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FOREWORD .
This report consists of the_lecture'notes for the course C703:

Numerical So]utionAof Ordinary Differential Equations, tédght in the

winter quarter of 1973. Thé course was part of the Confihuing Education
-Program at LLL. It met three‘times‘a Week for eleven Qéeks, and the 
lTectures (fifty minutes each) were videbtaped. The tapes ﬁan be viewed
by.arrangement with the Instructional Television anter,,B]dg. 131, Rm. 1267.
The timetable in Appéndix I gives thé correlation between'the topics'and

the lecture numbefs. .

The text used for the course was Numerical Initia]'Vélue Problems in

Ordinary Differential Equation§4 by C.W. Gear. The bqbk was not fo]]dwed
closely; about'Han.of the cours¢<mat¢ria7.Was’drawn from=other~sources.
These notes afe self-contained and do not require the text. However, as a
convenience to readers of Gear's book, a list of errata found in it is
provided in Appendix II. |

The course Was divided'ihto three (unequal) parts, és are these notes.
Part I is an intrbdqction to, and a survey of, the subject. It provﬁdes
a‘pompiete short coukse in itself, although the qn]y methqu discussed .
there in great détai] are the Euler methods. Part II conﬁiéts of a rather
thorough study of Runge-Kutta methods and of linear mu]tisteb methods ,
with a short chapter on extrapolation. It is largely se}f-contained, and
could be used as a short course for audiences é]feady somewhat familiar
with the subject. - Part III deals with the class of stiff problems and

various approaches to their solution.
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b}The course included three guest lectures -- by Bob Pexton of
,_Computation Department, Julius Chang of T-Division, and Raiph}willoughby
of I.B.M. I am very Qratefulvfor thei} assistéhce in this course.

The notes fnc]udéva few simpie exercises scattered throughout,
which.were assigned as homework for the course. -

Portions of thé te*t have been feproduced here, by permission of

Prentice-Hall, Inc., Englewood Cliffs, N.J.

<
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NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: LECTURE NOTES

Part I: Survey

1. The problem; existence

The object of interest here is the first-order ordinary differential
equation (ODE): |
y=4+(y¢
Here t is the independent variable, which may or may not bé time, and y
(or any symbol with a dot over it) means the derivative with respect to t.
The quantities y, f, and y are to be vectors of length N. The case N=1
is simply that of a scalar ODE. Since most of the subject generalizes
immediately to the.case of ODE systems (N>1), and virtuajly all appli-
cations of the subject are to systems, we will assume a general N here,
unless stated otherwise.
_ In many épp]icatiéns the ODE's of interest are of higher order than
the first, e.g. |
w = §(w 0,t).
The most cohmoh”practice then is to reduce such an equétion fo a first-

order system:

'y = (i;)'—‘ (:) , Y = (:) = (;;',yi,t)):’c(y’t)

and apply the methods for first-order ODE's. Occasiohally, special methods

for higher-order equations are used instead.



-2-

In any case, the right-hand side function f(y,t) must be a known
vector function of the véctor y and the scalar t. Problems in which y(t)
involves past values of y(%), by way of in an integral or some other
mathematical re]atfon, do not fall undér the present subject, but

“instead are integro-differential equations, functional-differential
rquations, or something else. In the case of a system, the function
f(y,t) includes the coug]ing of the variou§ components, in that the ith
component of y, nainely 91, will in genpraT depend on o;her y; as well as
on yix “ ,. f ,‘ ‘

The general solution an ODE system of size N (like that of an Nth
ordgr scalar ODE) will in general have N free parameters in it, which
hust be specified 6n the'basis of other information abqut the problem.
Here.ﬁe wi]] aésumé that that information consists of y(gf) =Yg the
vector of values of y at tys . the fnitia] value of t. Hence, we are
solving an initial vé]ue’ p.rbb}em on an interval t £t<T, in which y(t)
is to be determined from yg and the ODE. The final value T may beczg or
it may not be khoﬁn at the start of the probiem.

Typical of'the areas in which these problems arise are: chemistry,
where the ODE may represént the kingtts of a system of species qndergoing
chemical reactions; electronics, where it may represent the response (in
time) of a cirCUit; partic]e phygics, where it may repfesent the

equations of motion of particles under various forces; astronomy, where it

may represent the timé evolution of a star, galaxy, or the whole unjverse;i

and partial différential'equations in space and timé; where the spatial
derivatives have been treated by finite differencing or other techniques,

resulting in an ODE system in time.

4



It will se]dom be necessary to draw from the theory of ODE's here,
as Oppbsed to numerical methods. However, there is one theorem from ODE

theory that provides the rigorous mathematical foundation for all that

follows. It is the fundamental existence theorem, and it is roughly
stated as fo]iows: |
Theorem: If f(y,t) satisfies a Lipschitz condition in y énd is continuous
in t for to&£t<T, then the initial value problem y=f(y,t), y(td)=yo has a
unique solution. .

The meaning of the Lipschitz condition is that for‘any two vectors
y and ¥, we have

[fly,t) -F(F,0) « Lly-71I,
where L is a constant, the Lipschitz constant. If the problem is a
scalar one, then the quantities abovg are just absolute values. In the
vector case, they are norms, which generalize the cdhcept of abso]uté
value to vectors. Many kinds of norms are used: e.g. the Euclidean
© norm (lv] m), or the maximum norm ()v! = max lv ‘ )
Any such norm is acceptable for the present purposes. -

The Lipschitz condition simply quarantees that f is not too wildly
behaved as a.function of y. In particular it is continuoﬁs iny.
The necessity for such a condition in the existence and uniqueness theorem
above can be seen from the following simple example. Tﬁe scalar problem

¥y = ¥2/3, y(o) = ¢ | |

has the trivial solution y = 0, but also the solution y = (t/3)3.

Uniqueness of the solution, as guaranteed in the theorem, does not hold
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here, since y2/3 does not sa;isfy;a,LipSChifzv condi tion.

In app]ications;_a problem 1n which a‘Lipéchité cohdition is absent
will also cause numerical methods to.fail. The fau]t is not with the
methods but with_the i11-posed nature of the problem itself. A problem
that is well-posed qh physicai grounds should iead‘to 6né that is also
we11-pqsed ﬁathematica]iy. If it does not, the mathgmatiéaivmodel béihg

used is probably a poor one.



2. Discretization

Numerical mgthods for ODE's tend to fall into two broad
categories: discrete and non-discrete. These deécriptions refer toA
the set of po1nts at wh1ch a numerical so]ut1on is produced by the
mgthod . The d1screte methods produce approx1mate va]ues of y(t) at
discrete va]ues of t, i.e. at a set of mesh points on the t axis. 'These
points may or may not be equally spaced, but always form a finite sequence.
The non-discrete methods produce approximations to y(f) on entire
intervals of the t axis. That is they produce entire cﬁrves, or pieces
of curves which are fitted together to form the approximate solution.

The distinction betwegn discrete and non-disqrete methods becomes
somewhat blurred in their implementations. Discrete methods are often.
accompanied by interpolation formulas that allows one to calculate the
approximate y(t) at arbitrary non-mesh values. At the same tfme,
non-discrete methods usually utilize an underlying mesh on which the
solution curve is_construcfed in pieces. Nevertheless, the basic dis-
creteness or non-discreteness of a given method is usually apparent on
close examination. | _

The class of non-discrete methods is the smaller and less commoniy
used of the two. It 1nc1udes the Tay]or series methods, the spline
methods, and the Lie series methods. Some mentiqn of these will be made
later (Chapter 5). The discrete methdds include the Runge—Kutta and
11near mu1t1step methods, and it is the d1q;rete c]ass that we W111 pay

v1rtua11y all of our attention to here
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3. Bésic concepts; exp]icif Euler method

The method of Euler is probably the simplest aﬁd oidest (dating to
the 1700's) of all numerical methods for ODE's. Yet despitg this, and the
fact that it is rarely used today, it serves to i]]usﬁréte many of thg
basic concepts that are important for all methods.

The Euler method, or the explicit Euler method (fo‘disLinguish it
from certain variants of it). consists of dividing the interval tyct£T
into equal parts of length h, the stepsize, and‘applyihg the formula

Joep = Y, + L‘.‘)"m. :
successively fqr n=0, 1, 2, ---. Here Yn stands for f(yn,tn), and
th=to +ﬁh. We assume f satisfies the continuity and Lipschitz condition
necessary for the existence théorem to apply. Then the mgthod produces
Y1s Yo, --- from yo and the given 0DE, Yy being an qpprqximation to y(tn).

Graphica]iy (see figure) this method consists, at the nth point, of |
drawing the téngént at t, to thg curve which represents that solution of.
the ODE that has the value y, at tp, then extending that tangent line
from ty to‘tn+j #.tn4h, and taking yp,, to be the value of y on that
line at t=tn+].‘ Thus 'yy requires the tangent to the.curQe pf the
solution y(t) fof'which'y(gw)= Yo- But y, requires the tangent tola
curve z(t), which is 1in genéré] not the same as y(t), that is a solution

of the ODF for which z(tq)=y;.
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This process is continued until t, = T“ Thehtota1ity of line segments
produced is a oroken 1ine or polygon aporoximating the desihed true
solution y(t); the method is a]ternative]y'called the po]ygon method.
If the problem is a system, this construction must be done for each of
the N components separately.

3.(a) Explicit vs implicit

The most obv1ous property of the above Euler method is that it is
explicit. This means that Yot is given by a c]osed-form formu]a in
terms of values of y, i, and t at the nth or earlier boints. By contrast,
implicit methods involve a formula for yn4p that is imﬁ]icit and
requires the solution of an equation or system of equations, génera]]y_by
some iterative process These will be illustrated 1ateh.

3. (b) Truncation error, order, convengence

It is not sufficient to take a reasonable-~looking method and apply
it on more or less b11nd faith. One must (or shou]d) give some fore-
thought to the sources of error that the method contains and to the
control of thoSe.errors by way of choosing the stepsize h.

| To begin'with, consider the nth step taken with the explicit Euler _
method, and suppose that at t, we start from the true solution curve
y(t) that éo]ves the given problem. | The step produces the vector
Ya+t .Y(tn) + h;()’ﬂ'yﬂ ta)

and this is in error by the amount

dy= yit) FhEy), t,) "Y(‘tma)-

n
This is called the local truncation error--"local" because it does not

involve errors’ arising on any other steps, and "truncation” because it is
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it is the remainder after truncating the Taylor series for y(tn+]),

expanded about t,s to two terms.

. The global truncation error is the vector

. 'ehz'yh -x\){ (‘t'n)’ . .
which measures the effect of all tne local truncation errors arising
in steps U, 1, ---, n-1, on the calculated quantity Yq after n steps.

(Here y(t) is a soluu1on of the original problem w1th y f(y,t) and y(t ) =Y,

To see how this effect occurs, we write

€yt = Tnw - Y(twn) = Yo + h ‘F(Yw,tm} = Y(twn)
and subtract e, from this to get
€hit —En = E'F(Yn,f) + )’H—_h) — y(tw:-z)

: Epnn= €n t dV\ + hl} yh;fn) - (.y(t'h))tw>.]-
At this point the Lipschitz condition, together with the triangle

inequality, becomes very usefu], since it allows us to write

1wl € l€al +1dul + WL 1Y, ~ Y(6)]

= leal (1+hL) + lduf;

where L is fhe Lipschifz constant for f. This recursive inequality on
the global errors shows thét the global error at tn+i is bounded by the'
local error commitfed on the nth stgp plus the global error already present
at t,, magnifiedfby the factor 1+hlL.

Return‘fok a mbment to the Tocal error dn itself. By writing the
Tay]or series "
Y (twa) = y(f)+hj(f) F ) + OW),
we conc]ude that
4, =k y(t ) + 0W7) = O(h').
That is ' '

| Icm < D- D(h),
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where D(h)/h2 is bounded as h varies. More brgcise]y, D/h2 is bounded
by the maximum of}y(t)}_/Z. The he bghavior of thg‘loca] error means
that the method is of order 1, the order being one less -than the
exponent on h.
_We need now to accumulate the 1oéa1 errors by the‘recurs1ve»ihequa11ty

Lo ggt & bound on‘tha-g1oba] error. Letting K= 1+hL we have
l€nci] £ Kled +D
le) & Klei +D
lezle K ( Kiel+DP) +D = KTleo) + D ()
leste KK el + D(Rrd) +D
| = [Flesl v D (KK}

enl & el +D (7 k)
= (1+hl)" o] + DL'“‘L)"

hL hL
‘ Us1ng the re]at1on T+hlge™, we have
bl
| (1+ht)" 2 eh 2 ePh,
where b is the length of the interval, b= T-to Thus
| b bL. . . .
lenl 2 2°tle)  + (e_“ 1),

Reca1]1ng that D/h is 0(h) and so tends to zero as h->o we conclude
that 1erOP90 and h-» 0, a11|en[ tend to 0. 'That is, thg mgthod

is convergent in fhe-sense that a smél] enough stepsizg and a small
enough initial érror €= Yo-Y(to) (if'ahy) will lead tb-an arbitrarily

small global truncation error for all calculated points.
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Itishould-be noted that b is assumed to be finite here, and is kept
fixed. Thus this result must be given a special interpretatfon in the
case of an 1nf1n1te interval: we have only proved convergence on any
finite part of that 1nterva1. .

On the other hand, the bound onle [ is somewhat pess1m1st1c in that
1t represents the accumu]at1on of many inequalities. It js unlikely that -
all of the re]evant 1nequa11t1es (including those froﬁ the Lipschitz
condition) were close to being equalities, and so 1t is. un11ke]y that ]en]

will be near its bound.

- 3. (c) Error estimation ‘

The pessimism 5n the global error bound can be largely e]iminated
by the use of an auxiliary ODE to estimate e. Return to‘the |
relations ‘_' | | o _
' enH.-e +dv\ +2«[?()’mt) “F{)’(fn)) tm)J)

d, = ~m/(t) + 0(W), |
" and assume that e y=0, or that the exact initial value is used. We- may

rep]ace the difference between the two f values above by
y (y (ty), tn)(yn-y(tn)) + O(hz), where f, is the matrix of part1a1

derivatives ofAf with respect toy. (This uses a slightly genera11zed
mean value theorem.) Then we end up with C .
. 2
€+ = €, *———y( » +h$ e, + 0(W)
If we now set én =€ n/h, th1s becomes ) )
o 2
nﬂ‘ : gﬁ + A[?} m_] +‘O(h )
Except for the f1na] error term, th]S can be recogn1zed as the application

of Eu]er s method to the ODE-

Sit) = (1 t)é(t) ~--ﬂt>
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In fact, the same convergence pnoof as usad earlier can be applied here

to show that as h—>0, }5n converges to Sktn) where g(t) is the

solution to the abové ODE with the initia] value <5(t0)=0. If y € C3

(y -has 3 continuous derivatives) then one can show thé(é]ight]y stronger
_rasu]t that A | |

5 sm = 0lh)

or that

| e, = l\é’(t“)a’ 6{ 2’)
as h > 0 An examb]e in tht_a text“'r shows that the estimate h & (t
can be a much more accurate estimale ol the global crnqr_than the haund
derived earlier. |

The auxiliary ODE can be used as a means of eétimat%ng the global
errors in practice. However, it requires a knowledge of f

y
were not needed to solve the original problem, and may be expensive to

and y, which

compute. We do‘have, from } = f, the relation :
£y (f= 8,

so that now ﬂ, and fy are raqujred. If it happens that thaSe partial
derivatives are easy to come by, and one is willing tb'integrate a second
ODE system of size N as well as the original problem, tnen this appnoach
yields a more accurate estimate of e than any other, nhen the exact
solution is not known in advance. ‘

For the vast majority of rea11st1c ODE problems, 1t is impractical to
attempt to est1mate global errors accurately, and one must settle for

estimates of local error only. Th1s is near]y always a re]at1ve1y

*References to'thé‘téxtainAthese notes are references to C.W. Gear's book, Ref. 1,
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inexpensive byproduct of the calculation of the so]uﬁion itself, and is
especially so for the Euler method. Reca]] that

.C!h' = -——- i'\ y (th) (approximate equality).
But since y is not genera]]y ava11ab]e we use a numer1ca] approx1mat1on to
this derivative by using a mean value theorem in the form

.)'/(th’) - .Y(tnﬂ) = L\ Y (t-h>a
The 9 terms above are approximated by the &n and &n-1 that arise in the
method, and so we may write

Cl’l’;“:' —-L‘ y“jnl>
This is in fact an estimate of the Tocal truncat1qn error that is
accurate to within 0(h3). Moreover, it requires on]y”that‘i be saved
from the previous step; almost no extra calculation i$ necessary.
Beyond simply eétimating the local error, there are several important

things one can (and shoﬁ]d) do. One is to test_that'estimate against
some parameter that specifies how much local error is to be tolerated.
1If the test faiis, h should be reduced to a point whefe-it will pass.
Furthermore, if the test pesses the first time, one sﬁou]d consider
increasing h to a va]ue'which, while not causing the test to fail, will
s£111 improve the.efficiency of the calculation by causing larger sfeps
.to be taken In the case of either a decrease or'increase<in h, the fact
that dn behaves 1ike hZ (at ]east asymptotically, in the 11m1t of sma]] h)
gives a means of choosing the new va]ue of h, accordlng to the resu]ts
of the test on the error estimate. More w111 be said on error control

later.



In-the explicit Euler method, - the global error obeys -

[en]| < P(} /feo[ + ‘\;;4L
I L et 5 o
’(\ - bL 5 Kl= L =1 f:. ? '.AQ?_‘ mM/y/’?/ y

if machine roundoff is ignored. However, because the machine can only rep-

resent real numbers to finite precision, there is a contribution to the local

error of

Tt Ealak, € £ L

U = unit roundoff

-48 _ ,.-14

= 2 10 on CDOC machines, .

Q

arising'from-the rebresentation of Y 85 ¥, 1 n in the machine. If A =
max |y|, then Ir | < 2 Au, and the effect on le | is to replace D (the bound

on Id |) by D + %-Au The resu1t1ng bound is

leal e Kileol + Hih + s u/A
K3= | bl‘_‘ ,4

‘This bound does not van1sh as h gets smaller, and instead becomes infi-
nite. This reflects the fact that if an error of a constant magnitude is
introduced .at each of thé.n stept, and n becomes ihfihite,'thén the total
error does also. HohéVeh; tn most appTiCations the'range of VAlues of h
actually. used is such that the roundoff term above 1s negligible compared

to the truncation term.
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To illustrate this, consider the case b = 1 and Ko = K3. Our bound
on }enl » as a function of h, has'a minimum at h = 4[;“E3 10°7. It is
unlikely that-as many ::1sA10'7 steps'will-be taken, and so it is unlikely
that the roundoff term is significént. A

The worst-case analysis above is quite pessimistic in that the ry
are of somewhat random signs, so that their cumu]ativereffect is |

approximately the sum of n random numbers rn,distributed in the interval

] rnlgr% Au. If the distribution is uniform, the expected magnitude of
‘this sum is about
-3
-LAM'\)”/.B’.
A , |
This makes the roundoff term proportional to.]/’d h. For the example
above, the minimum of the bound is then at .
2/3 1,7
b= (u/7) = +/077.
It is highly unlikely that we will want to take 7 billion steps to
complete the problem, and it becomes all the more valid to ignore

roundoff. . . |
Assuming a simple form for the contribution of roundoff error, such .

as one of the two above, we can plot the final total error as a function

of h.. To the right of the minimum point hy »
=

the curve would approximate that given by

‘the truncation error terms above, and to

} >h
ho

as h —>0, because of the roundoff termﬂ The justifica;ion for ignoring

the left of ho,.it would climb to infinity - .1

roundoff is thap;say on a machine with 14 decimal places, the region of

actual values of h used is usually far to the Eight qf'ho.‘
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3. (e) Stability

‘The subject of stability is in general'the stady of the effects of
perturbations in the values at one point on the calculated values later.
If the effects are small, we regard the calculation process as a stable one.
Thére ére severé] we]]-defihed‘properties in particu]ar fhat we look for
as indicators of-stabiiity in ODE methods. In 111ustfat1ng these, we
will ignore'the cohtribution of roundoff.

The peasbn for studying the numerical effects of perturbations is
not that we -anticipate mak1hg such perturbations consciously, but that
they will inevitably be made during the numerical solution anyway. Each
sourcé of error - truncation, roundoff, etc., that occurs on every step,
acts'as é pertUrbation on the values used in performing the subsequent
steps. Thus 1f a toté1 error of e has been generated:in n steps |

(even though there was none initially), we can regard e_ as a perturbation .

n
in y, and study'its effects on the ca]cu]ated values yﬁ for any m > n.

- e . F e, N

R Y F - . . , S
o ’i:'):.. Web s THE DulbiSTe O T N 7 BT AR <0

ol

e, mom e, e o e PR R T T R o o T
PR LEY F H SR S AN A U S S A FRRCIE SURUREO SORIG: b*.u‘}f< [ .u...’ldx du:yf

£

Consiaer solving tas ODF y = #{y,c) wiun chie exgiicit Zuler metnod,

and consider a perturbation e, in the initial value yo. Thus we start

at yé + e_ and use the method to generate a sequence of_ca]cu]ated

0

values 2,, %,, Z3, s z,---. Ifwewritez =y +e

n n ahd subtract

the formulas T - L ‘
,\Ynﬂ_: Jn + l’\g’{\y’ﬂf"’) |
Zprt = Za + h + (:}””T“) |
5—7’{3\},  -: ; e, + [{*‘(y\;\*'eﬁ;t’*”)."".;(y“)t"’ﬂ
v Iﬁm“t’ é )en‘i,"ﬁ"""E/‘leeyJ |

we get

>
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using the Lipschitz condition. We may accumulate these inequalities as

before to get

h L
lenl = (1+hL) e,| = eb [€o] -
This says that the change e, in any calculated value (in the finite t
interval of 1ength b) is bounded by a multiple of the norm of the initial'

perturbation e When this happens for a given numerical method, we

o0
say simply that the method is stable. In this case, the stabi]ify
result is independent of h, but more often it will on]y‘hold (and will
only be required) for all sufficiently small values of h.

This particular property of stability is not of sdfficient value
when bL can be large, and especially when b can be infinite. In such cases,
it would be desirable to have, for example, the prdperty that
,en+]‘55 ' enl for the perturbations. This property, however, may
or may not hold, depending on the problem being solved, as well aé on the
method used.

In order to restrict the class of problems enough to study this
kind of stability, we consider the case of a linear, constant—coéfficient;
homogeneous ODE: y = A, where A_is a constant N x N matrix. We
justify this (seéming]y great) reduction in generality by performing
a local analysis of the general ODE & = f, If we work in a small
neighborhood ofya point(yo, t&, we can approximate this‘ODE by the

linearized QDE

y T'A ‘_F(\/o', to) + “Fy '(yo )fo) (y '\jo) + 'C;tr(.\/o;fo) (t‘ to).
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This has thg formy = Ay + b(t), and thg inhomogeﬁeous term p(t) can
be transformed away by a change of rariables toz=y - é(t) for some a(t).
Now from the ODE y = Ay, we simplify further by diagonalizing the
matrix A, i.e. by writing A = PDP-1, where P is some other matrix and D
is a diagonal matrix with diagonal elements )1, -—=, Xn,‘which are the
eigenvalues of A. This diagonalization can be performed for large CTasSes
of matrices A (for example when the eigenvalues of A are all distinct),
and we will assume it ran be done here. Then the chapge of variables to
= P“]y leads to.i = Dz, which is an uncoupled set pf sca]ar ODE's,
each -of the form._‘,; =Ay. HereXis any of the eigenvalues, and as such can
be a complex number. o
What is often done, therefore, in the study of stabi]ity properties
of ODE solution methods, is to consider only this s1mp1e ”test equation"
w1th an arb1trary complex constant A. The above d1gress1ons 1nto ODE
transformations and linear a]gebra are needed only to mot1vate the study
of th1s ODE, not to carry out that study.
For y = My, ‘the resu]ts of the exp]1cit Euler method are triyia](

to write down: v =Y, +I1Ayn = ( T+hA) Y Moreover, the equation

n+1
for the perturbatipns is the Same‘ . (1+h X)) e,. Now we can easily |
' .say that the property I n+1l }en} will hold if and on]y 1f h and X are

~ such that 31+hh <f 1. Note that this property depends only on phe

| product h\, and th1s w111 be true for most methods genera]]y We pan

draw the comp]ex hA p]ane and in 1t the region

:‘{Lﬂi ‘kahl }
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which is called the absolute stability reqion for this method. It is

~simply the disk of radius 1 about the point -1.

When hAe;S : the method possesses abso]ute stab111ty for the test
equation, in the sense that the perturbat1ons decrease in magn1tude
from step to step. (The term "absolute" is used to distinguish from
relative stability, in which penturbations are studied relative to the
solution itself or relative to some approximation to the solution. The
latter does not arise until we discuss multistep methods.)_The absolute
stability. property is of interest only when Re(A)<0, i.e. when y(t) is decaying.

As shown in the text (p.17), the problem y=2t-1000(y-t2), Y5=0, where
A = -1000,.ano 1nhomogeneou5-tenms are still present, can not be solved
accurately by the explicit Euler method when h A ¢ Sn,‘i.e. when h > .002.
This illustrates the usefulness of the absolute stab111ty region, and
a]so the fact that the presence absolute stab111ty is often correlated
with the absence of large -errors. |

For the prob]en 9 = Ay, y (o) = Y o We can stody'fhe growth of -

At

“errors more deeply, because we know both the true solution, y(t) = e "y

and the calculated solution, Yp = (Tﬂ1k)nyb. Since tn‘= nh, we have

| , 1/ ]mn | At .
= ' [+ ha =
‘y" L ( ! L\ ) -Yo 'OL yo )
(t\n) = e Wyo . |
Thus the global. error in Yn is measured by the accuracy with wnich
(rH1A ]/h approx1mates the constant e. It is well known ‘that

a —>e as h-f>0 ver1fy1ng aga1n that the method is convergent here.
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3. (f) Efficiency
The efficiency of the explicit Euler method is rather‘transparent.
The primary cost of taking a step is that of one evaluation of the function

f.- The remainder of the cost, which is the overhead, consists of a
multiplication (df‘f by h ) and an addition (to yn)- 'Sjnce!every step
entails the same-;ést,Athé tbtal cost is simply %f (=th¢;number of steps)
times the cost per sfep.:

In studying~other'méthods, will we usua11y consider the total number
of eva]uat%ons of'f_ds the primary measure of efficienéy, This will allow
us to compare different methods, assuming that the overhééd costs are ”
eithef negligible or are at least nearly equal for thé methods being

compared.
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4, The implicit Euler method

The simplest of the 1mp11c1t methods is the backward form of the
Euler method, name]y the 1mp11c1t Euler method, given by Yn+1™ yn+ hyn+1.
~ The graphical representation here (see figure) is gotten from that of
the explicit Eu]er method by turning it upside down (or backwards) Thus
at each step, ‘the 11ne drawn from one calculated po1nt to the next is

tangent to a particular solution curve at the forward point.
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As y = f(yn+]’tn+i)’ thg.gquation for y must<bé solved by some

n+l nt+l

means. One way;of_doing this is to approximate y say by the explicit

n+l,
Euler formu]a,'éVa]uate f at that approximation, gfving avsecond approxi-
mation to Yn+1 from the above formh]a, and rebeat thiseprocgés. Anothef
way is to apply the'genera1ization‘of Newton's method to the problem of
finding the (vector) root of a vector-valued function‘of>N variab]és. More
will be said of this problem later. L

In any case, siﬁce f is generally quite nonlinear, the calculation

of y will require some iterative process. Hence there is another

n+1
source of error introduced at every step: the iteration error. This

is the»differén;e_betwgen the true sd]utibn Yo+l of the jmp]icitlformula.
and the result of a finite number of iterations in approkimating that
solution. |

Iteration error can be viewed in either of two ways.‘ First, if
on]y.one or two 1terations'are to be performed, then thé'iteration
formulas themse1Ve51;§n be combined wifh the formula for the initial
guess,'giving an'expiicit method, whiéh can be analyzéd as‘such.. An
example would bé the pair of formulas :

yh&-l = .yv\+ L\:'/llﬂ
.yn+| = yn"*"h';(gh-&-\)tw*-l)

,»wh1ch can be- éomb1ned to

vaH = X-1+ })£<>’W+L‘ynbtn+i)y-'
On the other hand, 1f we are w1111ng to perform iterations until the
iteration error is much sma]ler that the local truncat1on error associated

with thie method, then é]] properties of the original imb]icit"méthod.are
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valid, and the iteration error can be ignored for all praética] purposes.

This latter view will be taken here.

The local truncation error for the implicit Euler method is defined

to be N , . ' :
C! = y(t,) + L“F(Y(tm\) tn+l)‘ - .Y(tm»nﬁ
By expanding this in a Tay]or series about t n+1° Ve get (much as before)

d, = a “Ye) ¢ 0k = O(h 5.
Hence, the order of the method is again 1.

The actual error committed in a single step is not.dn, as it was for

the explicit method. Instead it is the difference

éh. = ym,, - _Y(tvw!)

obtained when yn:=4y(tn) is exact, and this differs slightly from dn‘

“From the relations , _
c!,,, = Y. T L\ ¢ (yy,.,.., “ H’H) Y(twn)
O ""'Yw*‘l\_“ ym ) tn«m) B

we have

l\['{: n+:__€ tnw)""‘ “YQM,%..H)] '*' én .
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.This equation could in principle be solved for €,, although this cannot be
done in closed form because of the implicit occurrence ofé)yin the argﬁ-
ment of the first f. If that were done, the result would be‘thatEn is-
equal to dﬁ within higher order térms (which are 0(h3)), and 50 in parti-
culart§n=0(h2). ‘Using this fact and expanding a Taylor series above, we

can write o _
do = =h Ty G b €0 + €, + O(KF)
€n = [T- 08y (s t, )] da +0(KE) = diy + O(K).

Here I is the N x N identity matrix. This-shows more explicitly the agree-
ment between €n and dp. 'Thus to the order of the leading ter'm_in these
quantities, d, is an equally good approximation to the error in yn4+y corres-
ponding to local .trljnc.ation‘ error, The reason for breferring d, to €n is
that d, is defined explicitly for- a given solution y(t), while&, is not,
Hence d, is the easier quantity to work with in practice. ' |

The global errors ep = yn-y( tn) éan be analyzed much as before, Here
y(t) represents the fixed true solution of the original initial value problem.
By writing the 'variou's defining equations tor €ns €n+ls and dp, we obtain

lewei ] € (ted+D)/C1-0LY,

provided [dnls D and hL< 1, This recursive inequality has the same form as.

before, gnd we can g:ombine these to get : ‘
| lea) € 1@l D =k -y
=kt d=hL (o) 1

= (b)) Yer = Dy
_ (l hL) ey + 0 [(', hi) J

Now use the fact that (1 - L)~ < e2hl when he hd. for some constant hy.

Hence . - :
, hi 4
|€nl <« '-Qz'“v e, + “%: (’ezhAL—.l)
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- If |§| < C, then we can-use D é.ChZ/Z, and the fact that nh < b, to get

le.) < ™ leal + h am-n) <kcL>

This proves that the method is convergent.

The restriction hL < 1-is essential for this error bound. For example,
the method fails for the problem y = Ay with hx = 1, because the formula re-
duces to an absurdity.' Likewise, if hA > 1, the methdd prbduces oscillating
answers that become.iﬁcreasingly inaccurate. waever, if i'<,0 the method
works well, despite the fact that hL = h|)x| may be larger than 1.

To show that the implicit Euler method is stable, we consider a pertur-

bation € in Yo and look at the resulting perturbations eb.in Yo We get'
')'»4-, +€ﬁ” = Jn +"%€;;;’1‘+:A4l(ym+e,;+,’ tHH)
y"*‘ R h‘g (Yarr , et
c = é—e. ]: N
n+y " +l\ -F (.Ynﬂ +LQ,. thﬂ)
- S_(y“‘"\) H‘)-\)]

f.levﬂ-i\ 4- [e“) +hl "e"‘“l

IQV\Hl < l'en'
S I—h L

R

len] < (I»AL) (€] '4"_~e,?'ul'eol”

for h suff1c1ent1yAsmai],
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The absolute stability region is given by Tooking at the equatfon y = Ay,
for Which the perturbations satisfy ' ’

Hence o ':‘ | o o o %}
So=fbe lEml<1f = Sl li-hlz 0§,
Thus we have much better stabi]ity properties here than in the explicit case.

If, for arbitrary h and A with Re(A) < 0, a method app]ied toy =AYy
gives answers that satisfy Yn + 0 as n > =, the method is called A-stable.
Thus we see that‘the implicit Euler method is A-stable, while the explicit
one 1s not. - | o ;

The question of fficiency is more complicated here than in the explicit’
case. General1y, in solving for Y4 by an 1terative method, one eva]uat1on
of f 1sArequired at eachiteratton, and so the number of f evaluations per
step 1sljyst the hUmber of fteratiohs per step. The overhead, which includes
all otherjcosts.'is eonsiderably-higher than with the'eipiiéit methodl be--

- cause of the 1terat10n _For example, 1f Newton's method is used the over- :

‘head 1nc1udes the so1ution of an N x N linear system each. 1terat1on
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Exercise 4.1

Prove that the global errors for the implicit Euler method satisfy
lewl +D A
l— hl

’€?n+»|l <

if | dﬁ]g:n and hL < 1.

Exercise 4.2

Use the implicit Euler method, first with h=1, then'with h=1/2, to
"solve

¥y = at—"jeoo (y —t")) y(o)'.-.;o") o te |

~ What are the errors at t = 17
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5. Survey of method classes

This brief description of the general classes of ODE methods is
intended to give a frame of reference from which more detailed discussions

can follow later.

5. (a) D1screte vs nond1screte

As. mentioned earller d13crete methods are Lhuse whose cnd result is
a seguence yo,y],f..,yn,..., where y_ approximates y(t and {t ; is a
mesh of values of t. By contrast, nondiscrete methods have an end result
which is a compliete curve‘or systen of curves represen;inglthe approxi-d
mate solution.- The boundary between these classes is b]nrred somewhat
in the 1mp1ementation'df the various methods. Nondiscrefe methods generally
use a mesh, and they often use data at discrete.points to determine the
curves.‘ Discrete methods often involve interpo1ating'functions for the

evaluation of approximate values of y(t) for arbitrary t.

5 (b) One- step,vs mu1t1step

A second dichotomy. w1th1n the class of discrete methods, is made
between one-step .and mu1t1step methods In general, if ca]cu]ated values
up to and 1nc]ud1ng the nth mesh point have been obta1ned then the next
one is g1ven by : | | .

vyvm 49(2‘\,‘,“,7 /vufv\, /n -1y t'h -3 e » )’m+(~k,fw:,~k)
where @ is some function involving f, possibly only implicitly defined.
Here k is the number of steps 1nvp1ved, and_the method is called a k-step

" method.
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When k > 1, we have a multistep method, and it is necessary to start up the
calculation by some special technique, because the required past history is

not initially available. One-step methods do not suffer from this difficu]ty.

5. (c) Runge-Kutta

- Within the class of discrete one-step methods, those of Runge-Kutta type
are characterized by the fact that they invo]ve'evaluations of f at inter-
mediate values of t,.rather than just at the mesh points tn. These inter-
mediate values are auxiliary only, not intended for'use as approximate solu-

tion values. The classical Runge-Kutta method is given by<the formulas

k0 = hf(yn,tn)
- w1 Ty
k] -hf(y + ko,t +2h)
k, = hf(y ++ + L h)
2 Yp t ket t 3
.k3=hf(y +k2, tn’+ h)
Y1 = Yp ¥ (ko + 2y + 2Ky + kg)/6

Note the intermediate t values in k] and k2.
’Runge-Kutta methods can be either‘explicit or implicit. Explicit ones,

.tybified by the above, are those where y = ?’can be Written in-c]osed form.

n+1
Imp]fcit ones require the solution of an algebraic equatidh or system of
equations in the céjculation of Yn+1® 35 weuld occur, for example if the
.formuia for k2 above were replaced by ‘ ' |
ko = hf(y +-% K, +-% kos t +-% h).
Moo n

. (d) Linear mu1t1step

This class of discrete methods is a1so referred to as the finite differ-

ehce methods . These are based on formu]as of the form
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Ky Ky
Yn =i @ Y3 *h Zsi Yn-i
i=0

i=1 '
where yk = f(yk,ik). If K = max'(K],Kz), then this formula represents a
K-step method. It is explicit if By = 0, and implicit otherwise.'

The coefficients o and Bi are usually constants associated with the
method. .They are chosen so as to attain desired properties such as order
and stabi]ity. Linear multipoint formulas can often be obtéined from numeri-
cal quadrature formulas, in which 9(t) is a known integrand and y(tn) is
to be approximated.by a linear combination of values of y and known previous
values of y. |

If h is assumed éonStant, Lhen the o¥ and B, are constant, But if the
past mesh points tn_i'are not equally spaced, and this'spacing is taken into
account in the method, then the o and B, are fuhctjons of tﬁe step sizés |
h, =t - t.. The formula in that is called a variab]e-stebvformula.

NI L S
In recent years the class of linear multistep methods has been expanded

-in several ways. .One way is the deVelopment of comgosite linear multistep
methods, where seVera]’different 11near‘mu1ti$tep methods are used on succes~
sive steps, in a cyclic fashion. Anqther is the génera]izatjon to mu]tiva1ué
methods, which resuit from reformulating the multistep methods iﬁ terms of
veétors'containing the'past vé]ues and matrices that transform these vectors.

A third development is the use of intermediate values of t, as in the Runge-

Kutta methods, but in the multistep contexf. “These are ca]]ed'hybrid methods ,

multipoint Runge-Kutta.methods; or modified multistep methods. Of these

various developments, only the multivalue methods will be discussed further

" here (Chapter 9).
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5. (e) Extrapolation

The extrapolation methods aré based on ‘the idea that approximations
based on various step sizes h can be used to extrapolate to the limit h = 0,
and thereby gain accuracy without too much extra effort. Specifically, sup-
pose we start with a discrete method with step size h to integrate to the
problem from t = 0 to t = T (a multiple of h) and get an‘approximation to
 y(T) denoted by y(T;h). We proceed on the assumption that y(T,h) has a

power series in h:

y(T.h) = y(M) + Z w.hl.
. 1
If we compute y(T,h) for several hi'(eaCh an integer submultiple of T), we

can use_thése to estimate the first few Tss including T = y(T), if we ignore

the remaining terms in the power series. This would be polynomial extrapola-

tion. Alternatively we could approximate y(T,h) by a rational function of h

(the quotent of two po]ynomié]s) and get a rational extrapolation method.
Here we would evaluate y(T,h;) as many times as there are unknown coefficients
in the rational function and use these to get the va1uevof that function at
h=0.:

_ This process yields an appfokimatjon to y(T) given'y(o). We can then
repeat the proceés on the interval [T,2T], and continue until the problem is

completed.

5. (f) Splines

The use of spline functions in ODE's is a relatively new contribution
to the class of nondiscrete methods. The basic idea here is that on a typi-
cal subinterval [tn,tn+h], a pd]ynomia] p(t) js fitted to y(t), and on suc-

cessive Tnterva1$~the,p's are spliced -together at the mesh points. The
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fitting is done by making p satisfy m+ 1 conditions, where m is the degree
of p, and hence p‘has m + 1 unknown coefficients. Condifions that are used, .

and names associated with the resulting methods, are as follows:

p(t,) = y(t) "

_ - — collocation

p(t;) = flp(ry),Ty) |

p(t.) e gl

! PEEARE tl(P(T'i),‘l'i)

.- ' - Hermite
p(T'I) = .

etc.

n¥h ' L
[p(t) - £(p(t),t)o;(t) dt =0~ —Galerkin

¢ | | -

n

‘In the co]]ocafﬁon and Hermite methods; pointwise conditioné on p are formu-
lated which are éutomaticqlly Satisfied by the true so]utioﬁ y(t), and fhe
points r{ usquare éhqsen inithe interval [tn,tﬁ*h]. In thé Galerkin methods,
the expression p - f(p;t), which vanishes identi@a]Ty when p is fepla@ed by
y, is made to be orfhogona] (in the sense of the integral inner product) to

certain basis functions~¢1(t).

5.'(g)‘Series

Also in the nondiscrete category are the series methpas, which compute
-the solution curve in pieces each of which is gfven by a"truncated series of

some type. The simplest such method is the Taylor serieﬁ‘hethod, where one

writes
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2 : r
- . hT o h r
Yn#1 TVt hy, + RS TR yﬁ )
Yy = f(yn,tn) |
Vo= Fyf 4 f
n t'(y t)
etc.

The above would represent an exp]icit method of order r. The L1e series
methods generalize this idea to the situation where y(t) is regarded as a
perturbation of a known function y(t) and a series for the‘difference y-y
is developed.  This approach seems to be used on]y in the case y = f(y),
where the ODE has no explicit t dependence

The series methods are generally regarded as being of practical value
only when f(y,t) is of a relatively simple form. The reason for this is the
rather complex expressioné for the derivatives of y that occur. Moreover,
their complexity grows rapidly as the order increases and as the complexifyA
of f increases. The increasing use of symbolic manipulation on computers,
' and,symbe]ic differentietion in particular, may increase the rahge of practi;_
cality of series methods, and for problems in that range, these methods seem
to be competitive with others. However, it seems quite unlikely that the

'general problem will ever be solvable by series methods.
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5. (h) List of methods

Thejfoilowfng is a brief struﬁturgd list of methods for the
numerical so]ufion'of fifst-order ODE's (including ODE systems);
Included in bakénthesés aré naﬁes associated'with promjngnp examp]es;
Néjther the 1ist nor the examp1g$ namai'are intendgd toAbe EXhaustive}

The 1list is 1ntenqéd only for purposes of quiék refereh;é;
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I. Discrete Methdds

A. Runge-Kutta Methods

1. Explicit (classical, Gill, Heuh, Raiston, meax. England,
Fehlberg, Luther, Merson)

2. Semi-implicit (Rosenbrock, Calahan)
3. Implicit (Butcher, Ceschino-Kuntzman)
B. .Linear Multistep and Mu]tivalue Methods
| 1. Explicit (Euler, midpoint, Adams-Béshforfh)

2. Imp]fcit (Euler, trapezo%d, Adams-Moulton, Miine, Hamming,
Gear, Liniger-Willoughby)

. 3. Composite (Bickaft-Burgess-Sloat)
C. Hybrid Methods
1. .Mu]tiétép Runge-Kﬁtta (Byrne-Lambert)
2. Mod1f1éd muitistep (Butcher)(
'D. Extrapolation Methods . |
1. Polynomial extrapolation (Nevil]e)i
2. Rational extrapolation (Bulirsch-Stoer)

E. Others (Treanor, Lawson)

II. an—Discrete Methods

“A. Series methbds.

1. Taylor series

2. "Lie'series.(Khapp-Wannerz
B. Spline function methods (Loscalzd, Hulme)
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6. Analysis of one-step methods

6. (a) Stabi]itylfconsistency, convergence, and order -

The genera] form of a one-step method for y = f(y,t) can be written
Yot = I T RV, Ea, B,

. The method is gjven entirely by the function'yt In computing‘yn+], it
involves f, the current quantitﬁgs yn'and t., but not any of the
quantities existjng prior to tn' The function Qlis given explicitly if
the method is an ekp]icit one. E.Q. ‘QKyn,tn,h) = f(yn;fn) for the
explicit EuTer method. But if the method is implicit,yj will be defined
by an implicit equatjon, and its existence is only theoretical. The
Runge-Kutta'methods, whether explicit or implicit, all fafﬁ under this
category of methods. o

Recall the definition of stability given earlier: A method is stable
if a perturbétion in the initia]vvélue causes pertufbations in later
vé]ues‘that are.bounded by a mulitiple of the initial perturbation, regard-
less of how small hlis. (Of course it is always assuméd‘that f_satisfies,
a Lipschitz condifion in such discussions.) For the genefa] one-step ,
method considered here, a statement of stability that difgct]y mimics
that given for the exp1icit Eu]gr mgthod can be given: :If y/(y,t,h)
satisfiés a-Lipschit; condition in y, then the method is stab]g. For

if Yn and z are two sequences of ca]cu]ated values using different

n

initial va]ues, and we write en—z Yy, then

(S [? 1-»1,\1//(2,,)15“)‘«)} - [yvn +L’/’(Y,,,t‘h h)J

= e.;. -+ k[v/ yﬁ’*"_e"“.f t”*;!") o 77‘/»(')/“ ’th’ h )] )
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[enn] 2 e, +hl e,

1@,4 < (H'_L\L\lh IQQ( < éH’Ieol (L= Lipschitz constant,)
if nh=th=b is hg]d fixed. Clearly, regardiess of h,'en] is a bounded
multiple of the initial perturbation [eoL

Recall also the concept of convergence: The method is convergent
if, as we fiX t=nh but let h— 0, n->®o, and yoiry(O), the computed values
Y, converge to y(t), the true solution value. We can show.that this
property holds if ¥satisfies a simple and reasonable condition, given
in the following definition. We say the method defined»byapis consistent
it (y,t.0) = f(y,t). h

Theorem: Let¥be continuous in y, t, h for 0<teb, ochgh  and
all y, and Lipschitz in y. Then the one-step method yn+]=yn+h§P(yn,tn,h)l
is convergent if and only if it is ;onsistent.
Proof: Let g(y,t) =\r(y,t;o), and solve the initial vaiue problem

2=9(z,t), 2O)=y®o>

Because of the Lipschitz condition only(and hgnce g) this problem has
a unique so]uti@n. We will show that the calculated va]ues Y, converge to
z(t;) as h->0, with‘tn=nh fixed. Let e =y -z(t ), and write

Z(twn) = 2(tn)+ h 20t + _?:ZCV‘ , 1c &C =max]Z].
(It is not essential to assume that z(t) have a bounded second derivative, .
‘but it makes theAproof much easier, and‘so will be assumed.) Also, assume

thatt}/is Lipschitz in h, so that

YO,Eh) — Wy, 0] < Lk
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(This assumption is also rot essentia],.but simplifies the proof.)

Then we have"

€kt = Yawm — E[th+l)

-

Yot AW (Y, i h) = [2(8) +—Aj(2(f“)t)+ .‘:;c,,]

= e W[ ¥ = gl 60)

: ~¥ o, £,0) m"y/(s/:m), b, 0)]- P
J@np | = _léwt = L\[L,L\ + Lie,] + —2-1(‘_

= (1+hl)lest + WL, .

Accumulating these inequa]ities, as done in an ear]ier.calculation we
find

[e,, . (HhL) o]+ WL (/ML)

- Since e =0, we get, for nh < b, h L“
| _4. bti (e.bl'wl) —>0 oas hso.

Th1s proves the assert1on, Yn —z(t ) =0 for fixed nh.
Now if we have consistency, then g;f, and so z(t) = y(t), and the
above result says that the,mgthod is convergent: yn-y(qi)-— |
Conversely, if we have convergence, then for any fixed t=tn=nh,

we have yn-y(t) and yn-z(t) both = 0 as h -0, ahd'Hgnce y(t) = z(t).
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Since this holds for any t, we havé also }(t) = i(t), which at t=0 says

g(yo,O) = f(yo,O). But we can carry out this argument starting at any

to in (o0,b), i.e. starting at any (yg.to) as the initial point, and so

get g(yo,td) = f(yog,ty). Hence, g=f, or we have consistency. QED
In order to discuss one-step mgthods in more meaningful terms,

we need to know more about the errofs than just convergence.

Definition. The local truncation error of the general one-step method

yn+'| =yn+h‘f()"n,t-n,h) 1.5
dn(h) = Y(f'a)-f-lﬂf’{y{t',‘))tm),\) — Y {tun),
where y(t) 1; § true solution of the ODE.

In other words, dn(h) is the error iny resulting from one step

n+1
of the method starting with the correct valug y(ty). Note_that this
agreeé W1fh the definftion given gar]igr for the exp]icitvEuIer method.
However, it différs slightly from the definition given for the implicit
Euler method. That difference is not important here.
Definitioh. The order of the ggnera] one-step method is thg largest
integer r for which | : ‘ _
d, (W = O(h™) as hso0.
This concepf is 1in agreement with the discussion 6ﬁ the Euler

methods, where the order was 1 and the Tocal error went like h2. A
fact that is easy‘to see (and is left as an exercise) is that the‘
condition of consistency is equivalent to the condition that the order -
is at least 1. N |

| The next theorem tells us that the global errors sdtiéfy a bound with

one 1ower'power of h than in the local errors. I.e. the convergence of
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the method is displayed in a more explicit way than in the previous theorem.
The proof is a direct imitation of what was done in Section 3(b).

Theorem (convergence): For a consistent general one-step method
r+1 .

of order r, with f‘dn(h)!'fi Dh'" ', the global errors e% satisfy

. - _blL ' :

r - bl _
el e DTS - e el
Proof: From

YV\-HA = )'vt b h 1"‘/()[“ )fti«) l’%)

and

CCwn = Ty — Y(tnw))

we get
M‘H“-.—.- Y, “"L‘V’()’n)fw,lf\) y(fhw) |
= Y, - AV (o B b)) + )’(t‘ ) - _/( it )

= en + dy ¢ h[¥LY, B k) ~ ¥(y(t,), tu, h)]
lens] ¢ :e:+zdn; + hliea -
C(1+hL)1eal + DR

The rest of fhe proof is a matter of accumulating these 1nequa11t1es,
exactly as done before, . o QED

To determine the order of a giveh method, we generally insert an -
apprdpriate Tay]&f series info the formula defining thé'méthod, and
determine the behav1or of d as h-*?O For thé impiicit.case, this can
mean a considerable amount of work. In any casé? if the functions
involved are all sufficiently smooth, we end up with a result of the

form

4, = W eyt 8) + O(LFE).
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The function @, which involves f,y, and their-derivatives, but

not h, is called the principal error function. We can then write en=hré)n

for the global errors, write a difference equation for éh, and so show
that 5n lim 5(t , where &(t) is a function defined by.the ODE

h>0
a‘(t)-F (yle),t) S(t) + 40()/&) t)

with initial value

5(0) == eo/l'\
This generalizes the result derived for the explicit Euler method,
where r=1 and @ = -y, /2 .

So far, we have assumed whatever smoothness we neededito get
resultsiconVenientTy. Consider now the possibility that.such-smoothness
is 1ack1ng We stt]] assume f is Lipschitz in y and continuous in t,
s0 that the basic ex1stence theorem applies, and so that y ex1sts and is

continuous Now 1ook at the result of d1fferent1at1ng yi= f once,

y = fyy + 4,

If f , f, exist and are continuous, then the same is true for y. We can

t
cont:nue this reasoning, and'say,that if f has continuous partial
derivatives up to order q, then y(q+]) is continuous.

Now suppose We:havela one-step method of order r,-whehe we. know
, d dlﬂqq) and e O(hr) for smooth problems. If we hate o=r above (i. e.
f has cont1nuous part1a1 der1vat1ves up to order r), and- 1f3 yd<5h

,also continuous, then the def1n1t1on of d (h) can be expanded in a

Taylor ser1es far enough to get d 0(hr+]), and the convergence theorem
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applies, giving e‘=0(hr). .But if the méxima] order q of continuous
derivatives of f is less than r, then d Wil generally not be 0(hr+1),
but only O(hq+]), and we can only prove that en=0(hq). fhus in general,
the maximum order of continuous partial derivatives of f and\kis the
maximum actual order attainable. This is only a generaT h.euristic
statement, to which there are exceptions. The texl (h; 68) gires an
example where g=1, but when a method of order r=2 is used, fhe global
ervors are ¢ - O(h ).

The result which re1ates €, to an ODE in <§(t requires one further
cont1nuous der1vat1ve of f and'ylto exisl, bLecause thc,ger1es‘for dn(h)'

is being carried one term further there.

So far, the step size h has been assumed to.be constant throughout
the problem. In practice, this is rarely true. Either the user changes

h, or h is changed by a program with an automatic mechanism for doing
this. It is therefore 1mportant to know Lhat all of thc results in

this section can be obtained 1n the case of 'vurying. h as well, It is just
somewhat harder and more involved. |

" Consider for example the convergence theorem, and write

Tppy =ty thy h= max Ay -

In the recursive 1nequa11t1es for e, we S1mp1y rep]ace h by h Then

n
in accumu]at1ng these, we will get bounds Tike

re,\|g[‘{;r(',+53:_)}:eo1 D L‘ [TT’(:M Ly - )]

(which reduces to the-correct formu]a.1f a]]lhn—h). Then the inequality

'ﬁl(“-k Ly ﬁTL H'L-;AQZA‘L . bL

ey

' g1ves the same bound for e, as in the earlier convergence theorem



6. .(b) An example -

We consider the problem

= =2t 100 (y—tz) , y(0) =0, O<t<t

It can be seen by 1nspect1on that the true solution is y 2. In fact, if we

define z = y - t2 the ODE becomes z = -1000z, for wh1ch the general so]ut1on
is z = zoe']OOOt, ory = t2 + ze ]OOOt. The part1cu1ar so]ut1on sought has
z =0.

) A - _
We consider here the numerical solutions obtained by the explicit and im-
plicit Euler methods. The text (p. 17) gives the numerical results of the ex-

plicit method, and shows ‘that reasonable accuracy is not obtained until the

stepsize h is about .001 or less. When it is, the errors'atlt = 1 are about

e, & -10 (h =107%)
e, & -107  (h=10"h
e % -1078 (h'=107%)
- o 3' 5 -3
or, generally, e e, ~ -10 h for any h < 10 ~.

1 In the case of the 1mp11c1t Euler. method we must so]ve the 1mp11c1t equa-
tion = B ) ) |
Ynep T Yp *H Yn+1 h{ztn+] - 1000 (yp,y - tnfl)] '

Because f is linear in'y here, this is easily done:

Yo * h(2tn+ + 1000t

- _ n+1)
Yn#1 = T T + 1000R
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For a given h (= a submultiple of 1) we take 1/h steps to get to t = 1. For

example, for h = 1, we get, using Yo © 0, t, =1,

04121 4700018 4, 1
Yy 1 + 1000° 7T 1007

For h = 1/2, we find

Thus, the actuq] errors at t = 1 are

(h = 1)

1/2)

3

(h

e, % .5-10'

or, generalizing to arbitrary h,

e, 1070 n .

These actual errors illustratc the fact.that the theoretical error bounds

obtained earlier are not aiways useful. For the explicil case, the bound of
| _.Dh . bL |
Jegl <2 (€2 - 1)

is useless since bL ='L = 1000 here. Also, the similar bound for the implicit
meLhod cannot even be applicd here,Asince it requires hl 5.14 and this is_far
from the case for the;yaiues of h used above. Thus, these‘tﬁéoretical.bounds
areAfar more pessimistic than actual practice here. | |
Consider, however, thg more sophisticated error estimates based on an auxil-
iary ODE. Here we'wrfte, for.dfdef 1, | |

e % hlc(tn)_, 6= fyé + ¢~,'v 5(0) =0
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Here fy = -1000 and the prinicpal error function ¢ is +y(t)/2 = ¥1 (-1 for the

explicit case, + 1 for the implicit). The solution is seen to be

s(t) = £(1-71990%) 13000 .

-3

Hence &(1) & 2107, and the estimate of

- is in complete agreement with the calculated results.
Suppose, instead of solving for the implicit Euler éo]ution exactly, we
had tried an iterative method. If we consider functional iteration, we predict

. yn+](o) for thejva]ue of Ynt and use

0; 1, ...

Yner(me1) = Yo * M Wniqmye tpe) o O

This leads to badly divergent answers for h = 1 or h = 1/2. The reason can be

seen by looking at -

5(m) ¥ Yn+1(m) ~ Y+l
ahd subtracting the relation

In+1 7 yn'+ hf(yn+1"tn+1)
to get

8 (m1) =‘-1900h (m) -

for this case. Thus, if h > .001 and y, g o) s at all in error (i.e., §(,) # 0),
~then 8 (m) diverges as m + «. This divergence is worse the larger h is. This

behavior is not a result of the usequ;the»eXp]icit Euler method to get Yn+1(0)*

2
n+1

as long as,h'S'{OOI. Conversely, if h < .001, this iteration method will converge

' Eveh if the true solution t is taken as the predicted value, the method diverges,
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to the desired solution regardless of the prediction. (It is true, however, that
this convergence failure and the instability of the explicit‘Eu]er method both
have the same cause — the large size of fy.)'

We might alternatively have chosen Newton'e method instead of functional

iteration. Here, because the equation in y to be solved is linear, and Newton's

n+l
"method is based on lihearizing that equation, we would get.the correct Yo+l in
one iteration. | | ' | »

In short, Lhe implicit Culer method is quite successful for this problem,
but its success relies on the use of a sufficient]y good method of solving the
resulting ihp]{cit equation. The fact that functional 1terat10nvis a bad choice

is dye to the problem, and should not be blamed on the basic method (implicit

Euler). It is a matter of the implementation of the method. Some problems will

require a more powerful implementation of a given method than others, and this
example is ohe that requires something more powerful than fhnctiona1 Tteration‘
for the implicit Euler method. '

Knowing the results of the numerical solutions frum'Lhe two methods; we can
compare them, and ask, "Which'hethod is better?" 4The fact'thet a Qne-step solu-
tion gives a goqd answer with the tmp11ciL melhod, and not with'the explicit one,
suggests that the implicit one is better. If we will accebt an error of‘t10'3,
it is. In fact, if we require less than six decimal places of accuracy at't = 1,
then we can obtain the deéired accuracy with the implicit method with many fewer
steps than the explictt.one The latter requ1res about 1000 steps before even
one decimal place is obta1ned and the former requ1res as little as one step.

But to say that the 1mp]1c1t ‘method is always the better one for this prob-
lem would be a mlstake  We know that at t = le | is asymptot1ca11y about 10 3h

for either method and SO the asymptotlc errors give no bas1s for a choice. The

hitch is that the actual’ 1enleagree for the two methods only when h is about .001
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or less, and then we get at least six places of accuracy; Hence, if the desired
accuracy is six or mofe placeé, either method suffices, and we must use consider-
ations other than the humber of steps (i.e., the size of h) to make a choice.
The §n1y~remaining criterion is the efficiency of perfofmingleach step.  In this
reSpect,-the explicit method {s somewhat better, as it requifes 4 mult{piies per
step, vs. 5 muitiplies and a divideA(which cou1d be eliminated, however) for the
implicit method. This difference is -not great, but if total computational cost
were of parémount importance, thé exp]iqit method wod]d be the better choice,
for 6-place accuracy 6r better. |

The relative ihfériority of the explicit method under low acturacy require-
ments can be i1]u§tra£éd graphically. We first draw the curves for various par-:

2 very rapidly, o

ticular solutions (various Zo)’ These approach the curvé;y =t
and then become (graphically) identical to that curve. If the explicit-Euler
method has been applied up to a certain point (tn, yn), where'yn has only a '

small error, the next step, taken according to
Ype1 = Yp Py

 -carries the solution to'(tn+],'yn+]) along a line tangent to a solution curve at -

(tn, yn). 'Th1s tangentfis so steep, for all but vehy shal]:e?rdrs in Yp? that-'

Yp+q 15 then quite inaccurate, for all but very small values of h.
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In the implicit case, however, the next point is on a line that is tan-
gent to a solution curve at tn+1' Even for large h and/of sizable errors in Y

‘the resulting y will not be drastically in error, by the nature of that tan-

n+l.
gent. An inspection of the graphical construction wi11freveal that a large error
in yn+i would corréspondﬂto a steep tangent line that coﬁ]d not possibly pdss
through‘(tn, yﬁ)'because it slopes the wrong way. | |

This example may appear quite contrived, and carefu]iy designed to produce
the behavibr'just discussed. It is an artificial problem, of course, contrived
to make the/numerica] so]ution rather simple to obtain and analyze. However,
the resulting'behavior is not contrived, but typical of large classes of brob]ems
This is a simple exampie‘of a stiff problem, and stiffnéss:is a,réther:common

property of ODE's that arise in many areas of applications. Qualitatively, stiff

problems are characterized by the presence of rﬁpid transient solutions (given
| -1000t

by the Z,8 term heré), together with relatively smooth lang-range ar equi-

librium solutions (gfven by y = t2

here). In numerical solutions, the main symp-
tom of stiffness is that some methods require very much smalier values of h than

others, for a given accuracy. In this examp]e,'if we were to change the ODE to .
o "
y =2t - 10°(y -t°)

it would be even stiffer, and would require an-h of about 10°® or less for the
explicit Euler method, while the implicit one gives'G-p]acé accuracy with only
h = 1. The fact that the problem is contrived to be linear and very'simp1e has

nothing to do with this,fbut simp]y_makes the difficulties of numerical solution
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more transparent. The use of these two particular solution methods here is
also not contrived to produce these resu]fs.v There are large classes of. methods,
in common usage, which will-have the same difficulty on this problem as the ex- |
plicit Eu]er method. And there are classes of methods which overcome that dif-
ficulty in the same way that the implicit Euler method does. |

The problem desfianess, and the explanation of its effects on different

methods, will be covered more fully later (Part III).
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Exercise 6.1

Consider the trapezoid rule, a one-step implicit method:

Iy = ,)/,,, + "szL\ (yn + yn-’-!)'

(a) Using Taylor series, determine the order of the method, and

the leading term in the 1oca1 error : _
dn = Y(t) + T [‘F()’(tl T, )f“‘f//‘im-:) *nﬂ] )’/fwl)
(Dlsregard the discrepancy between this d and that of the general
definition.)
(b) What is the absolute stability region,. .
‘5;2" EA)\' l}/.wlé: Iyn) Lon :h)f}
(c) For the problem y = 2t-1000(y-t°), y(0)=0, 0=t<1, h arb1trary,

what is the global error e (ignoring roundoff and iteration error)?

Exercise 6.2
Given a genera1 one- step inethod with local truncat1on crror .

dath) = W M@ ly, ) FO(L"), Lp:w

show that the method is cons1stent if and only if the order r is 2 1.
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~ 7. Implementation

This section covers a number of topics related to the implementation
of typical ODE méthods intb practical ‘algorithms and computer programs. In
the course of dealing with these topics, it wi}] become c]ear that some
methods are gasier to implement than others, in various respects. . Consider-
ations of this kind, together with consideratiohs re]atéd to the theore-
tical properties‘df.the methods, must be used if the best available
method is to be chosen for a given problem. That best method depehds on
the problem as We]]. No one method or no one imp]ementatidn of a hethod
1s-best for all problems. Properties of the problem muSt‘be.known,
either in advance of a numerical sojution, or as‘a.resu]t of trying such
a'sq]ution‘ | | _

The various cdnsiderations, relative toibotﬁ theofetitaf properties
and,mafteré of.imp1ementation, cannot be given'completély priof to a more
detailed discussién of the methods under cohgideration;, In pafticu]ar,
the Runge—KQtta methods and the Tinear mu]tistepAméfhodS will bé'studied
~ more c]oseiy later: "For the present, however, a humber of practical '

matters -are covered in a gehera] setting, in what follows. -

7. (a) History vector; storage
For any method, some information must be saved from;step to step to
implement the hethod meaningfully. This fapt'isAparticQ]ar1y evident for |

the mu1tistep methods , typifiéd'by the Tinear mu]fistep‘methods:
\ — _ N o) o
/n' - 'Zu Ty L‘Z B, Voo .
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In going from Yn-1 to Y, one must have, in some form, the data
)%4 ("’_’ NE2 8\‘)
jn-c (12 ie K), |

This comprises L = K] + K2 pieces of data, which can be simply put together

to make up a histbry vector Qf length L, with Vectors of length N as compo-
nents. This is then fea]ly'a history array, of size LN. Rather fhan storc
this data as written above, it is often desirable to store sume set of linear
combinations of it.- But any such alternative history Qector.must still con-
tain the same number of quantities, LN. | |

This storage problem is often regarded as a drawback uf Lhe multistep
methods, especially when N is large. L can also be 1argé; some higher urder
methods in use réquire values of L yp to 20. Thus fbr a large system, say
with N = 1000, a storage requirement of 20,000 locations might be too mﬁch
of a drawback for the use of the method in question. It might even be pro;
hibitive,if the cqfe meﬁory évai1ab1e is 1nsuffiéient, |

On the other-hand; there may well have been a strong reason for choosing
the method with large L; and it méy'bé impossible or undéSTrab]e_to reduce N.
Hence rather than sacrifice fhe size of the problem or thé order of the method,
the user hay be forcéd'to deal with the problem of storing the.histury darray

directly, such as by way of extended storage devices.

7. (b) Solution of the implicit equation

Any implicit method is more difficult to implement than a similar ex-
plicit one, becadsefitlkequires an_accompényfng method for the solution of
nonlinear systems- of a]gebfaic equations. That prob]em,'whi]e'on a lower

mathematical 1éve1 than tﬁé ODE problem, is still not an‘easy one. Presum-
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ably, the user has a strong motivation to uae an implicit method in the first
'place, counterbalancing thia extra difficulty. The example:y = 2t - 1000(y - tz),
y(0) = 0, as so]véd'by the explicit and implicit Euler methods, illusirates
such -a motivation. ' | |

To be specific, consider the implicit linear multistep methods. Here

- the 1hp]icit equation for Y 1
Yo = hp ¥y t)) +a,

where Bo + 0 and a, is a known vector conta1n1ng past h1story (For the im-
plicit Runge- Kutta methods, the other basic method class in wh1ch the 1mp11c1t
| equation problem occurs, the equation will have much the same form, in terms
of the unknown 1ntermed1ate value or values.) Usua]]y h is smal], and we
“can often take advantage of - the sma]lness of h and of the part1cu1ar form
of the equation.

As we are not assuming any special form of f or ahy‘information about
it other than the:Lipschitz aondition, we must use iterative methods to. solve
the equation. No direct method is avai]ab]e‘exaept in very special cases.
When‘we use an indifett ar iterative‘methqd, we must start witﬁ a guess or -

n(m)

gredictﬁbn, yn(O); and then iterate by some rule to Qét corrections y
(m = 1,2,...) which hopefully converge to the true sB]ution-yn of the equation.

- The term prédictor-corrector method is often applied to this process, espe-

cially in the 1inearlmu1tistep‘context, Ah;imp]ementation of‘the method will
‘ require aome rule fdr Stopbing the iterations, and accepting the iast iterate
as.y.‘. Such rufes are usua11y based on a test of fhe.SuCCessiye iterate dif-
ference y | B | |

n(m+1) Ya(m)* ) .
The szmplest of the iterative methods s funct1ona1 1terat1on, in which

the function of y_on the r1ght.aboveA1s iteratively evaluated. Dropping
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the subscript n, which is fixed throughout this discussion, the iterates y(m)

are then given by
%m'ﬂ) = @o L‘ g (]w ) &, ) A,

This method was illustrated for a simple example earlier, and we can analyze

the convergenée in general almost as easily. Consider the iteration error,
. _ .'—-\
5_(144) - .y(vw) ,/v\’
A subtraction then g1ves

Lmﬂ)" L‘ﬁ Z¥’ j(,w, - g’(\/m,f‘n]
{ £§£n4+(){ ‘Cg\j L\ [— / (na)/-

If L is not unusua]]y large, it is reasonable to expect that lq)l hL < 1

for the values of h being used. If so, then we can conclude that
J(

or that we have convergence of the correctors. I. e., the iteration error

my TP O . as }'n'—'—'y'OO;
can be made arbitrarf]y small by taking enough iterations. Moreover, the
constant LBD| hL fs.a measure of the rapidity of convergéncé — the smaller
it is, fhe fewer iterations are needed. (This éonvergence must be distin-
guished from convergence of the basic method, which deals Wifh the total
numerical solution as h - 0. Here only one step-is being discussed and h
is fixed.) | |

‘There are frequently problems where'L is so large thaf:the'requirement
h < ]/]BOIAL makes ‘this process too costly. This does not mean that the
choice ofAthe impiicit mefhod'was bad,-on]y that the choiée of corrector

fteration method used to implement it was a poor one.
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‘Another logical choice of So]ution method for the implicit equation is

Newton's method. Here we do not rea]]y take advantage of' the known form

of the equat1on, but s1mp1y wr1te it as
F(y) Y- &L‘}y,t)—an =0,

To app1y Newton's method in the scalar (N = 1) case, we guess y(o) and use

".yCmH) —_ -Y“"’ o F (.'Y(w) /FY]M))

to iterate. Graphically, this corresponds to drawing a tangent to'the curve

P

F(y) at Y(m) and following 'F?(y) ,

it down to the y axis at

Y(m+1). Repetition of the

process, under suitable con-

ditions, will 1ead,t"o the Y(Mf"j YW‘)

desired root y . | | |
The genera]ization of this to the vector case N > 1, where F(y) is a

vector-valued funct1on of a vector, is given by thc formu]a

\/(mm B jwﬂ) ‘[_F UUM))] F(y(w))

Here Fy is the N x N'Jatobian matrix of F:

The notation here is to write y as the vector
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We then form a matrix of partial derivatives

/4 =~(. : F:;/ )

I
~
o
c.
€ .
\/
Ll
Pl
0]

O Ew

- where pij is the element of P in row i and column j. We evaluate P (i.e.,

the pij) at the vector y(m), and then we want the,vector
. : a4 . o
](vnu) T ytwn - P }—()I(m))o §

Here P™) is another N x N matrix, with the property that

)PP -T,
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where we do the standard mu]tip]icatibn of matrices and I is the standard
O

N O

- 1.

Then P™'F is ‘the usual product of a matrix and a vector.

N x N identity matrix

There is an alternate way to view these relations, Which'is.actua11y

preferred for practical reasons. That is to write the iteration formula as

P' [.Y(mu)' "](‘m,] = F()’m‘)_) .
Thfs is to say that_the vector
| A

X“ = (X )(_‘: : )/(MH) )’(M)

is the solution of~the'system,of linear'equatfons,‘

The individual equatfbns are
N o
> po s
. Pej X
=0

In practice we can thus call upon a linear system solver, for which numer- -

b

ous techniques and cdmputer subroutines exist, apply it for given coeffi-

c1ent matrix P and r]ght hand side vector F(y(m)), and get a result x, for -

.which .

~F(ym)  (ieiew)
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is the next corrector iterate. In doing so, the matrix P-] never appears as
such at all.

Recalling what F(y) was, we hay write its Jééobian by differentiatﬁng
each term separately. The Jacobian (with respect to y) of y is I, and that

of a constant is the zero matrix. -Hence
PF = IT-6hf -I-ALT,

where

Il

T § = 9F (li

) b;)/ | | 5_)/3 |
is the Jacobian of‘fhe kight-hand side of the given ODE system; J is often
referred to simply -as ;ﬁg_Jacobian.of thé problem.

J can be rather éost]y to evaluate and manipulate, especié]1y if N is
large. ff we>take.Newton's method in its strict form, d great‘deal of ef-
fort will go toward simply evaluating P = Fy(y(m)),'which must be done at
every iteration on eVery step. For efficiency's sake it would be much béttef
not to have to spend that much effort, and fortunately, it i§ not necessary
to. We can,: for ekamp]e, simply use P =-Fy(y(0)), whiph is the same for all
m, and hence eliminate considerable work. In the scalar case, this would
mean using thé slope of the tangent
at y(o) again-af‘y(]), etc. in-

stead of recomputing the slopes.

For all but the first step, the - |
line used is thus not a tangent 7 9 : .7:. )
v , v e Yy o) -

to the curve, but ‘a -chord:

through it. Hence this variation of Newtqn's.method, often called a quasi-
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Newton method, ié also called a chord method.

There are even further departures from Newton's method which also work
quite well in practice. We might, for example, use a matrix P on step n

that was evaluated at some earlier step, say step n' (n' < n)ﬁ

7>5- = F:}/ {‘Jyln" (c))

This would save us the effort not only of reca]cu]ating,Fy at every iteration,
but also of recalculating it at each step. Other possibilities arise if we

only approximate F in.Scme way, such as by using finite differences in place

y
of the partié] derivatives, or by using some even more crude approximation.

The success of Newton's method will naturally be somewhat impaired by
swicching to a chord method. However, under suitable conditions on F, it is
possible to prove that the iterafes y( ) still convergé to Yo though possibly
not as rapid]y} Such a proof is beyond our scope here.

The fact thac ﬁy is on]y be1ng approx1mated poss1b1y with very little
accuracy,Adbes ggg_mean we are sacrificing any accuracy Jn,thenf1na1 corrector
- approximation to Yﬁ' That is, if we stop the iterations at y(M) gnd accept
this as. our approximatjon_to Ip» We can still make the iteration error:y(M) -
Y 85 small as we like, by proper choice of M. The inaccuracy in P affects
only the'rate of convergence.to Yps not the final answer. | |

The chojce of the initja] pcediction y(o) is usually a crqcia] detail |
‘ hcre; regard]css of corrector method. For a given method; y(o) must'not be
too distant from Yps or’the iterates will fai1‘to converge.. The chord methods
are especié]ly'sensitive to:the accuracy of y(o). although they make up for
- that by being nxné rapidly convergent in general than functional'iteration

~ For a 11near mu1t1step method one must use the ava11ab1e histary in-

format1on w1th data- at t ],t Y ...; to- extrago]ate‘to tn’ in order to get -
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an accurate prediction.  This usually amounts to,usihg the appropriate

explicit method based on the same history vector.

7. (c) Error estimation and choice of step size and order

This section déals with the difficult but very practi&a] matter of

error control. The control of errors involves first the estimation of

errors, to some-extent, and then the practica]bselection of step size$ h,
and (it methodS'bf several orders arE'provided)'of the order r‘as well.

To begin with, consider the numerical sd]utionAof a given probiem
over a given finite interval, with a fixed method and tixed h. It would
be natural tovrequire of the calculation that the gToba] error e at the
end of the problem be bounded by some constant E, which the user speéjfies.
If the method selected has order r, then we know from‘the appropriate
convergence theorem thét

| len| = Kh' |
for some éonstgnt K, provided h is sufficiently small. By definition of r,
there is no larger integer for which that bound holds in general. If the
problem {s SUfficfently smoofh, we can be more precise by dériving an
auxiliary ODE for a function S(t)'for which, whgn h 1s,$uff1§ient1y small;
| en = h §(5) +0(h™).
In any case, we can ‘expect that Ienlwi]]'go roughly ]fke hr’ as we vary h
within bounds that produqe reasOnab1y accurate answers at all.

It follows that if we consider different values of the error bound
E and corresponding“va1ﬁes of écceptab]e_Stép sizes h,,h'will be roughly
-1/r

proportional to E To make practical use ofithis fa@t, we might, for

éXamp]e,,make'one run with some value of h which seems rgésonab]e, getting
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a final answer YA » and then make a second run with step size h/2, getting

an answer Yg. Then, on the assumption that the true final answerY
o - -
Y, =Y e (U <),
- ; N )
VAN .A«;(L\/,,z)_{.

~ we aobtain IYA'- YBI z (T‘- Z'r)Khr Hence, the error in the (presumab]y

satisfies

X

more accurate) answer YB can be estimated as

NB:’ \/11 =~ R‘Y\(y \/o l/(’”f) Z:

Moreover, 1f th1s error is not acceptab]e any further runs, w1th stepsize h‘

and answer Yc,w111 heve a predictable final error of

: | (T h o\ _
As we want EC to be rough]y equa] to a given bound E we could even deter-

~mine the correct va]ue of h
o — V“
b = (E/A:B) h/z

Suppose now that -several different orders are available. - For examp]e,”
a.program might“contafn the‘ekplicit Adams methodé of orders 1 to 4, ano'
“any r in that range oou1d be seleoted For each r, there w111 be a constantv
K for which the final error is rough]y K h for small enough h. The values
ot the K m1ght even be known from theoret1ca1 propert1es of the methods and the

prob]em
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The selection of the best order will have to involve efficiency considera-
-tions a]so.' We can uaually aSSign a cost pek step kr to the method of order
r. 'Thfs might simply be the number of f evaluations, for a crude approxi-
‘mation. Then if the rth order method is used:withvstepsize-hr, and the in-

terval length is b,ithe total numbers of steps is
and the total work for the probiem is. the sum of the costs per step,

The norm of final error, e}can then be plotted as a function of w;‘ according

to

r

€ ~ K,« l\,ﬁ = K,ﬁ(l«,\ L/Wr)n
;, /q%.- ( WV:I.)V\

/

A Ko (ko b)”

(See the accompany1ng graph, and also p. 75 in the text, where a

genera]1zat1on to variable step sizes is d1scussed )

We are interested in achieving e = E, and we of course, want to mini-

-1 is Targest along the

mize wr Thus the r1ght choice is the r for which w
line e = E. For different values of E we can get different opt1ma1 orders.

If E is quite sma]], c]ear]y the curves for d1fferent r descend vertlcally ,
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as r increases, so that the maximum r is the optimal choice. However, for
larger E, lower orders may be optimal. No genera1 statement can be made ex-
cept in the limit of small E. The higher order methods are not invariably
the most efficient for given accuracy. For a given h, or a given total work
W, a higher order does not invariably give better accuracy. The absence of
general rules here is all the more assured by the fact that these simple
curves themselves do not apply above certain levels in E or h.

The goal .of bbUnding the finé] global error, while a natural and de-
sirable goal, i§ not a practical one. When we must select h and possibly
a]sd r at the beginning of fhe problem, and possibly also during the solution
of the problem, the information we would need for those selections, if a
final erfor bound:is to be ﬁet, is simply not available in most cases. That
information fnvo]ves the unknown solution at fqture values of t, and it may
also involve decisions about h and r that are to be made in the future.

An alternative that is quite feasible is to bound the norm of the local
error only. That is we can make . selections of h.and r which satisfy ]dnl
< €, where e is a prescribed to]érance; This strategy is at the other ex-
~ treme from the earlier one, and there are intermediate choices. For example
a bound e(h,t) on |dn| might be devised that varies duringlﬁhe prob]em,‘in
an attempt to achieve a global error bound. As this wou]dicomp]icate thg
problem of error cdntfoT considerably, we will consider only case of constant
€, which itself can be rather complicated. |

Thg first and most difficult task in controlling 10ca1:error is simply
to estimate it. Of';ourse we need not estimate érrors as acéurate]y as we
estimate the solution.values to the original prob]ém, but sbme'kind of an

estimate is necessary.
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A standard method of estimating dn,Aused for one-step methods, is the

r+]

method of step doubling. Here we use the fact that d A(h) = h o(t ) where

"¢ is a function (usually a combination of derivatives of f) ‘which is not
known in advance but is independent of h. Consider tak1ng two successive
steps of size h, from tn_to tn+1 to tn+2' If Y, was considered ex;;t, then

n+l and yn+2

_ ‘3-n L= C(n'( Ll)

the calculated values y will have errors (respectively) of

" Here € 42 is approximated by a simple accumulation of the 1Qca1_errors, dis-
carding terms that are O(hr+?) that were kept in the rigorous global analysis.
On the other hand, we may consider doubling h and taking a singie step from tn

We then get a calculated value y_,, which has an error

Tuia = dn(ah).

tq tn+2'

It fo]lows that _
jmw\ "Yvw;( _: €m+7\“€n+z

dn (2h) - adu (h)
o [ (21\ H L\Ml:( (()(é)

| and hence that w1th1n an error of 0(hr+2)

A 2 l(l -l) l (U

¢

. and 0] the local errors in Yn+2 and y may be estimated:

n+2 _
‘Q_v&&_ ~ A /(D\w~l‘>l

‘:Q_i«w—a\ : e «ZV\ A} /‘(‘lr—
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The one-step local error dn(h) wdu1d then be estimated as %zx/(zr - 1).

In the case of multistep methods, step doub]ingvis generally not used,
because much less‘expensive error estimates are availabte, using the more
extenside'history‘of-the calculation.

For the general .linear multistep method,

(< e
]V\ = C&:'O(; v\—u" f‘ [\ CZLQ'@':}/A‘[' P

the local truncation error dﬁ = dn(h) is defined as the diffefence between
the teft and right sides of the above equation when Y is replaced by y(tk)
and 9k by &(tk) fdr a true'sdlut1on y(t) of the ODE. (A more. detailed dis-
cuésion of this will be given 1atert) We will see later that if the method

is of order-r, then we have an asymptotic formula (for small: enough h)
, P~ (.m) | r42

for some constant C. So we estimate d by est1mat1ng the current value of

(1)

by use of a linear combination of the h1story data. For exampie, in

the explicit Euler method, where r = 1 and C = - %3 we can take
W hos W2y
[a) j‘\: -_ )’\ ]n ,A\: (‘{}y‘ .'.

A , d s &R‘
For the implicit linear multistep methods, a general technique for

error estimation is the use of the predictor-corrector difference. By this

s meent the difference between a predictor y n(0) that is also of order r
and the final corrected so]ut1on y of the implicit equation. Because the

pred1ctor has order r, we can wr1te _ : S
]n Lo> ’ )'(t = C ArH (M)/fn)'
+ C)(' v+2>



-67-

while the error in. y

] j(t) -~ d, + 00k

| PHC (e RN

= Choy (th) FOlh™")
Hencé the difference is o |
' , RS2 W B o o B ' o /i
'le :'_“714(67 - (C“C/)l/\ ._y('ND(fn) tO([/]”L},
By ignoring all O(hr¥?) terms,:wé akri?e ét an estimate for dn in the form

dzvx ct:( >{/V\ n(o)].

There is some theoretical doubt as to what conditions are necessary to give

this estimate a_rtgordus foundation — as to whether the sblution curve y(t)
mhst go thrbugh Ya-1Yn-22+ Ynk (for-a k-step method); or whether the pre-
dictok and corrector fdrmu]as'(i.e{, thg'exp]tcit formula fof yﬁ(o) ahd the
given implicit formu]a for_yn) must'satisfy certain coeffitieht conditions.
’ But the idea seemg'to work Qe]l_in practice. : It is easy .to use as both yn
and yn(05 must eventdaJ]y be available anyway, and thé chnstant EEETL.is
known in_advance from the formulas used. There is very little extra expense
involved — no extra.fuhction evaluations, for example, as thére,is for the
step doub]ing methodt |

Now suppose that; by whatever method is.appropriate, an<estimate_0fhdn.
is cohbhted during the numerical so]ution Let us call thét e§timate d' |
also, and assume that we w1sh our cho1ce of h and r to sat1sfy the test

Idnl <€ for a prescr1bed to]erance €. We now cons1der how to ach1eve that

- control.
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Take firstvthe case in which the order r is fixed, and the choice of h
is the only decisioh to be made. We can first of all éompute |dn|, make the
test against é,”and, if it is passed; do nothing to h and proceed. If it.
fails, we Want to choose a smaller value of h, say h', for Which the test
wf]] be passed. Recalling to the statement that dn is fough]y proportional

r+]

toh ', we have .

'O()Vl(h')l YL re
g,

We know dn = dn(h) for the stepsize h currently being used, and we want

|dn(h')| < e Hencg.we conclude that we should make

/ 62 A i~ +
R e W
o N ERA

If the approximations used are good, then any h' satisfying this inequality.

will Tead to an acceptable local error. But we may as well maximize h',
i.e., maximize the efficiency ot the calculation, within the limits imposed
hy the 1nral errnr;test.f Hence we would want to choose h' about equal to

the above bound, possibly slightly less to allow for errors in estimates
0 o Y4 i ‘J—*‘
Woox b (& /1da))7e

- The reasoning above suggests'that‘we might alter h even when the error

used:

test is passed, for a considerably larger (and hence preferrab]e) stepsize
‘might'qlsoApass the test. It follows that the above formﬁ]é for selection
of h"coqu‘be usedigenéra11y, regérd]ess of the outcome of*fhe test.

If the error test fails at any time, and the new stepsize h' is chosen

according]y, there is still another decision one must make. Either the
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current step {taken with stepsize h) is repeated with h' hefore proceeding,
or it is accepted and only the subsequent steps are taken with h'. The
latter strategy'is obvious]y ]eSS‘costly»in the short rUn, but possib]y more
damaging in thelong run, espeCiaiiy if the step is very much 1arger than
is indicated by the error control.
The control of errors is complicated slightly if we must also se]ect
. from a group of methods of several different orders. If the calculation is
turrent]y proceeding with the order r method and a stepsize of h, we will
then wish, at least occasionally, to choose a (possib]y)‘new order r' as well
as a new steosize h'. | | |
Here the local truncation error d_ s a function of both the stepsiae and

order. At the current stepsize h but arbitrary order g, we have a function

do(k,p) = Cq) W™ 4 Lo ‘»1)
V\’L‘)f“ ,C(ﬁ)} Zyn . 4//\[_ .
What was discussed ear]ier'was the estimation of this ouantity when q =
When q < rs it is equa]]y easy to estimate because the order of the derivative
is lower and so ieas infOimatiun wuuld be needed to approx1mate it When

q > r, more information would be required than is norma]]y saved to perform
the rth order method Hence some extra quantities must be saved to do this.
For this reason, variab]e order codes usually restrict consideration to o
order r + 1 if the current order is r. This will be discussed at greater

‘ Tenothrlater; In any case, assume that we have estimators of dn(h,q) for
the various values of q under consideration. Then‘an apbroXimate new step-

size that would be optima1 at order q would be x

I He/ (b, gl ) *
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on the basis of the local error test. This is arrived at exact]y as before.
Now we simply want to take the largest step possible within the limitations
of the error test. So we compute
‘ / (M
.L\. = e = m;x §)

the largest of the different allowed stepsizes. If this maximum occurs at
q = r' and we switch to the method of order r', then h' is the optimal step-
size we would use. =

Ihere may be other considerations Lhal enter into this'5e1éctioh algo-
rithm. We must still dccide whether or not to redo theAéﬁrrent‘step if it .
failed the tést. Cdnsiderations of overhead costs.may be used to bias the
selection in certain‘ways. Finally, stability considerations may dictate

that we not ‘aliow changes of h or r too frequently, or too drastically.
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Exercise 7.1 ‘
| Consider the second-order equation U =-u, on Ofgtfﬁ74 with initial
condition uo=Q,:ao?f,(solution is u=sin.t).
: (a) Convert this problem to one for a first-order system in a
vector y %(i;)." .
(b) Using the maximum norm on vectors ( Ivl = max lv1[) what is the
best Lipschitz constant L? o
(c) Among the explicit Euler, implicit Eu]gr, and trapezoid rule

methods , which would you chocse and why? For a maximum error of t10'5,
what h would you use? Use local and global error estimates, the L

from (b), and initial error e0=0,.and assume lul-s 1, }ﬁ‘s], etc., for
all calculated solutions. | o
(d) Perform one step of the trapezoid rule with h= /4, solving

the imp]iciﬁ.equationAexact1y. What is the resulting estimate of u(7/4)?

Exercise 7.2

Consider a-chordvmethod for corrector iteration in an implicit
linear mu]tisteb-mefhod. What happens if the P matrix (the coefficient
_matfix in thg 1ineér system) is taken to be the jdentity matriktl? What
1§Athe approxihation to the Jacobiaﬁ J that . corresponds tb this choice.

of P?

ExerciseA7.3

Write the imb]icit Euler méthodwas'yn=yn_]'+ h}n,<and consider the

explicit Euler method as a predictor. If yn.ié the true solution of the
implicit eqhation, §how that o = yn—yn(o)-is O(hz). Calculate its

leading term”andfderive'an;Aestimate of the local error'dn based on 5.
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Part II: Study of Discrete Metnods

8. Runge Kutta inethods

The Runge-Kutta methods for y = f(y;t) constitute a large class of
commonly used methods. Tney are one-step discrete methods, and so are
subject to the‘énalysis of. general one-step methods done in Chapter 6,
where the genérél;form | .

Yoo = Yo v h¥LY,, £, )
was assumed. Fur tie Runge Kutta mathods;V’has a particular structure,
which is characterized by the usé of intermediate ¢ va]ues.(i.e; inter-
mediate:between t, and tn+1=tn+h) in the required evaluations of .
The more,coﬁmon]y used Runge-Kutta methods are explicit, but a subclass

of implicit ones also exists.

8. (a) Explicit 2-stage

To show how one can arrive at Ruinge-Kutta methods fh"a logical and
sinple-minded way, wé return mOmentérily to the Eu}er methdds. There
we write - o t,+h o
by, = \J‘(tnﬂ) = y{f'm) = J;_” J (t)dt 3
and we'rep]ace'the inﬁégrg] by ei1ther hﬁn br “§n+1' In this scnse,
the Euier methods can be:reéarded as arising from quadrature methods,

i.e. methods of approximating definite integrals in one dimension. Many

(but not all) discrete ODE methods (and some nondiscrete ones) can be

. o N AR Y )
derived from.qugarature mcthoqs in this way. ytt) . i
Grapnically, in the case of a scalar ‘///// '42;?i'

‘ - ‘ ' I 5
ODE, the area under the graph of y(t) : S
between t=t_—and t=t _+h is being- i

, Sn n ; J t, ty,+h
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apbroximated by the area of a rectangle of‘width h and'heightjn or

Y+t .
‘obtained if we use a height of j(tn+%), i.e. the height at the midpoint

It is intuitﬁve]y c]eér that a mucn better approximation is

of the interval. The quadrature method arising from this choice is

thé mi@point Eu]e.'App]ying it to‘the integral forAym yields the fofmu]a'
Yarr = Y + h S LY +h/2), 4+ h/2) .
The trouble is that the value of y(tn+h/2) required is not known. However,
we can certainly approximate it with, for example, the exp]jéit Euler
method:
\ -
./(fm“ h/:?) Y+ ﬁ-yn . |

If we do this, we end up witn the following’ a]gor1tnm for ODE solution,
which is also ca]]ed the midpoint rule:

.Zl': I+ é_f-@'(yn)t,,)

Inrv = Yn + {'\‘F'(zllt'n*"/.;) .

~Notice that this is an explicit one-step method, and that it involves
the evaluation of f at an intermediate value of t, name]y t th/z.
In order to conform to a standard notation to be used later, we

rewrite th1s a]gor1thm as follows:

A'F'(Yn th) .
h F Y+ 2 he tar £h)

:yn;p é; yy\;*" kd
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This method is an example of an explicit 2-stage RQnge-Kutta method.
Tﬁe aunber of stages is the number of f's that appear. The method

will turn out to be of order 2, just as the midpoint rule for quadrature -
}15. However, this will not be prov:d until later.

Anotner well-known quadrature method is the trapezo1d ru]e Hére

the required area under y(t) is approximated by that of the trapezoid
whosc two heights are _j/(t.“) and jf(t”.ﬂ) and whose width is h. Thus the.
associated ODE metnod would be

yn+| /n V“ + yn+t)

This is an 1mp11c1t method, as yn+]—f(y(tn+]), n+1) is hot explicitly
available. However, as with the midpoint rule, we may choose to
approximate required advanced values of y by use of tne éxp]icit Euler
method:

:f ( ﬂ;l) | /L + by Y

If so, we are led to the algorithm

h= Yt l"‘f | )
yn-H = Y + h‘[‘?(?t f‘M_,) ~+- )/ ]

We rewrite this in the standard notation as

k, = 4 YV.‘ 'L“n)
4.£<§' :: rx:@ v/W .. cn t;q‘f~£;)

Y =Y +»i-k+!-
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This method does not 1nvo]ve 1ntermed1dte t va]ues, and so is not,
strictly speak1ng, a true Runge- Kutta method. Desp1te th1s, it is
regarded as a Runge-Kutta method (of a degenerate type perhaps), in that

it fits 1npo the'sahe genere] formula pattern that defioeS‘the Runge-Kutta
o1ass; as will be seen shortly. (In'the same vein, meny one-sfep methods
are included in ;heolineak muitistep c]ass, even thothAthéy are not
strictly mu]tistep )

nd

The above is thus a second example of a 2-stage, 2'° order, explicit

Runge-Kutta method The oruer of 2 arises from the an order accurate
trapezo1d rule on wh1ch it 1s baseo The intermediate use.of the Euler
method of only f1rst order does HOt,‘dS it turns out, degrade'the order
of the overall method A |
These two examp]es should be enougn to‘suggest a general: formu]a
for exp11c1t 2 stage Runge-Kutta metnods, name]y
= h( Y, En)

k = h £y, ok t+xzh)

</Y)Fl.“ I 1'(3 k +-2Y’k| 2
w1tn some constant coeff1c1ents X, @’ b’, and 7{ This defines an.
a]gor1thm for ODE systems, but, depend1ng on the coefficients, it is not
,automat1cally of order 2. However we can determ1ne what the order s,
for a given set of coeff1c1ents - The ca]cu]at1ons for this. will be done

fairly thorough]y for tn1sicase; they will be oone much Jess thorough]y

for later, more complicated, cases.
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What has to be done to determine the order is to ¢a1cu1ate terms

in the Taylor series for y ., and y(tn+]) under the assumption y(tn)=yn

and see how many of the terms'agree. Tne difference between theée two
quahtities is dﬁ; the local truncation error. Inorder to simplify tne .
notation, we consider only the scalar case, and use subscripts on f

to denote partial derivatives all of which will be evaluated at tn" We
first wfite the Taylok'series for Yot+1° expanded about tn.and carried. to
h3 terms: |

ho = hy, o |
k, - WLy, )+ \jxk + "%?-‘tl »za‘l
h by MJ wt_xk 7h L bl +«O(h3
= by, e Ry St )
R SRR A S RS P LY

-

-

ﬁw;* + h(ﬁff)ﬁ14-k(fd,yﬁ +y74t).4

’*—L\(aafﬂ g:/\jjh‘*'b,ﬂf’?'g{j 4—-‘-3/
+ 0 (h?). " fee)

Now we need the Taylor series for y(tn+]),_the true solution of the

ODE for whnich y(fﬁ)éyn. We have

Yok = 3o b 1R T, - 0T, <004,
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but must express this in_terms only of f and its partial derivatives,
in order to make the comparison. Thus we write
)=+ |
O U (UL S Y R
R A D AR NP ARV Ik S
Now we can compare the two series, and recall that as the coefficients

k

of terms up to h" agree, the order is at least k. The conditions for

matching of the successive terms are as follows:

V? : (match)

Wi @rr=|

Wi Ya=% , 3/’2.:*45\~

W .'rx.'r"lﬂt‘7a/»‘”l:é' 7"?‘»'{‘72‘,:5"7 6=4 -
Notice that a match of the two terms in hK requires that the individual '
~ terms within each éoefficient'eXpreSsion must match, in order to assure
equality of the ;oefficieﬁts for general f. One cou1d aJsb show that
the iﬁdividual terms must'match by choosing various specia]tcases fpr f
so as to get thé7ihd{vidué] equations above one at'a time. In pérticu]ar
the matching of-the fyy tefms shows that the h3 terms can not generally
agree, regardless of the values of the constants. Only in the special
case that f&yﬂozfs'such‘a match possible.  This means that we ;an never
achieve order 3 or more fof this'c1ass‘of methods. ”.'

- The conc]usibns to befdrawn as to order are therefore aévfollows:

We get order 1 or more if &j: 1- 4. This is thus the condition of
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consistency, or the condition that the method is exact 1f-f‘fs a cbnstant.
We get order 2 for the method if, in addition to the consistency condition,
we have = = 1/2¥ . No nigher order is possibie. |

This qoesn'tAéay what;x%hould be, except that it .cahnot vanish.
In fact, for any choice of ¥'# 0, witho, §, andy?as given above, we get
a valid 2"d order'methéd. In ulhey Words, we have a one-parameter famijy
nd '

of 277 order, explicits Zfstage Runge-Kutta methods

kol = L\'_C(\jh)th) . .
e WSl Lk b S
e = Uy F (\- Jko + &k o

The choice ¥= 1 gives the midpoint rule, and = %—giveé modified trapezoid
rule. This romp]etes the proof that these two examples g1vcn earlier are
indeed of order 2. | |

The above-éna]ysis provides Qhe further piece of iﬁfofmation.
Tt gives the 1oqél error térm, as apbrokimated by the difterence belween

the h> terms of the two series. That is, assuming that the order 2

conditions hold, we have a local truncation error of

do = Yy Yltae) = W@ 180 © O(LY,

¢= (“"" L"M + M“”)fryt/

P (P ) by - AR

{-.-6’3’”“ é‘) (-‘C'v\/ ) ANy y "'_Jc-tf JEE AT

n
PRy
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This formula shows that the cho1ce{¥ 3/4 gives the much neater formu]a
_¢= -E- fyy. However, reducmg the number of terms in¢ does not
neceSsafi]y mean'a reduction in the size of f@

Note that even in the spec1a] case 5’ 3/4 and certa1n1y in the
general case,§’1s not read11y estimated. - That is, dn is not approx1matea
by some expression. such aseCh3y’which can be easily estimated in
practice, as is the case for the linear multistep mefhods. This is a
major-drawback of the Runge-Kutta methods, one which much attention has
Abeen paid to 1n’receht research. There has been some success in removing

this difficulty, which will be mentioned later (Sections (c) and (f)).

. (b) Explicit r- stage, classical case

We can c]ear]y genera11ze the process. of the previous section.
Instead of Just one .auxiliary intermediate point (y +ka t +z%h)
we can consider severdl such po1nts. The number of.these po1nts, p]us 1,

. is the number of stages (the number of va]ues of f)

The case of three stages would have the fo110w1ng genera] form:
‘« LAY, )
h‘ 0§ (ko 00 m)

=~ h & (Y, Gurko + fr by, £t @z,wu_):ﬂ)
wa= nyﬁ§+yk +YE

/ . .

Ed
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Notice that this algoritim uses a coefficient of n 1nAth¢ t argument
which is the sum of the coefficients of the'kj in the y argument in
each f expression. This means that in the simple case f=constant,
the t argument has the correct value in correspondence to the value of
the y argument. If turns out that if a'more'genéralialgdfithm, with this
condition not 1mb03éd, were sludied, the order conditioné would result.
in that condition anywdy. This was the casc with two stages, wherea(=)?.

" To simplify tﬁe notation slightly, we set |

£ =, %= Gy Yl

As shown in the text* we can calculate and compare the Téy1or series .

~for Y and y(t in this case, juSt as was done'before for two

n+l n+1)

stages, but with greater compfexity involved. If we do this through
the h3 terms, we arrive at :
'. ’ p U - .
| L' | );1b311_}}”~ ) (consistency)
SR AR = Yz .
3, . Lz, 2z ' -
W Loy b &0 = ’QL{‘) &2 4 233 “'"2/‘4;"

*The text uses a special notation, which makes the methodrs]ightly easier

to write down, and much easier to analyze. It involves defining, for the

y . 7 c /"‘,"\‘ 14 A".) ' ‘ ~

J :'(;); T - <D - (\-6‘]’ 2 k - <H'(--~)f/ - { ﬁi /,
1.

0°"n

scalar case; vectors

) . 1 |
Thus for examp]e,gl-h£(¥n+cx]£o) is to be read as k]—hf(ynfcx]k +cx]h).
The use of subscript indices (0 or 1) further simplifies the expressions
for derivatives of y(t). - This notation, while convenient for research in

Runge-Kutta methods, is not necessary ieve. -
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This is a set of 4‘equations in 6 unknown constants. Hence we would
expect to get'a solution with two degrees of freedom. This can be done,

withcx

]'and o%as the two free parameters, with the result

Re 2oy o 3432
Tt 2 B )
yo | 'b—‘ - 3’7" 2

,él[ : Q’L"‘“ l/C'A’uY;_ )

By =Xy G =% Fu,

)‘.

. '.(D(’ F X, A F£0, o F 2/3> y
For coefficients given by these re]étions, the a]gofithm is a

3rd oraer, éxp]jtit, 3-stage Runge-Kutta method. It has a local error

dy = W@t +0w®),
with?’being a rather complicated combination of f and‘fté-derivatiVes.
Again, there is no choice of the parameters which wi]]Amake%7s 0, and so
3 is the maximal order here. |
Now wé~can'wr1te the full generalization (still exp]ic.c)}to an
r;stage methbd; ~Its general form is |

he = R, )
’zg': I,\-;(\_/yp)—é ﬂgj Rd.“.) + +O(Z£\)) |

h

va e ke

. :"V.n*ﬂr _ ;'\/n . }% kz
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This algorithm can be characterized in a more compacﬁ form simply by the
triangular matrix ( Bqj) l¢qer,i<izq and the vector (xq)O§Q§r—1'
This is a set of r + r(r-1)/2 = r(r+1)/2 coefficients. The various order
conditions are, in pr1nc1p1e obtainable with Taylor series as Defore,
but are so complex that they cannot even be written down in comp]ete
generality. | .

For the case r=4, the conditions for order 4 are g'ivén in the
texl (p.éﬁ). They écwrlstitute 8 relations in 10 unknowns. and they have
a 2-parameter family of so1ut1‘ons,: in terms of Dﬁ and 0(2? vﬁ'th 0(]#0<2', 0(]74 1,
0<2#1 , Oﬂ#o# 0(2.- The result that the hrﬂ term in d; c¢annot be made Lu
vanish identicaﬂty, as seen for r=2 and r=3, holds for r=4 as well, and
in ‘.fact for any r (see Section (c)). A . |

One of the solutions to the 3 relations for order 4 is tne

classical Runge-Kutta method, given by

| fer o o Ve o 0|
3 - 2 - S '
((J’EJ) = zzl 8 2 A O /2 | Q 3
34 Bsz 5 ¢ QO

(af) (Vs, V2, s, */) =y s i, A3
(The algorithm in the usual form was given in Section 5(c).) Notice that-
the above va]ues‘ of X4 andO(z cannot be substituted into the 2-parameter
solution equations, because of the denominators of O =K, But if xlzi-fg,
andc(z = ;- -5 are inserted, tie result simplified, and & is made to

go to zero, the above coefficient values do result.
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The classical Runge-Kutta method, 1ike previous examples, arises
from a quadrature rule, namely Simpson's rule: |

Sm +h j/f)‘“' o ‘\[y (tn)+Lf\j[t +«ﬁ)+y(y*”]

The 1dent1f1cat1on ar1ses by making the approx1mat1ons

——Awm b)x th ik, kb y/w = fky

although this choiceof strategy for the Runge-Kutta algorithm is. not
obvious from Simpédﬁ's rule,a]one. In fact, Runge's original method
of 1895 was not that given above. It was Kutta in 1901 who revised
the fomu]as by using undetermined coefficients, chosen to obtain maxi-
mum order. | _

The quest1on of efficiency is re1dt1ve1y easy to look at for tne
classical Runge-Kutta_method. As a 4-stage explicit method, it requires
4 f evaluations to do each step.: HoweVer: in order to control the
error, the.classica] method of step doubling (or ha]vfng) is usually used
(see Section 7:(c)). In that case, another 4 evaluations are made fof
©a seéond step sfze'h, and then a single step is taken err the intervai
of size 2h. For tﬁe latter, instead of 4 evaluations of f; on]y‘BAaEe
needed, because the’firét one, f(yn,tn) has-already been;ddhe. So a
total of'4+4+3=jj‘éva1uations is used to fntegrate from»thito tn+2h and
“generate an error estimate at the same time1’ In termS of gteps of size
h, the cost is théreforg 5 l-eva]uations‘per'step. This number will be

S 2
recalled later for comparison purposes.
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8. (c) Urder, error estimation

The examp]éé of r-stage explicit Runge~Kutta methods given so far
indicate that the order can never be made Targer than r. This fact can
be proved for any r. _ ‘
Theorem: ,Fdr‘aﬁ‘r-stage explicit Runge-Kutta method, the order
isgr. | |
Erggf;. Fur the.pdrpnﬁc of this proof, it is sufficieht to consider sfmp]y
the scalar ODE y+ Ay, where ) is an érbifrary (séy, rea]) constant. The
method then gives (1etfing x=h\ ) _ -
ko = hE( qu‘b ) = b T = X Yy
l&zﬁ -\h‘?‘ y”%(@ -y {4«&«)

= x(/n+ gﬁg, ‘-:) 8"") 2y -~s) p; .
Examining the dependence of kq on X, we,f1nd that kq is a polynomial .
“in x of degree q+|, mu1t1p11ed by Y Tnis 1s clearly true for,ko, and

1f it is true for koK kq_], then the formula for kq shows that it

]’ TT T
is true for kq, It fo?]ows tnhat Yne1™ :é:ﬂ K; kq is a polynomial in x
of degree:r, timés-yn. But for this problem, the true solution with

y(tn) =Y, satisf1es

Yltw) = lth) = e yre) = Xy,

- = ([«
= = bx /f)yn..

Thus dn Y+ —y(th+]) is a series in x 1n.wh1cn at most. the terms through

‘r+i

'xr/r; cancel. That-is d has an X term, and possibly Tower order terms
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as well. But an order of r+l or more would require dh=..0(hr+2
the same as dn=0(xrf2)}

), which is
This is a contradiction. A . | QED

As the various explicit r-stage Runge-Kutta methods are studied more
c]osely for r=5,6,---, it turns out they Tead to more equafions to be
satisf{ed for order r than there are cOéfficfents. Henée-fhe‘S-stage
methods only have order 4 at most, etc. This discrepancy.gets worse
as r increases. (See the table in the text, p. 37.)

As indicated earlier, there is difficulty in estiﬁating_]ocaT error
for a given_Runge-Kutta method. In many cases, the easiest and most
reliable way to do this is thg doubling/halving technique described
in Section 7 (c): waever,‘begausé this inhreases the cbsf per step
from 4 to (effectively) 5-%— eva1uations Qf f, other appfoaches have been
taken instead. : | '

‘ A choiée'proposed by Merson, whiéh‘cdnﬁains an error estimate, is |
h

order, explicit Runge-Kutta given by

Yy o 0o 0o

the 5-stage, 4t

| /e \

(ba) =V Yo © O I ¢

o 6 <3 Rf A\

It uses also the intermediate quantity

A yhn :’ Yn * % ka.‘ f‘ }i;-,»frl-k‘s,.)
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which is the y argument of k,. (See p. 85 in the text.) It can be
4 . ‘ :

shown that if f is linear in'y and t, then the local error is

_ N ‘ . —N ' . é;
‘Jn - 5 {4yr\+l yww) +0(h ))-
and hence is easily estimated. However, to the extent that f is non-
linear, that esﬁiméte will be inaccurate, although the Tocal error dn

remains O(hs).

,Nofe that only 5 evaluations per step are'required by A
this method. | '

A third approach used to estiméte error in Ruhge—Kﬁtta methods 1is
the idea of imbedding.” Here an r-stage method of order p is imbedded
in an (r+1)-stage of order p+1, in the sense that all the f evaluations
required by the fifst method are a]sq,required by the ;ecdnd. Tnen the
difference between the two resulting approximatjpns tbjy_(tn+1) is a

h;order'resu1t.

good estimate, to within O(hp+]), of the error in the pt
Names associated with imbedding methods are Fehlberg and Sarafyan: Thc

Fehlherg methads will be presented in Section (f).

8. (d) Implicit r-stage

If we consider the expiicit Runge-Kutta methods,‘éhd drop the -
fgquiremgnt that each kq depend explicitly on the previous k's only,
we get the class of implicit Runge-Kutta methods. That is each kq

is defined by a relation that may fnvo]ve gll_the k's, and so is defined
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implicitly only. With a shift in notation from the previous. sections,

we write the general r-stage impiicit Runge-Kutta method as follows:
kl‘ = ‘\‘{:(y"‘ Y ki +'ﬂ.',’; ‘Q“‘ﬂ' o '*’[”n"k\”, - l‘)
k?.._:" )\'&‘ (,\jh“"&llkl + o +ﬁl’v’ kr-) in* XLA)

. -

kY‘ =A h{ (Yn*'ém l<¢ + o t Crr k’r 3 &‘n‘f“‘xr }\)

(O(Z = (531 1 @gvﬁ“ s @5r>
'ymjl_':'f‘ Yo +Hky Foot Ak,

If we keep this standard structure in mind, then it suffices to specify

a matrix and a vector:

: Bi @lm e Gy
s Y r ' | .‘(31& 6:. R & P
e = ((’LJ)Z;}:.) = . ’ Cav 2
| By --- s

v
¥ = (‘h)) :.()f‘));_/_m) Vy-)ﬁ |
This same notation can be used for the explicit case also, so that
tﬁé above system actually includes both types of Runge-Kutta methods.
In the explicit case, the matrix {315 striét]y lower triangular: only
the )Bij with i>»j can be ndnzero (the others are 0). - |
~The meaning of a stage changes slightly for the implicit case.

The number of stageé is the number of f expressions that appear in the

defining relations. It is not necessarily tne same as the number of

f evaluations that are necessary to implement the method,
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A simple example of a 2-stage implicit Runge-Kutta'metth is the

following: i
t?‘-: A 4:( yn)iéwl)
},\ .)" fourl )\ {\ ( y\n + }_’_ /?1‘ 4 ""}‘i‘ k}_‘) f‘h ~+- A )

\yv¥4?i” f;‘ YV\ '+".?% lai + 3& }?7.. .

- On close examination this is recognizable as the trapezoid rule, since

k]=hyn,k2=h¥n+].< As such 1t is dlso a 11near‘mu1t1stcp method and is
usually thougnt of in-that class, not the Runge-Kutta class.

If the.matrixﬁais more or less full, the method is called fully
implicit. Methods of this type are due mainly to J.C. Butcher. In order
to implement such a-method, it is necessary to solve a system of rN
(generally nonlinear) algebraic equations, since each of r quantities kq
is a.vector<of'1ength N. Thislis a difficult job for Qn]y'N equations,
and is even narder for rN, ff we cdnsider r up to 5 or so.

A compromise is to makef not so full, but only lower triangular:

i n O
.ﬁz] @ﬁz. '
Crv - Byl
This means we are reducing the implicitness of the re]&tibns to only -

oné_kq at a time:

hy }\"5( o + %“ﬁ gy, tar gl



-89-

Tnis is only N equations to solve, but it must be done r times to get

all of tne kq. These methods are called semi-implicit Runge-Kutta

methods, and are_due mainly to H.H. Rosenbrock.

In.either case, the discussion in Section 7 (b) applies here, in
the actual solution of the implicit equations. The easfest method of
solution is functional iteration, where only repeated evaluations of f
are called for. In the semi-implicit case, a quasi-Newton iteration
nethod could be used, but the matrix manipulation that is necessary
there becomes impracticéi in the fully implicit case, in-general. For
some special prob]ems,‘howevef, the use of implicit methods, with
specialized techniques for solving the_imb]icit relations, may be the
best choice.

The calculation of order for the implicit Runge-Kutta methods is
more comp]icgted-thahlin the explicit case. - One generates Taylor series
as before, but one has to insert these series repeatedly into computed
series-in order to get enough terms explicitly, i.e. to eliminate the
implicitness. ‘Thjs is done for fhe 2-stage case in the texf (pp 37-38).
For tine geﬁera] r—sfage case, there are r2+r free parameters, and it
has been shown fhat this number is more than enough tb satisfy the con-
ditions for'dfder r; E.g.; the conditions for orderv3 for the 2-stage :-

method yield 4 equations in ©& unknown Coefficients, and hence a 2—paraméter
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family of so]utionsl.eachvgiving a 3"% order method. In fact, Butcher
showed that there are enough free parameters to satisfy the conditions

. for order 2r for an r-stage method. The text gives examples for r=2

of a 3rd orderiand a 4thforder method, both fully implicit.

8. (e) Higher;ordef methods; Fehlberg's methods; numerical examples*
Numerical procedures for solving ordinary djfferent1a1 equatfons
with given 1nitia1 conditfons occupy an important sector of scientific
research. Runge-Kutta types afe.a highly kegarded subsef.of these
numerical tecﬁhiques,_and'subsets of Runge-Kutta types pro]iferate
current mathematical literature. An introduction to yariods aspects of
general exp]icit'RuﬁQe-Kutta methods, and Feh]berg's mutation in

particular, follow.

General Approach =
Given: A first order differential equation
dy . .
ax - flxy)
with an initial conditjoh |

y(xo)‘# yo;

*This sectién of the notes and course was provided by R:L. Pexton. While
.the notation used differs s]igntly'from that of the preceding sections,

this is a comp]etéTy‘ée]f—contained study of explicit Runge-Kutta methods.
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The "true" solution at the point Xo + h, where n is a real number
(positive or negative), may be closely approximated by a Taylor series

expansion
h

' 2 u 3 1 4 iv
ne y(xo)lzl!_x(xoﬂh y'"(xg) +h y .(x0)+-..

yxgh) = y(xg) "+ hyxg) +H

If f(x,y) 1s'gg§ilx_ differentiated, this is a reasonable method to
use. However, in Qenerai, the higner order derivativeé are complicated--
both difficult fo derive and to evaluate.

To avoid thesg possible difficulties, Runge—Kutta methods approximate
the "true" solution at‘x0 + h by summing a linear combination of parti-
cu]ar'va]ues of f(x,y). 'The evaluation points are selected such that
if these particular f's are expanded 1n a Taylor series about (x O,yo), the

summed series will agree exact]y, to some order of h, w1tn the Tay]or

series expansion of the "true" solution.

y(x0+h) T'y(xo) thLCDf(XU’yU) + c]f(x0+a)h,y0lb]h) + czf(x0+a2h,yo+b2h) + ... ].

When the b's are expressed as a Tinear combination of the preceding values
of f, the usual form of Runge-Kutta formulae are obtained:

fo = f(x

0 0°Y0)

fy = flxgt eqhuygt Bygfy)
f, = f(x0+o(2h,yo+ ﬁzof +-82]f]

f3 = flxgt Xghuygt Bygft 8311 32f2)

y(x0+h) ﬁfy(xo) + th f + c]f] + czfz + c3f3 +'...]
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Order of h Agreenent
For Taylor series expansion of the "true" solution, use the given differ-
ential equation to develop the higher order derivatives.

"l = d 1 : . _d y

yx) = ey (x) = o flxay) = f 4 fyt |
ey - PLLIY S S 3 : .A f f '}

2

= f 4 + + v Ef),
T 2T Ty R AR

etc. To 3rd order we have _
. Y . 3{“ - .
y(xprmyg + hfy + 5 o) * 3T Fax t 2yfo ! o Ty

An expansion, to 3rd order, of the fk terms in the 4-stage formula in

(fx+fyf :
Tay]dr series is disp]ayéd in Table I. - Wotice that the éoefficientS'of
powers of h are simi1ér in form to the binomial series expansion,

(atb)" = ah + a1 4 ngg;lQ-.an-zbZ 4 N n-lgfn-z a"3p3 4
Equations of Condition

Equate Tike powers of h-in the -two Taylor series expressions. .We
restrict the Runge-Kutia expansion to 3rd order. The results are shown uii

p. 97, following Table I.

a

(fx+fyf051 * 0(h4)



Table 1
y(x+h) = y + h<0-0 + c]f] + szz + c3 3 O(n )

flay) = flx+aphoy + ““10 fo) = fo + h[oqfy + Bigfofy]

"Zrzf + 2018 0fof. 4 (£y0F)0F
- 2! fl xx . “91°10%0" xy 1007 'yy

+ -’ﬁré’f + 328, FoF. 4 3ar (B0 )2 4 (8,03 |+ 0’(h4) ‘
3T [*1 T xxx T ** 10 fof "xxy 1'Y*10'07 Txyy 1007 yyy

¢ 6-

falxy) = £+ aphy + h(‘f‘zofo * 521f1)) fo * h[z x * (BT * 321f1)fy]
kK +h2 2f + 20,(B,~fy + B f)f'+(8f+8 f')zf |
27 %2  xx 2'F2070 T P21t Txy 20°0 T Fa1T1 tyy

3
h
Y3r

3 2 - ‘ 2 | 3 4
“2Fxnc * 32(B0f0 * 81 1) Faxy * 332082070 * B ) iy * (Byofo * Bfy) nyJJ "o

o

f3(>$.y) - f( toghyy + h(830f0 + 8311‘1 + B 2)) fo + h( fo ¥ (Bygfp * 33]f] + 332 f,) y)

. 2 ) .
he/ 2
ot ?TQ%fxx * dagliggfy + By + 32ty * (Bl * Bfy + By sz )
+ h3 a3f 3a2(8 f,+ 8 ; + B 'f ) f + 3 .( fo f, + f ?f -
3T\%3" xx 313070 T 3171 T P32  Txy T I3lBypTyt Byyfy * B3pfolf, |

) N
* (Byofp *+ By fy + 332":jfyyy)+ 0(h")
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The process of higher order terms, while straightforward, rapidly increq5és}

in algebraic manipulation complexity.

Fehlberg-Runge;Kutta'

An interesting and valuable variation of RungeJKJtta'methods has been de-
'veloped by Erwin Fehlberg. In order to minimize truncation error and to re]w-
ably control an adJustable stepsize procedure, . Fehlberg develops two Runge-

Kutta formulas simultaneously.

Particular Case:2nd/3rd Order R - |
Given afirst order differential equation y' = f(x,y) and an initial condi-

tion y(xo) Yg» consider the following two equations.

y ='y° + h Ej ¢, fi + 0(h3)

<y
1}

Yo +h ). &f + ont)
k=0 ‘
where _ | :
fl ® f(x0 +ah, yo+h :E: B, f A , k - 1,2,3 |
A= 0
: ["‘k = & (5;0,]

Note that fo, fys and f2 are the same in both equations. The "y" formula pro-
duces the calculated solut1on while the difference between "y" and "y" provides
tho Jocal truncation arror. - | |

As -in the general case all fk aré expanded 1ﬁ a Taylbr Series. .Equating
coefficients of powers of h prodqces.a equations 1h the annowns-ck.‘ek. L

and BkA
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gttt Al CptCytcyteg =
Cioy * Coap = 1/2 o _ C Cqog * Coay + Chog T 1/2
CBpy - /6 = T] | °sz1°‘1 * °3(331°‘1 * 332“2) = 1/6

~ Where T] and T2 are the local truncation errors of the "y" formula.

Fehiberg 1mposes the condition

= #(x+h,y)
Since : .
fy= fx * aghs v + hlBggfy + B3 F) + Baz"z’)"
y(x + h) = y(x) + h(cof0 + g fy * cfy)s
we have
| oag = 1 B0 "%  Bn =9 B32 = ¢
Assuming , o » .
G0 321“1 (‘/2) 331“1 + 332“2‘(‘/2)

we may solve for c2 and c3 as functions of Ope
=‘1/6<'|/a2(1 - a2)> g
= 1/5((2 - 3a2)/(1 - a2)>
Deu1gnat1ng T2 " -T,. one evnluataa
c] = 1/3((2 - 30:2)/_&.'('01.l - 2a2)> o
cz'Q ]/6((3(1{ - 4A)'/fcz2(a.| - 2q2)>
T ]/12‘a1<k3a2,-_2)/(a]:- 2azi>



=97~ | -

"For a, = 2/3 we see that T] = T2 = 0. Unfortunately, this results in a
-degenerate set of equations. However, for values close to 2/3 the truncation
~ factors will be small. Féhlber9~selected a, = 27/40 and a]‘= 1/4.

Explicitly we have

y = ¥ + h(214/891% + 1/33f, + 650/891F,) + 0(n%)

'§ =Y + h(533/2106fo + 800/1053f2 - 1/78f3)’+ Q(hQ)
with a local truncatibn error of | |

TE = y-§ = (-23/1782f, + 1/33f, - 350/11583f, + 1/78F3)h

Numerical Examples
Consider numerically soiying the Airy differential equ&tiohl
i;% - xy’=‘0.
’Let y' = z, then y" = z' - XY; 1.é., we can express the Afry 2nd order differ-
en;ia]'equation as a coupled pair of 1st order differential equations

:W‘ . . .

y' = 2 - | 2z
In matrix-vector notation
y'(1) = y(2). y'(2) = xy(1)
For o '
f y(1) 0 1\
Y= N ’ A=
S\ (@) x 0
we have ' : f _ :

Yt - AY. | |
The following results were .obtained on a CDC 6600 high speed computer. -
We employed a Fortran code baSed on Fehlberg‘s 5th order Runge-Kutta process

and possessing a built-in stepsize control mechanism.
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Case I. For x ¢ (-5.5,0) we compute and record results .at ihfervals of
length = -.1. Since Zhd order differential equations have two independent
solutions we chose as initial cenditibns (a) y(0) = Aj(0), Z(O)'='A%(0),

(b) y(0) = B4(0), Z(0) = B%(O). (A{ and Bj are the symbo]e used to denote
the two selutions of Airy's equation.) Program contrels allowed a minimum
steps1ze of -.001 and the error (per interval step of - ])was to be less than
107 6 A1l recorded results were at least the requ1red accuraqy

Case II. For x ¢ (0,11) results at unit intervals were calculated. The
error control was 10'8, minimum stepsize = 10'3, and initial eonditions were
y(0) = 8i(0), 2(0) = Bi(0). . S

. Case III. Conditions as in Case II except we require results at inter-
vals of .2.

The requested accuracy was achieved in both Case II and‘III.~ In Case II
| the right-hand;side of the 1st order differential equations Qas evaluated
2296 times. For Case III only 2104 r-h-s evaluations were required, i.e.,
the "print-out" 1nterveT may reduce substantially the amount ofimachine work.

Case IV. Consider intial conditions |

y(0) = Ai(0) 2(0) = Ai(0)

and.otherwise Case II contro]se leen that Cases I, II, and III produce ac-
curato results, what can one pred1ct about Case IV?

Fehlberg's 5th order method calculated the values displayed in Table II.
Ihe values seem reasonable except perhaps for Ai(11). Mofeover, the results
are valid for x ¢ (O,S),'

Knowing that Ai(v) = 1/ v/3.K]/3(w) where w = 2/3v3/2

we may generate
a series of check values. The Bessel functien K1/3(w) can be evaluated very
' accurately. These high]y reliable values reveal that the Fehlberg-Runge- f

Kutta solution 1s incorrect for all x > 5.
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Table II.
X Ai(x)
0 0.33502805
1 .13529
2 .034924
3 .006591
4 .0009516
5 .0001090 _ -
6 000170
7 .0000879
8 ,001302
9 .02331
0
1

.04947
©12.3304

Actually the.so]ution monotonica]]y decreases as x increases. Let the
reader beware of blind1x accepting any computed results‘
Tab]es III and IV dramatica]]y illustrate the differences in work required

by different orders of Fehlberg-Runge-Kutta schemes.. For the two problems shown,

the methods used were the fe]lowlng

F-R-K-4-N-1 4™ order, first varfatien
FoR-K-4-N-2 . gth ordeh, second verfatien
F-R-K~5-N : 5 order

th order

F-R-K-7-N 27
A1l these routines are based on Fehlberg's Runge-Kutta methods for a system. '
of N ODE's. The tables show the number of eva]uat1ons of the right- hand s1de

flt,y) (cumu]at1ve), as of various t.
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. Table III.

Runge-Kutta Results

Fehlberqg's approximations

R. England: Computer Journal, vol. ]2’.n0. 2, p. 168.
dy _ V. _32:2 '
at .<é-1E7+h V)08 Y

= 32i2;1'25 - 32.2 siny - 5E-:QV

afo
| <<

1-2

i ol

alc
Ceti=

n.lo.
P=Y=2

=V $in y

,‘ V cos y_
i

afo
&i%

p= Q- 002378 exp ( —7555>

1= 250 - 40 exp (m}

Initial conditions: t_=<0) ¥=1.59, V=100, m=1, h=x-=0.

Print out at t.= 50, 100, 150, 200.

For a]l orders

‘error = 10° 8 initial step.= .5, minstep = .001 .

Step = 50
, ‘ ‘ | 1Tofa1 Number of RHS Evaluations
Method = - t=50  t=100 t=150  t=200
F-R-K-4-N-1 - 1194 . 1410 1542 1728
" F-R-K-4-N-2 1440 ,1‘585 Coess 2106
F-ReK-5-N . . &2 . 792 12 . 984

F-R-K-7-N 234 29 38 416
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Table IV,

Lapidus-Seinfeld: Numerical Solution of 0.D.E, cxampleVIII, p. 84.

y{ = {- [40-8 + 66-7(M, + .08y)dy, + 66-7(M2 + .08y,)y,}/z,
yj ® {408y, ; - [40-8 + 66:7(M, + .08y,)ly,
+ 66'7(M1+] + °08y1+] )‘y~1+].}/111

o " | 1=2,3,4,5
yg.= {40-8y; - [40-8 +'66-7(M6 + .08yg)lygl/zg

2, =M+ .16y, +75 i 1(1)5‘

Initfa] conditions:

o
N

. 73476500
74875687, -.06192031
75929635 | -.08368619
M= | .76774008 y(0) = | ~.10042089
|1 77443837 -.11306320
.77971110'  -.12243691
| 78383672 _ |

error = 10'%

Step = 5) initial step = .5

Total Number of RHS Evaluations

™ -.03424992 "]

) «

Method t = 50 't = 100 t =150
F-R-K-8-N-1 792 1056 1296
F-R-K-4-N-2 882 T8 1458
F-R-K-5-N 504 720 896

195 325 Cae

- F<R-K-7=N

minstep = .001 .
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8. (f) Stability

The subjects of order and local error are considerations of accuracy.
We now look atAthe questibn of stability for the,RungéfKutta methods.

We saw (Chapter 6) that a general one-step method is ;tab]e if the
Vincrement function\?satiéfies a Lipschitz condition. In the explicit case,
it is clear that¥will Le Lipschitz as a result of f'béing Lipschitz,
since}#is explicitly constructed from values of f. In the implicit case,
tne same result holds, for all sufficiently small h, although it is not
as bbvious. | '

. We turn then to tne more specific question of absolufe stability.
Here we consider the simple test equation §= Ay (Aa comp]ex.constant)?
and we week the region Sa in the n plane where we will have ’yn+],5'jynl'
Recall the reason for tnis consideration: If f isl]inear iny (or
approximate]y so);‘and the eigenVa]ues of the coefficient matrix‘are‘ Ai’
then all of the}ixiAmqst lie fn S, if perturbations in y_ are to decay.
If any are not, We can expect‘errors to grow unbounded]y_as n¥@and thus
. deétroy the accuracy of the ;omputed answers. In this sense, stability is

rélated to accuracy considerations.
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We can easily calculate the results of a Runge-Kutta method on the
problem } = k)n If we use the notation of Section (d), and insert
into the general formula, we have, for q = 1,2,---,r,
r . .
If the method is implicit, these relations are also. So it is easiest to

break the discussion into two cases again.

~

Take firsf the explicit case, and consider the Z-stage, 2

”q order

. methods of Section (a). For them, the above relations reduce to
ko= Ry, -
ko= W (Y, +35k,) = M(H—,{%};)yH
Yorr = Yot (=P k + Yk,
Yan /Y = L+ (1=00hy & Yhy (15 hr/ay)
B P S N Y -3

Notice that these are just the first tnree terms of the Taylor series'

.h)

for e . In fact, we know in advance that yn+]/yn'must agree with

eA tn+1/e '\tr|=eh)i | ¢

up to the h® term, because the method is of order 2.

But for absolute stability, we want to know when fyn+]/yn] < 1. Thus
for this case, the absolute stability region is
- ‘ | - v
Se=fhni liene )Vl < ¢
in tne complex hA plane. C ‘

q

For the_genera1 explicit r-stage method, the relations defining k
will give po]yhcmia]s ir\klA, multiplying Yoo (See the théorem on order
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in Section (c).) As a result yn+i/yn is a polynomial of degree r in hA.
The first few terms of that polynomial must be the terms (r|A)k/k! of the
seéries for eh>§ ,-for the k up to the order of the method. Again, S, s
a region in the haA whefe that polynomial is at most 1 in magnftude. The
. region for‘the c]assica1 caée is shdwn in the text (p;.41); One important
feature of S5 1n all these cases is Lhal it is fjgj;g_inicxtent. It
cannot qo 1ndef1nite]y fdr in any direction, because of the way it is
defined.by a po]ynoﬁia].
Now consider tﬁé implicit case. The example of the tfapezoid rule

hds already'beéﬁ covered (Ex. 6.1), with the result

.\JV\‘H /Yx,\ = (I*n% )/{\-—L\X/z))

5. = {vl\)‘;: R.&(;kh)ﬁo?.
Generally, for an implicit r-stagé method, the equations fgr ‘;he,kq
constitute an rox r. ‘Tinear system. The coefficients in that system
will be either 1 or qdantfties ——thgqj. As‘é result, the determinant

is a polynomial in h?\, say q(hA ) of degree r or 1ess,.and the solution

jvw} /\/ = F(LA)/Z? (L\A))

for a polynomial p of degree r or Tess. Thus the absolute stability

5. =§ e | pn)/3 ] 21}

With appropriaté choices of coefficients,‘sa can be made to include

will give
region is

tne entire left half-plane, making the method A-stable. . The selection of
jmplicit Runge—Kutta methods 1s'close1y related to the subject of Padé
approximations, which deals with.app#oximations to e* by- rational functions

p(x)/q(x) (p and g being polynomials).
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8. (g) Summary

It {s difficult to generalize about ODE methods, especially for a
class as large as the Runge-Kutta methods. 'Neverthe1ess the following
remarks are offered as indications of the standing of the Runge-Kutta
methbds ainong ODE_hethods. o

(1) They are one-step methods. This imﬁ]ies that

(a) there is no startup problem, and diséontinuities at the
'tn do nct cause difficulties, but

(b) some of the efficiency of linear multistep methcds is
lost, in that past information is discardéd.

(2) They are difficult to derive énd analyze, but this shou]d not

be considered a detraction for the user of an existing method.
- (3) The 1mp1icit hethods are |
(a) relatively impractical, because of the 1argeAnon11neaf
systems, but
(b) potentially A-stable, énd therefore usefuT for stiff
prbbTems.' | |
(4) The explicit methods
, (é) are easy to use,.but
“(b) have a‘finite absolute stability region.

(5) The.order_of the method is fixed. Many prqb1ems are best

solved with‘variable-order Tinear multistep methods.

(6) If fixed order is acceptable and'the prob]em,fﬁ not Qtiff,

the néwer RUnge—KuttaAmethods (e.g. Fehlberg's) are good.
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Exercise 8.1

Examine the pair of subroutines, DIFSUB and RKl on pp 83-84 of fhe
: text.. (Make the corrections given 1nAthe Errata, Appendix II. See also
the listing fo]]owingvthese gxercjses.)‘_These perform the classicial
A‘Runge-Kutté method; ohe stepAat aﬂfime, with a variab]é step size"bésed
on a control of local error via halving. Show thaf RK1.in‘fact perforiis

Lhe classical 4%

order Runge: Kutta method. - Specifically, identify, in
terms of kO’ k]g k2’ and k3, the vectors Y2 and Y3 as of statement numbers

1, 2, and 3, and the vector Y1 of statement 4.

Exercise 8.2

Write a main program which reads N, tb’ t]ast"h’ a"d € from a
data card, and calls DIFSUB repeatedly to Solve a given problem on.

toé.tf;t]ast with an initial. step size h and a Tocal error control constant
€. |

Exefcise 8.3

Use the packagelobtéined above to solve tne prob]em U= -u, u,=0, Qd=1,
- 0<tT/4 (from' Exercise 7.1).' Th1'.‘s requﬁreé | ‘

(a) stateménts in the main program initializing Y{

(b) output statements in the main program. At each sfép; output t, u,

‘ .ahd,the relative error in u. |

| (c) the'subrqutine DiFFUN'(T,Y,DY) to éompute.DY = §'giyen T=1t

~-and Y=y, j.e. to cvaluate f(y,t).
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(d) the data card. UseTl/4 = .785, and €= ]0-8.“ Make a reason-
able guess at h, using the formulas
~5 1 = - (5) 4~
d h” @ w1th?%]— Yy A/]ZQ here. . o
After running the pkob]em; can you explain why the actual relative errors

are so much less that £ ?

Exercise 8.4

Use the above Runge-Kutta package to §olve the problem
5!*:7\(‘/—-@“*)-—'3“#, yloy=1, ,Oété/@)

with €= 10'5, for the two cases (a)A= -1 and (b) A = -100. To do this,
.appropriately modifyvthe initialization of Y and the're]ativé error
calculation in the main program (use the fact that the solution is y = e't),
the subroutine DIFEUN; and the data cafd (use a reasonébTeAh).. Also,
in urder to obtain control of relative error, set YMAX(1) - ABS(Y(1)) after _
each step in the main program. YMAX is what the estimated local error is
compared to in the error control. |

Whaf is the average h for the two cases? Are they consistent with

the S for the method?
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SUBRCUTINE CIFSUE (NyT oY gDY ¢HWHNMINGEPS sYMAXGERRORGKFLAGJSTART)

C¥¥6¥¥¥¥4'.4'46'¥§¥4¥#4%!#4##¥#¥¥¥¥44!'4'##4¥¥¥¥#¥¥¥¥#¥4¥¥¥¥¥4¥¥¥¥¥#!'¥¥

ce THE PARAMETEXRS TC THIS INTEGRATICN SUBROUTINEL HAVE »
c* THE "FCLLCWING MEANINGS.. ¥
ce* H THE NUMBES CF FIRST ORCER DIFFERENTIAL EQUATIONS ®
ce v THE INJEP:NCENT VARIAELE *
c Y THE OFFENCENT VASTABLES. UF TO 10 ARZ ALLCWED. »
c* oy AN ARKAY CF 10 LOCATICNS WHICH WILL COCNTAIN THE *
c* I VBLUSES CF THE CORIVATIVES AT THE START OF THE INTZRVAL.*
c* H THE STEP SIZE THAT SHCULC BE ATTEMPTED. IT MAY EE ¥
c* INCREASED Cn CECRZASEC BY THE SUBKROUTINE. .
ce* HMIN THE MINIMUM STEF SIZE THAT SHOULD BE ALLOWED ON THIS ¥
c* STEP: ¥
ce £PS THE ERROR TEST CCNSTANT. THE ESTIMATED ERRORS ARE ¥
C* RECUIREC TC Et LESS THAN EPS®YMAX IN EACH CCMFCNENT, ¥
ce* _ IF YMAX IS ORIGINALLY SET TO +1 IN EACH COMPONENT, *
c* THE ERKCKk TEST WILL BE RCLATIVEC FOR THQSE COMFCONENTS »
ce GREATER TKAN 1 AND ABSCLUTE FOR THE OTHERS, v
ce YMAX THE MAXIMUM VALUES OF TKHE DEPENDENT VARIASLES ARE *
c* SAVED IN THIS A&SAY, IT SHNAULY EE SET TO +1 BEFCRE ¥
ce THE FIRST £NTRY, (SEE THE DESCRIFTION OF EPS)., ¥
ce* ERRCR THE £STIMATEC SINGLE STZF ERROR IN EACH COMPONENT *
c* KFLAG A CCMPLETICN CCCE WITE THE FOLLOWING MEANINGS.. *
ce -1 THE STZF WAS TAKEN RITH H = HMIN *
ce BUT THE REGUESTED ERROR WAS NOT ACHIEVED, *
C* +1 THE STZP WAS SUCCESSFUL. ¥
ce JSTART AN INITIALIZATICN INDICATCR WITH THE HMEANINGs. ¥
ce -1 REPEAT THE LAST STEFs RESTORING THE »
ce VALUES CF Y AND YMAX THAT WERE usgo *
ce ‘ LAST TIME, »
Ce ‘ +1 TAKE A NZwW STEP. *
C&l!.¥¥¥¥l¥¥I$U¥¥¥¥¥¥¥¥.##¥¥v!¥!4¥¥~¥¥!¥¥¥4¥44¥¥l¥¥44&4*!4#4;#44!444444#

UDIMENSICN Y(10)oCY(10) 4aYMAX(L1C)oeYSAVELL3)aY1(10),4Y2(10)4Y23(10)
1 +ERRCRU10) o GYN(10), YMNAXEVILD)
IF (JSTART,LT.G) GC TC 2

L R R R R R R L R R R R R LY
C* SAVE THE VALULES OF Y ANO YMAX IN CASE A RE3TART IS NZCESSARY. *
AR R R R R L S R A A e R R
CC 1 T = 1N ‘
YSAVE(TI) = Y(I)

1 YMAXSV(I) = YMAX(I)
Cn¥¥¥l¥¥!'!4#48#4!44¥¥¥¥U#¥¥¥!4¥4#¥¥¥¥v¥4¥¥4¥¥4l4¥¥¥¥¥¥¥¥¥¥¥¥4!¥44¥4¥!¥#
C* CALCULATL THE INITIAL OERIVATIVES v

C!'#."“'l!'U'##'i‘!U¥Ul#'l5"4!%444!!'¥¥¥4l¥¥4¥‘¥¥¥¥¥§¥4#4¥¥$¥¥¥¥4¥¥¥‘

CALL CIFFUN(T4YeDYN)

GO 1C 4
c¥¥¥ll¥¥¥¥i#¥‘§¥ll4¥¥44U4.¥.¥4§§‘*#'04'¥".¥¥##"?!4¥¥¥¥¥¥'¥¥‘¥¥¥4‘!¥¥4¥
ce RESTCRE THE INITIAL VALLES OF Y ANC YMAX FCR A RESTART. *
Cl!l'!¥l¥¥¥¥'#‘l#‘¥¥‘l¥#.¥¥#¥'4¥¥¥!*'I¥¥‘¥¥¥¥4444#!¥¥¥¥'¥¥¥¥4#¥¥¥¥¥4¥¥¥¥

2 CO 2 1 = 14N

Y(T) = YSAVE(I) .

3 YMAX(I) = YPAXSV(I)

4 KFLAG = 1
C.".'!‘¥...'!Ull."44'4l¥'4¥¥¥§¥¥¥4¥¥l¥¥¥¥¥¥¥¥¥'¥¥¥¥¥¥¥‘¥4¥¥¥¥‘¥l‘¥!¥¥¥
c* SAVE THEZ FINAL VALLE CF T AND CALCULATE "THE HALF STEP. .
C;ot;&;tu###v##&#vv&#v;v;vva#v#x;v;;vvv;4444;4;#444444#4*4#44;¥44;444444

5 A = H + 7

HHALF = H*(.,5

vavtu;;#nvuu#&u{t#vv»¥¢¥4~su¥;44444%#&4¥444;4;4;;4#444#44;44!¥4¥4!4;4#l
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C* PLRFCR¥ CNf FULL RULNGE KUTTA STEF ¥
R R R T R R R T R S R L AR S T R

CALL SKI1(NeT o YSAVE qlYNoHeY1)

C.Q““Q‘ (SRR ESSREFERS RS R NSRNEPEESSRIIEIEEERR YRS R RRRY R Y R R YRR R R R R R R R YR
ce NOW FERFCRM TWC WALF INTERVAL KRUNCGE XKUTTA STEPS *
R R L e e A RS e R S X2

CALL RKIIMNGyToYSAVESCYN«HHALFSY?Z2)

THALF = T 4 FHALF

CALL CIFFUN(THALF sYZW0Y)

CALL RKL(NGTHALF 4Y¥24DYoFPHALF4Y3)

ERRMAX = ¢
C'¥"‘"¥#'-"‘"'-U"'l##!"‘#'-#.’-’-4444 IR ERERY ERS R R RS EY EERERERERERESSERE SRR R R
ce CALCULATE THE NEW MAX Y¥2S, THE ERRCRS ANQ THE MAX »
C* RELATIVE ERRCKS. . ¥
C"*"“. PN RSN IR ESEFFEREE IR R R R R RN S R R R R R R R R R R R E L R LR R E X LR L E T

DC € [ = 14N ' - o

YMAX (T) = AMAOXL (YMAX(I) 4ABSHIYL1(I))A3SIY2(I)) ABSIY3(I)))
ERRCR(I) = ABS((Y3I{(I) - YL(I)}/715.0)
ERRMAX = AMAOXNL(ERFRMAXGERKOR(IMN/ (EPS*YMAX(IY))
LR N e R R AR A L R RS R LA R R LR
ce CALCULATE THE IMFRICVLC VALUE OF Y BY ELIMINATING THE ®
ce ESTINMATEL ERRKCH, ’ ¥
R e R R R AR AL R R L
Y(I} = (1E.0*Y3(I) ~-¥1(I)}¥/15.C

6 CCANTINUE

IF (ERRMAX.EQ.0) F = 2%H .

IF (EFRPﬁX.CT.U) b o= H'ERRMAX"(fG-Z’“O.Q?
IF (ERRMAXLCT.1.0) GO TC 8

KFLAG = 1

7 T = A
RETURN ‘

8 IF (H.GT.FMIN) GO TC F
IF (KFLAG.LT.0) GC TO 7
H o= HMIN
KELAG = =1
GG TC 5

END



-110-

‘ SUBRCUTINE RKI(NGTeYaliY4HaY1)
C“¥§V¥.'¥ I Z AR R REFRESEEEERERERERERREEE RS RRRRRER SRR R R R R Y PR R RS R R R YRR R R R R R N

ce THIS SUBROUTINE PERFCORMS ONE RUNGE KUTTA STEP. ¥
ce ARGUMENTS PARE.. ' ¥
ce N =  NUMBER OF EGUATIONS, ' o *
c* T - INITIAL VALULZ CF INDEFENCENT VARIAELE. *
ce Y. - INITIAL vALU: CF DEPENCENT VARIAELES. ¥
. C* oY - INITIAL VALUt CF DERIVATIVES. - *
ce H - STEFR SIZE . *
(R Y1 - THE ANSWER I% RETURNED HERS, ¥

AR LTI E R R R R R R Y Py e I E S S R RS SRR Y ¥

CIMENSICN YCL1OU) DY (10) oY1010) 4Y2(10)4Y3(10)o0Y1(10)
HHALF = H*Q0,S ' .
DO 1 I = 14N
1 Y2(I) = Y{(I) ¢ RHALF*CY (D)
- CALL CIFFUNI(T & HEALFL.YZ2,4.0Y1)
DOZI=1'h_. o <
Y2(I) Y(I) ¢ HEALF*CYL (D)
Y2(I) YZ(L) .+ 2*Y3(I)
CALL CIFFUNIT + HHALF,Y2,0Y1)
00 % 1T = 1,8 - =
YI(I) = YOI) + R*CYI(D)
3 Y2(I) = YZ2(I) + Y2(1)
CALL DIFFUNIT + HaYZ.0DY1)
D0 4 I.= 14N = ' .
4 Y4(I) = (Y2(I) = Y{I) + HHALF*CY1(I)) /3.0
KE TURN L '
END

N
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9. Linear Multistep Methods

This chapter deals with the large class of Tinear multistep methods,
also referred to as finite difference methods. This subject was intro-

duced earlier in Section 5 (d).

9. (&) Basic formulas, examples

The general formula for this class of ODE methods is

K, . ‘ ' o
Iy = ile;]n-; + h éo & -yn—i ) yj = .F(yj)t-ﬁ‘

Here we shall assume that the step size h is held fixed, so that the mesh
points are tj = tj-] + h. Thetxi and Bi are then fixed constants associated
with the particular method. The numbers K] and K2 determine how far back,
in the sequences of y and y values, the method requires data. The number
K = max (K],Kz) is the step number of the method, because there are K
previous steps involved. The method is called a K-step method.

The above formula often appears in other forms, depending on various
authors' notations. One such form is
5y ' . Ka .
Z X Yl + R Z By =0,

\

c=p
wnich can be obtained from the original by setting<x0 = -1. However, in

the latter form, one must add a normalization condition, such aSCX6 = -1,
in order to specify the coefficients uniquely. Otherwise, multiplication
of thé'equatjon by any nonzero constant gives a formula that defines the

same method but has different c0effi;ienfs. Anotner variant of the basic

formula is K

z (« Vs * )\[Z Yo.:) =0,

(=0
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which can be obtained from the previous one by defining the last few o,
‘orB]. tg be 0.
We have already seen tnhree examples of linear multistep methods,

although in fact they are only one-step methods. These are:

Explicit Euler: Ky = 1,0 =1, K, = 1, B = 0, B, -

2—0,{30-]§ ' i
- . ’ _],.
2 1,’50 51‘?'

Let us now>consider in detail a properly mu]tistep'éxample. The

i
—
-
~
|

Inplicit Euler: Ky = 1,%

]
pu—
-
7~

1

Trapézoid Rute: K, = 1,cK] =

most genera] case in which K]—] and K2 =2.is given by
Y = X e T h (o S+ Yae B Vaa) -

Thfs is a 2-step method. For.a given set of coefficients (postpon1ng
for a moment whatxfhese'should be), the first problem‘we facé in
implementing thjs méthod is that of starting it up.’_Wé would take our
first step with n=2, and would reQuire the data y],.il, and yog The
last item is known from the initial conditions, but the other two aré not.
What is general]y done here 15 to use a one-step hethod9 e.g. an explicit
Runge- Kutta method to Lake the step from t0 to t1 This”produces y1, and
thus a1so y], as requ1red

In perform1ng the general step, we m1ght think in terms of the history
array we would use. The natural choice for this 1s the array, of size
NAx 3,

\Jnv = (yv‘) \‘/V\"J }./ys—)>‘

[ o)
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Then if Y1 is known, which it is when we have Yp-1° &n_], and 9n_2,

the step consists of constructing Yy and then Y from it. In the explicit

case, where P _=0, this simply involves evaluating the formula for y , and
(o8 . n

filling in the rest of Yy by use of f (for 9n) and y_ , (for &n_]). In the

n-1

~

implicit case, We would first have to solve the implicit equation for Yo
e.g. by one of the iterative methods discussed in Section 7 (b). |

In the implicit case, for this or the more general Tlinear multistep
method, a convenient notation is often used for the necessary calculations
in computing Y- We use P to denote the operation of predicting Yn from
the existing data -- i.,e. from Yn-1 in this example. The result is the-
quantity yn(o) which is the fi;;; guess in the iterative process. We use
E to denote an evaluation of f. The first such evaluation is generally

- t ). We use C to denote the correcting of an iterate value

that of f(yn(o) n

yn(m) based on fhe previous eva]uation; Thus, for example, an implementation

might be briefly described simply as PEC, or PECE. If a number of iterations

are'done, say M of them, the shorthand description might be P(EC)M dr P(EC)ME.
~ Return now to the two-step formula, with four coefficient; Oﬁ, 50,ﬁ3]

and Bé, so far undetermined. We would naturally want to set these in a

way tnat makes the formula as accurate as possible. Some ways to do this

can be seen at once.by choosing simple special cases for f. First, if

f =0, the formula becomes Yq =CK] yn_], and this is clearly inaccurate“

un]essixl =1, since the solution is y = constant. This condition will

correspond to having an order of at least 0. Next, if f=constant, and
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0-(]=1, the formula becomes Y=Y -1 + h(v'p +p]+p )f,‘win'qh is accurate

only 1f6 ﬂﬁﬁz—], as the true solution satisfies y( n+1) =y(t ) + hf.
This condition corresponds to that of consistency, or of an order of at
least 1. Thus we would 1mpose these two conditions on the four parameters,
resulting fn a cqnéistént method in which there are .two degrees of freedom
left. | | _

The natural extension uf Lhis idea i3 to considgr théw;ases of y
quadratic >1'n t (f linear), and then y cubic in t (f quadratic). If we

2

take the case y(t) = t=, f = 2t, the formula becomes

j -tn_.+1'\((-’>o at, *’ﬁp .Zt,,,+@1 -2tnz)
= 'b,;., +QI\A[§° "hwa*‘M*‘(}p 9~ '*@L("M—c ‘L\)]
o bun 4 2h(tua + g~ 0,,1«\ |

This is to be compdred with o . :
% - : : -
y(th).‘: fy‘ - (tn-g"t"l’l) = fy‘_, + 2,}1'{7““ 4= L\j‘—_

Thus we have an exact result in this case if and only if

(30"" ﬁ‘a- :'!/'2‘ - .
This is the condition for the order to be at Jeast 2. If we take the case
y(t) = t3, f = 3‘c‘2 the formula becomes :

=
yﬁ.: A -t +L'\(Go 3'& + 6y 3* A=t “‘"tgz Btbwz.)
‘z"‘?

_tn. '\"3!’\[50(1‘:“ |+L\) +‘G) )\-7: +(3’7..('fm ,.;_j
t,,.-‘ +3h] eyt bopa) 6 +2(Bmp )t Flesre) K]

]
!

-t +3inrl\ +3Z—n|l’\ v 3 (s L\)
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assuming that the order 2 condition holds. When compared with

Y(fn) = ('fn..,+l'1)3 T ty:, +’3fh--7\\ l\ +3Z(h-;; }'11-}1/\3)

we see that the method gives the exact answer here if and only if

60*_"(31. = '/3 -

This is the condition for the order to be at least 3. If we continue this
process, we will obtain conditions which cannot be satisfied at the same
time as those already obtained. Hence order 3, or exactness in the case
y(t) is a cubic in t, is the most we can get with thié formu}a.

The calculation of these order conditions is much like that done earlier
for the Runge-Kutta methods. However, there is one important difference:
the formulas here are all linear in the coefficients. This makes the
linear multistep methods somewhat easier to derive and analyze than the
Runge-Kutta methods. |

We can now write down the methods that arise in th{s example. First,
if we want an explicit method, then the conditivis fur ordér 2,£i]=1,

6 oF 3]+ ﬁ2=1 R .ﬁo— ﬂ2= | 1/2,' together with the condition for éxp]icitness ,
‘ﬁo=0, determine the coefficie(nts um’que]y:ﬁ2= -]/2,51=3/27. This yields

the formula N . . .
})n = .\/v\~—s + z(jyh*l - yn~1>)

which is the explicit Adams, or Adams-Basnforth method of order 2. If

we make no restriction on ﬁz), but impose the condition for order 3,
| 5.0”32:1/3, we obtain the unicf solution 5‘,:_5/,1)» B, = 2/3) Bla-l/'z_)
Yoz Vet 11 (5":/,, +3 Yooy \/y.-l‘») .

This formula is the implicit Adams, or Adams-Mou]ton)method of order 3.
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These formulas.-are often written in terms of backward differences.
To do this, define . |
. . U \ . *
% yh‘z y” - \JH"‘ ) v L\/ﬂ" = y%‘(‘"l - y"‘*?_
2 = \‘ - . _ . . .
. Vo = V V In~y - In= 2y t Yu-2
Then the two Adams formulas above are = o ;
Explicit: Y Va1 ¥ P gtz Vyn_’l)‘ ,
Ciel oy = o dge U1 &2; S
- Implicit: : Yn yn»_].*" h(yn Zvyn ]2V -Yn) . :
Some of the 6ther commonly used linear mu]tistep'methods are the
fo]]oWingf

. . . .
neo ¥ §(yn tAy, + Y,.p) (order 4)

Milne: Yo =Y,
g 1
Hamming: yn;‘ §'yn-1 - §'yn-3
4'3' ne - e
| +§h(yn-f 2y - Yp.p) (order 4)
q

‘Gear: Yy 12:] O(i-yn-i + h@oyn (order q)
' The method of Milne is obviously based'direct]y‘on Simpson's rule for
quadrature. ~ A1l of these can be arrived at in the same‘mahner as

above.

9. (b) The Adams methods (explicit-and implicit) |
The group qfﬁmethods referred to as the Adams methods include exp]icit
and implicit methodsidf all orders. Adams and Bashforth presented the

methods in 1883, and MdultOn deve]opéd the impiicit.ones,further in 1926.
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The presentation here will be in terms of the backward difference (@)

notation, because it saves considerable writing. For any sequence (

Z-I,ZZ’..
we define o .
N Z-,\:— ?h
V2,2 VR, = B, - Ry -
\7‘ Z,m VP~ Uy = ?,"—;?z-n_, + R
okl g, = whaz, - vRe, .

It is clear that vkzn is a linear combination of zn,z

n-1* == Znok, and
in fact we can show (and‘wiL] prove in Section (c)) that
: Sk
Vk?n = ZD(“') .(i)?n-i
. ¢ =
Much earlier in time, Newton gave formulas for interpolation polynomials,

for use when a Sca]ar function f(t) is known at equally spaced values t

If we write fk = f(tk),§7tk=h, and sk=t-t

K
| k
written

, Newton's formulas can be
" _ A ¥ : 2.
) = -QM + jiv.i"" e SwSma YV fu

| R~
+ —— 4 Sﬁ‘g\”‘“‘-"" 5w\_-h+1v 'Q‘
. (k-1) ! h=t

\ | (R) |
+ S Sy - m~h+,$ (5)//ks‘)
whéreg is some point in the interval containingft, tm’ and t

val meke1: T
the Tast term is neglected, this means we are interpolating by a polynomial

in t to approximate f at t from f at to, to ¢

ket

-)s
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Let f(t)= y(t) and integrate that formula with respect to t over (tn 1ot )
The result is an approximation of y(t )-y(t ]) —‘7y(t ) as a linear

combination of’ fm v £ The coeff1c1ents are 1ntegra]s over

m-k+1°
(tn_],tn) of the coefficiants that appear above, which are polynomials
in t. | |

For the expTicit methods, we take m=n-1. The result is the formula

T Yp T Y= Ypoy = /1/”'+k0’|Vj“+-~--+)\3h,V ﬂ/»l

wnth constants X' defined by

fth 5 S’ . L S . L’J+‘
Jt " Tme Mu+\

. ~}
or ) ) " l

:p(u')j f £:f)(‘5}{~--! $‘J+t);151.

= () f (‘S) ds (a/o:"- ) -

N

In the case of a scalar prob]em (N=1) we can intearate also the errof‘ :
term,. and get a formu]a for the error in y R assum1ng a]] the past data
(yn-1f na1® cco y k)1s exact The result is

d, = yit)=y,= % by ““0(3‘) ;e( ambe, t)

~For any W, we have :
‘ R+ 1) R+

dp = Yih y“"(f,,)+0(t. ).
To summarize, we have der1ved the formula .

Y ~yn,+kZXVy,,,.

This is the explicit Adams or Adams Basnforth formu]a Notice that it

k+1)_'

is of order k, in that the local truncation error is 0(h that it is
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a k-step methdd, in that it involves yn?k but no ear11ér'data; and that
it 1s explicit, in that }n does not appear. It can be written in the
standard form _“

Y, = Yn-n"")\ 26 /nﬂ (K = Kz.:k>)
but then the 6 depend on k, whﬂe the b’ do not. Thus for practﬂ’ca]
reasons, these methods are usually implemented in. backward difference
form, especially when variation of the order‘is to be allowed. The

use of backward differences also allows for an easy esfimation of the

Tocal error: Since hk+]y(k+]) k+2))

b

is approximately hﬁ?k& (within 0(h
wé nave k . : |
23% k v )G\-l . |
This is to be eXpected,.because the first neglected term in the kth
order formula, compared to higher orderj formulas, is th vkan_].
To get the implicit formulas, return to the Newton interpolation
forinula for f(t), and let m=n. Then integration over (tn-]’tn) gives
(neglecting the‘Tast term)

Vylts) = hy, +L\2; VY 4 ,,_L\}»\ka-l
* | 'tn
bfi = gt T 5.4-; - - ‘J*’\dt-/J‘ L‘JH

=1 Aj —S+|)(vs)\)(‘ s-1) < ( s-u__)oh

f=."<~‘~f* () or-n

lV\)

where
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The neglected. term can be integrated, in the scalar ease, to give

A ‘IM | }/ }\kﬂ (kw)(f) 3- € (fn k+| , t,, 3
We can est1mate the 1oca1 -error, in the genera] case by the quantity
2rk* f‘\? Y
The linear mu1t1step furmu]a obta1ned here is
Yo = Yoy F L 222 3’ ‘37J . |
This 1is the 1mp11c1t Adams, or Adams Mou]ton, formu]a of order k It also
can be written in the standard form
yn-| ‘*"AZ_@ /V\~L ‘ (Ki;i) K?«zkf\))
Iout then the B dep:nd on k, whﬂe ‘the X do not. We fh'av'e-
6%:‘ = f§% 33 = )n;-f
(the identity between the 'X% being a consequence of'their defining
,equations,,proved 1n Section (c)). Hence these are all 1mp11c1t methods .
They are (k-1)-step methods, not k- -step. |
‘The values of coefficients }3 and )3 .can-be found inlthe'text (tables
on p. ]06 and p. 1i3) One observation to be made from these is that for
all k>1 ,X I('M(l This means that at a given order,l the Tlocal e‘rr'-o'r
is smaller for the 1mplieit method that for the exp]icif ene. There
are also other-reASOnsafor preferring the implicit Adams}methpds, wnich
will be clearer in Section (e), regarding stability. |
‘The problem of starting up either of'the'Adams methods is rather

“easily solved when backward differences are used. One simply uses the order
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1 mgthod‘on the first step, constructs vi] from the results, then uses
the order é.method.for tﬁe second step, etc. The order can be built up
to a given k in k steps in thfs way. .

In the case oflthe 1mp1fcit“Adams methods, the predicting and
cokrectihg are generally done with the help of the explicit Adams method.
Thus for the order k method, one cou]d write |

It = Yaa + L‘ 3/ ‘7 Jﬂ,,
for the-prediction; Then the correcL1ons, as done by functional iteration,
would be written ' _b : :
ynme) = 4__, + L ZX v \Ynl wm) (m O‘ “")

where in vﬂy n( we use f(y n(m),L ) in p]ace of yn (which is unknown)._ The

1dtter equation can be s1mp11f1ea to

‘jv\ (M-l) ynlm) + l\rl‘z i [yn(m) /h(m |)] (‘M
Iwtn) = /nto) + h - vt Yntey +

These methods are referred as the Adams-Bashforth-Moulton methods.

m)

9. (c) Symbolic Derivations

The use of symbolic methods, also referred to as the calculus of
operators, is a powerful tool in the development of ODE methods, and also
in methods in interpolation, extrapolation, quadrature, and numerical

differentiation. = Many fundamental formulas in these areas can be
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derived with re]ative]y little effort by symbolic methods,'where con-

' ventional derivations would be lengthy and tedious. Here these methods
will be introduced and used only to derive the Adams formules (both
explicit and imp]iéit), and Gear's implicit methods.

A (1) Basic Qperatofs. We consider a general function f(t)-of a real
variable and a fiied real number h (to be interpreted later es a step-
size). We can._apply to f- the operatorA and get a new function af whose
values, by definitipn, are : '. '

aFit) = £(#+h) = F8) . (1)
This defines the forward difference operator A. We define also the
backward difference operator ¥(read "de]“) by _ '
i = £t~ f(t-k) (2)
An operator that is s1mp1er than either of these is the 1ncrement operator
E which rep]aces t by t + h in the argument of f: . _ .
E&(t) = £(t+h). » (3)
Simpler yet 1S'the operator k, where k is any constant, given
s1mp]y by mu1t1p11cat1on Dy k: _ ‘ o
RE(E) = k- NN (4)
In particular, 1 denotes the 1dent1ty operatdr. Finally, we.consider
the diffefeﬁtiation opefator D, defined by L
Df(t) =+F'(t) SR (s)

always assuming that all derivatives exist as needed.
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. .These operatofs -A,V, E, k, and D -- are the basic ones. We
can construct others by taking certain products and sums. of these.
For examp]e,v2 =V.yis. given by |

VEft) = (V1) (8)

o =vw - ep-n]
= [F6) =€ (e=0] = [£(6h) - £ 120

Similarly, the 'operator products AD and EZV are defined, by successive

application of the basic operators, to be

ADFit) = §7(¢+h) = £/(6) = DA F(t),
E* v +(¢) = flteah) = $ltah) = 9ES(E).

m+n

We notice that EME" = E™", and likewise for the other operatars.

Moreover, we can also consider negative powers of E:
N Ly ,
E7 () = §lt-h), | (6)
i.e., the function which, when operated on by E, gives f égain.i -

(2) Operator'Eq'uations. From (1) and (2), we can expressdand¥in

terms of E, for

AR(E) = E£(4) ~ §14) = (B-1)£lt)

Ve = Ble) =g = (1-87) S,
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When two operators always give the same result, we can identify the

operators as_such, ~That is, we write , A
’ A= E - : : (7)
g = l.__E‘" : (?)
We are nOW«considerjng operators as independent quantities,

separate from the.fUnctfons to which they apply and Which‘they produce.
‘In doing so, we will perform'a]gebraic manipu]dtions on then, and we
will use the fact thaf they commute and satisfy the associative law and
distributive law. .I.e., they sat1sfy the usua1 laws that hold for rea]
numbers. This w111 be carried to the extent of writing operator
express1ons which cannot be defined exp11c1t1y in terms of their act10n
on f(t), as the bas1c operators were. When this happens, some add1t1ona]
Just1f1cat1on is needed to give the equations r1gorous meanings. However,
such rigor is beyond ‘our scope here.
To illustrate the manfpuiations we will perform, we can hewrite
(8) as : _ . . | ' A |
| E = “I:L\:/:— | (%)
To obtain another besic opehator equation We consider an infinite

Tay]or series:

‘F('{:WLA) = t/f’) - h £ /“t)+— ;l’ '(rﬂ'“(l‘.“‘)f-'r

Rt

(H— th v hI}DLf.A-.,){L(t
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Thus from (3) we write

E=|+hD+ # .

This series is, formal]y, just the 1nf1n1te series for ehD, and so we write

| D | |
E -~ —= (10)

2

or, extending the formalism further yet,
, -} : . . _ '
D= h LyE . o an

Here log E is an operator (namely hD) which we wou]d be hard put to define
from first princip]es‘(wﬁthout réference to (10)). It is not the operator .
whose outcome on application to f(t) is Tog[Ef(t)].

(3) Implicit Adams Methods. Let us apply these symbolic operators to
the problem of deriving the implicit Adams methods. Here we take f(t) =

y(t), and write |
| | e |
) 7[11}1)’7[1'_},., ) = L Frs) ds | (1’2)‘

“which we wish to approximate as a linear combination of f = f(t ) fn=].=.'
f(tn_]),.etc. If we ]et tn = t and‘tn_] = t - hthen the above is

vy(t), and f(t) = Dy(t). Multiplying by p! ~(an operator wh1ch has not been
explicitly defined,ibut‘wou1d correspond to taking the indefinite integral)

we get

(13)

vy(a—),:’. <Dt (e

1

If the operator VD™ in (13) can be expressed in terms of V alone, say

in power seriesvform, thén'(13), evaluated at tys would be the desired formula.
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To carry th1s out, we use (11 and (9) to wr1te

D".“‘-.: %/»&75
//@7(

@D AV/%? (x—v )

The operator in (14) has a formal power series in V, because the function of

and hence

.a complex variable ,
-G“(z'),,z Z/’&’ill-»z«)

has a power series in z, which is rigorously valid for |z| < 1. This series

is - o R ,
oo ' ‘ '
_ s ¢
G (2) /férg ,_,{‘) - 2 YTz (15)
¢ 3 »
=
where y; =1, yT = -‘%3 cee . :G* is called the generéting functiqn for fhe

* . .
sequence ;. Formally, we then have the operator identity

VD—A(" : A % AT\‘ 7 ¢

Substituting this into (13) and evaluating at t = t, as.in (12),'we obtain



Tyt h ZxOv iy,
YRS -._-.‘l‘ f: )‘;fv» I (16-)

The implicit Adams methodsarise by taking only the first k terms in.(16),
giving the kth order implicit formula S ' ‘
) ’ . , : A k"' Y*‘ L‘. .

VORD PR AZO oV L (17)
The error committed in doing this is a series which can be approximated by

the first neg]ected t’erm,
L\ L( *

(4) Explicit Adams Methods. To obtain the explicit analogue of (17),
we want to approximate (12) by a combination of the quantities Vifn_] instead
P el _ IR P :
of v'f . But f ;= f(t _;) = f(t,-h) = E'f (t ). Hence in (13) we should

operate on i instead of f:

4’ _ ‘-; . ‘ o y | ‘
Ty = (VO'E)ETE (). e
Néw the operator VDflE must be computed_in.terms of V. But fhis requirés only

an additional use of (9):

w0 'E - v[h//?yl?} TI]”\T
A3 Jla(7y)

\
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‘Again.we express this in series form by use of a generating function:

e 3 Sy ()

|- 2 B e (19)

o0 ¢
- Zo— ‘Y¢ Z
where Yo =1, Y] S5 eee Thus we write |
- Pea .
<gD'E = hE ¥ Y
4 : ' -9 | )
substitute into (18), and evaluate at t, Lo yet

Y[fn)—'Y/fm;) = W 20:,‘}1\]8 %’-j . (20)

Th'e explicit Adams methods arise by retaining.only the first k terms

—d

above, giving the kth order formula

| | k-1 , |
Y= Yo = L Z_ ¥ Ty (21)
n n-1 6 ¢ h=1 . ) .
with an error that is approxim&te]y S
LR CI AN N
(5) Coefficient Relations. The generating functions (15) and (19)
provide a convenient Way to generate the needed Adams coefficients. For ex-

ample, (19) may be rewritten .

(Z_ +- %—;-L N %'3— - o )<Y€; + Yl 2"1‘"»““ ): ‘Z‘+-zl'+ 23_‘;“’)

mt+1
Y

using the familiar series for log TJ-E and l—l—z— . Taking coéffic_ients of z

this yields | L -
}’m + ﬁ):l_ﬂ_’_! + M2, Yo = |. (22)
U 2 -3 j miy
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This relation can be used recursively to get the Y; from Yo = 1.
h . *
If the Y; are'generated asvabove, the Y; can be easily obtained by noting

that

G*‘( 2) = (1—2) C(z-)
%_Y%,Z“-* = - (1=-2) 43/2—

Equating the coefficients'of_zm gives

*.
):n = B/;\.'_' &:w-—l

(23)

An alternative approach is to rewrite (15) as
L + * '
(z+ %,+-»-> (% *"h z*'"'> =z
and obtain, for m > 0, _
“ , 2 '
* A ‘
’8/ 4 ?1m-l fom e Y% o= 0O
m - : —_— = .
A m |
. . . .
This can be used to generate the Y; from Yo = 1. Then the'yi,can be generated

by rewriting (23) as.

%.n‘: ﬁ Y;* - (24)

¢ =0

(6) Gear Methods. The formulas of Gear are 1mp11c1t ones in which y
is set equal to a linear combination of yn,yn_],...,yn_k. Hence they can be
derived by writing‘the'D operator as a series in V. This is easily obtainedA

from (9) and (]1):

c ( .V o0 ;l;; o o , '
LD”’ Jn»-'.':-' = U9 (25)
Y |
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By retaining only k terms in this series and applying to y(t) at t = tn’ we
obtain the k-step formula.
T | ko v T
hf = = TV (26)

P

'The equation has an efror that is approximated by the fifst neglected term,‘

.
L gk v o .
k +1 T |

Thus the methpd.given'by (26) is of order k.
If (26) is'writtén”in'thé.standard form
o - ) | ‘

]Iy\ : Z °< .YY\‘L + t\ﬂo )IH ? (27)

- [N

L=

one must divide (26) by the coefficient of Yo? which is

Hence

[

- - .
G = l é?f%. . : (28)
- ¢ 3 . :

The oy can be obtalned by express1ng the remaining terms 1n (26) in terms of

the Yn-i- To do th1s we use (8) and the binomial theorem to get

¢ ¢

(l-;«a) Z(" (.)E—J. e
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Substituting into (26) and rearranging,

]

hy, = é—é—— e () ET Y,

¢=1 . g=o :
& K ol |
L= = (: 2 “},‘ (-1)° (s) Yn-J .
. i=o L2y |
. vzl

Identifying the.coefficient in brackets as -aJ/BO, we obtain
| ' 3+ Z ..L- ( | : A
O(. ':: @O _‘) . (30)
. ° J . o

{2

The relations (30), together with (28), pf'ov1qe the coefficients for Gear's
methods in the for;m, (27). (In'particular they give aj = -1.).

9. (d) Order, associated po]ynOmié]s, asymptotic error

The Subjects of order and local error relate to the question of how

closely a true solution function y(t) satisfies the 11near mu]t1step formula -

 under Luns1derat1on, which we write, as before,

Y= ZE;CX Yat + h 25:42 JYA

Thus for a given: funct1on 'y(t) we define an operator Lh on y(t) by |
Lilyeel) = =yie) + Saqy(t-ib) 4 h 2 glt=ih).

This can be cdmputed for any y(t) as long as'i(t) exists. The'1oca] accuracy

question is ﬁow'fhat of how small Lh(y(t)) is. " In specific examples (Section

(a)) we saw that b_y-thoosing_ the 0(1 and p1 properly, iE is possible to make
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Lh(y(t))= 0.identially when y(t) is a po]ynomia] of a certain degree. That

same xind of ana1ysis will, in the general case, show that for some integer r,
L (ye)) = O(h"™") |

as h=»0, for y(t) for wh1ch y(r ])(t) is cont1nuous This is done by

1nsert1ng Tay10r ser1es for the various terms and collecting like powers of

n. For the case K]—l, K2-2, we gol r=3 for the un1que choice of coefficients

]. hz, and h3

which makes r'max1mé].,'The terms in h%, h in,Lh(y(t)) in that
example have coefficients that vanish by virtue of the coefficient conditions.
Returning to the generdl situation, for any given,va]ue‘of.r and of the
coefficients, we can write, by direct use of Taylor ser1es, ‘
Ly (yen) = Z Co e y®e) + 0 (™),

if y(t) has continuous derivat1ves up to order r+2. The coeff1c1ents C

depend on thecK andﬁ3 but not.on h or y(t). If we include the term —y(t)

into the first sum, w1th d Loeff1c1cntL[ | thpn we find that .
z (-8 «, /2‘ +Z(-L) p,/(rm
t =D
; Ka
C‘o = X .
We can now def1ne order forma11y, and restate the definition. in terms of
the Cq.

Definition: The order of the Tinear multistep method with cocfficients ol
and(ﬁi is the largest integer r for which

Lh(\/ 1t)) = (.

o L’V\'H. y (rﬂ)(f) "'OU\ r.-v-“Z)

‘,.;v""'.'
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as H€>0'f0r fixed t, for any y(t) with y(r+])

(r+2)

continuous. If a method

nas order r, and y is also continuous, then we can carry the Taylor

series to the hr+] terms, and it must reduce to

Liyer) = Cop K™y 4 4-0(%”1). |
with C ., # 0. In other words, the order is the largest integer r for
which

C,=C,=---=Cpr=0, C,, #0.

The r+l équations Cq = 0 (qg<r) necessary for order r involve the

Ki+K,+1 coefficients di(]gifK] ) andﬁi (0€igK,). So one would

expect to be able to solve for those coefficients with r=K]+K2, or less.

In fact we can do that, but the resulting method is not automatically a
good one. The reason for this has to do with stability, ahd will be
" discussed in Section (e).

There is an even simp]er way to express the order conditions. For

this we need only consider the simple case y(t)= XL, y= Ay-lext We .

can compute Lh for th1s function:

& k) oA t-ih

L") = STy Zgp )

C oale-hk) T & ahrl) Ke.

= % [?“e*?— o +hee

We define two po]ynom1als of degree K | |

o f'o( K-
0”(3"),‘: % B. 5

-Ak(rr-zj
e [ 4

[ K= max(K, K,) ]}
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called the associated polynomials for the method. Thén we have simply

Lh. A) o Nt —>kKj:p(eAA) + Ahqféhh)j

Now if r is the order of the method, and we let n»0, then, by

definition, g

1) = Con ™ g1 - O™
E Crﬂ hwg )\v‘wl e -l-—O()qu)‘

Combining this with the prev1ous]y computed expression, we must have
v+l
o) ha g () = [ Cryy (1) +o(w+7)]

v+—l

Gy, ()

"

(b

Now make a changé of.'var‘ia'bles to z=eh" -1.  Then z=hA + O(hz) as h=>0,
and we have o o B
OL1+2) +L73 (:+a)rr(:+2-) =C,,, 2 r‘+n-_+ 0(a"")
-~ as z-»0, with Crty fO " | |

This asymptoAtic_ relation on the associated po]ynomials.'is an alternate

- characterization of the order r. It is more convenient in that only one
- function is 1nvb1ved? ndt a whole sequence of coefficient formulas. We

simply write down thg: po]ynomi’a]s P énd,o", éxband P(Hz) + log(1+z)a-(1+z)
which is an ana]yfic function of z near z=0, as Z qu i and evaluate

r+l

_the first non-vanishing term, C_.,z This ca]cu]atmn usAes the semes.
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log(142) = z - 2%/2 + 2%/3 - 2°/4 + ... .(The Dy Wil not all be the
same as the Cq in the expanSion of Lh’ however.)
It is clear that the original order conditions imply the above

condition on p andg~. To prove the converse implication, we suppose that

hA

the latter condition holds, and by substituting €™ = 1 + z, get

Ly (et) = 2 TC ()™ +0h"™")
for a constant-C # 0. But the general expansion of Lh(y(t)) gives, using
(a). ) At | |
Y e

In order for these to agree, we must nave Co C] ce. = Cr = 0, and
Cr+]= C. This proves the equivalence of the two characterizations of
order.

The cond1t1pn of ons1stencx is def1ned as the cond1t10n C C] =0, or
zq =1, ?T_iux - z,p |
The EQU1V61Pnf rnnrhtmns in terme of Pandgrare ,
P(1N=0, P/ +o(N=0.
fC]early rnns1stency means that thc order is at least 1 ‘This is a require- .
ment that is invariably imposed on any method to be used.

The associated polynomials p.@ are an aid to analyzing a given linear
multistep method,_in determining the order r and the constant Cr+]. Together,
these numbers describe the local error of the method and thus'its accuracy. But
f%é; are also an aid in deriving methods. For_examp]e; if one is given

only the 61. of a method, so that one hasg( }‘), then one can get the «; -
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for which tne order is ma.ximal (or is any'sma]]er givén value) >by_wr1't1'ng-
down p( ) from | 4

p(?) »r&gj'cr(’;’) O[U’f H‘].
-Sim'ﬂar]y,v if P : .1s given, 0“(5’ can be Acomputed Two examp]es of this
procésé are ,qivén in the text (pp. 119—120)ﬁ Ifcr £) = 25 2, the '

- 2-step method of maximal order must have, by an easy ca']cu]atmn, /o %) =i-é Z,

leading to the exbﬁ'cit'Adams method of orde"r‘ 2. rre é = ;-" 2 is given,
tnen the 2-step me'thod‘of maximal order can be computed tu have

a( ]ZE \,'— 2, corr'espondmg to the 1mp]1c1t Adams method of
mger 3. '

We ,n‘ow consider in greater detail the local error of a linear

multistep method.. | |
Definition: For thel%method \

Yo = 0( Yor L\ :'---6 y,“) y):g-[y)tJ))
the local error is the difference . ‘ '

| _‘fjh = 'yn - y (fn)g

where y(t) is a true s»o]ution of the ODE, and Yq is ca]cd]ated by the
method with Ypoi = y( ) for 1< 1i<K. |
In other words, w_hen a]] past values needed are exact, the error in the
computed Yn is the local error. ("r‘n‘e sign of drl differs from that used
in Section (b).) ‘ | | |
| For an explicit method v(ﬁo = 0), it is c]ear‘-'tha"c,

da = L;‘ ( Y(‘H),-‘é=f.{ >

by the definition of L. However,’ w’nen,gofo, these two quantities are

different, because the Lh expreséion involves the term hﬁoj/(tn) while
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tHe formula fof‘ Yo involves hBof(yn’tn)' These two >d1'ffer, but only
by O(hr 2), whi]elthe quantities themselves are 0(hr+]).' More
<spec1f1ca]]y, by wr1t1ng out the formu]a for Yy We have
4= 2y, H\Z—cs o +_hﬂo¥ Inyta) = Y (En)
=L 'h y)\'ty" "“\(39[‘; \./(tn)-i-&w) t") "’"c'(y.(.i"v»))t"h)j.
If we solve this implicit equation for d , we will get
= Lyt iy, + O(W").

Thus for purposes of analyzing the asymptotic nature of local error,
we may as well use Lh instead of the true local error dn‘ (This
situtation was discussed for the case of the implicit Euler method in
Chapter 4, but with-a different nofqtion: En for the local error in Yp+1?
and d, for Lh(Y)'th+1)f We prefer to use Lh because it is given explicitly,
while dn’ in thefimplicit case, is not. On the other hand, dn'is the
more meaningfu] qﬁantity, being the actual error in yn,ﬂWhen past values
are exact, and when we ignore roundoff and iteration errors,

In additionAto ]obking at the individual errors, we can look at
their accumulation into global errors. This was done'for tne Euler methods
earlier, ff y(t) js the fixed solution of the given initial value
proﬁ]ém,‘thg g]éba] errors en=yn-y(tn) can be shown_to éatisfy_a recursion
formu]a.' Th1§ fbrmu]a approximates tHe one correspondjﬁg to the solution

of another QODE. The result is

hstt O(h}‘f”)_)
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. where 8(t) is a function given by the ODE

S) = £, 500 + (Con /20 y7e)
with the initiq] va]ue 8(0 = 0. The details are given in the text
- (pp. 204-205). | -

9. (e) Stability and convergence; root conditions
In this section, we look even more closely at the truncation errors,
and how they can bude up.during the numerical solution of the prob]em.

To illustrate what can go wrong with a method, we consider the example

of Milnes method. This method has K] = K2 = 2, and the Onique choice
of the 5 coefficients which make the method have order r = K] + K2 = 4,
" The formula 'is: |

>/ .j% R § 'Jl'( y + QL~}h -1 +~./n~zf)3

and is outd1ned by app1y1ng S1mpson S ru]e for Sxﬁ y(t)dt. The aséociated

ln-
pu1yﬁum1a1s are n-

pls)= ‘,52“ R "cr('f)z L ’"Z'#lis +
and | '

pluz)+ by(uzyac(1+2) = (2= -z )

+(z- 2%, 2:3;; Yy 5 . Ly _ 1,8
(4 S+ i z+§:_m)@+az+3z‘)-7qz%~n

, 3 _ '
S0 we expect the local error to be approximate1y1§% h5y(5);
 Now consider'app1y1ng Milne's method to y =‘Ay,'with-some fixéd h.
The formula for Step nis
DERVES h_
n = Yh- = ( an - yn 2 )3
My = oy (e

-
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This is a constant—coefficient linear recursion equation; and it is known
that such an equation has solutions of the form | |
| Y. = A5 + BL
for constants A"B’E'l’ fé. If we try the sequence yn.=fin as a solution,
~ for someg # 0, we find'thatSrnust satisfy ‘ |
— 1~ W) 5™+ ‘%‘l‘ F U (1va) V= 0
-1+ )T 4 4R g - (kb)) = 0.

To be specific,~suppose that A=-1and h = .1, and thne initial value

2

js Yo = 1 at to = 0,.59 that‘the solution is y = e't. Then the abovg
equation for§ 15'(fbugh1y) ' _

—103¥% —~ 1335 +.97 =0,
and 1ts.two roots are | |

5 = . 90493737, 5, = —[.034,

Now both& ln andég are solutions of the recursion equation, and so

is any linear cumbinalion Ag“ + B L. We can choose A and B to match the
. | A
initial conditions. Since the step number is 2, we would need to have a
second starting value to Qet the method going. Suppose we choose the exact
value o S : ~ _
- M o =

Y= yilt) = 7" = e T = (P04E3743R .
To make -the solution correct at n = 0, we must have h

/1+B=I;

and to make it correct at n = 1, we must have

AS, +BF§, = e
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We can solve these equations for A and B and get

‘ ""‘JI ) ‘
B= (e "‘f)/(f—}') =< ,-é?.éﬂlo'fy
A= 1-B | + 2.5/0°%, . |
A Thus the numer1ca1 so]ut1on obta1ned for th1s prob]em with the g1ven

method and start1ng Vd]ues is |
Y = (l+x5/og)(?0¥5) ~a?$‘/o ( /039)
prov1ded we 1gnore mach1ne roundoff (numerical constants. given on]y
approximately). -
Examining this solution carefully, we see first that the first term
is approximate]y
( € = J(fm)
This we expect, since the f1rst term dominates, at 1east for small n.
But eventually the second term will dominate. For n = 100, the two terms

are about 5 ¢ 10 -5

and 8 : 10 7, or the second term is more than 1% of =
the total. For n:>130 or so, the second term is larger than the first
in magnitude, and it osc11]ates in s1gn Th1s»prob1em can be made even
worse by the 1ntroduct1on of roundoff errors, and of a less accurate
value of Y to start up. (See tab]es on p. 123 of the text.) '

- The reason for this bad behav1or is the fact that the root 52 has

a magn1tude exceed1ng 1, so that its powers grow unboundedly. If we had

gotten 'fd <1, th1s behavior would not occur.
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These ideas extend easily for the generé] Tinear multistep method.
Such a method applied to the ODE &=‘Ay gives |
L
Sy v by Epy =0

This difference equat1on w111 have a so]uc1on y E 1f$ satisfies the equation

L e ehap) £ (K= max (K, K)) 5

or, factoring out ?n K

£ (5) + AT ?’)
For a given hA tn1s is a po]ynom1a] equation of degree K and has K roots
J], §é, ces fk. 1f tnese é. are distinct, then the general solution of the
difference equation is an aro1trary 11near combination of the f

Yom 2o .

If there are multiple rooLs, the general solution is slightly different.
For example, 1‘fg] “is a -double root, orE 2=§], then the general solution
has ¢y ?ln + c,n E]n in-p]agevof C] f1n,+ <) ;2".. Highef~mu1t1p]1cities
Tead to hignher powers of n. '

In any case, the'general solution nas K coefficienté, and if we specify
thekva]ues Yor Y7 ;.., Ygo1 needed»to start up, then the coefficients ake
determined uniquely. So, ignoring roundoff, we again know the ca]cu]ated.
so]ut1on values y comp]etely ‘

The roots ;1 of f,+ hho~ are clearly functions of h)\ If h is small,
we can get an idea of their value by looking atf>a10ne - We a]ready know

one of the roots offD, because the oth

.p(n) = 5 =0, .
0O

order condition‘on the method is

L.
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~Let us call this root.§3 =1, at hA=0. For ha# 0, &1 will Vary From 1,
and in fact it will approximate eh'A

= eh v S ey,

Such a relation must hold if tne quantity f]n is to approximate e ™ ‘th=e

according to
hAn
~ with a local error of O(hrﬂ).“'The root .ﬂ = f](hA) is calied the

principal root associated with the methed. If the coefficient of fln in

Yn is c]::y(O),_then the first term in Yy is
- C 5 = )’(O)eh"=“/(tu)o .
If the problem is started with sufficiently accurate starting values, then

<y will in fact be close to y(o).

A11 the other roots §J are called extraneous or @ras’itic'r_oots. _They
repesent error terms that are unavoidably present because of the mu]tist'ep
nature of the m_ethod. We can Orﬂy try to minimize this source of error by
making the extraneogs fj sma]']er than 1 in magm’tude}. Then __the terms
cj Iﬁn will all decay to‘o as n gfowé, 50 that the first term will dominate.

Definition: A linear multistep method is called strunyly stable if all

the roots of P( §) =0 are in the unit disk [€]< 1, except for a simple root
at & = 1. .
While this condition of étrong stability is enough Lu obtain stablc behavior

for the method, one can prove stability with slightly weaker conditions,

Definition: A Tinear multistep method 1'5 called weakly stab]é if all the
"”.OOtS of'P(E ) = 0 are. in the disk)é}f_] , and on the circle)E,: 1 there

are two or more roots, all of them simple.



-143-

In other words, additiona] roots are allowed on the boundary of the unit
disk for weak stability, as long as they are not multiple roots, while for

strong stability only the principal root§== 1 is allowed there.

Definition: A linear multistep method satisfies the root condition if it is
either strongly or weakly stab]e,(i;e. if all roots of(>(£) =0 lie in
}g[;ﬂ_] , and there are ho multiple roots .on)gf =1,
The following théorem.stateé the.re1ation$hip betweep these properties
of the roots associated with a method and the numerical behavior of the
method. Recall the‘concept of stability: A method is stab]e if perturbations
in the starting values result in bounded perturbations in thé calculated Yn
at the end of a fi*ed t intervai. Recall also the concept of convergénce:
A metnod is.convergent if the solution Yy calculated at tne end of a fixed
interval convefges to the true solution y(t) ag h-»0 and as the errors in
the starting values all tend to 0. A
Theorem: If a ‘consistent linear multistep method satisfies the root
condition (i.e. is strongly or weakly stable), then it is stable and convergent.
Converseiy, if it.is éfab]e andvponvérgent, then the root condition must hold.
We wii] not pro&e_this theorem here, as that would take us too far afield.
(An'easi1y'accessible proof (first part only) appears in Henrici, Ref. 15,
Section 5.3.) ) | o
The following are:some examples of methods and théir'propérties re]atjve
tolthe root condiﬁiéh? ' | | _ _ |
(1) Mi'lne's method hasf)(z) = 1 -22. The roots a’re§1.=1 éndgf-l.

Thus the method is only weakly stable.
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(2) The 3'Ad order explicit method

Vo= -
VA Yooy +57Y, ., + l\(tf /n . +,z/n_l)
is- the explicit 2-step method of maximal order. It has p E)=

Z, ‘4€ +5=(1-¢) (5 +£). Sof, = -5, and the method is
unstable. R S |
' ina's metho _,3.9.2 1. 2 141
(3) Hammmg s method hasfb(é) = -é‘ st°-g° (1-€)(£ -gt=3).

The roots aref | = 1,& , 2 .30, § ,%-.42, and 5o the method is
st}'ongw stab]é. | ' .
('4) Tne Adanms methods, either exp11c1t or 1mp11dt have tie form
= Yo * h 2@ )'.,-L .
Thuse(z é éK 7, and tne roots.areéf];éf ...=£K=0.
So these metnods are strqng]y stable. In fatt; no other method
has bet;er stability properties than this, as far as root‘ |
conditibns onle dre concefned | |
These pxamp]e.s show why a linear multistep method cannot be Judged on]y
from its order and local error properties. All of tne above are cons1stent
methods of var‘_ibus orders, and all may appear satisfactory at first sight.
But their stabﬂit_y and convergence properties dj’ffer wide'].y, from very 'good
to very bad. | _ | . | |
The question that now arises is: how well can one do in constructing
accurate but stable linear multistep metﬁods. .Making the oFder have its

maximal value r = K] + K, does not always result in a worthwhile method,
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because of stability. On the other hand, the implicit Adams methods have
order r=»K] + K2 = 1 +.K, and they are very stable. The following theorem

settles this question inAgenera1. It will not be proved here either.

Théokem (Dahlquist): For'an order r, K-step, linear mu]tisteb method, the
method can be stable (weakly or strong]y)'on1y if r< K + 1 for.odd K, or
r<K + 2 for even K. . The method can be‘strong1y stable only if‘nﬁK.+ 1.

" That is, if We'rejecf the weakly stab]e methods as Qnacceptable, then .
the best we éan do for a K-step method is order K + 1. (Th1§ is achieved by
the implicit Adams mefhods, among others.) This is to be cdmpared with the
va]uelr = K] + Kz,-which is 2K if K] = K2, achievable withodt regard for
stability. | » _ |
: The properties-of the roots of P(S ) really give on]y_the properties
of the methiod in tne limit a§ h-»0. This is not the entire story, because
h is never really 0, and. often is not close enough_to‘O to infer the needed
information from that limifing case. .Fbr thé test equation‘}-=4‘y, thefroots
‘ gj of p(i)+ h)«o-(,% ) 'c'an be computed for’ahy given h>0,..and‘ these are the
roats that determine the numerical behavior of the method. As stated earlier,

it can be argued thaﬁ_the situét10n for this test equation,‘Whi1e unrea]istica]iy"
simple, will indicate the situation for the general problem, where-we'take A
to be any of the eigenvalues of the Jacobian Of/Qy. o
It is impractical to describe the full set of roots gj(lLA ) as functions
of hA ,'a§ hA ranges over the whole complex b1ane7 We make the stabiTity

questioh much simpler by asking only for the values of hA that make all the

e
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Definition: The absolute stability region of a linear multistep method

is the set
< {ia l?(u c] for all j§,
where %;; are the roots qf'P+ n\es

Ihe notion of absulule stability given here is qualitatively consistent
with the notion 61‘ bounded perLurbation-s in the dcfﬁ‘nition of stability. For
-the equation y =Ay, subjected to a methodv for which h)ESa, the computed
values of y, are 11"n'ear" combinations of 'i:'neE .n,‘ and so éré the perturbations
€ in Yy resu]ng f~om a pertur‘batmn of the starting values: | |

e, = Z_ d g

These perturbations all decay, or at ]east remain bounded (provided there are
no multiple roots w1.th IEJ, =1), by virtue of hA€ Sa' If hA lies in the
interior of Sg» SO that all thelngC 1 é'trictly,‘then en,—?O as n-> 0o,

The context here, however, is that of a fixed h, and n-»co, ratner than a
fixed tn = tO + nh, wit.h' h—)d and n{-»°°, as.i.n the définitipn of stabi]ity.
IfNis in the left half-plane, or Re(hA ) < 0, then we expect that
}Z) f <, because élze >‘ , and !ehxl = eRe(hA)< 1. So for sufficiently
small values of h){ at ]eas t, the termg 1s not a source of mstdbﬂny ~ But
in general, especwﬂy when th[ is s1zeab1e all of the% are potent1a1 |

sources of numemca] instability. Thus the requurement’f |<] ih S, s

applied to all the roots, él' included.
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At

is growing instead

If Re(hA) > 0, then l eh)")] and the fu.nction e
of decaying. In tﬁat case, we expect ){ ]] :y 1, and so we would not expect
to have hA € S a® a]though‘in many cases S does include part of the right
ha]f-p]ane Rather than requ1re that the lf’ be smaller than one, the
concern here 1is that the pr1nc1pa1 term c]€ remains aom1nant over the

others. To achieve thws, we could ask that the extraneous roots satisfy

’ g } }g 2 This leads to the concept of relative stability:

Definition: The relative Stability region of a 11near mu]t1step method
is tne set
5 {‘\7\ l!’jclrl far o.“ 3>lz

where g § h} are the roots of P+ hAO‘

J
Thus for hA GES, the paras1t1c roots will not cause significant errors
relative to the pr1nc1pa1 root, a]though the absolute errors associated
with them may be cons1oerab1e

when Re(hA )% 0, there is another consideraliun that enters in, besides
that of relative stabi}ity. This is that h be chosen so that the method
compu.tes Yp 2V @ >‘tn a'ccuratel.z. Thi’s issue is 4determfned by the 1‘oca1 |
truncation errors, and is not directly related to stability. It is instead
the issue of how well 5.] approximates eh , and not the size of the othér %j'

Usually, the constraint on h imposed by this accuracy consideration is more

restrictive than the constraint imposed by relative stability (i.e. by Sr)'



-148-

~ We conclude thjs"section with some illustrations of absolute stability
regions. The regibn Sa_js relatively easy to compute for a given method,

because its boundany'is given by
- (5} :
‘$°me‘§ ‘l} hy= :fze oéeczr}.
=k | { L 5= |
_ Sketches of . S for the exp]1c1t Adams methods are shown here (taken from
kig. 8.1, p. 131 in the text). Note
that these regions lie largely in the

left hé]f-p]ane‘and that they tend to

be smaller for the higher orders (k).
200

_The case k=1 is the explicit Euler
method, for which S_ is the disk
j 1+ h)\l <.

Sketches of S for the 1mp11c1t Adaiis method are shown here for orders
Jto6 (F1g 8.2 in text). The
case k = 1 is the imp]icit Euler -
method, with S, - {has [1-nAa1].
The case k = 2 is the trapezoid -

rule , whose absolute . . .

stability region is the left
half plane. An ﬁmpbrtant

observation here is that fdrla
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given order k, the region Sa in the explicit case is much smé]]er than that
in the implicit case. fhis is an additional factor in favor of the implicit
Adams, or Adams-Moulton, methods (the first being the sma]]ér 1o¢a1 error
coeffjcients). o | | |

The abso]ute"ﬁtabi]ity region of Miihek method turns out to be fhe
yertica]vline segment .from -3i to 31 on the I |
imaginary axis of the comples hA plane. T 3¢

This fact is in conformity with unstable

behavior of the method observed earlier.

For virtually ggx_vaTue of hA , one of

the ,éj here is Targer than 1 in magnitude.- )
It should be noted that in computer_code§ which implement linear
mu]tisteb methods;‘the stability regions are generally not computed or
éupp]ied in any direct way. That is)ODE codes do not compute'eigénva1ues A
‘and test the hA -to see if they belong to Sa,for example. Such a computation
would be too costly to be worthwhile. -However, the instabf]ity that occurs
if the Re(hA )< 0 ar_\d'some h7\¢5a is generally detected 1n an indirect way
in ODE codes. Whatvhappehs is that the resuTting unstab1évbehavidr causes
the local error estimates to become large. Thus if the order is r, these
estimates would indicate'the presence of a large y(r+]) (even though the
true y(r+]) may not be:aé large asvindicated), and the step'size h is reduced

as a result. Thus the error control tends to keep thélmA ‘in the appropriate
- o ‘ _ o , ‘ ‘
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stability reg1on, but only indirectly. If the code performs 1teratiqns
for -solution of an implicit equation, and makes a test for convergence of .
these iterations, that test may provide another indirect. control on the

stability of the method.

9. (f) Mdtr1x formu]at1ons and multivalue methods

In th1 SLCt10n We prpepnf some ways 1in which genera] 11n¢ar mu1T1<rpp
methods can be restated in a more compact notation. As a result of such
reformu]ations; it is somewhat easfer to understand the wofkings of the
methods and to imp]emént them. Th1s mater1a1 app11es pr1mar11y to 1mp11c1t
methods. Details can be found in Ref. 18 .

Wr1te the genera] 1mp11c1t 11near mu]t1step method as :

Y, 2«/ +h@y
- We use asterisks on the coeff1c1ents to des1gnate the g1ven 1mp11c1t methods
coefficients without asterisks will be used for exp]icit'methods, Reca]]

from Section 7 (a) that the natural past history array that we would store

1S
[V,
.\/v)..
- ' K, rows
. ' _ ijI t= K,
. yv‘ = f et
- hy,
§ S Kl VOWS.A_

’U‘yw o
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This array has L = K] + K2 rows and § columns, N being the length of ea#h
vector above. (Wé‘usuél1y store the product hfj instead of yj‘because
tnese broducts appear in the'formglas, and have the same dimension as y.)
Actua]]y‘Zh_] 1s‘the'9ector thgt would exist at the beginniné of step n.
The problem fs to describe - seduence of operations on 25_] fhéf produce
g&. This deséripffon would bé an algorithm which embodies the given method.
The firét of .these operations is the prediction step,'thch equates

yn(o) to a linear combination of the rows of ARE
' K

\ - = |
Yoty = = Y F %ZG oot -

-

Th1s is just the formu]a for an explicit linear mu1t1step method with the
same K1 and K, as tne ‘given implicit one. There is also a s1m11ar-f0rmu1a

. for predicting hy from tne same data, as
Ka

. : Ka
_ e
L= N }
Iq.\/nlo), .-\ ‘ b/'-' "/h-i‘ t+ L\ %:dt. A\/n-(:
for some coefficients )’i’and_ﬁgi. It turns out that the best choice for
these coefficiants 1su‘v o ,
' o * +* . * N S
: = ap— - (A7 #
r o( )/(‘Z'D . gc' - ((3« ﬂ‘)/po .
Tnis ch01ce is arrived at by making hy n(0) salisfy the equation
Ka-
\ — # ST * '
nor 20(\- yv\ o }\[_—@o ./n(o) e ()’ yvx f])
i.e. the or1g1na1 1mp11c1t ‘equation with y (0) in p]ace of Yi and y n(0) in

p]aCL of.yn. If we use these predicted vectors to construct a pred1cted '

value of tne entire array Yo that value wou]d be

/K‘l'ff"xkt B - pKzA

J ‘
\ —_— e e mandl \
~.
CN
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(Compare p. 103 in the fext.) A1l elements not shown are.zgro; The
diégona] lines of i's have the effect of simply moving the'yn_i and hjlh_1
for'1'>1 down one fow in the array. The matrix B is L x L.

. We now have to descmbe the correctmns to y n(0) to arrive at y
RecaH from Sectwn 7 (b) that the cor‘rector 1terat1un from y (m) to yn(m+])

can be written A A A

\ =

Jatm+) | j"‘“"‘) ' P F (/w(vn)> ’
‘where Pn is a certain matrix and'F is a vector function representing the
residual, or amount by which the wmpiicit equaliun is not 5at1’sf1‘ed. Suppose
that we also correct h).'n(o) at the same time, by making the implicit
equation hold for xn<m) and yn(m) m p];ce of Yy and yn. Then we W].H have

h = by S

The function F wes defined as
Ka

Kl . ‘
FOY) =y = 24%y, . hf( Yy ; ~hp iy 2)
F(A)/W._x) = L"&(Y"(“‘)Jf") - l‘\/n(m) G’( /H(M>J

ti

so that

I
—_ phﬂ"

where the argument of G is the m "iterate of the entire array being correcled.

Thus the correction to y (m)‘ is given by adding Pn-]G(Zn(m)) to hjln(m) and

ﬁ; Pn' (yn(m)) to yn(m)’ and leaving all other rows unchanged. This can be
written in the compact form

ZV! (w+1) :. YW(M7 T C G<‘/MW‘)) )
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(The order of the factors G and P'] is reversed here because the vectors
yn(m)5 etc. are rgy_ggg§9£§_when considered as part of y » while they were

column vectors in the discussion in Section 7 (b).) Here c¢ is the column

véctof of 1ength_L given by

"\
o)

.K‘

e

PnT (transpose matrix) is an'appropriate approximation to I - h(qrd, wnere J

IN
1

is the N x N Jacobiah matkix, of/ dy, evaluated at some appropriate point
in the neighborhood‘of (yv,.t'). Finally, we stop correcting after some
number, M, of iterations, and take yn( )

This formulation can also be used in the explicit case, and becomes even
simpler. We simply let P =1, the identity matrix, put éi: = 0, and let
the b,i andé%vbe grb}ﬁrary. 'Then one gets the cqrrect vectors in Yn(0)
already, texcept in the row for h&h. But then the next corrected value in
that row is

th}h(') = hYn()+ G(.yn(o)) = l‘\@ ./n(o)) )" ""F(yh;t))

which is the correct value. - Thus th]s schzme gives correct results with M

=.1.

e
PR



These sets 6f formuias provide a‘compact description of the algorithm
1n,considerab]e.detail,_including‘the choice oprradjctor.fqrmu]g,:and the
choice of corrector iteration method. However, it is not-of great value by
itself. It.beéomes*chh.more useful when we consider the use of otner
history akrays, 1nétead"0f the naturdl chuice ysed 50 far" |

As qtated'earljer, fof example, the Adams method;Iare usually implemented
wilh backward diffcrences of the y values, in place of,tﬁe y Va1ueslthemse1ves.

Thus a common histb?yﬁérray for the K-step implicit Adams méthod, for exampie,

is o | ' ‘ ( Y,
_ hv&h

‘

%

I
i

\ b K= ;;,,

instead of

\,
h/HH—-K 4
Both vectors have L =K+ 1 rows. Each of the two sets of data is obtainable

from the other by taking linear combinations, as i]]uétrated by the identity

VK‘)H- ;== 2‘3 '(jl)'t(‘z) j/n_z .

' L20
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Thus there is. a nohfsingu1ar L x L matrix T such that
“?,M ].yn"
With th1s transformation of history arrays in mind, the algorithm for

a step us1ng the y can be restated as an algorithm for the z,. We define

new quant1t1es
A TBT 4
Then we have ‘
B = 'qin—l
En(mty) T Bpmy + J F-(zn(m))P

o

’ .F(gn(m) = G(Zu(»\))‘

- Zn =:‘v En (M) _
in place of the analogous relations for Zn(m)' The matrix A and the vector
Q; for the 1mp1icit'Adams'method of order k = K + 1, as defined by these
relations, turn out to be: |

g XO =t yk_z - Yk-'

A- - ﬁ I} i | ; ,_e- = ? 4 .,.l
i

(Compare p. 148 .in_ Lhe text.)
Another choice for the history array is one invented by Nordsieck. Here
we note that the L p1eces of data in y unidue]y determine ‘a polynomial p(t)

of degree q = L - 1 or Tless. Th1s po]ynom1a1 could be written

S 1
ple) = zézo F"'(t';th)‘
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If N>1, then p(t)vis,vector-valued, and theAcoefficients p; are vectors of
length N.  This pb]ynomia] is defined by the fact that it interpolates the
data in the array y . Moreover, b(t) is generally the po]ynomia] by which the
pvedwtt1on step is done, in. that yn+1(0) p(tn+]) if p(t) corresponds to

y Any arrdy which unlque]y represents th1s polynomial (bvd]SU an alternate

“n’

representat1on of the needed h1story The 1dea of Nordéieuk st to represent
p(t) s1mp]y by its cocfﬁcwntr Py but multiplied by h' sa as tn get

qudnt1t1es which have the same dimension as y and which appear more natura]ly

in the formulas. Thus. the Nordsieck history array is

P\ [pley
Ph - [hplED/IL

. ' . ’ '
a— n . . - '

o
| N
]!

¢
Pgl\ | hz “”(t )/g'

The rows of this array then approximate the quant1t1es h y(1)(t AR
0<igq, but only up to order g, i.e. within O(hqi]). |

One of the main reaeonétfor this choice of history array:is that it
makes it re]atiVe]y.eaéy'to ehange the'step size h. _Fot if a, egists and
the‘step to tn+] 1§ to be taken with a step 5i¢e'h';.then‘the rows of A, are

simply rescaled by the powers (h‘/h)i, 0<i%q, before taking that step.
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Another reésoh isvthat the estimation'of local errors 1svré1ative1y easy
from as because that requires estimates of derivativesiof y. A third
reason is that it is Very‘easy to interpolate to get a computed estimate
of y(t) for any interhediate’t, tn~1<'t<'tn' This is because p(t) is given
as an obvious ]1néak combinatioh of the rows of'gn, by wrifing a Taylor
series to g+l terms about t .

If a given method is put into a form that uses the Nordsieck array

a, for the histoky; the matrix A = TBT |

AN
"o\,

regardless of the original method. This is because‘the Taylor series for

needed to do the prediction turns

“out to be simply

ek o2

A = Pascal Triangle,

h]y(1)(tn)/i! about -1 begins with the terms

. g ) L .

. (0 Yy G4) .

Z (‘)"‘ b (tn-t)/”
J=0
Moreover, the product Ax of any vector x and the Pascal triangle matrix A
can be computed with no multiply operations at all, only additibns. Thus
~prediction is considerably easier with the Nordsieck array than with most-
other formulations:
The Fortran program given in the text (Chapter 9) is an implementation

of the implicit Adams methods‘and also of Gear's methods, with the use of the

Nordsieck history‘array} It uses the techniques of Section 7 (b) for solution
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Aof the implicit equation and the techniquesAof Section 7 (c) to adjust
}, the step size and order in relation to a local error to]er.amce.A~
If a 1inéar multistep method uses a history vector'of,1ength L, i.e.
.an array of size'L>x N for a System of N equations, then it is called an

- L-value method. If L is.not specified, it is called a multivalue method.

This name, as diéﬁinguished from the name multistep method, emphasizes the
fact that 1t.is fhe number of values of data in the HjstOhy vector that is
‘the more significant, not the number of steps. In fact,'fﬁe class of
muTiiva1ue methods , {chud1ng especially ones that use the Nordsieck hislury

array, is properly larger than the class of multistep methods.
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10.__Extrapolation methods*

The class of méthods now referred to és,extrapolation methods was
first introduced formally by_Richardéon in 1927, The idea was then called
"deferred approach to the iimit,” and has also been referred'to as
Richardson extrapo]at1on. |
4 The fol]ow1ng simple examp]e illustrates the basic 1dea of extrapo]at1on
methods. Consider the ODE |
dy/dt = Ay, o¢ te< |
with y(0) = Yo given. Suppose we use the (explicit) Euler method on this
probiem; with” various values of At, The method, for this problem, is given
oy : | , | S ‘ :
Yau = Yu+ 8t Ay, = (1+ Mt)y.,
For s1mp11c1ty. take y(0) = Yo = 1, so that the true solution is y(t) = e .
If we use At = 1 for one step, we get the caiculated value_y] =1+A . If
we uée At = 1/2 and. take two steps, t the first yields yp =1+ A, and
the secohd yz = (] +)§ ) yy = (1 +A)2 as the computed value for y(1).
Denote by Tk (ki . 1. eas) the valups obtained for at = 1, ;4 ;4 ies at t = 1.

We then arrive at the fo]]ow1ng values -
at=i: To = I+ 4
t=2:  T) = (14 a) = 1+a+ X/
ate i TE = (et = 1ere Fa2 ¢ 523+ AT

“*The lecture coverihg this chapter was given by Julius Chang. The notes for it
wefe extracted from the report, "An Introduction to Extrapolation Methods for

the Numerical Solution of Differential Equations,” UCID-15992, Feb. 1972? by

Julius Chany.
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The idea now is to use these three values to arrive at an approximation
to y(1) that is more accurate than any of them, by taking certain linear

combinations. Spec1 fically, construct from the above three Tk the two _

quant1t1es ° .
T -T |
T, = 3—7-_-'-’-:—'—’ = |+ A+ A/z2
! = 27i-Th o ,+x + A2+ N+ A128 .

(The justification for these formulas will be seen ‘later ) Finally, from-

these two T]k, construct | o
“f‘T' - To o 2 '3, <
T2 -= =T = RNz N+ 2 /%
Compare these to the true value ’

y(l)" = (+A+ A /z{- A/G + Aq/zq +--;

We see that the T, k are accurate only to the X term, cons1stent with the fact

that the Euler method is of order 1. But the T]k are accurate to the A2 term,
and T,° is accurate to the A3 term.

Notice that the quantities hav1nq greater accuracy than those -qiven by
the basic method were obtamed s1mp1y by taking apprjopnate 11nea_r combinations
of the latter. 'it was not necessary to refer again to the differentiai
equation or to any'higher order method, This is sighificant when we consider
the ODE here as havi‘nq‘ the general form dy/dt = fy,t), and realize that 1.n' ‘
practical problems, the cost of comput‘ing va]ues of f is the dommant cost
factor of any given _method. The cost of performmg arithmetic operations of
the type shown aone for the ka‘is usually negligible by comparison. In
the present example, f"was comput‘ed only two times to obtain the values To°

and To] and hence T]O,Anamely for }70 = f(ygs 0)_3,"d flyo + '1'5'0' 1]2'). Then
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f Was computed 3 more times to get To2 and hence T]] and‘T2°. If we were

to perform the Euler method for the value of At which requires the same

number of f eva»]uafions. namel_y At = ]g , the resulting approximation to y(1)

would be ' . o

. - . _.'V A_‘s-_ 2 T . .

stal Y = (1H3) = 1+r s Eov o,

This is clearly much less-accurate than T2°, while the cost of both quantities
(in terms of f evaJuafions)Ais'the same, | |

The algorithm can be easily extended to any desired extent., We write

an array of T's, as follows:

,/'?'7“ £ )
fo} —_— Tt ——— TZ ¢« a o
A
—-r'z ,TZ/
O 7 ' [ > 'S

e e
o : . | .

The arrows show the dependence of each T on the ones to the left of it, The
result is a trianguTaFAafray, which is carried to whatever extent is needed
to produce resu)ts df acbeptable accuracy. |

The algorithms fdr generéting these approkimations, which wil] be givén‘
in more detail shﬁrt]y; depend on certéin theoretical properties of the.
basic method (the Eu]eF method in the abové‘examp]é). This theory ignores
the effect of machine roundoff error, which can cause some difficulty for

- extrapolation methods, whereas it rarely does for other classes of methods

on modern computers,
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The fundamental asSumption made here is that if y, is the calculated
approximation to y(tn) usmg a given method with step size At and taking
steps until t, = t (a fixed va]ue). then

Y= V) + 08)F &t v ol €, (t.)
b e+ 0P () + O( )P,
'where the p; are 1nteqers with ]§p1 < pz<..., and the €. (t) are continoiis

. functions which do not depend on At. The Py and € will of course depend

on the basic method .being used. The expans'mn represents explicitly the
error in y, relative to the true value y(t,). |

Now, for a fixed value of t = t_, we consider the use of the method
with seVeral valuéé -of at, say Ato. At],'.... each a submultiple of t (so
that for each At t = t after some number n of steps). 'we write down the
resulting approximatwns of y(t) and their expansions according to the |

above formula: ' _ - - 1 s
Bte A% ypa y(t)+ (k) e.(_t) beee
at= At ylo oyie) 4 (6t e te) ¢ -

After building up k + 1 of §ucb values; yno. yn]. coed ynk‘ (the n's are
différeﬁt'-fbr the differént At vaiues), we want to use their expansions to
eliminate the unknown érror terms, and get a better appro'xima'tion to y(t)
a's. a result, |

‘ Multiply the equat_:ion for yn° by sorﬁe undetermined coefficient ad.
the next equation by ars and so on, until mu]tiplyinq -'.the edgation for
Yn K by ay, and tbe.r: add up the results. The sum is |

¥ o= Zay. = (Zayy) + (24 mtg"‘)e. (t)

+ (Zq; (ﬁt;)r")é,_(f) + --- .
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To eliminate the error terms, and get y(t) as a résu]t, we want the a; to
satisfy o | |

. 2“{ =
Za; (ofa)’“ =0 _,' me 12, e, k.

This would make |

= ylt) + O( oty .
The conditions on the a; form a linear system of k + 1 equations in k + 1
unknowns , The'matr1x for that linear system is of van der Monde type,
and so is not singu]ar.‘ So we can; in theory, compute the solution and-
hence y, which has a high order of accuracy.

The trouble with this aporoach is that the. 11near system for the a1
can be very "111-cond1t1oned," meaning that roundoff errors are likely to'
build up to an intolerable level during the computation. For this reason,
the actual a]qorithm'reCOhmended is not aé,indicated.above; but instead
1nvo1ves formulas for the direct ca]cu]atlon of quant1t1es of the type ¥,
as done in the example ear11er.

" This a]gorithmic approach can be obtained by taking‘aﬁ alternate point
of view on thé expansion for y, for a given at. If we fgnoré‘the last term,

?k#s

o( (at) ), then that.expanéioh gives an approximatibﬁ to y, as a

polynomial in At, p(At)) of degree py. This polynomial ‘has coefficients
€;(t) and a coﬁstant term of p(0) = y(t). Thas the value p(0) is what
is sought, hut what 1is actually known is a collection of ‘v'alués ofp( At)

for nonzero At, by way of the calculations of ¥y by the basic method, This
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viewpoint: reduces the problem to that of fitting a polynomial of a specified
form to a given set of data. That class of problems has been studied in

its own right quite thoroughly, and algorithms for such polynomial fitting
prob]ems are common, As app]ied in the context of ODE's, this idea leads

to the polynomial extrapolation methods, as studied by Gragag, (Ref 19)

Another var1at1on of these ideas is the use of rational functions.

, Here ¥n is approximated by a rational funct1on of At, accurate to some
h1qh order, and that funcf1on is. f1tted by the use of an anpropr1ate number
of calculated values of yp with different At. Then the fitted rational
 function is evaluated at At = 0 to give a high]y_accuréte approximation

to y(t)} Such methods are rational extrapolation methods, and have been

studied by Bulirsch and Stoaﬂ(Ref. 20).

The rational extrapolation methods are still beinq actively developed.
But it appears that they are quite competitive for certain large classes of
. problems. The extrabo]ation methods-ef both types have the desirable
feature that the order ef accuracy obtained 1s'variab]e. depending on the
accuracy needs of ‘the problem. That is, the extent. as measured by
the index k above, to which extrapolation is carried can vary from step to
step, as controlled by an appropriate error tolerance criterion,

For polynomial extrapolation, the details of the algorithh’for

’constructing the T array are as follows. The triangular erray

Tg"
Ty 0
T

¢ o © o o
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is generated, eithér by rows or by columns, with a procedure shown
schematically by o | |
| T

, :Tf*—7 T:H .

In the cése that p; = 1, which is the case for the Euler method, the formula

for this procedure is
B ket ‘
k- (8t /B, VT, — T

T s = .
" (Atk/AtMmﬁ) - |

Here Atk is the value of &t used to generate Yn = Tok by the basic method. ‘
If a basic method of order 2 is used, and we have pj =2i, we use instead

the formula

T o (Bt /At TR T
e (Bty /Atgmn)* — 1

In either case, the formula is applied with k 20, m=20. k + m< T, where
is the number of rows>or columns to be generated., Then Imo is the final
approximation to v(t), |

The above formulas afe well=behaved with respect to roundoff error, in
that the ratios Atk/ Atkm.ﬂ .a're usually _considerab]y 1arger"than 1. In
fact, the condition on theé}t_va}ues under thch convergénce of the method
can be proved theorefical]y is that | |

"3«:‘9 at,., /atn < |

This is e.qui\'/a]e‘nt to a' statement that the.ratios At/ Otpyq are larger than

1 and are bounded away from 1.
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For rational extrépo]ation. the details of the a]gqf-ithm are somewhat
more comph‘cafed. (But the quality of thé results makes ub for this.,)
Here the only case' for which the algorithm has been developed is that in
which only even pow_efs of At abpéar in the basic e‘xpansi.on, 1'1.'e. p; = 2i.
Theﬁ the r‘ational' function used to. fit that expansion is the imotient of
two polynomials 1n ( At)2 so that it also involves only even powers of At,

The T array has the fo]]owmg form.

o
Ts
1 -0
T-l Ty
2 7
0 “2
- ok 0
- ) , ,
TD T2 i
3. TZ
T“l l [ [ a
3
TO Y Y [} L 2

The array requires a leftmost column of values T_'f= 0 in order to get the

recurrence formula started. That formula is

‘ ' ko\ k
k ke Tw = Twm

+ | : .
| (A'ﬂ"k }[| T ~TX _
- Cremet -rlm ke
o = T
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~ We come now tb'the choice of.the basic method, to which extrapolation
i; to bg applied., The ekamp]e given at the begihning of the chapter
involved the Euler method,

yw‘f‘\ = yw+ A*{:(y"\ )th) )

as the basic method. For this choice we have p;=i in the expansjon formula,
A more powerful éhoiceAwouldAbéAto take a second order method, such as the
‘trapezoid rule, | ‘ A A
| Yo = In b BE[F (Y, ta) + £, 4)]
, ‘ ) h) *h .
Here p; = 2i, so that the above rational extrapolation a]gprithm could be
applied. However, tﬁié is an.implicit method, and the solution of the
implicit equation Wi]] inevitab]y‘involve some iteratfon error. Such
error is not accouhtgd for in the theory behind'the_basic'expansion formula,
ahdlfts preSence is 11ke1y to_réduce-the accuraéy'of‘the extrapolated
vd]ues. | -

A third choice, which is the one adopted by Bulirsch and Stoer, is the

modffied midpoint ruTe. Here the basic step from t = t, to t = tgy) = t, +Ot

is given as follows: -Letszl, AT = At/2M, and "tm th + mA‘t« for m=0, 2,
eoey 2M (T 2M = tn+‘|)o Then ]et . v
Zo = Y, | |
g2, = 2,+ oti(z.,T.)

B Buy + 20T f(2u, %), m=y,2, -, 2M-|

- A o ' L
Inw = z[iw Y 2ome "'A'tf(*m','tzm)].
In other words, the interval of size At isAbroken‘into 2M equallparts.' A

step is taken with the Eu]er mefhbd, followed by 2M«] stepsvwith the midpoint
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rule, and a final smoothing operation is performed at the end to get yp4q.
The final §mooth1ng~ adds stability to the method. This method also has

an expansion formula with even powers of thf. so that p{ = 21, This means
that each:extrapo]afioﬁ stage, which eliminates one term-~in that
expansion, reduces the éfror.in the computed value by (Ast)?, rather than
B t, as is the case when pj = 1, |

' There are varioﬁs theorems concerning the convergenée properfies of
these extrapolation methods. These can be found in the book-by Lapidus:
and Seinteld,{Ref, 4). The main conclusion of these is that the diagonal
element of the T array, T%, converges rapidly, under appropriate conditions,

' to'the true solution.:‘fhis conclusion is weakened in practice only by the
.pfesence of roundoff errOr; 'Such error can be quite ha?mfu]-when the Euler
ﬁethod is the basic method, but for the others does not Seeh to:be so
harmful. | |

The storage neéessary to perform extrapolation methuds_is not as bad
as it first appears.:‘The T érray, if constructed in a naturaiforder. need
not be stored in its entirety. Only one or two rbws of T at a time are
needed, the others beﬁhg diécarded after they are used. Thus only a
vector or two of va]ﬁes is stored, not a matrix.

The extrapo]ét{on methods have been used locally for VdPiOUS.Ca1CU1atiUHS,
and have led to varyin§ degrees of sucéess. One area in which theyvhave been
tried is the‘soldtibn of nartiaf‘differential equations, where a discretization
in the space variables 1éads to a sysfem'of ODE's. The use of rational

extrapolation on these ODE systems has been quite successful;,
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Part II1: Stiff Problems

. Stiffness

Two examples of stiff‘brob]ems haQe beehvgiven so far, namely

'yA-_- - 1000 (__7-‘-1_-") ‘fit- p y(p) ='0 ,.

Y = —100(y-e t)-e"t, Yo =1.
In both casés. the large negative factor on the y term of f(y,t) makes some
ODE methods take much Tonger to solve these prob]ems than would be expected
from their simple and we1]-behaved soiutions, namely y = t? and y = e~t,

Both of these are contrived problems, designed to iliuétrate a
difficulty that can occur in the numerical solution of an ODE. But that
difficu]ty itself is‘not contrived.‘ To show that it is not, fhe fo]low{ng

is a realistic mechanical examb1e problem, Consider an object of mass M

dt;éched to a fixéd‘ .
wall by a spring and . ; : force = ~Cx

a dashpot, and free - - ' T B
rs -1 <ﬁ14MX=F'
to move along the x o —
: 9 A [:3555; o
' X

axis (gravity is |
. -~ farce = =Dx A
ignored). The spring

exerts a resistive force of ch on tﬁe object, where C is_the Hooke's Law
constant, ‘The dashpot also exerts a resistfve force, but in proportion to
velocity: the forcg;is}-Di where Dis a constan;. 'The_motion obeys Newton's
Second Law, | . v o
Mx = total force = "CX - D)}
By making sihp]e changes of varﬁab]es, we can effect the normalization
M= C=1/2, The ODE 15 then | R
X+ ADx + x

n

O .
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The initial position x, and initial speed x, would be specified for the

0
initia] value probiem,
~The solution of thi§ problem is a linear combination of two single
exponentials:
A ehl?‘.‘. Be’\‘t
where the X;j are the roots of the quadratic
M+ 2Dy + | =0.

(They are also the e1qenva1ues of the 2 x 2 matrix J if the ODE is wr1tten

2

as a system y = Jy with N = 2,) Thus

AL AL = =D VDT

Now consider the case in which the dashpot is very stiff (mechanically
speaking), in that D is Qery large compared to 1: [)>>1;.:In~that case, the

above roots can be approximated as -

A= .*D-JBT -:lD

AL = -+ foRoT = (-p+:ar)¢ e e,
- — Jot-f

. = D+437“ = “AKD
Thus Aj<<0, and e kjt is. a very rapidly decaying term, while Az,.o and
(:Aét is very slawly decavinq, We would say that the rapid decay process
corresponds to a very short t1me constant v

T o= =Y» = l/aD
while the slow process corresponds to a long time constant

=-'/az_ 2." RDO

In the numerical solution of this problem, by methods such as the

higher‘order Adams methods which are not designed for stiff prob]ems. the
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short time consta'nt"(']‘will have the effect of contro]]indlthe time step.
That is, étabie numerical behavior will not occur unless the step size h
is comparab]e to T;. But the physical behavior of the solution, at least
after a short initial time period, is governed by the loﬁg'time coﬁstant
Tz.' Thus to the extent thatTy/ T = 4D% is larger than 1, the step sizes
will vbe much sma]]erj"t_han what is physically reaspnable. Th'isl typifies
the: difficulty of stiffness, - |

A definition Vof Stiffness suitable for most purposes can be givén for
the general problem y = f(y,t). We consider the N x N Jacobian matrix
J= Of/dy, and its N eigenvalues )‘j° We suppose that all the Re()«j)40,

so that the exponenti_a]é e)‘jt are decaying., Define real numbers' TJ >0 and

w; by Ty _ L ¢

Then in a _]_qg_a_]__sAensg, the solution wi.ll.behave approximately Tike a linear
combination of the fundamental solutions

éhit - =t e LWt
.Th4e first factor is a damping factor, and the second is an oscillatory factor,

The positive numbers T.J- = -1/Re()§j_) are the time constants of the system.

The damping féctor‘ in ehjt decays by a factor of 1/e in a time of T..
Definition: An ODE system wifh positive time constants'l.'j is called stiff
if ‘

" max T, / min T, >> I.
The quantity rmax = max'q. the largest of the time constants, represents'

the rate of decay of‘thé most slowly decaying of the fundamental solutions
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and therefore indicates the time span of interest for the problem. Similarly,

Thin = min TJ- represents the rate of decaonf_ the most rapidly decaying

term. The other time constants are in between these extremes, The ratio

Irmax/’Umin describes the relative spread in the time constants, and is

called the stiffness ratio. , .

In the two single example equations given at the beginning of the
. chapter, t:.hére is no métrix, only the scalar quantity A= 3f/ dy, which is
-1000 or -100 there. Thus only the time constant T = -1/ X1 (=.001 or .01)
is explicitly 'pr‘eseﬁt. However, in those aequatians, the tr‘ué solutions
(t2 and e-t), which are smoothly varying over, say, Oété], represent
‘inherent time constants on the order of 1. That is, the true_s'olution's are
such that step sizes that are not much smaﬂér than 1 would seem reasonab]e.
Hence, since‘L’] <<, these problems have the‘ 4quah;taf1‘ye property_of
_ stiffness, despite the fact that they do not fit into the abpielana]ytic
definition. | | |

Another situation not covered by the definition is where there i3 a
possibih’ty of grow{nq fundament‘é] solutions. That is, a prob]em may have |
some AJ- with Re(kj)iﬂ, and yet be considered stiff because of other‘Xj |
with Re( }‘j )<<0. | ‘

What is .common to all stiff problems is the pr‘esehce ‘of at Tleast one
eigenvalue Nof df/ ay‘_‘for which Re(A)&<O. The questibns,of how negative
tha’g rca] part must be io call the problem stiff; “—a;.nd what it sHoud be compared
to in order to give a qﬁantitative measure of stiffness, are often difficult' to

answer with any precision.
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It should also be emphasized that the eigenvaluesllj in the-
definition above ahe as compdted from J at some given point (y,t) In

genera], the va]ue of J changes a]ong the ‘sotution curve and hence

so do the A Thus st1ffness is only a 1oca1 property.

Je ‘ .
To look at the effect of stiffness on a numer1ca1 method, we examine
the numerical so]ution'given by a linear multistep method. Locally, that

numerical solution wi]] behave approximately like the linear combination

s z= iy L5 ()] |

in terms of the roots EJ(hA) of P+ hAO‘ (A derivation of th1s was
given for the s1nq1e test equat1on y =Ay in Section 9 (e) For the more
general case the usual linear approximation and d1agona11zat1on procedure
“q1ves the resu]t, at least in the case of a smoothly varylng Jacobian -
wh1ch is d1agonaHzab1e, and assuming (3+ h Ad‘ has no multiple roots )
In view of the‘above, and the fact that the true solution is decaying when
all Re(Aj)cc 0, we weuld want to have j;,-(h,\,-)] < 1 for all i and j
in order'that the ndmerica1‘solution also decay (or at least not grow
exponentially), That is,iwe want hlAi € Sa for all i, where Sy is the
absolute ‘stability region, in order to maintain a stable'ngmericél.behavior.

While the above discussion is in the context of linear multistep methods,
the same eppl1es to Runge-Kutta and other methods as well, For any given
method, with an absolute- stability reaion S, assoc1ated with ity the va]ues

of h for which the numer1ca1 solut1on of y 4‘y behaves in an absolutely
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stable manner must satisfy hXeS by definition. Then‘ by the same -
approximation argument as used before, we infer that for the general problem
y = f(y,t ); in which the eigenvalues A1 of the Jacobian have Re(A1)<0,
stable numerical behavior wﬂ] be maintained only if a]l hA € S,. The
detai’ls of this latter step in the argument depend on the particular method
'1n question, _

The distinc-tien.batween stahle and unstable numerir_zai behavior can be
shown graphically for a single equation. |
The true solution curve behaves
approximately like the 's‘low‘iy
de‘caying exponential e't/'tmax A _ : ,
(oscillatory behavior ignored) .
except for a short i.n'it'ial, |
‘transient period in w'hieh the
~ dominant term involves e‘t/'rmin- N

A stable numerica] method will

qenerate points that foHow the

true solution curve weH. at ]east

qualititatively., But an unstable one, in which h A; ¢Sa for some 1, wﬂ’l
generate points that_ diverge. from the true solution and diverge in an
unbounded manner as n grows. |

When the problem is stiff, the difficulty imposed by ‘the requirement

that a'll hA;€S, is clear if S, -— : :
: e f 5.3

a finite region, For thoseieigen- — ra)
values M with highlj} negative real : : o @
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parts, h must be.mad'e very small in order to force hAj into Sa.

An alternate way of stating the difficulty is to refer égain to the
time constants1:j. In order to complete the numerical solution of the
prob]eh efficiently, a reasonable value of the step size h would be,
say, between Tha*/ldAand.tawx;'since this largest time constant governs the
long-term behaviof'df the solution. But suppose, for exémp]e, that S,
extends only as far as Re(hA) = -5 in the leftward direction. Then the
stabi]ftyrequirement,that all h A€ Sa implies in particular that
Re(-h/'tmin) 2 -5‘." or he& 5%nin. Then ifThax/Tmin = 1000, the largest
value of h allowed by absolute stability is smaller than the smallest value
allowed by-efficienCy consfderations by a factor of 1000/5110'= 20, Thus for
such a method, at 1east,20 times as many steps will be neéessary as would
* seem reasonable on the basis of thé actual behavior of the solution. If |
the stiffness ratib isi1drger, the discrepancy béfween the two conflicting
demands on-h will be 1drger, accordinq.to that ratio. Stiffness ratios as
large as 109 are not uncommon, ‘ |

- An important bdt difficult prob]em for the user of ODE ﬁéthods ié that
of determining whether a given problem is stiff or not. It is not generally
feasible to compute the;Jacobian J and its eigenvalues for this pdrposé,
both because of the,expense of this computation and because of the uncertainty
as to what values of (y,t) at which to compute J. (The_siﬁpation at the |

initial point (Yor to) may not be at all indicative of the situation later.)
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One way to infer that a problem is stiff is to use physiéal intuition in
re]atibn to the system being modeled or described by the ODE. ' If there is
reason to believe that that system includes one or more very rapid]y
decaying processes along with s1ower‘ones, then the ODE jé likely to be
stiff, Unfoftunately, the cbnyerse statement is frequent]y-false: There
may be no such rapid decay pfocesses inhérent in the system on physical
gfounds, but yet the QDE‘is still stiff. This can usually be attributed

to the way in which'the ODE is constructed as a‘mathematicél model of the
physica]bsystem. such as in the discretization process of converting a
partia] differential equation to an ODE system. When stiffnéés is not
abparent from physi;al or othef'similar considerations, the only recourse
is experimental comﬁutation on the hrob]em. That is, if a solution is
attempted with a method that is unsuitable for stiff problems, and the
calculation requires much smaller steps that is reasonab]e for the solution
bahavior; it is quite likely thafxthe problem is stiff.',In thét case, of course,
a method that is suitable for stiff problems shouid run muéﬁ'more efficiently

on it.’
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12. Methods for stiff problems

12. (a) A-Stability; Dahlquist'’s Theorem

From the graphical i]1ustkation givenvabove of the di]emma imposed

' by a finite absolute stability region S3 on a stiff problem, it should be
clear how one might look for methods which are suitable for such problems.
Namely, methods fo}*-which.Sa is not finite should be sought. More
specifically, a desirable:method for the solution of stiff problemsAis

one for which S3 extends infinitely far to the left in the h)\b]ane. This
would allow values of HA to be in S, despite Athev large negative value of
Re(hA ). |

One simple way to Safisfy this heed, and the way that first arose
historiéal]y, is to select hethods whiéh are A-stable, i.e. which include the
‘entire left ha]f-—p]ahe {h): Re(hX) ;:_O} in S;. For such niethods. the
stability condition that hA € S, for all eigenvalues Xhav_ing Re(A)& 0
is automatically fu]fi]}ed, and the step size is restricted only By gccuracy :
consideratidns. '

We have already seen two A-stable methods. One is the implicit Euler
method (Chépter 4),-§nd'thé other is fhe trapezoid rule (Exercise 6.1). These
aré also the implicit Adams methods of orders 1 and 2, resbective]y. However,
among the linear multjstep methods, there are very few other'éhoices of
A-stable methads available. The reason for this is given in the following

theorem, the rather famous theorem of Dahlquist:
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Theorem (Dahldyist): " An A-stable linear multistep method has order r<2.

O0f those A-stable methods of order 2, the one with smallest Toca1 truncation
error coefficient is the'trépezofd rule. ‘
'This,says'that"Within the class of linear multistep methods, the
search for A-stable methods leads essentially oniy to the iﬁb]ic1t‘Eu1er
method and the trapezoid ru1e. these beinq«thé natural chdices for orders
1 and 2. Uuts1de of that Cldss, Lhe Aastable methods include some of tha
implicit Runge-Kutta methods (see Section 8 (d)), some composite linear

multistep methods (mentioned in Section 5 (d)), and a few others developed

- recently. Unfortunately, all of these methods have certain drawbacks. At

'.the present state Qﬁ the subject, they all seem to lack the efficiency that

is attained with the better methods for non-stiff problems. Tﬁis is due to
either the restriction to Tow order, or the problem of solving large systems -
of implicit equations, or other difficulties with the implementation of the

methads,

12. (b)75t1ff stab111ty

The condition of A- stab111tv, as a requ1rement for a method to be
considered for stiff prqb]ems, leads to disappointingly few methods, A
more fruitful approach to the subjéct was fol]bwed by Gear. In this
approach, instead of requiring that the entire ha]f—o]ace Re(hk)co lie

in the ahsolute stab111ty req1on Sa» it is only requ1red that a suitably
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large part of it lie in S;. Specifica]]y, Gear defines a method to be

/

stiffly stable if its S, includes

a region consisting of a rectangle
to the left of the origin together

with a half-plane adjoining that

to the left (as shown in figure),
Thus for a stiffly stable method, values of hA with Re(}\ )€€ 0 will still
belong to S;, no matter how large [Re()\)‘ gets. The only va]ues of A which
can cause an instability here, but which do not for the A-stable methods, are
those with sizable values of Lm(A) in relation to Re(x),ld'epending on the .
particular shape»of Sa'in the'above figure, This is a fe]ative]y small
price»to'pay for the obtaining of'methods that treat stiff.prob]emé efficiently,
If one now.searches the class of Tineaf multistep methods for stiffly
stable methods, there are qﬁite a few choices avai]ab]e} A]i of these are
implicit, because the region S, for any explicit method can easily be shown
to be bounded. Among these choices are the methods of Gear (see Section 9 (<)),
which are discussed in the next section. | |
(fne explicit Rﬁnge-Kutta:methods.are'é1so excluded here, because of‘
their finite Sg.) -
For any of the stiffly stable linear multistep methods, the stability
problem is takén care of by the nature of Sy, in fhe presehce of stiffness,
Of course, the method must be examined for consistency, ofder of accuracy, and

stability in the limit of small hhi(where strong stability is preferred).
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Ano;her importantlcqnditjon for such a method to be’useful is that the
implicit equétion be solvable, For if that equation is not solved fair]y
accurately, theAdesirable stability pfoperttes.'which are derived for the -
exact solution of the 1mp11c1t formu1a, will be 1ost. - .

Suppose we contemp]ate -the use of functional 1terat1on for the solution
'of the implicit equatlon ‘Recall fram 99rf1on 7 (b) that th1s iterative
method will in general converge only when 'ﬁoth <1, where L is the
Lipschitz constant for f. But if the problem is stiff, L will be of about |
the same size as max,)ﬁ{,the largest eigenvalué in magnitude, énd so will
be about E/%hin or greater. Sincel/&ﬂ is generally not much smaller than 1,
this convergence condition re_duces to, apbroximate]y. the thdition h< Thmin,
This is just the kind of restr%ﬁtioh on step size that we are attempting to
avoid by selection of stiffly stable methods. We must therefore conclude
that functional iteration is not an acceptabIe”method'for'sé]ving"the implicit
equation in the case of a stiff problem, |

This leaves the various 5teration méthods based on Newton's method, i.e;
the quasi-Newton on chord methods, as the 10giéa1 choice for treating the
implicit equation, The chord‘methods require the solution of a linear
system at each iteration. This introducés a significant overhead cost in
the implementation of the method, as compared to functional iteration. vBut
for the general stfff-prob]em there is no choice but to put up with the added

overhead in such a manner. The alternative would be an increase in the
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number of steps, and thus in the number of evaluations of f, that is

intolerable.

12. '(g);Géak's methods

In this section.4we ldok more c]oée]y at_the methods of Gear. These
are linear multistep- methods of the form
In = Z« Yasi  + hBa Y
In terms of the genera1 ]1near multistep formula, note that K] Ky
- Ko = 0, and that only the forwardmost value of Ys jn = f(yn, tp), appeafs.'
This is a K-step method, and is clearly implicit. ‘There are K + 1 coefficignts
Ainvolved,‘and this is sufficient to achieve order K, whiéh!is what is done,
These methods can be viewed as formulas for numerical differentiation,
by writing otg = -1 and K |
5\9& = - ;E; =L Y. . .
. » t@ F% ey
In this form, they are known as:the Backward Differentiation Formulas (BOF)
of various orderg K= 1, 24 oee » They are most easily derived by writing
| the operator equat1on - | |
L\E) lag-EE = lcgv(
in terms of the operators D, E, and Y given byA .
Dy = ¥, Eytt)=yltsh), Vy(t) = yl)-ylt-h)
(see Section 9 (c)). By applying hD to y(ty) we have the infinfte series

)’—' v ""114- EE*.-._.
M X 3

formula

e (o F e - )yte.

el
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By truncating this,series to K terms, and writing ¥ for y(t,) and yn for

S/(tn). we obtain. |

' = + -.e 9 = .
o= (Ve - )y, = 24wy,

This is a restatement of the Kth order Gear formula in terms: of backward

differences, since th.evJ'yn are 1inear cunbinations of yp, ¥u-1s <oes Yp-io

As viewed in the above tcrms, the local truncation error in the

formula can be approximated by the first neglected ter‘m,f

)
Vo Y
. . K+t _ o o
SinceV¥is approximated by hD to first or‘der,vKJ']yn is approximated by

Kﬂy“.(ﬂ.).(tn)

h within-terms of*higher order:in hi ~If-we then multiply- through

by ﬁd to put the formula in its standard form, .then the local truncation

érmr.. defined as "
. .

' %“iy“‘u-a) + l\(&o y(t,\),

can be approximated 'Ea's, o ‘ "y .

Loty = G hT )

Kt n K+l "

within terms that are O(hK*1), This again shows that the order :of the method

is K.
The value of A,"ca‘n'be seen by comparing the two different formulations
of the same method: ’ A K : .
hiw = ‘é."j-v D T %E’yﬁ-i' A
The coefficient of y, in the middle member above is 1 + 1/2 4-'1/3 + ...+ 1/K,

and so (using & = -1)

Bo = | Zj‘ .

j:J
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The key to the success of these methods, as already stated, is their stiff
stability. Before looking at the actual absolute stability fegions for the
methods, we can give a heuristic argument for selecting them, on the basis of
a need for stiff stability. Consider a general implicit linear multistep
method, with its _assbciated bo]ynomia]sf and o s arjd roots §j(h)\) of P+ hAG™ .
When solving a stiff p}ob‘let‘n,‘with a value of h that i‘s comparable to the
: Targer " time constants of the problem, we know that for so'me.- eigenvalue Aof .
the Jacobian, hA has a highly negative real part. We want our method to
have an Sa that contains such poihts hA . We can think of hA és lying
near the "point" at -.0_05 meaning that_it is indefinitely far to the left
in the hA plane. Thus Aw.e can approximate fj(h}\) by fj(-—oo ), the limiting
values of the roots as hA-»—00. These limits actually exist, and are given
by the roots of @ ( g) 1"h1’s is. because when |h7\| 1s large, the P in
Q + hA®  can be neg]eéted,— .Teaving_ only th’( g) , which haS thg éame
roots as q'(g). (This reasoning is on]yt heufjistic, but can be made."rn' gorous.)
The polynomial a'(ﬁ) for Gear's method of order K is S"im'ply

o (5) = 8, 5%,
and all the roots of this are zero,
§,(-2) = 0.
Roots which are zero are the best one can hope for, as this means that, in
the limit, there is no bropagation of any perturbations» in the calculated
values. The idealized point -eo is usually called simply "the point at

infinity." The same Timiting values §j = 0 are obtained no matter how |hAj
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becomes arbitrarily large. Since the regibn Sa for the method.is defined
as the set of all hA for which all lfj(h A )'g } , we see that the point
at ®0lies well within Sa' This statement can be taken to mean that Sa
contains all points outside of some finite circle. Thus, whatever else Sa
_.‘éontains, it contains pointé that are arbitrarily distant from the origin
in‘any-direction. lThis is an indication (but not a proof) that it will
satisfy the condition of stiff stability.

In actual fact the regions S; for various K have been plotted quite
accurately. " They are shown on ,/’//a,/’//// |
pp 215-216 in the text. In a S s

o

typical case, the region consists

of all the points outside a

certain finite c]osedAcurve, as in the

figure; In the left hq]f—p]ane,

which we are primarily concefned with, the closed curve hqs two lobes, appearing

symmetrically about the hqfizonta] axis. ForK=1,2, ..., 6 fhese lobes

come further and fu?ther to the left. For K> 6, they cross each other, and

in doing so remer part of the rea]‘éxis from Sa' This makes tﬁe methods no

longer stiffly stable, and so thoge values of K are nol generally used. For ‘

12K«€6, the methods are stiffly stable, as can be‘sgen from the plots of Sa‘
These methods afévihp1emented in the (rather 1engthy) proéram listed in

the text, on pp 158-166. They are also implemented in a heavily modified
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version of the program in the text, available in the report UCID-30001,

Rev. 2.* In-both programs, the principal features include the following:

Géar's:methods of orders K =1, 2, ..., 6
(K=1,2, ..., 5 in the modified version);
The ihp]fcit Adams methods as an option, of
orders K =1, 2, ..., 7 (K=1,2, ..., 12 in
the modified version);

The Nordsieck: history for storage of pasf’.
values; | B

The chord method or funcfional iteration as
options for-solution of the implicit equation;
Automatic stértup;

Automatic change'of:step size and order based

on estimated local truncation error.

Another significant feature of these two programs is the way in which

a change of step size h is accomp]iéhed. When the value is h af a given step,

and the subsequent steps are to-be done with a different va]ue'h', the program

effectively interpolates,.using the data with a spacing of h, to approximate

the needed data with a spacing of h'._ This process can a;fua]]y be a source

of instability, since the theoretical properties of the methods used are

derived on the basis of a fixed value of h. This instability does not arise

~if, when running at order K, h is not changed for at least K consecutive steps.

*A. C. Hindmarsh, "GEAR: Ordinary Differential Equation System Solver,"

UCID-30001, Rev. 2, August 1972. .
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But changes in h.may be forced to occur, for example by a failure to pass
the error test, more frequently than that. To the extent that this happens,

there is a potential for unstable behavior.

12.  (d) The Liniger-Willoughby methods™®

| The prob]em'ofAstiffnesS can-arise inkmany practical problems. The
sizes (numbers of equations in the System) can vary from many';housands
all the way down to one. Of course, for the larger sizes, special techniques,
such as sparse matrix methods, must be brought into use, in order to implement
the appropr1ate k1nds of ODE methods.

To 11]ustrate the occurrence of stiff problems in pract1ce the following
are three prob]ems, which are’ rewr1tten in a neater and more(abstract form
than when originally posed, but which arosé from realistic engineering
situations, |
(1) The bercentage of delayed neutrons in a reactor is governed by a systef
'such as the fo]]bwiﬁg |
q(y x) |
(b-d)x - (c djy + xt(y-H)

.0;d<q « bce , xaxl, A=Y=
E-g, Q= é:‘!) d" o ? b=’ojc=‘°) «=é
osctety , T = 4oo
At t=0, eigenvalves X = -,Jz-; -60 .

*This lecture was given by Ralph A. Willoughby of I.B.M. in Yorktown Heights,
New York. Most of the mater1a] can be found in W. L1n1ger and R. A. Willoughby,
MEfficient Integrat1on Methods for St1ff Systems of Ordinary Differential
Equat1ons," SIAM J. on Numerical Ana]ys1s, Vol. 7 . (]920) pp 47-66.
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Here the et term represents the pulling out of a control rod from the
reactor, which goes from subcritical to critical, and slightly supercritical.

The complete problem invo]veé contro]]ing the oarameterotso’as to control

' ~ the supercr1t1ca]1ty to stay below acceptab]e ]evelt. When this prob]em

was attempted with the Runge= Kutta method, it was found that step sizes that
seemed reasonable were always too large to give acceptab]e answers.

(2) A problem in enzyme kinetics can be bot}intovthe following

fofm: |

= =8 $+ wv

T X~ uw X< Y, = O

£ &= X-

y=X+x, v=gl-x) +x2, w=i+y?
O cx << |<< B
u = zx—q(v+w)

tg > 300
At 'tz'ﬂlo;). .éijeuvdue: A= ..f9'7/0-3) -,

The ODE for u shows ah.exponentia1-]ike behaVior common to most of these
problems. However, here the relevant coefficient Vv +wis not a constant,
but varies with the solutioh_of the complete problem, In this oase; the
problem itself has an‘instabi]ity, in that a‘single inaccurate timefstep
can lead fnto another solution region and so to drestically incorrect final

answers.
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(3) The'tunne1 diode, shown schematically here, is governed by an gquation

of the form '
R

AAAA

‘ >

E-v-R:

& _ ¢ v ‘f”’ S
dv - L i-%tv) l R ‘[ L
- - | E

The equilibrium solutions of this equation correspond to stable states of the
diode. There are tybica]iy three of these, of which two are stable and one
is unstable. These dre shown as the intersections of the curve i = f(v) and

the Tine i =_(E—v)/R,, A' U A

“the "load 1ine." The

e E-V
unstable state 1s the (= R
intersection in the middle,
EdR 4

where the curve has a
negative slope. It has&thé ﬁfoperties of a saddle point. This problem
exhibits what is caTTed "bistability," in that starting values on one side
of a certain curve'(éaTTéd fhe separatfix) lead tu vne equi]ibrium state,
and starting values on the other side Tead to the other équf]ibrium state.

| When problemsvsu¢h'as‘thgse arise, and it is fodnd that they pose
diff1cu1t1es in their numerical solution, 1t is not a good idea justl to‘work
out clever tgchniques tailored to the particular problem tO-ggt,answers for

that problem. What is needed is the development of methods which can
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effectively handle whole c]asses of problems, of which the above are only
examples. Therefore, in what follows, we discuss genera1'methods for the
~ class of stiff problems.
Write the.givenfODE‘as*'

KR, | |
where x, X, and F are vectors, and x = dx/dt. We omit any explicit
»dependence on time t in the'right-hand side function F, because including
it does not add any insight into the nature of stiffness or how to deal with
it. Prob]ems'which have this form (i.e. have to explicit dependence on the
independent variable) are called antonomous. We note that for this ODE we
can write the second-derivapive, |

X = (x) F(x),

where J is the Jacobian of the problem,
| . S 1 ;(J.F')_
I = o =S
- The methods of Liniger and Willoughby, in their simplest form, are basc
on the 1dea of using a we1ghted average of the forward and backward Euler
methods. The formu]a for the methods to be considered 1n1t1a]1y is the

fo]lowing, for the step from t, to tn+] = tn + h:

0= Xpuy = h(1sm)iny = (Xn +hukn).

Here p is a constant which is constrained by 0 ﬁpe%.

*The notation used in th1s sect1on d1ffers s]1ght1y from that used e]sewhere,

but is self- cons1stent
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This formula is implicit for any value of the constant )1; because of the

term ;(n+] = F(x The price of solving such implicit equations seems

n+l ) "

to be unavoidable {f stiff systems are to be solved efficiently. We treat

this implicit equafion as a gen_gral nonlilne'ar algebraic prbb].em, and we

solve it by Newton's method. This means that the equation is linearized

with respect to x, and changes Ax in x are made according to
(T—‘-K'IA)AX' = -o¢ G (X).

Here ¢k is the scalar

X =

——

The function G represents the residual amount by which x fails to satisfy

th

the givén formu]a. If xn+§k-) is the k iterated approximation to x

nti*

then G is given by ‘ ' ‘
(ky _ . . (k) x [0
G(xnﬂ ) = X 'f/‘*“xn,*" /“)hxm'a Xuer 3
(k) . (k)
xm—: g F (xvm
The classical way of so]vmg implicit formulas such as th1s was simply

to take Ax to be G(x), wh1ch means taking

K e ahxe ¢ (t—A)kF(Xﬁkf.).

The trouble is that this ,1terat1on fails to converge for stiff,prob]emé,
because J is somehow too large. In the Newton iterations, we divide by
J - I, and this tends to eliminate exactly those errors in x that caused

the convergence failures before.
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In solving general problems, we can aiways think of the simple problem
‘;( = = A X as a model. Here the true solutuion satisfies
x(t+h) = e"?_ x(t), g = Ah. |
We take Re(A)>0, so that the solution is decaying. (Here?\' represents
~ the negative of an etgenva]de in'the general problem.) What the method

actually gives for this prob]em is

) “*.‘ R(z A) xl\ )

= ) -/Kgg,_ .
R(z,p) v g

The function R therefore represents a rational approximation to the function,

e 9. It has the desirable property that lR]C] for Re(q) » 0, which means
that the computed so]ut1ons decay with n. However, except for u = 0, R
does not have the property o
IRI->0 as Re(g)—> 2o,

which is also desirable because it makes the decuy-rate of the computed
solutions behave 1like that of the true solution (namely very rapid) when
Re(q) is large.. The special case A = OAdoes.give this property, and this
corresponds to the .backward Eu]er method. | '

At this point the idea of exponent1a1 fitting comes in. The value of
P, which we are free to choose, can be chosen on the basis of the va]ue of
g, $0 as to make the value of R just what it should be. More specifically,
if we knew a real value of g = hA, or a good approximation to ft, then we -

can clearly solve for a value of M that makes

Rig,m = et

P
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When this is done, the computed solution will decay in a manner that agrees

very well with that of the solution e At.

We can regard the case y = 0 as
that of fitting at q =00 .

Another value of u that has special significance is u ='%n This gives
~ the trapezoid ru]e; which is-a second order method, and it cofresponds to
fitting R to e at q = 0 to second order. A1l other values of M alve
methods that behave like the Euler methods in the limit of small q, in that
they are only of order 1. Bul Lhe chuice po= %—causes,a problcm for large
q that is like the Gibb‘s phenomenon in Fourier analysis. We see that

Rig, )= =-1 as g,
and the value -1 means that perturbations 1h‘the so]ution'ténd to remain
undamped and to oscillate in sign. These pekturbations have to be filtered
out in some way in okder to ‘get accurate ansWers.

In the above exponential fitting process, the formula allows for a fit
for any given real value of q. But in praclice, the eigenvalués -/\ can be
complex. So we consider the possibility of fitting the formu]aAto a given
complex constant q. Unfortunately, this is not pbssib]e with these formulas
for any real coeffiéfent M. A natural extension of the same basic'idea
which does make this possib]e"iélto use seconduderivative terms in the
formula. This is not as difficult as it may seem, because X = JF, and J
is already required for the Newton iteration. With X terms, thg Newton

' iteration will then involve a matrix which is quadratic in J rather than

linear.
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The expanded formula.in its general form is
0= [ = Bl+a)ne + K(bra) X ]
~‘[Xn*-‘9j(|-ﬁ) ;‘n "".&.(b-a))‘(‘n] 5
where a and b are two free constants. This can be regarded as a weighted
average of the two fbrmulés gottenAby wkiting Tay]or sekie; forward from tn
to tn;] and backward from.tn+] to tn’ and neglecting terms that are 0(h3).

" For the simple equation X = - A x, we find that

Xptr = R(i,“, b)X,‘ , 9= A h

b

R(9 a,b) = | -~ é‘:(‘-ﬁ)f + :l,'(b-a)gz
(Z;“l - L
o I+ & Gea)g + & (bea) gt
One special case of interest is that with a =0, b = 1/3. -The"
resulting formula, \ . ' L
C . N \ 2 w .
' xVIf! = x.‘"\ + Jé-(an- X.,.,.,) + '(Li (X"— xh'ﬂ.))‘
is an extension of the trapezoid rule to X terms. It hqs an R of
| | v -t + ¢%/12
.Rﬁg,o, 3) = . L} )
| tg/a + g/

which is the second diagonal Padé approximation to e 9. However, we see

‘that as q=>os, we get a limiting value of 1 for R. This means that
perturbations remain undamped and of constant sign. This is even worse than

with the trapezoid ru1e,ubecéUSe these purturbations cannot be filtered out.
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One solution to this difficulty is to take b = a> 0, so that R

reduces to , :
o - L(1-a) |
Rig,a,0) = ' = L .

I+ +(i+a)g + Lag?

Now R=»0 as q =» &0 , and the dampinj properties are. as desired.

For oscillatory problems we want to cbnsidef pure imaginary values of
.q. We find that thc’éhoice a= Q makes‘fheitwo coefficients of q¢ equal
in the numerator and denominatdr of R, and so makes ]R|= 1 for any pure
imaginary q.

Ai] of these special cases are examples of exponentfa] fitting with the
gehera] formula, by appropriate choices of the free parameters. If b is
fixed, or ronstrained by b = a, for example, theAchoice of a may be made to
satisfy R = e”9 for a given real value of q. If a and b are both left free;
 they can be chosen to make R = e”d for two distinct real ya]ues ot q, or
for tWo complex conjugaté nonreal values. The reactor problem (1) given
-at the beginning of phe section was solved by letting b»= % and choosing
a to match the 1argér-eigenva1ue (-60), with a step size'of'ﬁ. The
corresponding va]ué of g is 300.

There is a difficult task in the control of errors for these stiff
problems. Thié is because there is a high degree of cance]]at1on.of terms
in the evaluation of F; There does not seem to have been a.decent study made

of this difficulty.
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The Newton iteration for the formula with X terms present leads to,

2 as well as J. By factoring this

as stated earlier, a matrix involving J
quadratic in J, the linear system prdblem'there can be rephrased as one
of solving a system of‘the same form as beforé

(T-«I1)Ax = ~xG,
but where & is complex, and the imaginary part of A x is what is needed.
This eliminates the néed to form 9%, R

It should be emphasized that all of fhe formulas discussed here are

one-step formulas. .' Thjs is an advantagé in that errors in past valués
_do not affect the behavior of the calculation on the current step, as is
the case with parasitic roots in a multistep method. On the other hand,
the one-step nature of the methods'prevents them from attajﬁing high
ofders of accuracy,‘wﬁich'are often desirable. A'.

The parameters a‘and‘B are not entirely free if certain siabi]ity énd
accuracy conditions are 1ﬁposed. The condition of A-3tability ( |R|<:1 for
Re(q)>0), for examp]é,' imposes the conditions a»0, b>0, a'nc'l'for' any
such values the formula is in fact A-stable. -,Other‘constréints arise if
the local truncation(error is exahined. For example, it is desjrable to
hévé b 2 aand a<l. . |

A varia;ioh on the basic idea presented hgre is to use more than one
version of the formula on each step and use the resulting cohputed values to
eliminate the errors'iﬁaany<of them. This is the same aphrbach as taken in

extrapolation methods,'except that here h is not made smaller and smaller.

We'simply use each of a small collection of pairs (a,b), and take an
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appropriate- 1inear combination of the several computed values Xo+]°

This
approach was studied by Liniger and Odeh.
A further variation of the formula is one being exp]ored by w.‘Enright,
in which further i terms are added. Specifically the formula is
Xngr = Xu + L\(ﬂo’ﬁvﬂ 4'{’. X.\+ .- +{3K nM-K)

+ h Yo Xnei -
" Notice that this is a K-step formula, so that higher orders are possible.

The free coefficients above can also be chosen on the basis of stability.

In particular, it is relatively easy to attain the condition of stiff stability

(see Section (b) above).} This property is near]y'as,attratice as A-stability,
even if there are rapid osci]1atfons, since the absolute stability regions
go sufficiently far out along the imaginary axis (e.g. to about + 2i).

With a proper choice of the p{ and 3;, this method can be‘ﬁade tu behave
like the Adams methods for small q, i.e. to have as high an ordér as needed.
At the same time, it behaves like the backward Euler method at q =

because only the forwardmost second derivative term, x s 15 ptesent This

n+1
has the des1rab]e effect of produc1ng the correct damping for large values of
Re(q). | -

Again the idea of éxponehtfa] fitting can be brough in. Instead of using
fixed values ol the édeff1c1ents, Lthey can be chosen so as ﬁo fft'giveﬁ (or
est1mated) values of efq.  | | o |

We close this section with two comments about the way that bésic methods
areAiMplemented. These apply to discrete ODE methods 1nAgenéra], not just the

ones of this section.
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First, when a given method is accompanied by an estimate of thg local
error, it is ggg;alwayé helpful to add this error estimate into the
ca]cu]ated resuit. This seems contradictory, because such an addition would
appear. to give more a;curate'answers; The trouble is that, esbécia]]y
,with:stiff brdblems; this can destroy the stability propertiés.of the 6rigina1
method. We can, however, do this addition to get va]ugs uséd for output,
as‘long as those values are not also used in the subsequent calculation with
the method. | | ‘ |

A second comment concerns the use of different methods on the different
components ~ y; = F; of the ODE system. This is sometimes doné to the extenf
of é]]owing a.methodAof a different order on each component. 'Iﬁ a génera]
purpose ODE so]ver,‘it is very difficult to do this in a way that gives
. meanfngfu] answers asiefficient]y as is ddne with the same method for all

~ components. .
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Summary Remarks

A wide variety of methods, for the numerical solution of the initial
value problem for ODE systems, has been discussed here. ~In addition,
something of the variety of ODE prob]ems'that occur has been.indicated.

In the face of this great variety, it would be ideal if ggg;méthod were

best for all problems. That, of course; is far from beiny the case.

Lowering our idea1s somewhatl, we might at lcast hope that for any given
problem, it is obvious which method is the best for solving it. Unfortunately,
that is also not the case. But in spite of Lhis, there arc a few general
statements that seem to hold true for the most parl, in the mattcr of

choosing the best method for a given problem. These comments appear in
Chapter 12 of the text. |

4(]) Trivial prop]ems. Here we consider problems that are sma]i in
ﬁize, simple (in’terms'of the complexity of f), and involve no special
difficulties such as $t1ffness. For such problems, human time is a more
important considerat{on than computer time; .~ Therefore, one should use
~ whatever method or program is readily available and easy to USe. A large
sophisticated package is ﬁot céiled fo} here. |

(2) Smooth non-étiff problems. For a problem of this type, assuming
that'size'or,comp]exity‘removgs it from the group of trivfa1kprob1ems,
computational efficiency is a major consideration. In this regard, the
Bulirsch-Stoer (rational extrapolation) and various Tinear multistep methods

are considered best. Of the latter, the Adams-Moulton methods are probably

3

9\.
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the most effective. "If the size of the problem, N, is large, then the
Tinear mu]tiétep methods of high order are to be discouragedibecausé of the
storage problem. If the expense‘of f is large, then it is best to use an
imp]ementatioﬁ of either the Bylirsch-Stoer or a group of linear multistep
methods whiéhﬂallows both the step size and the order to éhange dynamically
under some automatic control algorithm. | -

| (3) Problems with discontinuities. For these problems, one should
avoid multistep methods, unless the problem is restarted at each diséontinuity.
If the discontinuities are both frequent and sizable, it is better to use

a one-step method instead, and force the discontinuities to fall on mesh
points if the order of the method is higher thaﬁ that of the discontinuity.
The Bu]irsch-Stoér and explicit Runge-Kutta methods are good choices heré.

: (4) Stiff problems. 'The methods of Gear are a good choice in general
here. Howevef, if there are frequgnt and'sizable discontinuities, other
methods should be considered, such as the Liniger-Willoughby or implicit
Runge-Kutta methods, aTthough_théy may be difficult to use in a general
setting. » o | | ’ | »

Some valuable 1nformafion on the matchjng of the best‘methodé to given
problems is provided in the results of comparatiye téstfng that has been
done with ODE soiveré. One Such series of tests was done by Hull et a].f

They tested a group of programs, in which the Runge-Kutta, Adams, and

*T.E. Hull, W.H. Enright; B.M. Fellen, and A.E. Sediick, “Comparing Numerical
~ Methods for Ordinary Differential Equations," SIAM J. on Numerical Analysis,

Vol. 9. No. & (Decemhér 1972), pp 603-637.
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Bulirsch-Stoer methods were used, on a group of initial value problems.
The tests ighored difficulties caused by discontinuities, stiffness or
startup (for multistep methods). The major conclusions of this project
were summérized as follows: | ‘

"QOne conclusion is that thg best general-purpose methods fo? nonstiff
systems without discontinuities, and without considering any special startiﬁg
difficulties, must be variab]e-order methods. A second con@]usioh is that,
if function evaluations are not very cbstly, the best method of those tested
is one due to Bulirsch énd stoer, huwever, when function evaluations are
re]ativé]y expensive, variable-order melLhods based on Adamé formulas are
best. The overhead costs are lower for:the method of Bu]irscﬁ and Stoer,
but the Adams methods,requirg considerably fewer function evéIUations. Krogh's
implementation of a variable-order Adams method is the best of those tested,
but one due to Gear is also very yood. OQur third cdn¢1us1on is that Ruhge-'
Kutta methods are not competitive in general, although fourth or fifth order
mgthods of this type are best for réstricted classes of problems in which
function evaluations are not very expensive and‘accuracy reduirements are
not very stringent. These conclusions appear to hold uniformly over a wide
variety of problems." | | | '

A consideratioh'thét these statements tend to neylect 15 the consider-
ation of what progfamé for QDE's are available. Ideal]y,_a user should have
available a large battery of good programs, representing all method classes.

Then once a method is chosen, it is not necessary to program it, but just to
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use the appropriate code._ Few if any inﬁta]]ations ére iﬁ-that good a
position, although atiLLL‘we do have codes represgnting mosi method classes.

Ah encouragjnglstatement on this point that appears in the article Quoted

above is thé fo]]bwing:.“lf a pfogram Tibrary was to contdin 6n1y one program
for solving ordinaf& différentfai éduatibns, wé would Strdné]y recommend
‘Gear's. It is a good general-purpose method; in the sénsg used in'thfs report,
and it‘can also handle stiff systems very effeétive]y.“ The program referred
to is the one listed oﬁ pp-158-166 of thé text, and a version,of it is

available at LLL.
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11.  Z. Ceschino and J{ Kuntzman, Numerical Solution of Initial Value
Problems, Prentice-Hall, 1966.

2. E Feh]berg, "Klassische Runge -Kutta Formeln vierter and niedrigerer

| Ordnung ... Comput1ng, Vol. 6 (1970) pp. 61- 71.

13. E. Feh]berg, "K]ass1sche Runge-Kutta Forme]n funfter und siebenter
Ordnung ...", Computing, Vol. 4 (1969) pp 93- 106.

14. L.F. Shampine and H.A. Watts, "Efficient Ruhge-Kutta Codes," SC-RR-615,
Sandia-ATbuquerque, 1970. | -

L1near ‘Multistep Methods

15 P. Henrici, Discrete Variable Methods in Ordinary Differential
Equatiohs, Wiley, 1962. |
16. P. Henr1c1, Error Propagat1on for Difference Methods, Wiley, 1963
'17.  F.B. Hildebrand, Finite D1fference Equations and S1mu]at1on Prentice-
Hall, 1968. | ,
18. A.C. HindmarsH,A"Linéar Multistep Methods.for O.D.E.;s::AMethod
| Formulations, Stabi]ity. and tﬁe Methods of-Nordsieck.aﬁd Geaf,"

UCRL-51186, Rev. 1, 1972.

Extragp]at1on Methods :

19, W.B. Gragg, "On Extrapo]at1on A1gor1thms for Ord1nary In1t1a1 Value
Prob]ems,f SIAM J. on Numer1ca1 Analysis, 2 (1965), pp. 304-403.
20.4 R. Bu11rsch and J. Stoer, "Numer1ca1 Treatment of 0rd1nary Differential
"Equations by Extrapolation Methods," Numer1$che Mathemat1k. 8 (]966),
pp 1-130 ‘ '
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Non-Discrete Methods:

21.  T.N.E. Greville (ed.), Theory and Applications of Spline Functions,
Academic Press, 1969, Chapter by F.R. Loscalzo on ODE's,
22. H. Knapp and G. Wanner, "LIESE, a‘?rogram for Ordinary:Differentia]
 _Equati6nS Using Lie Seriés;“'Matheﬁatical Rese&rch Center Report

881, Madison, 1968,

Boundary Value Problems:

23. P.B. Bailey, L.F. Shampine, and P.E. Waltman, Nonlinear Two Point
, -Boundary Value Prob]ems, Academic Press, 1968.
24.  H.B. Keller, Numerical Methods for Two-Point Boundary Value Problems,
Blaisdell, 1968. -
25.  S5.M. Roberts and J.S. Shipman,tfwo-Point Boundary Value Problems:
Shooting Methods, Elsevier, 1972. -
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Appendix I: Lecture Timetable

The following table gives a rough correlation between the chapters
| of these notes, the cqurée lectﬁres, and‘ﬁhe sections in the text. Some
» lectures covered two or more chapters, and -some chapters required two
—or more lectures. In addition,(parts of somé_]ectures were devoted to

"discussion of homework problems.

Chapters

in Notes Lecturé Numbers | o - Chapters/Se;tions 1n'Text
1,2,3 1 . | 1, 3.2, 4.1, 4.2
3 2,3,4
4 4,5
5 - 5,6
6 7,8 o , ‘ 4.3-4.7
7 - '9;10,]],12,]3 - AY"5t1-5.3
8 14.15,16,17,18,19 |
(Lecture 18 by R. L. Pexton) 2.3-2.6, 4.6.2, 5.4
9 20,21,22,23,24,25,26,27 7,8,9 B
0o 28 (by J. S. Chang) 6
1 29 1.1
12 29,30,31 11.1

(Lecture 31 by R. A. Willoughby)

Summary 32 - A 12
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Errata in Text

The fé]]owing is an ordered 1ist of errata in the text, Numerical

Initial Value Prob]emé in Ordinary Differential Equations, by C.W. Gear.
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It is probably incomplete. Line numbers given are as counted from tne -

top of the page, except'that a negdtive line ndmber, -ﬂ,'referé-to the

Tine from the bottom of the page.

Chapter Page Liner Corrected Ver;ioh'
1 18 10 ey = _h_
1 QO
1 1812 (-]}Né'ﬁ‘é’
] 2u 4 fangg ['Si %]
] zo 5 [-(N/2)€ ,(N)Z)QJ
1 | é3 -1 numbers to 1077,
2 28 -3

‘hf(.yl]stn)
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Chapter Page Line ' Corrected Version
2 w g [ %jfkf](i v 2ok = Yot )
| £ T2 gk 17273 17
1 ciekel (aiae ‘
ST (3-00))
el fReY (1-20,)
it 1
2 38 -4 is linear inf,, and B,,.
2 39 3 nfly &)
, - n 31
4 55 (4.8)  llfy.0) - £y e[l [botdface £, y]
4 55 S, flat) - flyre)
' T
4 56 5 y,~y(t)
~ -~
4 56 7 y' = f(y,t)
~ S AS
4 56 -8 condition in y
4 57 12 condition in y

~
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Corrected Version

Chapter -Page Line
4 58 21 fy(t)rt)
. [V
4 59 0 pE %, p
- 6 dt
4 . 60 16 . e+l =... . -
' : | e 1 o8)
4 61 -y nax l y' ()
e 0<te] 6
B ‘ ’ .' v .'
4 61 =11 fn [instead of second gnj
4 2 4 b1 g(y.t)
4 62 23 (Theorem 4.4)
4 QZ -5 Egn»cgnverge§-to:§(th) [boldface].
4 65 16 =(r+1)T'T( )
. | o
4 66 10 region of y-space
4 67 -Y f;(z+g{jy))fj(y)
17 show that (4.30) implies -

69

-
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Chapter - Page  Line o Corrected Version

4 69 2] +kh2é(£n) |

4 69 | -10 to ',.g(ti) [instead of 6(t,)]

-7
4 69 -1 +9(tith [under product. sign]
5 76 9 | ﬁg:; j;
5 76 16 in the interval
- : 7 e (1L
5 © 76 7 !!SNI;J[A B
5 77 16 : ]
| P TGTE, B BTy, E 1T
5 77 . -5 - hold for€# o,
5 84 22 15.0D0)

5 84 28 (16.000 * y3(I) - yi(l))/15.onoﬂ’
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Chapter Page Line " Corrected Version
| ) icdck o o1 cdek L
5 85 ‘8 fijkf vt ’fifjkf f°, and fjjfkafk.
5 86 -9 EPS*H* |YMAX(I) | instead of
| EPS* [YMAX(I) [ . Plot ...

6 93 -2 V= -pM=

6 © 93,99 [Interchange Tables 6.5, 6.7.]
[Fourth number in column O should be
917384 in both tables.]
[Text on middle of p. 99 is now incorrect.
Rational extrapolation is better than poly-
nomial " extrapolction for this example alsa.

§ 95 (6.12) Pn+](h) - an+1(h) = ...
[ ...]

7 106 2 (8)” 1.

7 106 - 3 (7.5)

7 11 14 e (1, ,ot,)
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. Chaptef Page Line Corrected Vefsion
7 "113 -16 There are tvo ...
8 117, -1 .the Taylor series for_Lh(y).vanish.
8 ]20 .'4 - '::—2 h ¢ = 0
Yn-2 '
¢ 123 g?g]e y(0) =1 [in title]
8 123 " [Change sign of entries under Eppor 1
8 124 7 exponentially; ... linearly;
i 125 19 5,00 | = 1
8 18 8. 0(h"*2)
. k . ;
9 137 4 + [hf...
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Chapter - Page Line Cofrected Version
9 187 0 213 do=y-y(t)
9 138 18 - on the eigenvalues
9 139 5 bk'l
9 139 -5 eigenvalues
.9 . 140 7 Tess in magnitude than
9 140 -1 ..é].... } ...bi.a;}
9 14 15 ek p*(§) = 0.
9 141 ’ 17 _ eigenvalues
. ' " _
9 141 24 hyy = hf(yg),
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Chébter ~ Page Line'l - ‘Corfected Version -
9 wo | for i<k, hy; #
9 o f143 ;.' ']] .t ds usefujvtg ;tate?
o w5 2 'ﬁy'(t-ﬁ3=
9 i47 o ‘5 | - were seen totbe
9 .14'7 (9.11)  ané £ - Tg -
9 | :147 o f—13 | fé not as 1argé as it mjghf
9 148 .4 8 (l Y Y »"'Yk—z -l
9 g g R Ndrdsigck.

9 149 10 premultiplying by A



-214-

Chapter : Page Line e Corrected Version
9 149 5 given by the B and ,g:,‘prec‘eding (9.11),
. K

9 149 - 16 . O(hh).
9 150 . -10 Eq. (9.2)
9 150~ -5 _of degree three
9 152 14 M1 [not 3= ]

RLE

i=o0
9 162 following

; statement A(3) = -1.225
no. 217

9 168 -3 6. Equation (9.12)
10 192 7,-12 0 9F

3.3 [incorrect denominator]
a .

10 192 -2 © [(10.43) should be on last line.] -
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Chapter Page Line | - Corrected Version

10 | 193 . (10.46) ey ()
10 04 17 0(h").
10 ‘204 =13 fy(i;-n_i)
: (r+1) _ g ()
10 204 12 ﬁiy (tn) ﬂiy (tn_i) +
10 204 -7 g(t) (L) +
10 204 -6 g(t) = fy(y(t)). '
N 227 13 3y A& A
_ : } b‘zb ) 33&’ h
[Ris not bo]dface]
11 C 227 17 Tewarson
.;'«’,. :2-’

. .aas
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