle (subsequently referred to as the flat source mode). If the source boundary condition integer is +3 , the boundary flux is assumed to have a pointwise variation along the face of each boundary triangle (subsequently referred to as the shaped source mode). Use of the source boundary condition integer as -3 reduces (by $1 /(N P+1)$) the number of entries required to specify the boundary flux. The boundary sources, summed over all groups and integrated ove: all angles and surface area, are added to the volume-energy integrated distributed sources (if any) for the normalization or all inhomogeneous Bources.
6. Source and Flux Input Options

a. Source Input Options

If a distributed source of anisotropy IQAN is designated, the $N M Q=(I Q A N+1)(I Q A N+2) / 2$ components of the source must be entered for each group in the
order listed in Table I. This may be accomplished with the use of four options designated by the input value of IQOPT and described below. The various source arrays described below are supplied for each group, with the distributed source (if any) specified first, followed by the boundary sources (if any). The ordering of the source input within each group g is:
(1) Distributed source (optional) - order of input depends on IQOPT as described below.
(2) Right boundary source (optional) - from the bottom triangle to the top triangle on the right side.
$B{\underset{g k j m}{ } ; k=1, N P P ; j=1, J T ; ~}_{m=1, M M}$ for $I B R=+3$
or $B R_{g j m} ; j=1, J T ; m=1, M N$ for $I B R=-3$.
(3) Bottom boundary source (optional) - from the left triangle on the bottom band to the right triangle.
$\mathrm{BB}_{\mathrm{gkj} \mathrm{m}} ; k=1, \mathrm{NPP} ; \mathrm{j}=1, \mathrm{NUPB} ; \mathrm{m}=1, \mathrm{MM}$ for $I B B=+3$
or $\quad B_{g j \mathrm{~m}} ; j=1$, $\mathrm{NUPB} ; m=1, \mathrm{MM}$ for $I B B=-3$.
(4) Top boundary source (optional) - from the left triangle on the top band to the right triangle. $\mathrm{BT}_{\mathrm{gkjm}} ; k=1, \mathrm{NPP} ; \mathrm{j}=1, \mathrm{NDNT} ; m=1, \mathrm{MM}$ for $\mathrm{IBT}=+3$
or $B_{g j m} ; j=1$, NDNT; $m=1, M M$ for $I B T=-3$.
(S) Left boundary source (optional) - from the bottom triangle to the top triangle on the left side.
$\mathrm{BL}_{\mathrm{gk} j \mathrm{~m}}$: $k=1$,NPP; $j=1, \mathrm{JT}$; m=1, MM for $\mathrm{IBL}=+3$
or $B L_{g J m} ; j=1, J T ; m=1, M M$ for $I B L=-3$.
Here NPP ($=N P+1$) is the number of points on one side of a triangle, NUPB is the number of upward pointing triangles on the bottom band, and NDNT is the number of downward pointing triangles on the top band. The above notation is that of standard FORTRAN (the innermost set of indices cycled most rapidly). For example, for $I B L=-3$, the boundary flux BL is entered in a continuous stream, the first JT numbers for $m=1$, the next $J T$ numbers for $m=2$, etc.

The IQOPT parameter provides the TRIPLET user with five options for entering the distributed source. These options are:

IQOPT Option

0 No input entered. The complete distributed source array, $Q_{g n k i}$, is automatically
set to zero.
1 Enter an energy spectrum ($\mathrm{GR}_{\mathrm{gn}}$, $\mathrm{g}=1, \mathrm{IGM}$) for each anisotropic component n. The source array is then formed as $Q_{g n k i}=G R{ }_{g n}$; $k=1, N P P T ; 1=1, N T C$ for each n and g. Enter the complete source array as ($Q_{g n k i}$; $k=1$,NPPT; $1=1, N T C$) for $n=1, N M Q$ and $g=1$, IGM. See Sec. II.B.3.a. for the ordering of the NPPT points on each triangle and the ordering of the NTC triangles on the mesh. The above entries are input as a block of NPPT*NTC numbers for each n and g.
3 Enter first a spectrum ($\left.G R_{g n}, g=1, I G M\right)$ and then a spatial shape ($\mathrm{F}_{\mathrm{nk} 1} ; \mathrm{k}=1, \mathrm{NPPT} ; 1=1, \mathrm{NTC}$) for $n=1, N M Q$. The source array is then formed as $Q_{g n k 1}=G R_{g n} F_{n k i} ; k=1$, NPPT; $1=1$, NTC for each n and g. See Sec. II.B.3.a. for the ordering of the NPPT points on each triangle and the ordering of the NTC triangles on the mesh. The above entries are input as blocks of IGM numbers and NPPT*NTC numbers for each n.
The distributed source (out not boundary sources) is read from a standard interface file FIXSRC mounted on unit IFIYSR.

The quantity NTC is the total number of triangles in the spatial mesh. NPPT is the number of points per triangle for which the source and flux must be stored. For the continuous model (ISDS $=0$), NPPT $=1$, and for the discontinuous model (ISDS $=1$), $\mathrm{NPPT}=\mathrm{NPT}$.
b. Flux Input Options

Options for reading an input flux guess are similar to those for reading an input source. If ISCT is the order of anisotropic scattering, then there are $N M=(I S C T+1)(I S C T+2) / 2$ spherical harmonic components of the angular flux, ordered as in Table I. Options for entering these components are selected by the input value of the integer ISTART. A negative value for ISTART indicates that only the angle-integrated or scalar flux is to be read. Allowed values of ISTART are:

ISTART
Option
-6 A problem restart dump is read from unit NDUMP1 and edited with a minimum of computation.
-5 Same as option +5 .
-3 Same as option +3 , isotropic component only.
-2 Same as option +2 , isotropic component only.
-1 Same as option +1 , isotropic component only.
0 No flux guess entered. A fission guess of unity in every mesh cell is automatically supplied.
+1 Enter an \in nergy spectrum ($G R_{g n \prime}, g=1, I G M$) for each anisotropic component n. The flux guess is then formed as FLUX ${ }_{g n k i}=G R_{g n} ; k=1$, NPPT; $i=1$,NTC for each n and g.
+2 Enter the entire flux array as (FLUX gnki; $k=1, N P P T ; i=1, N T C)$ for $n=1, N M$ and $g=1, I G M$. See Sec. III.B.3.a. for the ordering of the NPPT points on each triangle and the ordering of the NTC triangles on the mesh. The above entries are input as a block of NPPT*NTC numbers for each n and g. Imagine that the fluxes are read by:

DO $17 \mathrm{G}=1$, IGM
DO $17 \mathrm{~N}=1, \mathrm{NM}$
17 READ ($(F L U X(G, N, K, I), K m 1, N P P T)$, $I=1, N T C)$
+3 Enter first a spectrum ($G R_{g n}, g=1, I G M$) and then a spatial shape ($F_{n k i} ; k=1, N P P T ;$ $1=1, N T C$) for $n \approx 1, N M$. The flux array is then formed as FLUX ${ }_{g n k i}=\operatorname{GR}_{g n} F_{n k i} ; k=1, N P P I$; $1=1$,NTC for each n and g. See Sec. III.B.3.a. for the ordering of the NPPT points on each triangle and the ordering of the NTC triangles on the mesh. The above entries are input as blacks of IGM numbers and NPPT*NTC numbers for each n. Imagine the fluxes to be read by:

DO $17 \mathrm{~N}=1, \mathrm{NM}$
READ ($G R(G), G=1, I G M)$
READ (($F(K, I), K=1, N P P T), I=1, N T C)$
DO $17 \mathrm{G}=1$,IGM
DO $17 \mathrm{~K}=1$,NPPT
DO $17 I=1$,NTC
$17 \operatorname{FLUX}(C, N, K, I)=G R(G) \star F(K, I)$
An entire scalar flux guess is read from standard interface file RTFLUX or ATFLUX on unit ITfluX.
+6 A problem restart dump is read from unit NDUMPI and computation proceeds in the normal manner.
7. Flux Dumps and Restart Procedures

The three types of dumps that are taken have the same form, and each may be used to restart a problem. A periodic dump is taken every M minutes where M is a program variable which can be set to meet parcicular installation requirements. A final dump is always taken after the successful completion of a problem, and a time limit dump is taken after a user-specified period of time. Dumps are written alternately on units NDUMP1 and NDUMP2 depending on which is free; an output message is written to indicate which unit contains the latest dump.

When problem execution is continued using a restart dump, certain input parameters can be changed and edit specifications can be added or modified. It is even possible to use the program to edit a dump. However, if this option is selected and more information is required to perform the edit, one more outer iteration may be required to generate and store the angular fluxes to be used during the edit.

To restart a problem, a special problem input deck, consisting of three sections, is required. The first section is the same as the normal problem integer input with the value of ISTART set to ± 6. During restart all other integer values are ignored. The second section of restart input makes use of the namelist feature standard to FORTRAN to permit the user to change certain inpu* parameters (those Iisted below) and to enter only those he wants to change. If no changes are desired, this section is omitted.

The special character for beginning and terminating a namelist block may vary from machine to machine. On CDC computers the dollar character is used, The first column of namelist cards is ignored. Columns two through eight must contain \$TRIPIN, and column nine must contain a blank for the first card. Using entries of the free-field form: name = value, the user defines his changes, separating different entries by commas and ending the last entry with a dollar sign. Continuation cards are permitted provided that the last entry of the preceding card ends with a comma. The integers which may be changed are:

1. IITL Maxinum number of f mer iterations.
2. ITLIM Time 1imit.
3. IEDOPT Edit input indicator.
4. I2 Final flux print indicator.
5. 14 Final fission print indicator.
6. IFO Interface file output indicator.

The floating point values which may be changed are:

1. EPS Convergence precision.
2. POD Parameter oscillation damper used in eigenvalue searches.
3. XLAL Search lambda lower 1imit.
4. XLAH Search lambda upper limit.
5. XLAX Fine-inesh search precision.

The third section of restart input is the edit section. The composition of the edit input section is determined by the value of IEDOPT after the namelist section is read. If the original problem had IEDOPT > 0 and if IEDOPT is not changed to zero on restart, then the edit input must be re-entered.

The sign of ISTART determines the iteration path following a restart. If ISTART $=+6$, then computation is restarted at the exact point at which the dump was taken. For a final dump restart, computation will begin with another outer iteration and will continue until convergence is decected (remember that EPS may be changed). If ISTART $=-6$ and all information required for an edit exists, the tinal output portion of the code is executed at once with no further iteration. If this information does not exist, TRIPLET will perform the minimum amount of computation necessary to generate this information. This additional computation will involve a maximum of one complete outer iteration. Following the generation of this edit information, the final output routines are entered.
8. Rebalance Acceleration of Iterations

The user is given two choices of rebalance schemes for acceleration of the inner and outer iterations. Particle balance may be enforced over the entire system (rihole-system rebalance) or each triangle (fine-mesh rebalance). Normally, more rapid convergence will be achieved with fine-mesh rebalance, at the expense of $7 \star \mathrm{NTC}$ additional words of fast core. Experience has shown that for some problems, especially when using the continuous difference scheme, the fine-mesh rebalance algorithm is unstable. For such problems one must use wholesystem rebalance to obtain a solution. When the special boundary condition is used, only whole system rebalance is permitted.

9. Eigenvalue Searches

It is possible in TPIPLET to adjust nuclide concentrations or the value of the time absorption to achieve a desired value of $k_{\text {eff }}$. This value is
taken to be unity (criticality) unless the parametric eigenvalue trigger (IPVT) is set to unity. In this case, the parametric value of $k_{\text {eff }}$ is entered as an input number. If IPVT $=2$, a $1 / v$ absorber of value PV is added to the problem in each space cell.

The modification of cross-section concentrations takes place as indicated in Sec. III.B.l.b. This type of problem is run when the eigenvalue type indicator (IEVT) is 3 . If IEVT is 2 (time absorption computation), the value $\mathrm{EV} / \mathrm{v}_{\mathrm{g}}$ is added to the absorption and total cross sections in each group. Here v_{g} is the speed associated with energy group g.

Regardless of the parameter being adjusted, the search is executed by performing a sequence of $k_{\text {eff }}$ calculations, each for a different value of the parameter being treated as the eigenvalue. Each of the successive $\mathrm{k}_{\mathrm{eff} \text { : }}$ calculations is accelerated by rebalance, but the search for the desired value of $k_{\text {eff }}$ is conducted by subroutine NEWPAR. Regardless of the nature of the problem, the search is for a value of the parameter which makes the value of λ defined in Eq. (36) unity.

In the following description of NEWPAR, it is helpful to refer to Fig. 12 in which the deviation of λ from unity is plotted against outer iteration number.

For the initial system, NEWPAR continues outer iteration until two successive values of λ differ by less than EPSO. For subsequent sequences of λ values, a different convergence precision, XLAX, is used. After the first converged λ sequence is obtained, the initial value of the eigenvalue (E^{\prime}) is altered by EVM, an input value. If $\lambda>1$ (multiplying system), the new eigenvalue is equal to $E V+E V M ;$ if $\lambda<1$ (decaying system), the new value is EV - EVM. These alterations correspond to the addition or the subtraction of an absorption, e.g., as in a time-absorption search or a poison-concentration search.

Basically, after two values of $k_{\text {eff }}(\lambda)$ are obtained for two different system configurations, subroutine NEWPAR attempts to fit a curve through the most recent values to extrapolate or interpolate to a value of unity. Depending on the amount of information available and the size of $|1-\lambda|$, this fit proceeds in different ways. A parabolic fit cannot be made until three converged values of λ

Fig. 12. Variation of λ during a hypothetical eigenvalue search.
are available, and is not attempted unless $|1-\lambda|$ is greater than an input-search lower limit (XLAL) and less than an input-search upper limit (XLAH). If a parabolic fit is tried and the roots are imaginary, a straight-line fit is used. If the roots are not imaginary, the closest root is used as the new value of $E V$. Once a bracket is obtained (change of sign of $\lambda-1$), the fit procedure is not allowed to move outside the region of the bracket. Should a parabolic fit select an eigenvalue outside the bracket region, this value is rejected and the new value is taken to be one-half the sum of the previous value and the value previous to that.

Whenever the parabolic fit is not used, a 11near fic is used and the new eigenvalue is computed from

$$
\begin{equation*}
(E V)_{\text {new }}=(E V)_{\text {old }}+P O D * E Q *(1-\lambda) \tag{40}
\end{equation*}
$$

where POD is an input "parameter oscillation damper" which may be used to restrict the amount of change In the eigenvalue. In Eq. (40), $E Q$ is a measure of the slope of the curve. When $|1-\lambda|>X L A H$, (1 - λ) in Eq. (40) is replaced by XLAH (with the correct sign) to prevent too large a change in EV. After $|1-\lambda|<X L A L$, the value of $E Q$ is fixed and kept constant until convergence to prevent numerical
difficulty in the approximation of the derivative when λ is close to unity.

Because parametric search problems represent sequences of $k_{e f f}$ calculations, it behooves the user to study the use of subroutine NEWPAR in order to optimize his calculations. It also behooves the user to pose soluble problems. That is, there are many problems, especially concentration searches, for which solutions are not possible, and discovering this by trial and error is the hard way. Ideal$1 y$, the user will have some estimate of the critical parameter available from a lower order computation.

Convergence in time-absorption calculations is typically one-sided. If EV is negative, then there is a possibility that the corrected total cross section will become negative. If this happens, the automatic search procedure may fail dramatically. For this reason $\mathrm{POD}=0.5$ or less is frequently used in such searches.

10. Adjoint Computations

The TRIPLET program solves the adjoint transport equation by transposing the matrices of scattering coefficients and inverting the group order of the problem. The solution of the resulting problem in direction $\underline{\Omega}$ is then identified with the solution of the adjoint equation in direction $-\Omega .{ }^{7}$

The inversion of the group order is made because the transposition of the scattering matrices usually converti a downscattering probiem to an upscattering problem. Because of the inversion, the user must:
(a) Enter any inhomogeneous sources, including boundary fluxes, in inverse group order,
(b) Enter any flux guess in inverse group order, and
(c) Remember that any output is in inverse group order, i.e., that groups labeled 1, 2, ..., are really groups IGM, IGM - 1 , etc. Similarly, the output flux from an adjoint problem must be inverted before insertion in a direct problem. On the other hand, an output flux from one adjoint problem is in the proper group order for use in another adjoint problem.

The group order of the group speeds and the fission spectrum is inverted by the program.
11. Edit Options

The TRIPLET user is provided with two types of edit options, zone edits and point edits. As many different zone and point edits as desired may be performed.

a. Zone Edit

An edit zone is a collection of triangles which have the same zone number. The user defines a zone by entering a set of NTC numbers (NEDZ array) which assoclate with each triangle on the fine mesh a zone identification number (zone i.d.). The triangles of an edit zone need not be contiguous. For each zone edit, a map of the zone i.d. similar to the macerial map is printed by EDMAP. For each group and zone, a table containing the zone volume, net leakage, buckling absorption, source, integral flux, average flux, and mecroscopic activities (for crosssection positions 1 through IHT) is given. The macroscopic activity $\Lambda_{k}(g, I P O S)$ in zone k and group g for cross-section position IPOS is defined by
$A_{k}(g, I P O S)=\sum_{i} C\left(g, \operatorname{IPOS}, m_{i}\right) \Phi_{i} V_{i}$ for $i \in$ zone k, where m_{i} is the material i.d. (cross-section block identificat jon number) for triangle $1, C(g, I P O S, m)$ is the cross section for group g in position IPOS for material m, V_{i} is the triangle volume, and ϕ_{i} is the average flux in triangle 1 . Thus Λ_{k} is the activity
computed with the macroscopic cross section actually used in the problem, summed over all triangles in zone k .

For each zone edit, the TRIPIET user is provided the option of calculating constituent activities and microscopic activities for any naterial desired. The constituent activity $A_{k}^{j}(g$, IPOS $)$ for material j in zone k is defined by
$A_{k}^{j}(g, \operatorname{IPOS})=\sum_{i} C\left(g, \operatorname{IPOS}, m_{i}\right) \phi_{i} V_{i} \delta_{j m_{1}}$ for $i \in$ zone k. Here $\delta_{j m_{1}}$ equals unity if material j equals material m_{1}, the mixture table density (MIXDEN) if material j is a "constituent" of material m_{i}, and is zero otherwise. A "constituent" means that material j appears as an entry in the MIXNUM array with density MIXDEN (see Sec. III.D) that is used to form material m_{1}. Thus if material j is used to form a material j^{\prime}, which is used to form material m_{i}, then material j is not a "constituent" of material m_{i} within this definition.

The microscopic activity for material j in zone k is defined by
$A_{k}^{j}(g, \operatorname{IPOS})=\sum_{i} C(g, \operatorname{IPOS}, j) \phi_{i} V_{i}$ for 1ε zone k.
Thus Λ_{k}^{j} would be the activity obtained in zone k if material j were unfformly distributed throughout the system, even though material f may not actually have appeared in the problem cross sections.

The edit input parameters NCA and NMA specify the number of constituent activities and number of microscopic activities to be calculated. The user must then enter NCA material i.d.'s for the constituent activities and NMA material i.d.'s for the microscopic activities.

To edit a material which is not actually a part of the problem, the TRIPLET user may add a mixture instruction to the mixture tables; or, if interested In only a few cross sections, he may add these cross sections to other blocks in rows IHT-5, IHT-6, etc.

Finally, following any constituent activities or microscopic activities, the zone edit provides the zone relative power density (group sum of the zone volume integral of $v \times$ fission rate divided by the zone volume), normalized to that of a userdesignated zone. The zone relative power density
(unnormailized) is defined by

If the user selects zone zeru (NORMZ=0), the normalization is to the whole system power density.

b. Point Edit

The point edit feature of TRIPLET provides the user with the option of obtaining the pointwise variation across each triangle of the scalar flux and activities. The user must enter the triangle t.d.'s over which the point edits are desired (NEDPT array). For each point edit, a map of the point arrangement indexing on a triangle is printed (see Fig. 9 for $N P=2$ example) by subroutine ARRMAP. This is followed by the pointwise scalar flux for the specified triangles. The user is also provided by the NPMA (number of point microscopic activities) parameter the option of obtaining a pointwise microscopic activity for any desired material. This pointwise microscopic activity for material j in triangle i at point k is

$$
A_{k i}^{j}(g, \operatorname{IPOS})=C\left(g, \operatorname{IPOS}, m_{i}\right) \phi_{k i},
$$

where $\phi_{k i}$ is the scalar flux at point k in triangle 1.

The point edit is based on the angular flux stored on unit NAFLUX. Thus it is possible to calculate point fluxes from a calculation using the continuous model, which does not store the pointwise variation of the scalar flux.
C. Data Input Rules

Except for the control parameters, cross sections, and edit parameters, all floating-point numbers and integers are read into TRIPLET in special formats by the LOAD subroutine. These formats are [6(I1,I2,E9.4)] for reading floating-point numbers and $[6$ (I1, I2, I9)] for integers. In each word of both of these formats, the first integer field, Il, designates the options listed below. The second integer field, 12 , controls the execution of the option, and the remainder of the field, 19 or E9.4, is for the input data. All data blocks read with these formats must be ended with a 3 in the 11 field
after the last word of the block. The available options are given in Table II.

TABLE II

OPTIONS FOR SPECLAL READ FORMATS

```
Value of Il
0 or blank
    l
    2 Place number of linear interpolants
        indicated in I2 field between data
        word in }9\mathrm{ field and data word in next
        ffeld. Not allowed for integers.
    3 Terminate reading of data block. A 3
        must fo?low last data word of all
        blocks.
    4 Fill remainder of block with data
        word in 9 field. This operation must
        be followed by a terminate (3).
    5 Repeat data word in 9 field }10\mathrm{ times
        the value in the i2 field.
    9
        Skip to the next data card.
```

Five illustrations of the use of the special formats are given below. These illustrate:
1 - Zero is repeated 47 times.
2 - Zero is repeated 470 times.
3 - Four interpolants are inserted between 0.0 and 5.0 giving $s i x$ data numbers: $0.0,1.0,2.0$, 3.0, 4.0, 5.0.

4 - Four interpolants are inserted between 0.0 and 5.0 , two between 5.0 and 7.0 , and 7.0 is repeated 10 times.

5 - After reading 0 and 4 we skip to the next card and read 7.

A special routine, WRITE, is used to print some of the two- and three-dimensional arrays that occur in the program. This routine can be used for one-,
two-, or three-dimensional arrays and has an option for printing a portion of an array, e.g., the mixed cross-section blocks, if any. When fluxes and fission rates are printed, they are oriented with the origin at the lower left of the page, corresponding to the picture drawn by MAPPER.
D. Description of Input Data

In the following pages the input data for TRIPLET are listed in exactly the order in which they are entered in the code. The data are divided into four categories: (1) job title cards, (2) control integers on cards 1 through 3 and control floating-
point numbers on cards 4 and 5 , (3) problem-dependent data, on subsequent cards, and (4) edit input.

1. Job Title Cards

The user begins by indicating on a card in an I6 format the number of title or job description cards he wants to use. He then enters the descriptive material on these cards which are read with a 18A4 format.

2. Input of Control Numbers

On cards 1 through 3, the user enters the following control integers which are read in a 1216 format and on cards 4 and 5 the following control floating-point numbers in a 6E12.4 format:

Number of Word on Card	Name of Variable	Comments
1	ITH	0/1 (direct/adjoint) type of calculation to be performed.
2	ISCT	$0 / \mathrm{N}$ (isotropic/Nth-order anisotropic) order of scatiering calculation. $N M=($ ISCT +1$)($ ISCT +2$) / 2$ spherical harmonics flux components are computed. They are not used to compute a scattering source unless some cross-section material identification number is negative. See IDCS below.
3	ISN	-1/0/+1 (interface/built-in/card input) source of S_{n} quadrature coefficients.
4	IGM	Number of energy groups.
5	NP	Polynomial approximation order for the finite element scheme (21).
6	JT	Number of bands of triangles.
7	IBL	-3/0/1/3 (flat source/vacuum/reflective/shaped source) left boundary condition.
8	IBR	-3/0/1/2/3 (flat source/vacuum/reflective/special/shaped source) right boundary condition.
9	IBB	-3/0/1/3 (flat source/vacuum/reflective/shaped source) bottom boundary condition.
10	IBT	-3/0/1/3 (flat source/vacuum/reflective/shaped source) top boundary condition.
11	IEVT	$0 / 1 / 2 / 3$ (inhomogeneous source/keff calculation/time absorption or alpha/concentration search) eigenvalue type.
12	ISTART	$-6 /-5 /-3 /-2 /-1 / 0 / 1 / 2 / 3 / 5 / 6$ input flux guess and starting options. See Sec. III.B.6.b.

1	MM	Total number of quadrature angles in all 4 quadrants of the $\mu-\eta$ plane.
2	MT	Total number of materials (cross-section blocks incluring anisotropic cross sections) in the problem.
3	MTPS	Number of input material sets from the interface file ISOTXS. Caution: each material set from this file yields ISCT+l materials. See IDLIB below.
4	MCR	Number of input materfals from the code dependent input file. If tiis number is negative, F IDO format cross sections are read.
5	MS	Number of mixiure instructions. See Sec. III.B. 1 and items MIXNUM, MIXCOM, and MIXDEN below.

of barns \times length h^{2} / cm^{2}, nuclide number densities in units of $10^{24} \times$ number/length ${ }^{3}$, and velocities in length/sec, although Los Alamos velocities are habitually measured in units of length/10-8 sec. With the exception of the cross sections from the code dependent input file, all the fol-
lowing data is loaded by the LASL block loader using the special formats described in Sec. III.D. We denote these formats by $S(I)$ for integers and $S(E)$ for floating point numbers.
Block Name

and Dimension		Format	
IT(JT)		Entries	
ITT(JT)	$S(I)$		$J T$
	$S(I)$	$J T$	

C(IHM, IGM,MIN)
Number of
IDLIB (MTPS) $\quad \mathrm{S}(\mathrm{I}) \quad$ MTPS
Input FLUX $\quad S(E)$

Guess
FLUX (NM, NTC , NPPT)

Comments

Integers defining the number of triangles on each band.
1/2 (up/down) integers indicating orientation of first triangle on each band.

Three options are available for reading cross sections. The LASL input format may not be mixed with the FIDO format.

1. LASL INPUT If MCR.GT.O, MCR blocks of IHM*IGM numbers are read in a 6El2. 5 format. Each block is preceded by an identification card read in a 18A4 format. MIN $=$ MCR + MTPS* (ISCT+1).
2. FIDO INPUT If MCR.LT. O, MCR blocks of data are created from FIDO input. FIDO input data must be preceded by a 14* (floatingpoint block number 14) loading card when an IBM 360 computer is used, but no card is required on CDC computers.
3. INTERFACE FILE ISOTXS When MTPS.GT. 0 , MTPS material sets are read from standard file ISOTXS. On this file each material set consists of ISCT+1 cross-section blocks for the isotropic and ISCT anisotropic cross sections. The first component of the first material is stored in cross-section block MCR+1, the first component of the second material is stored in cross-section block MCR+ISCI+2, etc. Should the ISOTXS file not contain ISCT anisotropic components, zeroes are supplied for che components not present. If the ISOTXS file contains more components than needed, only the first ISCT+1 components are read.

Position numbers of material sets to be read from ISOTXS. Do not enter unless MTPS.GT.O. The material sets are read in the order specified in this entry, and this order need not be in order of increasing set identification number.
Number of entries depends on option. See Sec. III.B.6.b.
Option Number of entries
-6 Problem restart dump from unit NDUMP1
-5 Input from RTFLUX or ATFLUX standard interface fite
-3 IGM, then NTC*NPPT
-2 IGM sets of NTC*NPPT
-1 IGM
0 None
1 NM sets of IGM
2 NM groups of (IGM, then NTC丸NPPT)
3 IGM, then NM sets of NTC*NPPT

The right, bottom, top, and left boundary sources (flux) are read in that order, one group at a time. For $I B R, I B B, I B T$, or $I B L=+3$, $N P P=N P+1$. For $I B R, I B B, I B T$, or $I B L=-3$, $N P P=1$. See Sec. III.B.6.a.
S_{n} quadrature weights. Enter only if $I S N=+1$.
$S_{n} \mu$ cosine directions. Enter only if ISN $=+1$.
$S_{n} n$ cosine directions. Enter only if ISN $=+1$.
Height of triangle bands.
X-coordinates of triangle vertices. Entered in a single array from left to right, starting with the bottom line of the bottom band and ending with the top line of the top band. Cross-section material identification numbers. These numbers assign a cross-section block to each triangle. If these numbers are negative, an anisotropic scattering source is calculated in that triangle, but the numbers need not be negative whan ISCT >0. Fission fractions. Fraction of fission yield emerging in each group. Group speeds. Used only in time absorption calculations. Numbers identifying cioss-section block being mixed. See Sec. III.B.1.b. Do not enter if $M S=0$.

Numbers controlling cross-section mixture process. See Sec. IIJ.B.1.b. Do not enter if $\mathrm{MS}=0$. Mixture densitites. See Sec. III.B.1.b. Do not enter if MS = 0. Buckling heights (in cm if cross sections are in barns) used to simulate z-dimension of system by adding an absorption given by

$$
\sigma_{a, B H T}=\frac{\sigma_{t}}{3}\left[\pi /\left(B H T * \sigma_{t}+1.4209\right)\right]^{2}
$$

Here 1.4209 is twice the Milne problem extrapolation distance, and σ_{t} is the total cross section. For ISDB $=0$, a single, whole-system buckling height is entered. For ISDB $=1$, a buckling height is entered .for each triangle. For BHT $=0$, no buckling absorption is added.

4. Edit Input

The edit input, entered only if IEDOPT $=1$, consists of control integers entered on cards indicated by EDIT 1,2 , or 3 ; and the remaining edit input entered in the spectal format discussed above
in Sec. ITI.C. The zone edit control integers and the zone edit arrays are read first for all NZEDS edits, then the point edit control integers and point edit arrays are read for all NPEDS edits.

E. Output Description for a Test Problem

The TRIPLET program comes with a set of 10 test problems. The problem output presented in the following pages is a problenz designed to illustrate many of the TRIPLET options. Each page of the output is numbered, and we refer to these numbers in the text below.

As can be seen from the first output page, this problem is a 3 group, S_{2}, linearly anisotropic scattering, $k_{\text {eff }}$ calculation, using a quadratic polynomial difference scheme. The integer and floating point input control data are printed on output page (1). The remaining problem input is printed on output pages (2) through (4). Note that the flux input option ISTART $=-1$ was used to enter the fission spectrum as an initial flux guess.

Following edit input on page (4), the table of triangle x-coordinates is printed. Each node number corresponds to an identically numbered node point on the material map. From this table and the material map, we see that the system is a 1.0 unit (here cin) by 1.0 unit square, with three reflecting boundaries and one vacuum boundary. Xnowing the
orientation of the first triangle on each band from the adjacent arrows, the detailed triangular mesh may be drawn by connecting successive node points on alternate node lines, as indicated.

After the material map, the cross-section misture instructions, the mixed cross sections, the fission spectrum, and the velocitites are printed.

Following the summary of convergence precisions on output page (6), a monitor of the progress of the calculation is printed. The column headed "rebalance convergence" contains the maximum deviation from one of any rebalance factor for the rebalance performed after each outer iteration. If the number of inner iterations in a group exceeds IITL, we print the maximum flux error at that time immediately to the right of the number of inner iterations.

On output page (7) the final monitor line is printed, followed by a print of the cell-averaged scalar flux and its components, for each group. The flux print starts with the top band and runs downward, with triangle 1 corresponding to the leftmost triangle in that band. The fission rate, in the
same format, is the last item printed winess the edit options are exercised.

The first item of the zone edit, beginning on output page (10), is the zore map, similar to the material map, which associates each triangle with a zone number. This is followed by a cable, for each group, containing for each zone the voime, net leakage, buckling absorption, total sorvce, integral flux, average flux, and macroscopic activities. This is followed by the constituent activities for material 1 , which is a corstituent only of zone 2. This is followed by the microscopic activ-
ity for material 3, the activity that would be obcained if the scatterer were uniformly distributed throughout the system. The table of relative power densities appears last.

Finally, the point edit begins on output page (13). The point arrangement for both the upward and downward pointing triangles is indicated in the point arrangement map. The point flux is then printed for each triangle identification number requested for the point edit. This is then followed by the table of point microscopic activities output pages (14) through (15).

```
        THIS CASF WAS ORTRFSSEO TI, THE PREPLET COEE OF ;7,02,73 ON 10/01/73
TAIFLET EX&MPLE FRORLEK
    3 GRCLP,F-1 SCAPTEPIME.MIADEATIC POLYAONIAL
    ILEFT,HPGMT,BOTPCN,INEI R.T. = iNEFL,FEFL,VACLUNTFEFLI
        # ITR 首N DIGECT/ACJCIAT THECRY 
            ISA -1/0/1 MAADRATIRE INPIIT FROHG STANO.INTERFGCE/日UILT-IN IAD INPUTI/CARDS
        ITHH
        CPTEH CE PNLYNCNIAL
        hliNGER nf AamDS
        0/1/-3/O? YACULM/AEFLECTIVE/FLAT SOLRCE,SNAPED SCURCE LEFT AOUNLARY CONDITION
        0/1/2/-7/.9 VACU!H/REFLEETIVE/SPECIAL/FLAT SOLACE/CHAPED SOURCE RIGHT BOUAOARY CONOITIOR
        Q/i/=7/.3 \forallACIMH/AEFLFCYIVE/FLLAT SOLACE/SMAPED SCURCE BCTTOM BOLNCAPY CONDITION
        Q/1/-3/.? VACULM/PFFLECTIVE/FLET SCLFCE/SHAPEG SCURCE TCP BOUNDARY CONDITION
        0/1/2/5 ENC:ACE/H-F.FF/ALPHA/CCNCEATRAYICN CALCLLATICN
```



```
            MM TNTAL NEINDED OF CIOECTIGAS
            MTPS RINGEF OF MATEDIALSFRCN LIARARY
            NCP hiNAER OF WATEGIALE FRCM CAHC INFUT
            NS NuNHER fF mixYLPE instructiONS
            IHy ARW OF TCYAL CÓOSS SECTICN
            IHS RCWOF GELF-GCAYTEE CRCSS SECTION
            IHM LEAGTHNF rarSs SEOYION TABLE,
```



```
            |PYT OIT/R NCNESKLEFF/ALPHA PARANEPRIC EIGENVASUE TY E
            ilitl maximun aumagr of inNfa itehations
```



```
    O. EV FifENVAlug EuESS
    O. EUN EIGEMVALUE NOCIFIFD
    0. FV parometric eigenvalue
    1.DOOE-OT XLAL SEAFTN LANPCA LOWER LIMIT
    S.OOOE=O1 XLAM SE\triangleRCN LANOCA UPPER LIMIT
    1.000E-OJ XLAY FINE NFSN SCAECH PRECISION
    1.000E-05 EPS CCNYFREENCE PEECISTCN
    1.000E.00 NORM NCRNALJZAYICN GMPLITUDE
    1.00OE&OO FOO PARAMETER OSCILSAYIONDARAER
```

```
inFUT TRI_ band llown
```



```
STCRAgE REQUGED AILOWED
```



```
                                    LOİUED FRON GARDS NATER!AL & (f-í) FISSILE
                                    OADED FRON CARDS MATERIAL ( (\rho-N) FISSILE
                                    OAvED from caADS matEaial z (p-0) scatterer
                                    loamed fron cards vateaial ? (p-j)
input cacss seet i
                gROUP i finOLP ; GFOLP 3
```



```
input chCSS SEct,
            eROUP i fagLP ; GROUP 3
```



```
            .333333E*00
            P2ze22Eかor
                O.
                fijlmic+ió
                    *
                gRCUP i GROLP i group 3
```



```
            .300000E.01
```



```
                                -42ñONE&OI
                                -$jinoNE*OL
                                -igoonk+01
                                . 2000000 E+OO
0.
```



```
input cre5s sect
                    *
        group i group i}\mathrm{ ghoup 3
    lll
```

지

2 NUNFER OF ZONFS
1 AUFAER OF CONSTITUENT ACTIVITIES
2 NUFRER OF NICRCSCOPIC ACTIVITIES
2 zone ncemalizatícn io

INPUT ZUAE IOS. $2 ?$ $\begin{array}{ll}1 & i \\ 2 & ? \\ 1 & \stackrel{i}{1}\end{array}$

i	1
i	

PCINT LCit RUMAER í

- NUMPEH OF TRIANTLES

1 NUWER OF MICRCGCOPiC ACTIVITIES

INPIT MICEO.ACT TD í
ALL ENTRIES = 3
INDUT PRIANGLETOS $\quad 4 \frac{4}{17}$
PaBle of trialigife x-CnCENinates
BOTYON NCDES OF BÄN TC LEFT:TOP NGDES OF RAND TC EIGHT

sssssssssssssssisss input CCHPLETED ssssssssssssssssse

pinal printing

TIME IN FIMUTES I	$\begin{gathered} \text { OCTEO } \\ \text { ITERATIONS } \end{gathered}$	TANEF IreRations ictAl/ay grcup	NFUYRON BALANCE	eigenvalue	$\begin{aligned} & \text { FlGENVALUE } \\ & \text { SLOPE } \end{aligned}$	Lämada	peralance CONVERGENCE
S.84E-0i	10	θ	3.26179716E-0̇7	$3.32752584 \mathrm{E}-\mathrm{io}$	ni.		1,86769719E-06

-1.43A33E-il \quad, E9A44E-n? 4.26477E-n2 - A.9105iF-ñ -1.02966E-0 -1.41372E-n -1.4137 FE-N1
$-1.45372 E-01$

 -1.44911E-C1
$1.893 n \in E .02$
$-8.55423 E-02$ $-8.55423 E-02$
$-1.41436 E_{-01}$
$-1.43729 \mathrm{E}-02$ 4.46981E-0? -1.02937E-01

FISSION ECIT

$\begin{array}{r} \text { EAND } \\ 5 \end{array}$	$\begin{gathered} \text { taiahale } \\ 0 . \end{gathered}$	i	PHIANGLE	2	Triangle 3	TRIAAGLE 4	TRIANGLE	5	TRIARGLE
4	n 。		i.		$1.40936 \mathrm{~F} \cdot 00$	0.			
3	0.		0 .		$1.46274 \mathrm{E} \cdot \mathrm{CO}$	1.42614E*OO	0.		0
1	0.		9.		1.24764E*00	O.	0.		0.

(10)
2ONE ECIT AUNBER
SEE MATEFITAL HAP FOR TARIE OF THJANGLE XOCOORDINATES LEFT MUMHER THOIGATFS Y-COCRCINATE 1.0000°
gand 5 -

(.mSPECIAL)

3 3ynos

39จหท3า $\ddagger 3 v$

pelative

$$
1_{4}^{4}{ }_{2}^{t}{ }_{3}^{i}{ }_{5}^{4}{ }_{4}^{i}
$$

		${ }^{1}{ }^{6}$		FO ${ }^{\text {a }}$	COOUP
pr	TEI：${ }^{\text {ar }}$	T9I． 11	TRI． 12	TaI．ip	
1	20454470E－î）	2．\＄i4517E－：	2．4254955－11	2，61j）08E－in	
2	4．759335E－ĩ1	Singnchat－ii	$4.769400 \mathrm{E}-01$	5．1？3943E－त̄1	
3	2．446129E0nil	2．AD20e7E0it		2．595769E－ñ1	
4		5． 245642 E －${ }^{\text {a }}$	$5.243359 \mathrm{E}-01$	3．786522E－ñ1	
6			2． $29966 R E-111$	$3.753269 \mathrm{E}=\mathrm{il}$	

PT	Tri．	P＇r	$F L \cup x$	F 0
1			171． 12	TAI． 17
2	7．9sbTose．il	4.0	－0429028E－31	4.845845 EFil
3	4．447225E－Ă1		7．857525E001	A．493，32E－： 1
4	5．5E78e7E－ñ		－．627205E－0i	$4.811900 E-711$ $50559131 E=: 11$
5	5．4A9275E－îl	¢ i ค362SE－í	5．19625SE－01	
6			4.90635 AF － 01	5．561964E－i．1

T	TR！．	${ }_{11}^{p} \mathrm{C}$	$\mathrm{T}_{\text {TRI }} \mathrm{F} \underset{17}{\operatorname{Li} U}$	$\mathrm{FO}^{\circ} \mathrm{Q}$	AOUP
1	9．467129E－${ }^{\text {a }}$	g．atatiotes：1	P．37107CF＝01	Thlicil ${ }^{\text {a }}$	
2	1－15AR14E＊ñ0		1．14tis6E＋10	9．7CRK37E＊il	
3		？．797790E－ก゙1		1－294988F＊：	
5	A．2．5923E－ 1		1． $265976 \mathrm{E}+00$		
5	8．773563E－ 7		$8.555735 \mathrm{E}-01$	j．150563E．0̄0	

CROSS	Section taple	Anstiticn	1		
P1	lfl．${ }^{\text {a }}$	T919		「由i．1？	
1	1－25c739E－i！	igites	$4[-: i$		
2	？ $2595168 \mathrm{E}-\mathrm{Ti}$	？ 54546	E－i	2．30470iF－01	
3	1． 2 27n65E－il	1， 3 4104	FE－	i． 25 j3 $35 \mathrm{~F}-\mathrm{di}$	O．561972E－A
5			E－i	$2.62108 i E^{\text {2 }}$－${ }^{\text {2 }}$	1．293261F－ヘ̂：
6	1．329GOGE－íl	1．4．9？13	E¢0i	$\begin{aligned} & 1.449834 F-01 \\ & 1.33336 A E-01 \end{aligned}$	i．efegh3sent．
CROSS	section tafle	Pospticn		ACTIVITIES Zen	
cress	Scction tajle	POSITICN	3		
PT	Tit．	IRİ．	11		
，	9，5¢n764E－il	izits6\％	E．in	9．459432E－01	
2	1．87i351E＊OO	I： 90544	E＊＊	i．860066E．30	1．0990338E＋ñ

3		アこうィ大う！	9．75309nf－01	1．01040CE＊Nの
4	1．279743E．ñ		2.04491 AE－00	1． $0476744 \mathrm{E}+$ न－ 0
5	1． $2 \mathrm{Ek} 1079 \mathrm{E}+\mathrm{no}$	1．1272n3E＋\％	1．13i8970E 0 O	1．463775E＊ก
6	1．036313E－ถ̃o	9.5 Ie3tem－：	i．040027E90	1．3E2967E＊io

cress section taple postticn 2 all activities zerc
CRESS SECTION TARLE POSTTICN 3

PT	TET．	Ioi． 11
t	2．icsniterno	2．272673E＋in
2	3．711451E．io	3．949693E＊：
3	2．059596E－io	
5	2．E12207E・ヘ̃o	4． 0 ¢ $6.745 \mathrm{E}+0$
5	2．ड79950E．io	
6	2．07663E．ão	

TRT． 12
2．081643F．00
3．693037E•年0
2．134431F．00
4．054785E－00
$2.442245 \mathrm{E} \cdot 00$
2．305987E－00

TEI．il
 2．26i593E＋5 5

GFOL： 3

 2．294591E－01 1．751096E－01 2．53i951F＝0 1．911147F－0 $1.94 \in 318 E-01$
ll acituitifs 2ere
CRCSS SECTION TAPLE POSTTiCN 3

－${ }^{\text {T }}$	TAT．	T0
1	3．547794E•ṘO	－．- － 6939 F － 0
2	－P39419E•io	
3	3．543913E．ño	
4		
5	3－ECAE96E ${ }^{\text {S }} 0$	
6	3.003342 E －${ }^{\text {O }}$	T． $529027 E * *$

TRI． 12 $3.524501 E+00$ 4． 8 1894？ E ＊00 $3.572301 F+00$ $5.317098 \mathrm{E}-00$ 4.013409 E －80 4．087267E＊90

TR1． 17
－077ヶ28：•ค～
5.4352 .10 Eャno

4． 0×4545 ：－
$4.858677{ }^{\circ}+{ }^{\circ}$
4．832367：
4.716795 ：＊

ALL GGOLPS
 ． 03 j995E 000

TRI i7
6．154798：－n
j－024 111 ミ
－1． 1423 55：－

5		E.45S456E. ${ }^{-6}$	6.478734E-01	0.0easi2F-ñ
6	S.43AB37E-il	5.5rs579E-*	6.2234995-01	7.519382E-ñ
CRCSS	SECtion taple	Postiticn	ALl activities $2 E R C$	
cress p^{\top}	SECTION TAGLE	Pnstricn		
		IRi. 11	TRI. 12	TRI. i7
?		7.759274E*	$6.552 C 89 E \cdot 30$?.37350 PE*ño
3		1. $13714 \mathrm{BE}+\frac{1}{4}$	1.0.77174E401	1.142537E*n!
4			6.682032E*J0	7.336533E*ni
5	7.525934E•ก゚0	$7.574820 \mathrm{O}-\frac{1}{1}$	\%.141679E*02	
5	$5.137318 E+00$	E.57143E+in	$7.433281 E * 00$	B.84iA8'jE*ño

[^2]
IV. PROGRAMMING INFORMATION

In this section we give some of the details of the TRIPLET program. The material contained in this section is designed to help in the future local modification of the program. Much supplementary information is provided by the program comment cards.
A. Program Structure

1. Role and Function of Subprograms

We describe in Taole IV the function of all the subprograms in TRIPLET. In Table IV, we follow the overlay structure defined in Table III. The overlay is of the simple control, input, execute and output kind. Note that on IBM machines with large central memories it is more efficient to remove the substructure of OVERLAY $(2,0)$.

2. Program Flow

In Fig. 13 we show an amplified verston of Fig. 7, depicting the overall flow of the TRIPLET progran and showing subroutine names.

3. Relation of Problem Variables and Program Mnemonics

In much of the material in this manual we have used variables actually appearing in the FORTRAN of the program. A list of the relations between problem variable symbols and program variable names is given in Table V.

4. Definition of Variables in Common Blocks

Tables VI through XI define the varlables stored in blank common block IA and the named common blocks of TRIPLET. The container arra; 4 , for problem data is also in blank common. Block IA contains problem input parameters, first word addresses of data stored in the A array, and data generated by the program. Block FWBGNI contains information necessary to a problem restart.

Fig. 13. Amplified form of flow diagram in Fig. 7 showing subroutine names in overall program logic.

STRUCTURE OF THE TRIPLET PROGRAM ${ }^{\text {a }}$

Overlay (0,0$)$	Overlay (1,0$)$	Oyerlay (2,0)	Overlay (3,0$)$
TRIPLET	INPUT1	GRIND2	OUTPUT3
1. MONITR	1. LOAD	1. REBAL	1. OUTPT31
2. ERROR	2. INPUTII	2. GRIND21	a. FINAL
3. CLEAR	a. DUMPRD	a. INITAL	2. OUTPUT32
4. MPLY	b. KSET	b. INITQ	a. EDCALL
5. WRITE	3. INPUT12	c. INITF	b. GENFLO
6. ECHECK	a. CSPREP	3. GRIND22	c. ZEDIT
7. DUMPER	b. IFINXS	a. OUTER	d. BANDED
8. REED	4. INPUT13	b. INNER	e. EDMAP
9. RITE	a. READQF	c. NEWAB	f. CONTV
10. LSS	b. IFINQF	d. SWEEP	g. PEDIT
11. DOTPRO	5. INPUT14	e. SETBC	h. ARRMAP
	a. SNCON	4. GRIND23	i. CONVRT
	b. IFINSN	a. TESTS	3. IFOUT
	c. PNGEN	b. NEWPAR	a. IFRITE
	6. INPUT15		
	a. IXCHK b. BCCHK		
	c. HYCHK		
	d. POLY		
	e. PMULTI		
	f. PINT1		
	g. PINT2		
	h. PMULT		
	1. PINT		
	j. FACT		
	k. SIAF		
	1. BANDID		
	m. MAPPER		
	n. CONVT		

$a_{\text {On }}$ IBM 360 with large bulk core storage, it is computationally more efficient to remove the substructure of $\operatorname{OVERLAY}(2,0)$, locating GRIND21, GRIND22, and GRIND23 in GRIND2. For the IBM version, variable names of more than seven characters are shortened to six. The underlined names are overlay segment names.

FUNCTION OF TRIPLET SUBROUTINES

$(3,0)$ OUTPUT3	Controls prints, interface file output, and edits. Takes final dump.
$(3,1)$ 1. OUTPT31	Calla FINAL.
a. FINAL	Prints scalar flux and moments and fission rate.
$(3,2) 2$ OUTPT32	Calls EDCALL.
a. EDCALI	Generates net leakage by call to GENFLO, pezforms zone edit by call to ZEDIT, performs point edit by call to PEDIT.
b GENFLO	Generates net leakages from each triangle by group.
c. ZEDIT	Calculates zone balance tables, macroscopic acifvities, and poser densities, calculates constituent and microscopic activities if desired.
d. BANDED	Generates IBAND array again for use in EDMAP.
e. EDMAP	Draws zone edit map of system.
f. CONTV	Converts m-digit integer to character representation, used in EDMAP.
g. PEDIT	Printe point scalar flux and components from angular flux, computes microscopic activities if desired.
h. ARRMAP	Draws map of point arrangement on a triangle.
1. CONVRT	Converts 2 -digit integer to character representation. Used in ARRMAP.
$(3,3) 3$ IFOUT	Creates interface output files.
a. IFRITE	Writes or prints interface file dats.

TABLE V

RELATION OF PROBLEM VARLABLES TO PROGRAM MNEMONICS

Program Mnemonic	Problem Variable	Refer to
1. $\mathrm{P}(\mathrm{N}, \mathrm{M})$	$R_{n}^{k}\left(u_{m}, 0_{m}\right)$	Eqs. (4), (14)
2. C(Row, Nuclide)	$\sigma_{a},{ }^{* / s}{ }_{f}, \sigma_{t}, \sigma_{s, n h \rightarrow g}$	Section III.B. 1
3. WGT (M)	${ }_{\text {w }}$	Section II.B.3
4. $\cos _{M U}(\mathrm{M})$	${ }^{\prime \prime}$	Section II.B. 3
5. COSETA (M)	$n_{\text {m }}$	Section II. B. 3
6. cTot (I)	$\sigma_{t, 1}$	Eq. (11)
7. $F(I)$	f_{1}	Eq. (35)
8. $A F(K, I)$	$\psi_{1}^{(k)}$	Eq. (20)
9. $\mathrm{S}(\mathrm{N}, \mathrm{K}, \mathrm{I})$	Source to a group	Section II.D. 4
10. $\operatorname{FLUX}(\mathrm{N}, \mathrm{K}, \mathrm{I})$	Flux moments	Section II.D.4
11. PISSA (K, I)	Fiasion source to a group	Scetion II.D. 4

CONTENTS OF BLANR COMMON BLOCK IA

Position	Name	Pointer for Array	Remarks
1	ITH		Theory
2	ISCT		Scattering order
3	ISN		Source of S_{n} constants indicator
4	IGM		Number of groups
5	NP		Finite element polynomial order
6	JT		Number of triangle bands
7	IBL		Left boundary apecification
8	IBR		Right boundary specification
9	IBB		Bottom boundary specification
10	IBT		Iop boundary specification
11	IEVT		Efgenvalue type specification
12	ISTART		Flux input option
13	MT		Total number of materials
14	MIN		Total number of input nuclides from both litrary and carda
15	MS		Number of mixture instructions
16	IHT		Pobition in table of total cross section
17	IHS		Position in table of self-bcatter cross section
18	ItM		Cross-section table length
19	IQGPT		Source input options
20	IQAN		Distributed source anisotropy order
21	ISDS		Continuous/discontinuous model indicator
22	IACC		Rebalance option indicator
23	IPVT		$k_{\text {eff }}$ or alpha parametric eigenvalue indicator
24	ISDB		System/fine-mesh buckiling indicator
25			Not used
26	IITL		Maximum number of inner iterations
27			Not ured
28			Not ssed
29			Not used
30			Not used
31	IEDOPT		Edit option indicator
32			Not used
33			Not used
34			Not used
35			Not used
36			Not used
37	EV		Eigenvalue guess
38	EVM		Eigenvalue modifier
39	PV		Parametric value of $\mathrm{keff}^{\text {or alpha }}$
40	xLAL		Search lambda lower limit
41	XLAH		Search lambda upper 11 mix
42	XLAX		Pine-mesh search precision

43	EPS (EPSO)	Convergence precision and outer convergence precision
44	EPSI	Inner convergence preciaion = EPSO
45	EPSR	Within-group rebalance convergence precision $=10^{-4}$
46	EPSX	Whole-system rebalance convergence precision = EPSO
47		Not used
48	NORM	Normalization amplitude
49	POD	New parameter modifier
50		Not used
51	IUP	IHS-IET-1 (upscatter indicator)
52	IHF	IHT-1 (position of vo_{f} in cross-section cable)
53	IHA	IET-2 (position of σ_{a} In cross-section table)
54	IHTR	IHT-3 (position of $\sigma_{t_{r}}$ transport cross section in cross-secsion table, if present)
55	IHNN	IHT-4 (position of $\sigma_{n, 2 n}$ cross section in cross-section table, if present)
56	NPPT	Number of points per triangle actually stored
57	MM	Number of quadrature directions
58	NM	((ISCT+1)* (ISCT+2))/2, number of anisotropis somponents of flux
59	NMQ	((IQAN+1)* (IQAN+2) /2, number of anisotropic source components
60	NPP	Sum NP+1
61	NPT	($\mathrm{NP}+1$) (NP+2)/2, number of points per triangle
62	IGP	Sum IGM+1
63	STC	Total number of triangles in system
64	ITMAX	Maximum number of triangles on one band
65	NTM	Total number of x-coordinates
66	NTF	Total zumber of fluxes stored, NPPT*NTC
67	NTQ	Total number of sources stored, NPPT*NTC
68	NUPB	Number of upward pointing triangles on bottom band
69	ADNT	Number of downard pointing triangles on top band
70	NMM	Product Fin Him
71		Not used
72	IHMT	Product Ihmamt
73		Not used
74	ISCP	Sum ISCT+1
75	LNBT	Length of BT array
76	LNBB	Length of BB array
77	LNBL.	Length of BL array
78	LNBR	Length of BR array
79	ICLIM	Lenigth of che C and AAJ blocks
80	LIT IT(JT)	Number of triangles on each band
81	LITT ITT(JT)	Indicator for ortentation of first triangle on each band
82	LC C(IEM, MT)	Cross sections for a group
83	LKC KC ($\mathrm{Jr}^{(1+1)}$	Pointer for first triangle i.d. on each band
84	LKX KX (JT+2)	Pointer for first x-coordinate on each node line
85	LIB LAAND (NTC)	Pointer to adjacent triangle on band above or below
86	LBND BOUND (NPPAITMAX/2)	Angular fiux array on band boundery
87	LIAP LAP (NPT,6)	Angular flux index array

88	LQ	Q (NM_{2}, $\left.\mathrm{NPT}, \mathrm{NTC}\right)$	Distributed source
89	LX	X (NTX)	K-coordingtes of triangle vertices
90	LAE	AE (ITHAX+1)	Area elements for a single band
91	LAS	AS (ITMAX +1)	Siga of AE times 1.0
92	LAF	AF (NPT, ITMAX+2)	Angular flux on a single band
93	LBT	BT (NPP, NDNT, MR)	Top boundary angular flux array, actual length is LNBT
94	LBB	BB (NPP, NUPB, MPI)	Bottom boundary angular flux array, actual length is LNBB
95	LBI.	BL (NPP, JT, MM)	Left boundary angular flux array, actual length is LiNBL
96	LRR	BR (NPP, JT, HM)	RJght boundary angular flux array, actual length is LNBR
97	LP1	P1 (NPT, NPT)	Inner product array, (Lagrange, Type 1 weight) polynomials
98	LB2	P2 (NPT, NPT)	Inner product array, (Lagrange, Type 2 weight) polynomials
99	LPX1	PXI (NPT, NPT)	Inner product array, (x-derivative of Lagrange, Type 1 weight) polynomials
100	LPX2	PX2 (NPT, NPT)	Inner product array, (x-derivative of Lagrange, Type 2 weight) polynomials
101	LPY1	PYI (NPT , NPT)	Inner product array, (y-derivative of Lagrange, Type 1 weight) polynomials
102	LPY2	PY2 (NPT, NPT)	Inner product array, (y-derivative of Lagrange, Type 2 weight) polynomials
103	LB1	BI (NPP)	Triangle boundary flux
104	LB2	B2 (NPP)	Triangle boundary flux
105	LFL	FLUX (NM, NPT, NTC)	Flux components
106	LFLA	FLUXA (NTC)	Scalar flux frow previous inner iteration
107			Not used
108	LFIS	FISS (NTC*NPT)	Same origin as FISSA
109	LFISA	FISSA (NTC*NPT)	Fission source
110			Not used
111	LDC	IDCS (NTC)	Cross-section identification number for each triangle
112	LCC	CC (NPT , NPT)	Matrix inverted for angular fluxes on each triangle
113	LB	P(NPT)	Source vector for angular fluxes on each triangle
114	LPRT	PRT(NPP, NPT)	Matrix for contribution to source vector B from orientation 1 triangle right boundary
115	$L_{1} \cdot 5 T$	PBT (NPP, NPT)	Matrix for contribution to source vector B from orientation 2 triangle bottow boundary
116	LPLT	PLT (NPP, NPT)	Matrix for contribution to source vector B from orientation 2 triangle left boundary
117	LPI	PI (NPT)	Integrals of Lagrange polynomials
118	LHY	HY (JT)	Band heights
119	LW	WGT (HM)	Direction weights
120	LCM	COSMU (MM)	X-direction cosines
121	LCE	COSETA (MM)	Y-direction cosines
122			Not used
123			Not used
124	LP	$\boldsymbol{P}(\mathrm{NM}, \mathrm{M} M)$	Spherical harmonic functions
1.25	LPBI	PBI (NPP)	Integrals of one-dimensional lagrange polynomials
126	LPF	PF (NPT)	Equals PI (NPT) or 1.0 if ISDS $=1$ or 0.
127			Not used

128	LMN	MLXNUM(MS)	Input mixture numbers (conditional on MS.GT.0)
129	LHC	MIXCOM(MS)	Input mizture instructions (conditional on MS.GT.0)
130	LMD	MIXDEN(MS)	Input mixture densitites (conditional on MS.GT.O)
131	LF	F (NTC)	Fine-mesh rebalance factors
132			Not used
133			Not used
134			Not used
135	LTLO	FLO (3 , NTC)	Fine-mesh inward flows
136	LAB	AB (NTC)	Fine-mesh absorption removal rate
137	LQQ	QQ (NTC)	Fine-mesh source
138			Not used
139			Not used
140			Not used
141			Not used
142			Not used
143			Not used
144	Lha	HA (ITMAX)	Used in suliroutine Rebal for inversion
145	LGA	gA(${ }^{\text {(IMAX) }}$	Used in subroutine Rebal for inversion
146	LQG	QG(IGP)	Space integral of Q
147	LqGB	QGB (IGP)	Space integral of boundary source
148			Not used
149			Not used
150			Not used
151			Not used
152			Not useis
153			Not used
154			Not used
155			Not used
156			Not uced
157	LBAL	BAL (IGP)	Group neutron balance
158	LCHI	CHI (IGP)	Input fission spectrum
159	LCBIA	CEIA (IGP)	Fission spectrum used in the calculation
160	LVEL	VEL (IGP)	Group velocitien
161			Not used
162			Not used
163			Not used
164			Not used
165	LSOU	SOURCE (NM, NPT, NTC)	Total souce in a group (same origin as Q)
166			Not used
167	LaA	AAJ (MT)	Effective absorption cross section
168	LBHT	BHT (NTC)	Space dependent buckling height
169			Not used
170			Not used
171			Not uned
172			Not used
173			Not used

174	Lстот	CTOT(NTC)	Effective total cross section
175	JCONV		Final convergence indicator
176	TN2N		$\mathrm{N}, 2 \mathrm{~N}$ reaction term used in balance equations
177	XLAPP		Value of lambda from sequence of outer iterations previous to that of XIAP
178	XLAP		Valie of lambda from previous sequence of outer iterations
179	ICNT		Iteration trigger used in NEWPAR
180	E2		Temporary storage
181	El		Temporary storage
182	EVPP		Eigenvalue from cycle of outer iteration previous to that of EVP
183	EVP		Eigenvalue from previous sequence of outer iterations
184	E4		Temporary storage
1×5	ngo		Return indicator set in NEWPAR
186	ALAR		Value of lambda from previous outer iteratiou
187	FT		Total space-integrated fission source in a group
188	IITNO		Inner iteration number
189	TS		Total integrated source to a group
190	G		Number of current group (integer)
191	ICONV		Secondary convergence indicator
192	สGOTO		Return indicator set in TESTS
193	E3		Temporary storage
194	EvS		Slope used in sigenvalue search
195	IIter		Total number of inner iterations
196	ALA		Parameter lambda
197	TIN		Time
198	FTP		Previous fission total
199	IFN		Fission calculation indicator set in INITAL
200	OITNO		Outer iteration number
201	NPQ1		Number of angles in quadrant 1
202	NPQ2		Number of angles in quadrant 2
203	NPQ3		Number of angles in quadrant 3
204	NPQ4		Number of angles in quadrant 4
205	LMBT		First dimension of BT array
206	LMBB		First dimension of BB array
207	LMBL		First dimension of BL array
208	LMBR		First dimension of BR array
209			Not used
210			Not cred
211			Not used
212			Not used
213			Not used
214			Not used
215	NTAP		Computed by subroutine KSET, not used in code
216	ERR		Scalar flux error from comparison with previous flux
217			Not used
218			Not used
219			Not used

220		Not used
221		Not used
222		Not used
223		Not used
224		Not used
225	NLIMIT	Not used
226	IFLAG	Not used
$\begin{aligned} & 227 \\ & \text { through } \\ & 246 \end{aligned}$		Not used
247	TIMACC	Accumulated problem running time
248	MCRRDS	Signed number of input nuclides requested from the code dependent input file
249	NOSGUP	Sigma up included in cross-sections indicator
250	IOLYCS	Overlay indicator (first digit gives primary overlay and second digit gives eecoudary overlay when read in octal)

CONTENTS OF NAMED CGMMON BLOCR FWBGN1

The named common block FWBGNI contains the information required to continue the processing of the current problem if it is restarted.

Position	Name	Contents and Remar'ks
1	IDUSE	A vector used for the title of the problem in A4 format (length of 18 words)
2	LAST	Length i common block A used by the current problem
3	LASTEC	Length of LCM used by the current problem
4	IGCDMP	Group number of restart dump
5	IPSO	LCM pointer of the source-to-the-group block which is calculated by subroutine OUTER and saed by subroutine INBER
6	LTSO	Length of the source-to-the-group block
7	IPFX	LCM poircer for the first group of the flux block (each group block containg the three-dimensional flux array as well as boundary arrays gtored consecutively)
8	LTFX	Length of the flux blosk for a group
9	LXFX	Length of the three-dimensional flux array
10	IPXS	LCM pointer for the first group of the cross-section block (each group block contains the cross-section array, the effective absorption vector and the spatial total cross-section array)
11	IPXSCT	LCM pointer for the first group of the spatial total eross-section array within the cross-section block
12	LTXS	Length of the cross-scetion block for a group
13	LTOXS	Length of the crosa-section array for a group
14	LTAXS	Length of the cross-section array and the effective absorption vector for a group
15	IPQS	LCM pointer for the first group of the Q-source block
16	YTQS	Length of the Q-source block for a group (zero when not a Q-calculation)
17	IEREC	Not used
18	I2	Final flux print indicator (0/1/2 a all/isotropic/none)
19	14	Final fission print indicator (0/1 - yes/no)
20	I6	Not used
21	IFO	Interface output indicator (0/1-no/yes)
22	IPBS	LCM pointer for the first group of the boundary source block
23	IPAB	LCM pointer for the absorption block used in the outer rebalance
24	LTAB	Length of the absorption block used in the outer rebalance
25	IPFLO	LCM pointer for the inward flows block used in the outer rebalance
25	LTFLO	Length of the inward flows block used in the outer retralance
27	IPQQ	LCM pointer for the group summed Q-source block used in the outer rebalance
28	LTQQ	Length of the group summed Q-source block used in the outer rebalance

TABLE VIII

CONTENTS OF NAMED COMMON BLOCK FWBGN2

The named coumon block FWBGN2 consists primarily of those indicators used by the program but not vital to restart. Parameters which define options are set in program TRIPLET.

Fosition	Name	Contents and Remarks
1	TIMBDP	Minimum time between periodic dumps ($0 / F$ - no periodic dumps/seconds)
2	TIMSLD	Elapsed time since last dump
3	THMOFF	Floating-point form of the input fixed-point parameter ITLMM
4	MAXLEN	Maximum length of the main comm data block A
5	MaXecs	Maximum length of LCM storage available to the problem
6	LENMCB	Length of the named common block FWBGN which must be saved for restares
7	LENCIA	Length of the common parameter block LA which must be saved for restarts
8	IFNOVY	Overlay file name for CDC machine usage (given in left fustified, zero fill Hollerith form)
9	IRCOVY	Recall overlay indicator for CDC machfne usage (0/6HRECALL $=$ no reloading of overlay when in core/reloading overlay when in core)
10	II	Full flur guess input print indicator (indicator effective when ISTART is 2 or $-2,0 / 1=y e s / n o$)
11	13	Cross-section print indicator ($0 / 1 / 2$ - all/mixed/none)
1.2	15	Input source print indicator ($0 / 1 / 2 / 3 \mathrm{~m}$ all/unnormalized/normalized/norie)

TABLE IX

CONTENTS OF NAMED COMMON BLOCR LOCAL

The named common block LOCAL concains information that is passed from overlay to overlay for a problem but is not needed in restart.

Position	Name	Contents and Remarks
1	NERROR	Parameter input-error indicator
2	ITLIM	Fixed-point time problem removal value ($0 / N=$ no/seconds)
3	MCR	Number of nuclides requested from the code dependent input file (miaus if FIDO format)
4	MTP	Number of library nuclides requested from ISOTXS interface file (MTPS* (ISCT+1))
5	MTPS	Number of nuclide sets requested from ISOTXS interface file (each set yields ISCT+1 blocks)
6	NISOXS	Number of isotopes tn the set as read from the ISOTXS file
7	LMTP	Core pointer for the ISOTXS interface file position number data block
8	NEXTER	Fetch next case indicator (if any error was detecied after all input was successfully read, the next problem is fetched)
9	LIMIT	Maximum storage length required by input cross sections and calculation of anisotropic scattering coefficients
10	LENCLR	Length of the partial block to be cleared during input

TABLE X

CONTENTS OF NAMED COMMON BLOCK CSWEEP

The named common block CSWEEP is used to pass the current value of variables from subrous ine INNER to subroutine SWEEP and to subroutine SETBC without using a calling sequence entry.

Position	Name	Contents and Remarks
1	U	Direction cosine u_{m} during angle sweep
2	E	Direction cosine $\eta_{\text {m }}$ during angle sweep
3	WGT	Direction weight wim during angle sweep. Variable name is WATE in subroutine INNER
4	M	Do-loop index of angle sweep
5	I	Triangle index on each band of spatial mesh sweep, $1=1,2, \ldots, \operatorname{IT}$ (J)
6	J	Band index of spatial megh sweep, $J=1,2, \ldots, 3$ JT
7	ID	Triangle identification number of spatial mesh sweep, ID $=\mathrm{KC}(\mathrm{J}$) $+\mathrm{I}-1$

TABLE XI

CONTENTS OF NAMED COMMON BLOCE UNITS

The named common block UWITS contains the symbolic names of ali input, output, and scratch devices required by TRIPLET which are set in the main program TRIPLET.

Pesition	Name	Contents and Remarks
1	NINP	Problem code dependent decimal input
2	NOUT	Problem decimal output
3	NAFLUX	Angular flux by group
4	NDUMP1	First restart dump unit
5	NDUMP2	Second restart dump unit
6	NEXTRA	Scratch unit
7	NEDIT	Edit input storage
8	IAFLUX	Interface form of angular flux
9	ITFLUX	Interface form of total flux
10	ISNCON	Interface form of S_{n} constants
11	LFIXSR	Interface form of inhomogeneous source (Q-source)
12	ISOTXS	Interface form of multigroup cross-section file ISOTXS
13	MLEAK	Triangle net leakages by group

5. Machine Dependent Subprogram

a. LCM Systeru Loutines

LCIi (large core memory) is a large bulk memory from which blocks of words may be quickly transferred to or from SCM (small core memory). This random buik memory is accessed through two system routines - ECRD (transfers LCM to SCM) and ECWR (transfers $S C 1$ to LCM) - Fifch process consecutive words of SCM and consecutive words of LCM given an SCM
address and a pointer value for LCM. The pointer value given may be thought of as the index of a container array. To read from or write into a block of core. it is necessary to provide the read/write routines with the core origin, the LCM pointer value and the number of consecutive words to be transferred. For example, if we consider reading the entire FLUX block for group IG from LCM to SCM, we would have the FORTRAN IV statements

```
CALL REED(0,IPFX+(IG-1)*LTFX,FLUX,LTFX,1) and
CALL ECRD (FLUX, IPFX+(IG-1)*LITFX, LTFX,IER) .
```

In these statements FLUX is the SCM container array, IPFX+(IG-1)*LTFX is the location of the first word of the $I G^{\text {th }}$ group $f 1 u x$ array in LCM, and LTEX words are transferred. IER is an error indicator. On the CDC 6500 Extended Core Storage (ECS) plays the role of LCM. On the IBM-360/195 ECRD and ECWR are replaced with core-to-core transfers.

b. General System Routines

Additional system routines required by the code are SECOND (obtains current time), DATE1 (obtains current date), ATAN (arctangent), SQRT (float-
ing-point square root), EXIT (returns control to system for next job), and COS (cosine).

Use of an end of file test is made in INPUTll to detect the last case of a sequence of cases. The test must be replaced by an equivalent statement to obtain a normal exit. B. External and Internal Data Files

All files used for input, output and scratch data are referred to by symbolic name throughout the code. The user may easily change the physical unit assigred a file by modification of the symbolic name which is initialized in the main program of TRIPLET. Table XII indicates the files required by TRIPLET.

TABLE XII
TRIPLET FILE REQUIREMENTS

Name	Logical Unit (CDC Machines Only)	Contents	Remarks
NINP	10	Problem code dependent decimal input	The user may wish to equate this file to the system input file.
nout	9	Problem decimal output	The user should equate this file to the system decimal printed output file.
NAFLUX	6	Binary angular flux by group generated only on a special last outer iteration	The contents for each group and direction consists of JT records, each of length IT(J)*NPT, written a band at a time.
NDUMP1	7	Restart dump	This unit is used to receive the first restart dump when the problem is not restarted from a previous dump. The unit must contain the restart dump information when the problem is restarted and will then be used to receive the second restart dump (NDUMP2 receives the first dump).
NDUMP2	5	Restart dump	Second restart dump unit.
NEXTRA	18	Scratch file	The file is used in the decimal mode for Hollerith conversions rather than the core-to-core conversions given by the FORTRAN statements of ENCODE and DECODE of CDC machines.
NEDIT	17	Edit input storage	To save core, edit input is stored on this file until time of edit.
IAFLUX	31	Interface form of angular flux (either adfoint or regular)	Output of the angular fluxes in interface form is placed on this file. The file is rewound prior to processing the fluxes and an end of file is placed on the file after the last write. Data for one problem only is kept on this file.

minus LAST. The size of the container array is changed simply by changing the dimention of common block A and assigning a new value to Maxlen. Both changes need be made only in program TRIPLET.

In the edit and interface output sections of the code, the amount of SCR required 13 recomputed and teated againat LAST. In rare canes these tents may fail, but enough core may exist in the container array for both SCH and LCH. Then, the value LAST may be reset and that portion of the container array corresponding to LCM moved to accommodate the increaged requiremeat, for SCH.

Because of the amount of core atorage avallable on the IEM machines, it was found to be compuracionally advantageous to combine the computational overlay GRIND2 with ite secondary overlays.

In addition to storage reorganizazion, the following changes were made to effect the IBM conversion of THIPLET:

1. Dumay subroutines vere substitured for gyaten subroutinea datel (returns date an an AB word) and SECOND (recurns floating-poine vaiue of the curzent time). The dunmy routine for SECOND must be replaced by a local system routine or the periodie and time limiz dump options will not wik.
2. A subroutine \boldsymbol{F} [DO was added to process the PIDO croas-section format. The CNE 7600 algorithio to read this format unes a revind command. On the IBy syatem a prohibitively large amount of vait time was required because of the revind comman.
3. Hollerith 6 il constants ehroughout che code were typed as teal elghe byee data, int cluding subroutine call list vartmbles. Subroutine WRITE, uses one much varlable as efther an inceger (four byces) or 6 cil constant (eight bytes), and chis stzuation was created by equivalencing statementis.
4. The IP(BOF) CDC gob cermination teat was replaced with a read vith che IEA ERD paraweter.
S. CDC overlay cardo vere removed, overlay programe vere changed to subroutines, calis to overlay segments vere replaced with calls to tho subrout ines, and the setefing of overiay paramecers IFNoVY and IRCOVY was elintnated.
5. Several options vere added to subroutinz REED co treat interface file dara. All auch data is assumed to be four-byte words, but the specification record of such files is chree elght-byte words plus one fourbyte integer. Two errays of the ISOTXS file contain mixed 6 H dats (8 bytes), and floating point and integer (4 bytes). Finally, reading the ISNCON file requited skipping a portion of the record before resding additional data. All of chese problems werc ereaced by adding options to REED.
6. Shortened names (six character maxtmim) vere required for the folloving routines:

CDC	IBM-360
TRIPLET	(MAIN PFOgram)
INPUT1I	INPT11
INPUT12	INPT12
INPUT13	INPT13
INPUT14	INPT14
INPUT15	INPILS
GRIND21	GRID21
GRIND22	GRID22
GRIND23	GRID23
CUTPUT3	OUTPT3
OUTPT31	OUTT31
OUTPT32	OUTT32

E. Frofzeming Considerationg

1. Starage Kanagement
*. Variable Drensigoning
A single container ayray, A. In common io used for the biocks of date required in executing a problem. The corige of all deza is consecutive and compact in the A crray so chat the olze of a problen is 11aited by zhe total storage required rather tian by the ence of individual parametert. A pointer vord is assofiated vith each data block anci is used to index A to loeate che block. For example LFL is the (1rst word addrese of the fiux block in A and $A(L F L)$ if the fictat votd of che tiux array. Then subroutine calle sye visten, the addreas of a data block, asy (LFLD, it paseed through tic afgument call. In the bubrousine che data block io it ubly dimensioned wo that it may be ensily indexed by ies subseripta, e.g. $\operatorname{FLUX}(N, I, j)$.

b．Allocation of targe Core Hemory（LCH）

The allocation of etorage in large core menory （LCH）is handled in the same manner as core ctorage． Most of the groupriependent arrays are gtored in LCH to the dimensionslity is IGY times the core require－ ment of the artay．Por example，there are xamthe NPPT＂NTC LOH Locations required for FLUK（NM，RPET， NTC）．

Ceresin blocks of data are stored contiguousiy in core so that they may be read in and out of LCM in a single stream．For example．the flux blcek in－ cludee FLUK（KH，＊PPT，NTC）．BT（NPP，NBKT，HM／2），BB（NPP，
 when the boundacy conditiont are ocher than vacuus． The fitst word of chis block is LFt，and the leqt ตozd 1s LFLA－1．The czose－scetion block includeg the croze aections C（TLRA，NT）．the effective absorp－ ELon AhJ（MT）and the totnl cross mection CTOT（ITC）． The firge word of thie block 2s LC，and the late word 2：LQ－1．A complete isse of LCA atorage is Biten in Teble XIII．

e．Computation of Reguired Storage

The essiest way to compute the torage required by a problem is to load the problem for a short run and let the code computc LAST，the mmount of SCA and LASTEC，the atrount of LCY．The computation is made wery erriy in problem execution and this result is printed before most of the data it tead．An spprox－ fate formuln sor LASI is
 +3 HTC（NPT＋1）+ Condietonal Blocke ＋Boundary Artay Blocts
where the variebies in the formals wre defined in Table 47 ．The sizes of the conditionsl blocks are：

NTC	for 150\％ 1
7＊3TC	for Laccel

The sifes of the boundery argay blocke are：

NDNT＊APP＊TC／2	for 1BT＝1．
KDNT NPP畏过	for IBT－1，
NDSTM	Cor 1BTm－3．
	for 138－2．
SUPE由NPPAH．	for LABm．
KUPE＊TH	for 1920－3．
Jtexppapm／2	for IBR＝1，ISRe2 or IDLel，
JTMEPP＊YM	for 18R＝］or［8L－3．
JTMMA	for IfR－3 or 12L－3．

TABLE KIII
LAA STORAGE PARAMETERS

LCA Pirat Hord Addrese	Length Per Block	No．of Blocks	Contents
IPXS	ETXS－ NTCHET＊IIRTHT	IG：4	Cross－section blocks by group
IPFX	K2＊NPTAMTC	IKI	Sealar fluz and moments
IPAS	$\begin{aligned} & \text { LTFX }^{\mathbf{a}}- \\ & \text { NHANPT } \mathrm{NTC} \end{aligned}$	IGX	Bountary flum or bcundary aource
IPSO	$\begin{aligned} & \text { LTSO = } \\ & \text { NHANPTHTC } \end{aligned}$	1	Source to group including within group seatter
IPQS	LTQS＝ RH＊NPT＊NTC	ICM	Q－souree blocks by group．present only if IENT＝0
EPAS	$\begin{aligned} & \text { LTAE } \\ & \text { (NTC or 1) } \end{aligned}$	1	Absozptions plus net leatcegen for （fine－mesth or aystem）rebalance
LPFLO	$\begin{aligned} & \text { LTFLO } \\ & 3 *(N T C \text { or } 1) \end{aligned}$	1	Invard flowa for （fine－meah or syacem）rebalance
1 PQQ	$\begin{aligned} & \operatorname{ITQQ}= \\ & \text { (NTC or } 1) \end{aligned}$	1	Total intramogene－ ous source 40 r （finc－mesh or sys－ ce．）rebalance

> LIFX it the leagth of the Elux serays （H2sNPTANTC）plus the Leageh of che boundary flux argays，which dependsi on the boundery condietons．The lengths of the boundery errays are given in Sec．IV．E．L．e．Tor che various boundary condition options．

The amount of LCH is given by

```
LASTEC = LGN(2TT* (IMH+1)+NTTC* (2+2*NO*NPT)
    * Soundery Artay Blocks)
    + 2*NGNRTTNTC + Condstiongl B1ock
where she condityomal block flza lig
    S*NTC or 5 for IACC=1 or 0
```

The bove formulas are all based on uae of the discontinuous model．The storage for she continuous model may be estinted from these formas by setting NFT－L．

d．Temporary Storage Requirements

The smount of atorage actusily calculated for LAST is the maxims of chrec quantities．The firet of chese is the cotal amount of SCy required for problea execution and the ofher two are emporary storge requirements．onc for input of cross
sections and the other for calculation of anisotropic scattering coefficients. Usually, the problem data requirement is wuch larger than the temporary storage requirement, but occasionaliy the input cross-aection requirement (IGM* LHMAMN words) is largest.

A teat it made for each of the temporary atorages and the user is informed if mare SCH is required than ia available. Additional reste are made prlor to the processing of esch zone or point edit in EDCAEL and prior co the procesaing of the interface output in Ifout.

e. Overntorage of Daca in Core

$I=$ TRIPLET, cettinin amount of overstozage fa umed co reduce the cotal amount of small core utmory (SCY) required; i.e., more then one array any reside in the ame SCi locations as the problem progresaes. The most importane example of this is that the large arraye $Q($ (M, ippT, NTC $)$ and Souncr (in, NPPT, NTC) are stored in the same spacew. The Q array is used in OUTER to generate the coral source to a sroup. including the inhowogeneous source, if any. Thin source is then viteten in LCA. In INNER chis source is read lato Scy after each inner iteraeion to initialize the SOURCE array. Then the reat of the group source 10 added to SOURGE.

When input cross sections are read, they are read into location 20 , and when anisatropic seatcering spherical harmonic confficients are caleulated, storagc beginting at location $2 Q$ is used. In esch of these cases, the asount of storage required is checked (previous section), and the core in reinitialized after the operacion is complace. Similar overscorage 13 performed for temporary arraya used by che poly aubroutine and is performed when the matezial map is written (stibrultine MAPER) for a problem not usinf fincmesh rebalance.

2. Beatare Tape Composizion

The restart dump is composed of the folloulng recorcis: restare paremercr information, naned comEno block FWBGHL, cotmon block LA, data comon block A (only the portion used by the problem), and angular fltax records. The anguiar flux informan tion ia only generated in the labe pasa of the calculation for groups one through the curtent group. The number of data eneries is the first word of
each record on the dump tape. The final dump concaine the current group (IGCDM-) value of zero.

The restart pasameter information is a vector which contains five words in the follouing order:

1. IGM Number of groups.
2. KORDM Number of LCM recnide.
3. NORDAF Number of angular flux recorde.
4. NTC Number of eriangles.
5. NM Number of flux componente.
6. Standerd Incerface Files

The itandard interface files read and written by TRIPLET are version II files. 4 An far dis posalble the codes which process thene filce are subzoutines. The user should note that in reading, the very firet entry on a file is used ts the input, and in wrieing, the file is rewound prior to the output of data. No phyoical unit distinction 16 made berveen regular sand adjoint input or output ćlles. If a otandard in provide a flux guess, and a standard intarface file flux outpur is requested, the inpue file information 1s destroyed.

references

1. K. D. Lathrop and F. W. Brinkley, "Twotrak-1I: An Interfaced, Exportable Version of the Twotran Code for Tom-Dizensional Traneport." Los hlamos Scieneific Raboratory report LA-4848-HS (July 1973).
2. Proposed American tiuclear Society Staceard 10.3. "Guidelines for the Documentation nf Digital Compurer Programa." to be published.
3. G. I. Sell, C. E. hansen, and H. A. Sandweter, 'anulitable Treatmente of Andmotroplc Scatcering in S_{n} Muleigroup Transport Calcuiacions." Nuc1. Sei. Ens. 28, 376 (2967).
4. B. H. Carmichael, D. A. Mencley, and D. R. Vondy, "feport of the Subcomatece on Standard Interface filen:" prepared for the comittee on Gomputer Code Coordination and lasued sa los Alamos Scientific Laboratory report LA-5324-MS.
5. W. W. Engle, It., " A Users Manual for ANISN, a One Disensional Discrete ordinates Transport Code With Andsotropic Scattering." Union Carbide Cozporation repore K-2693 (karet. 2967).
6. K. D. Lethrop, "DTF-IV, A Eortran Program for Solvine the Muleigroup Tranaport Equatson utth Anisotropic Scattering," Los Alamos Entmatific Laboratory repore LA-3373 (November 1965). p. 42.
7. B. G. Carlson and K. D. Lachrop, "Transpore Theory - Hethod of Dicerete Ordinates," Chapect III of Computing Herhodi In Reactor Physies. Gordon and Breach, Ney York (1968). D. 257.
8. "Elementary Guide to the Control Data 7600," Ray Devepport, Ed., Programer' Information Manul, Vol. SA. Loe Alamos Seientific Laboratery (1972).
9. Prograsmer's Information Manuel, Vol. 4, CDC 6600, Anne Browing, Ed. , Low Aleaon Selentific Leborazory (1913).
10. W. H. Reed and T. R. Hill, "Triangular Meah Methode for the Neutron Transport Equation." to be publiahed in the Proceedings of the Netional Topicel Meeting on Marhematical Models and Computational Techniques for Analyais of Nuclear Syatems, April 9-11, 1973, Ann Arboz, Mich.

[^0]: Fig. 6. Typical order of solution on a band of triangles for direction Ω_{n}.

[^1]: *To preserve the input values. If these need not be saved, mixtures can be created in lower block numbers.

[^2]: ©*e. TOTAL EXECUTIOA TIME IN NIAUTES E 5.BRiSE-OI

