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ABSTRACT 

Multiaxial plastic stress analysis techniques will become more widely 

used by engineers once a straightforward derivation of the basic equations 

of plasticity is available. The objective of this report is to present 

such a derivation. The basic equations of plasticity are derived by using 
only calculus and vector algebra; tensor notation is not used. All as- 

sumptions are explicitly stated. The flow rule is derived by two different 

methods. In one method the area under the effective stress-strain curve 

is assumed to equal the plastic work. For the other method the plastic 

material is assumed to be "stable." In both derivations the ratios of 
the principal plastic strain increments are uniquely determined by the 

state of stress at any point on the yield surface, except at a discontinu- 

ity. Plastic volume changes are related to the effects of hydrostatic 

pressure on the yield function. 

The equations of Hill's yield function and the Mohr-Coulomb yield 

function are examined. For anisotropic materials that obey Hill's yield 
function, the uniaxial stress-plastic strain curves in the principal di- 

rections must plot parallel to each other on log-log paper; this leads 
to a general method for determining the coefficients of anisotropy. The 
plastic volume changes associated with the Mohr-Coulomb yield function 

are examined. The tensile and compressive stress-plastic strain curves 

for Mohr-Coulomb material must also plot parallel to each other on log- 
log paper. Furthermore, the flow rules associated with the Mohr-Coulomb 

and the Von Mises yield functions can both be derived by assuming that 
slip causes no plastic strain in the direction of slip. Two example prob- 
lems are solved: one uses Hill's yield function and the other the Mohr- 
Coulomb yield function. Finally, present limitations and future exten- 

sions of the theory are dtscussed. 
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DE F I N I T  I O N S  

Angle of internal friction - the angle with a tangent equal to the coef- 

ficient of friction of a material slipping on itself. 

Anisotropic material - a material with properties that vary with direc- 
tion. 

Associated flow rule - a flow rule applicable to a particular yield func- 
tion. 

Cohesion - the shear stress on a slip plane when there is zero normal 
stress acting on that plane. 

Deformation theory - a set of equations relating stress to total plastic 
strain. Deformation theory is a special case of incremental theory. 

Elastic strain - the strains related to the stresses by Hooke's law. 
Elastic strains are recoverable by unloading. 

Effective plastic strain increment - a function of the principal plastic 
strain increments, the value of which can be determined from the ef- 

fective stress-strain curve. The product of the effective stress and 
the effective plastic strain increment equals the plastic work incre- 

ment. 

Effective stress - a known function of the principal stresses that uniquely 
determines the amount of plastic work required to attain a particular 

state of stress. 

Effective stress-strain relation - a unique relation between the effective 
stress and the effective plastic strain. 

Effective total strain - a function of the principal total strains that 

is uniquely related to the effective stress for isotropic deformation 

the ory . 
Flow rule - a set of three partial differential equations relating the 

principal plastic strain increments to the stresses and the stress 

increments via the yield function. 
Hydrostatic stress - the average of the three principal stresses; also 

the normal stress on the octahedral plane. 
Ideally plastic material - material that does not strain harden; therefore 

the effective stress is a constant in the plastic range. 
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Incremental theory - a set of equations in which the stresses are related 
to the plastic strain increments. 

Integrated flow rule - a set of stress-strain equations relating the 
stresses to the total plastic strains. 

Isotropic material - material with properties equal in all directions. 
Modulus of elasticity - the initial slope of the uniaxial stress-strain 

curve. 

Mohr-Coulomb yield function - a yield function which specifies that the 
shear stress on a slip plane equals cohesion plus the product of the 

normal stress times the tangent of the angle of internal friction. 
Octahedral coordinate system - a set of coordinates in stress space having 

one axis colinear with the octahedral normal and the other two axes 

lying in the octahedral plane. 
Octahedral plane - a plane equally inclined to three mutually perpendicu- 

lar directions. 
Octahedral shear stress - the shear stress on the octahedral plane in”a 

unit element. 
Plastic strain - the difference between total strain and elastic strain. 
Plastic strain increment vector - the vector in stress space whose com- 

ponents are the principal plastic strain increments. 

Plastic volume change condition - the equation resulting from summing the 
principal plastic strain increments. 

Plastic work - the work done by the total stresses on the plastic strains. 

Poisson’s ratio - the negative of the ratio of transverse elastic strain 
to elastic strain in the direction of stress in a uniaxial test. 

Principal strains - the normal strains in the three mutually perpendicular 
directions between which there is no shear strain. 

Principal stresses - the normal stresses on the three mutually perpendicu- 

lar planes on which there is no shear stress. 

Slip planes -planes of discontinuity formed by sliding during yielding. 

Stability - the assumption that plastic material cannot do any net work 
on its loads or their increments but must always have some work done 

on itself during yielding. 
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Strain-hardening material - material for which the derivative of effective 
stress with respect to effective plastic strain is positive. 

Stress space - a set of Cartesian coordinates in which the unit vectors 
apply to the stresses or strains in the principal directions. 

Transversely isotropic material - material with equal properties in any 
direction within a plane but another set of properties in the direc- 

tion perpendicular to that plane. 
Tresca yield function - the difference between the algebraically largest 

and smallest principal stresses. According to this criterion, the 

maximum shear stress controls yielding. 

Ultimate strength analysis - the calculation of the actual strength of 
a structure. The strength of a structure is the load that causes 

failure. 
Von Mises yield function - a constant times the octahedral shear stress. 
Yield function - an algebraic function of the principal stresses having 

the dimensions of a stress and controlling the ratios of the principal 

plastic strain increments via the flow rule. 

Yield stress - the value of stress at which yielding first occurs in a 
uniaxial test. 

Yield surface - a plot of the yield function in stress space. 
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AN ENGINEERING APPROACH TO MULTIAXIAL PLASTICITY 

J. G. Merkle 

Within the past 15 years, failure criteria based on plastic stress 

analysis’ have become an important part of most structural design codes. 

Previously, structures were assumed to behave elastically until failure 

occurred; that is, no strength beyond yielding was recognized. In fact, 

failure was usually defined as the occurrence of yielding (barring buck- 

ling, fatigue, or brittle fracture). This criterion frequently led to 

an uneconomical use of material. Therefore it was inevitable that plas- 

tic analysis should be developed and applied to the design of structures. 

More recently, another set of problems in plastic analysis has arisen 
with regard to the design of structures for nuclear power plants. Among 

these problems are the ultimate strength analysis of reactor containment 
shells and pressure vessels and the ultimate strength analysis, for ther- 

mal loading, of reactor fuel elements. The need for practical solutions 

to these problems is now providing a strong motivation for the develop- 
ment of plastic theory along practical lines. 

The fact that plastic analysis has become a widely accepted method 

of structural analysis for buildings is due primarily to two factors. 

The first is the thorough program of analytical and experimental research 

undertaken to develop and verify the theory. The second is the concur- 

rent and equally important effort undertaken to explain the theory in its 
simplest terms. 

Since beams, columns, and frames are usually assumed to carry only 

uniaxial stress, the uniaxial stress-strain curve is usually sufficient 

for their analysis. An exception occurs in the case of shear-moment in- 

teraction in beams. However, for structures involving multiaxial stress, 

such as reactor containment shells, pressure vessels, and fuel elements, 

all the principles of the general theory of plasticity are required for 

analysis. In most papers on multiaxial plastic stress analysis, however, 
the basic principles of the theory are stated without proof, with refer- 
ence usually being made to a few books o r  papers in which the basic theory 

is developed. While it is true that collectively these references contain 
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the basic theory, their presentations are generally rather abstract. A 

few attempts have been made to present the basic principles of plasticity 

in a less abstract form, notably by Dorn and his co-workers2 in 1945 and 

by Hill3 in 1950; however, in most of the more recent works on plasticity, 

only a part of the theory is presented and some derivations are omitted. 

It seems that only a few attempts have ever been made to simplify the 
derivations of the basic equations of plasticity without abbreviating, 

and not many attempts have been made to correlate the derivations of the 

equations of plasticity with the procedures actually used for problem 

solving. Thfs paper constitutes such an attempt. 

It may be argued that engineers do not need to know the derivations 
of the equations they use but need only have available the final equations 
in a ready-to-use form. The answer to this argument is that this philoso- 

phy may be a workable expedient for solving routine problems, but it is 
not an adequate basis for solving new problems. This is because new prob- 

lems can be solved only through understanding, and understanding is gained 
only by following derivations. An engineer who is not familiar with the 

derivations of the equations he is now using is in no position to derive 
new equations because he has no place to start. 

tant parts of this paper are not necessarily the final equations, most of 
which can be found elsewhere (although not all in one place), but the sub- 

ject matter outline, the statements of basic principles, and the unabbre- 

viated derivations, many of which cannot be found elsewhere. 

Therefore the most impor- 

It is not the purpose of this paper to develop a new theory but, 

rather, by progressing from the simple to the complex, to present a more 

easily understood explanation of an existing theory. By so doing, it is 

hoped that the many fine solutions to multiaxial stress problems in plas- 
ticity that already exist will become more understandable and more useful 

to students and engineors in practice. 

STATEMENT OF THE BASIC PROBLEM 

9” 

The behavior of material in the plastic range is best described in 

terms of the stress-strain curve and other experimental observations of 
actual inelastic behavior. Such a description is given in Ref. 4, ..ihich 



a l s o  con ta ins  t h e  d e f i n i t i o n s  of  many terms encountered i n  t h e  f i e l d  of 

i n e l a s t i c  a n a l y s i s .  For a n a l y t i c a l  purposes, c e r t a i n  assumptions concern- 

ing  p l a s t i c  behavior  a r e  made i n  order  t o  render  an a n a l y s i s  t r a c t a b l e .  

Reference 4 p o i n t s  ou t  t h e  degree t o  which these  assumptions a r e  approxi- 

mations and d i scusses  the  l i m i t a t i o n s  of p re sen t  methods of p l a s t i c  analy-  

s i s .  

The t h r e e  most important  assumed c h a r a c t e r i s t i c s  of  p l a s t i c  behavior  

a r e  non l inea r i ty ,  independence of time, and permanence of p l a s t i c  s t r a i n s .  

For a n a l y t i c a l  s impl i c i ty ,  t h e  u n i a x i a l  s t r e s s - s t r a i n  curve f o r  t h e  load- 

i n g  and unloading of a p l a s t i c  m a t e r i a l  i s  assumed t o  be of  t h e  form shown 

i n  Fig.  1. Loading i s  nonl inear ,  bu t  unloading i s  assumed t o  be l i n e a r .  

ORNL-DWG 67-337t 

TOTAL STRAIN, E - 
Fig.  1. Typical  Uniaxia l  E l a s t i c - P l a s t i c  S t r e s s - S t r a i n  Curve. 

The s lope  of t h e  unloading curve i s  assumed t o  be the  i n i t i a l  slope of 

t h e  loading  curve.  The e l a s t i c  s t r a i n  i s  def ined  a s  t h e  l i n e a r  recover-  

ab le  po r t ion  of t h e  t o t a l  s t ra in .  

nonl inear  i r r ecove rab le  p o r t i o n  of the  t o t a l  s t r a i n .  Therefore,  by d e f i -  

n i t  ion,  

The p l a s t i c  s t r a i n  i s  def ined a s  t h e  
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€ = € E + €  P , 

where E is the total strain, is the elastic strain, and is the plas- 
tic strain. Thus, for the purpose of this discussion, yielding is as- 

sumed to begin at the true proportional limit of the material rather than 

at some arbitrarily defined yield point.. 
for a real material must be determined by experiment. This determination 

is logically the first step in investigating the applicability of plastic 

analysis to a real material, especially if cyclic loading is involved. 

Whether or not Eq. (1) holds 

The basic problem in multiaxial plastic stress analysis can be de- 

fined by considering the unit cube of material shown in Fig. 2. This cube 

ORNL-DWG 67-3372 

Ql 

Fig. 2. Unit Cube of Material Loaded into the Plastic Range. 

of material is assumed to be loaded into the plastic range by a set of 
principal stresses that act normal to its faces. The magnitudes of the 
principal stresses are given, and the problem is to find the principal 

strains. While there are only three principal total strains, each prin- 

cipal total strain has two components, an elastic component and a plastic 

component. Since the two components of total strain are physically sepa- 

rate, there are six unknowns in the problem. However, if it is assumed 

that the elastic strains can still be determined by Hooke’s law, only 
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t h r e e  unknowns remain i n  the  problem without  equat ions  f o r  t h e i r  s o l u t i o n .  

These unknowns a r e  the  t h r e e  p r i n c i p a l  p l a s t i c  s t r a i n s .  It fol lows t h a t  

p l a s t i c  theory  must provide t h r e e  new equat ions f o r  computing t h e  t h r e e  

p r i n c i p a l  p l a s t i c  s t r a i n s .  I n  add i t ion ,  i f  any new unknowns a r e  i n t r o -  

duced i n t o  t h e  problem, t h e r e  must be one a d d i t i o n a l  equat ion  f o r  each 

new unknown. Since t h e  e l a s t i c  and p l a s t i c  s t r a i n s  a r e  p h y s i c a l l y  inde- 

pendent of each o ther ,  t h e  e l a s t i c  s t r a i n s  should not  appear i n  the  equa- 

t i o n s  f o r  t h e  p l a s t i c  s t r a i n s  un le s s  t hey  a r e  s u b s t i t u t e d  f o r  t h e  s t r e s s e s  

according t o  Hooke’s l a w .  

Although t h e  f i n a l  o b j e c t i v e  of p l a s t i c  a n a l y s i s  i s  t o  determine the  

s t r e s s e s  and t h e  t o t a l  p l a s t i c  s t r a i n s ,  i n  many cases  no unique a l g e b r a i c  

r e l a t i o n s h i p  between t h e  two s e t s  of v a r i a b l e s  w i l l  e x i s t .  This i s  be- 

cause of t h e  basic nonl inear  na tu re  of  p l a s t i c  deformation, which can 

manifest  i t s e l f  by c r e a t i n g  s t r e s s  i n t e r a c t i o n  terms i n  t h e  d i f f e r e n t i a l  

equat ions  r e l a t i n g  s t r e s s  t o  p l a s t i c  s t r a i n .  These s t r e s s  i n t e r a c t i o n  

terms l e a d  t o  i n d e f i n i t e  i n t e g r a l s  i n  t h e  a l g e b r a i c  equat ions  r e l a t i n g  

s t ress  t o  t o t a l  p l a s t i c  s t r a i n .  These i n d e f i n i t e  i n t e g r a l s  can be evalu-  

ated on ly  by knowing the  continuous r e l a t i o n s h i p  between t h e  p r i n c i p a l  

s t r e s s e s .  For example, a d i f f e r e n t i a l  equat ion  of  t h e  form 

has as i t s  i n t e g r a l  
2 

U. 

which i s  always t h e  same a l g e b r a i c  funct ion,  r e g a r d l e s s  o f  i t s  non l inea r  

form. However, t h e  d i f f e r e n t i a l  equat ion  

has as i t s  i n t e g r a l  
n 

which i s  not  a unique a l g e b r a i c  func t ion  because of. t h e  i n t e r a c t i o n  term, 

pa2 dol, i n  t h e  d i f f e r e n t i a l  equat ion .  If i n t e r a c t i o n  terms are assumed 
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to exist in the differential equations relating the principal stresses to 

the principal plastic strains, the three stress-plastic strain equations 

must be derived in differential form. Thus the three unknowns in the 

problem. for which definite equations can be written are the three princi- 
pal plastic strain increments. Therefore in a design analysis the total 

plastic strains must be determined by a process of integration that con- 

siders the continuous relationship between the principal stresses. 
Plastic theories in which the effects of stress interaction are rec- 

ognized and the total plastic strains are determined by integration are 

known as "incremental" theories. Plastic theories in which the effects 

of stress interaction are ignored and a unique algebraic relationship 

between the stresses and the total plastic strains is assumed are known 

as "deformation" theories. Deformation theories are exact only for the 
one assumed relationship between the principal stresses, which can be 

used to derive them from incremental theory (usually constant stress ra- 
tios). Otherwise, they are approximate, although often convenient. In 
a few cases the differential equations of incremental theory contain no 

interaction terms and can therefore be directly integrated. A l l  three 

types of equations are derived and discussed in this report. 

BASIC EQUATIONS OF PLASTICITY 

Assumption of Fixed Axes (A Simplifying Assumption 
for This Report) 

In many plasticity problems of immediate interest to design engineers, 

the principal axes of stress and strain are assumed to coincide and to have 

fixed directions. Although perfect,generality is lost by assuming such 

conditions, a considerable amount of simplicity and clarity is gained. 
Therefore, such conditions are assumed for all the following discussion. 

Number and Types of Equations 

In general, there are seven independent equations involved in a plas- 

tic stress analysis. 

the four auxiliary variables introduced into the problem. The remaining 

The first four equations permit the evaluation of 

*I 

f 

t 
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three equations specify the relative values of the three principal plas- 

tic strain increments. The first equation is the definition of a function 

of the principal stresses and is called the yield function, or the plas- 

tic potential. The yield function is assumed to control the initiation 
and progression of yielding by controlling the ratios of the principal 

plastic strain increments. 
generalized, or universal stress-strain relation. 1 1 2 - 5  This equation re- 

lates an effective stress to an effective plastic strain. The third and 

fourth equations are the definitions of the effective stress and the ef- 
fective plastic strain. The last three equations are a set of equations 

known as a flow rule. 

differential equations that specify the relative values of the principal 

plastic strain increments in terms of the principal stresses and the ef- 
fective plastic strain increment. An eighth equation, the plastic volume 
change condition, although usually introduced as an independent condition, 

can always be derived by taking the sum of the three flow rule equations. 
Or if the plastic volme change condition is specified as an independent 

condition, the definition of the yield function becomes a dependent con- 

dition. Each of these equations is discussed in detail in the following 

sections. 

The second equation is a so-called "effective, 

The flow rule is a set of three linear partial 

The Yield Function 

In uniaxial and biaxial tests, on at least some materials, yielding 
is observed to begin at a certain definite combination of the principal 

stresses. Fhrthermore, if after yielding, the load is reduced, the plas- 

tic strains do not decrease but remain permanently. 
loading from the plastic range is observed to be elastic. 
in a uniaxial test at some load, if an increase in axial strain corresponds 

to a decrease in true stress, it is observed that behavior is not plastic 
but involves some form of separation, such as cracking. Therefore it is 

assumed that for multiaxial loading, there is some function of the princi- 

pal stresses, called the yield function, f, or the plastic potential, that 

has the dimensions of a stress and either stays constant or increases when 

In other words, un- 
In addition, 



yielding occurs. In other words, for behavior to be plastic, 

df 2 0 .  

The Effective Stress-Strain Relation 

The effective stress-strain relation is a single algebraic or graphi- 

cal relation between some fhnction of the principal stresses and some 

function of the principal plastic strains of the general form 

where g indicates a functional relationship, which is assumed to be always 
satisfied in the plastic range under any state of stress. 2 - 5  

existence of the effective stress-strain relation is assumed before or 
after the flow rule is derived depends on the method of deriving the flow 
rule, as will be shown subsequently. 

lation, the principal stress function is called the effective stress, and 
the principal plastic strain fbnction is called the effective plastic 
strain. The effective stress has the dimensions of a stress, and the ef- 
fective plastic strain has the dimensions of a plastic strain. 

of strain hardening is specified by the slope of the effective stress- 

strain curve. If the rate of strain hardening is zero, the effective 

stress-strain curve is a horizontal straight line; this indicates that 

the effective stress is a constant that is independent of the plastic 
strains. Such an effective stress-strain curve is characteristic of mild 

steel for plastic strains less than about 1.4% (Ref. 6) and has been used 
extensively for analysis. 
without strain hardening is shown schematically in Fig. 3. 

strain curve is called an "elastic-ideally plastic" or a "flat-top" stress- 

strain curve. 

Whether the 

In the effective stress-strain re- 

The rate 

A uniaxial stress-strain curve for a material 
Such a stress- 

The effective stress is always defined as an algebraic function of 

the three principal stresses, and the effective plastic strain increment 

is always defined as an algebraic function of the three principal plastic 

strain increments. In incremental theory, the effective plastic strain 

\ 
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Fig. 3. Elastic-Ideally Plastic Uniaxial Stress-Strain Curve. 

\, 
is determined by integration. However, regardless of the algebraic ex- 
pression for the effective plastic strain, its numerical value can always 

be determined from the effective stress-strain curve once the numerical 

value of the effective stress is known. The effective stress-strain curve 
itself is usually determined from a conventional uniaxial tensile test. 

The algebraic definition of the effective plastic strain increment 

is an independently specified condition. However, it is usually chosen 
as the algebraic form determined by the form of the effective stress func- 
tion such that the area under the effective stress-strain curve equals 

the plastic work. 

defined algebraically as the integral of the effective plastic strain 
increment for constant plastic strain increment ratios. 

In deformation theory, the effective plastic strain is 

The effective stress-strain curve may be utilized numerically, in 

its original form, or it may be fit with an empirical equation. 
the most comonly used empirical equations for strain-hardening materials 

are the power law and the linear strain-hardening law. 

expressed by the equation 

Two of 

The power law is 
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and the linear strain-hardening law, by the equation 

where aeff is the effective stress, Egff is the effective plastic strain, 

and C, n, ao, and H are constants. 
strain equation is independent of the other conditions in plasticity. 

However, this choice may have a strong influence on the difficulty of 

obtaining a closed-form mathematical solution for a given problem. 

course, in principle, computer solutions can be obtained with any stress- 

strain curve. 

The choice of an effective stress- 

Of 

The Flow Rule 

Since the yield function involves only a function of the principal 

stresses, Eq. (6) does not, by itself, provide a complete basis for com- 
puting the principal plastic strain increments. Some other relationship 

involving the principal stresses and the principal plastic strain incre- 

ments is needed. In order to derive such a relationship, it is necessary 

to make some additional assumptions. 
Two partially different approaches to deriving the flow rule can be 

taken, but both essentially lead to the same conclusion. 
based on the assumed existence of an effective stress-strain curve, the 

area under which equals plastic work. 

assumption of stability. Both derivations utilize the assumption that the 

ratios of the principal plastic strain increments are uniquely determined 
by the state of stre~s.~ 

One approach is 

The other approach is based on the 

Both derivations are shown below. 

Derivation Based on the Assumed Existence of an Effective Stress- 
Strain Relation 

Referring to Fig. 2, consider a unit element of volume of strain- 
hardening material at equilibrium in the plastic range under the action 

of a set of principal stresses acting normal to its faces. If a set of 

plastic strain increments occurs, the increment in plastic work performed 
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by the  e x i s t i n g  s t r e s s e s  i s  def ined  as7 

Now we w i l l  assume t h a t  t h e r e  does e x i s t  an  e f f e c t i v e  s t r e s s - s t r a i n  r e -  

l a t i o n  i n  t h e  p l a s t i c  range and t h a t  t h e  incremental  area under the  e f -  

f e c t i v e  s t r e s s - s t r a i n  curve equals  t h e  increment i n  p l a s t i c  work, t h a t  

is ,  

Combining Eqs .  ( 9 )  and (10) then  g ives  

Dividing both  s i d e s  of E q .  (11) by dczff g ives  

For s impl i c i ty ,  we use the  fol lowing s u b s t i t u t i o n s  : 

dt; 

Then combining Eqs. (12)  and (13) g ives  

(Jeff = OIX + a2y + 0 3 Z  . ( 1 4 )  

A b a s i c  assumption i n  p l a s t i c  t heo ry  i s  tha t  the  r a t i o s  of t he  p l a s t i c  

s t r a i n  increments a r e  uniquely determined by t h e  s t a t e  of  s t r e s s ,  inde- 

pendent ly  of  t h e  r a t i o  of t h e  s t r e s s   increment^.^ 
o f  t h e  p l a s t i c  s t ra in  increments a r e  t h e  same f o r  a l l  incrementa l  load-  

ing  pa ths  i n t o  t h e  p l a s t i c  range t h a t  o r i g i n a t e  a t  the  same s t a t e  of  

s t r e s s .  It fol lows t h a t  i f  t h e  p l a s t i c  s t r a i n  increment r a t i o s  can be 

determined f o r  any p a r t i c u l a r  incremental  loading  p a t h  from a given s t a t e  

o f  s t r e s s ,  t hey  are determined i n  gene ra l  f o r  t h a t  s t a t e  of  s t r e s s .  

Therefore,  t h e  r a t i o s  
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Now we assume t l a t  from every s t a t e  of  s t r e s s  i n  the  p l a s t i c  range 

t h e r e  i s  some incremental  loading  p a t h  along which t h e  p l a s t i c  s t r a i n  in -  

crement r a t i o s  s t a y  c a n s t a n t .  

s t r a i n  increment r a t i o s  can be fouricl f o r  t h i s  condi t ion,  t h e  gene ra l  r u l e  

has been found by the  prev ious  argument. 

If t h e  r u l e  f o r  determining t h e  p l a s t i c  

Becawe dczff can be Petermined from t h e  e f f e c t i v e  s t r e s s - s t r a i n  r e -  

l a t i o n ,  t h e  numerical  va lue  of  t h e  e f f e c t i v e  p l a s t i c  s t r a i n  increment 

must be independent of  t h e  loading  pa th .  Since d i f f e r e n t  t o t a l  p l a s t i c  

s-c-a.ins may e x i s t  a t  t h e  same s t a t e  of  s t r e s s ,  depending on t h e  loading  

path,  t h e  e f f e c t i v e  p l a s t i c  s t r a i n  increment cannot be a f f e c t e d  by t h e  

t o t a l  p l a s t i c  s t ra ins .  
Therefore, t h e  e f f e c t i v e  p l a s t i c  s t r a i n  increment must be a f 'unction 

only  o f  t h e  p las t ic  s t r a i n  increments .  

p las t ic  s t r a i n  increment has the  dimensions of a p l a s t i c  s t r a i n  inc re -  

ment, x, y, and z should be func t ions  only  of  t h e  p l a s t i c  s t r a i n  inc re -  

ment r a t i o s .  

p l a s t i c  strhin. increment r a t i o s  remain cons t an t .  
\ 

Furthermore, s ince  the  e f f e c t i v e  

Therefore,  x, y, and z should remain cons tan t  when t h e  

By t h e  cha in  r u l e ,  t h e  t o t a l  d i f f e r e n t i a l  o f  aeff  i s  given by 

S u b s t i t u t i n g  Eq.  (14) i n t o  Eq. (15) and performing t h e  ind ica t ed  p a r t i a l  

d i f f e r e n t i a t i o n  g ives  

ax 
a Y  + u3 k) do;, + a;, - 
302 3 0 2  
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Rearranging terms i n  Eq. (16) g ives  

However, by t h e  chain r u l e ,  Eq.  (17) reduces t o  

d U e f f  = x do, + y do2 + z do3 + o1 dx + U2 dy + o3 dz . (18) 

Since x, y, and z were assumed t o  remain constant ,  

dx = dy = dz = 0 , (19) 

and Eq. (18) reduces t o  

daeff = x dol + y do2 + z do3 - 

Equat ing t h e  r ight-hand sides of  Eqs. (15) and (20) now gives  

Co l l ec t ing  terms and d iv id ing  by dol then  g ives  

The terms i n  parentheses  a r e  independent of t h e  s t r e s s  increment r a t i o s .  

Therefore,  by t ak ing  t h e  p a r t i a l  d e r i v a t i v e s  of t h e  le f t -hand  s ide o f  

Eq. ( 2 2 )  w i t h  r e spec t  t o  t h e  r a t i o s  da2/dal and du3/dul, it fol lows t h a t  
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and 

and by substituting Eqs. (23a) and (23b) into Eq. (22), 

(234 

Consequently, by substituting Eq. (13) intci Eq. (23) and rearranging, 

Equation (24) is an "incremental" flow rule based on the assumed existence 

of an effective stress-strain curve, the area under which equals plastic 

work. Note that the factor of proportionality, dceff, is of differential 

magnitude and has known physical significance. 

seen that the values of the plastic strain increments are independent of 
the loading history. 

P 

From Eq. (24) it can be 

Evidently, there are two ways to investigate the foregoing theory. 

One is to experimentally test the existence of an effective stress-strain 
relation that determines the plastic work, and the other is to derive the 
flow rule without assuming the existence of an effective stress-strain 

relation. Both these approaches to plastic theory have been under in- 

vestigation for tns past several years, but the relationship between them 

... 
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has not  always been c l e a r .  I n  t h e  next  s e c t i o n  t h e  flow r u l e  i s  der ived  

without  t he  assumption o f  an  e f f e c t i v e  s t r e s s - s t r a i n  r e l a t i o n .  

Der iva t ion  Based on the  Assumption of S t a b i l i t y  

The b a s i c  assumption underlying t h i s  approach t o  p l a s t i c  theory  i s  

t h a t  p l a s t i c  material always s a t i s f i e s  the  cond i t ion  of s t a b i l i t y .  8-10 

This cond i t ion  s p e c i f i e s  t h a t  a u n i t  volume of  p l a s t i c  m a t e r i a l  cannot do 

any n e t  p l a s t i c  work upon i t s  loads  o r  t h e i r  increments b u t  must always 

have some p l a s t i c  work done upon it during loading .  The f i r s t  p a r t  of 

t h i s  cond i t ion  i s  expressed by t h e  requirement t h a t ,  dur ing  y ie ld ing ,  t h e  

work done by t h e  e x i s t i n g  s t r e s s e s  on a s e t  o f  p l a s t i c  s t r a i n  increments 

must be p o s i t i v e .  I n  o the r  words, 

There seems t o  be ample experimental  evidence t o  j u s t i f y  t h i s  assumption. 

The second p a r t  o f  t h e  s t a b i l i t y  p o s t u l a t e  seems t o  be based p a r t l y  

on experimental  evidence and p a r t l y  on mathematical  i n t u i t i o n .  If we 

w r i t e  Eq. (6)  i n  the  form 

af af af 

a s i m i l a r i t y  i n  form between t h e  r ight-hand s i d e s  of  Eqs. (25)  and (26)  

becomes ev iden t .  However, i n  Eq.  (25), t h e  independent v a r i a b l e s  a r e  t h e  

s t r e s s e s ,  and i n  Eq. (26) t h e  independent v a r i a b l e s  a r e  t h e  s t r e s s  i nc re -  

ments. I n  o rde r  t o  ob ta in  two equat ions  involv ing  t h e  s t r e s s  increments,  

we a r e  led ,  q u i t e  n a t u r a l l y ,  t o  cons ider  t h e  p l a s t i c  work done by t h e  

s t r e s s  increments due t o  a n  increment i n  t h e  app l i ed  loads .  I n  u n i a x i a l  

loading  a negat ive  tangent  modulus i n d i c a t e s  nonp las t i c  behavior .  Fur ther -  

more t h e r e  i s  apparent ly  no energy a v a i l a b l e  f o r  doing work on t h e  s t r e s s  

increments.  Therefore, a l though it cannot be f u l l y  j u s t i f i e d  thermody- 

namically,  i t  seems reasonable  t o  assume t h a t  dwp, t h e  p l a s t i c  work done 

by t h e  s t r e s s  increments on a s e t  o f  p l a s t i c  s t r a i n  increments,  must be 
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z e r o  o r  p o s i t i v e .  I n  o the r  words, 

1 
dw = 1; dal dc? + 2 da2 dcf + I. 2 da3 dc; >, 0 . 

P 2  

BecauLe dwP and d f  are bo th  s c a l a r s ,  it i s  p o s s i b l e  t o  assume a gene ra l  

r e l a t i o n s h i p  between them of  t h e  form 

A dw = 5 df , P 

where A i s  some unknown func t ion .  

From d i m e n s i l r a l  a n a l y s i s  and t h e  fact  t h a t  bo th  dw P and d f  have 

been assumed p o s i t i v e ,  it fol lows t h a t  A has t h e  dimensions o f  a p l a s t i c  

s t r a i n  increment and a va lue  g r e a t e r  than  zero .  

Eq. (28)  may be r e w r i t t e n  i n  t h e  form 

Using Eqs. (26) and (27) ,  

Combining terms, Eq.  (29)  becomes 

Dividing both s i d e s  o f  Eq. (30) by t h e  product  A dal t hen  g ives  

d 

Since A has t h e  dimensions of  a p l a s t i c  s t r a i n  increment, it i s  rea- 

sonable  t o  assume t h a t  A i s  a func t ion  only  of  t h e  p r i n c i p a l  p l a s t i c  

s t r a i n  increments.  

p r i n c i p a l  p l a s t i c  s t r a in  increment r a t i o s .  

independent of  t h e  s t r e s s  increment r a t i o s ,  t hen  t h e  terms i n  parentheses  

a r e  independent of  t h e  stress increment r a t i o s .  

has t h e  same s o l u t i o n  as Eq. (22) ,  and t h e  p l a s t i c  s t r a i n  increments a r e  

Therefore,  t h e  terms dE?/A a r e  func t ions  only o f  t h e  

If t h e s e  r a t i o s  a r e  assumed 

Consequently, Eq. (31) 



given by 

The assumption made in plasticity that the ratios of the plastic 

strain increments are uniquely determined by the state of stress and are 

independent of the ratios of the stress increments is analogous to the 
assumption in creep analysis that creep strain rates are independent of 

stress rates. From Eq. (32) it can be seen that the reason f is also 
called the plastic potential is that the plastic strain increments are 

proportional to its partial derivatives. It can also be seen that the 
real effect of assuming dwP to be positive was to prevent a possible 

ambiguity in the sign of A and hence in the sign of the plastic strain 

increments . 
Because Eq. (32) is a set of three equations in four unknowns, one 

more equation relating the principal plastic strain increments to the 
principal stresses is needed. For strain-hardening materials, this equa- 

tion is obtained by assuming the existence of an effective stress-strain 

relation, as discussed previously. For ideally plastic materials, the 
effective plastic strain can have any value that satisfies compatibility, 

but the effective stress must have a constant value. For both types of 
materials, an analysis based on the plastic volume change condition is 

often used, as explained below. 

The Plastic Volume Change Condition 

The plastic volume change condition can be derived from the flow 

rule by adding the three principal plastic strain increments. Therefore, 



18 

by adding t h e  t h r e e  express ions  i n  Eq. ( 3 2 ) ,  t h e  d i f f e r e n t i a l  p l a s t i c  

volume change, dVp, i s  given by t h e  equat ion  

It can be seen from Eq. ( 3 3 )  t h a t  t h e  p l a s t i c  volume change condi t ion  de- 

pends upon t h e  y i e l d  func t ion .  

dependent of each o the r .  

Therefore,  t h e  two func t ions  a r e  not  in -  

Equation ( 3 3 )  may be r e w r i t t e n  i n  a s impler  form by cons ider ing  the  

d e f i n i t i o n  of  t he  h y d r o s t a t i c  component of stress, which i s  def ined  by 

t h e  equat ion 

03. + u2 + u3 
am = 

3 
( 3 4 )  

Since t h e  e f f e c t s  of  h y d r o s t a t i c  stress are equal  i n  a l l  d i r e c t i o n s ,  it 
fo l lows  t h a t  

au, au2 au3 
( 3 5 )  

Consequently, t ak ing  p a r t i a l  d e r i v a t i v e s  on both  s i d e s  of Eq. ( 3 4 )  and 

us ing  Eq. ( 3 5 )  gives  

Therefore,  Eq. ( 3 3 )  may be  r e w r i t t e n  i n  the  form 

which, by t h e  chain r u l e ,  reduces t o  
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Experimental observation has shown that for many metals the plastic 

volume change is ~ e r o . ~ , ~ ,  5,7 

what general conditions, if any, lead to a zero plastic volume change. 

Since A is assumed to be nonzero for any incremental loading into the 
plastic range the plastic volume change will be zero if, and only if, 

Therefore it is of interest to determine 

af 
- -  - 0 .  (39) . 

Therefore the plastic volume change will be zero if, and only if, the 

yield function is independent of the hydrostatic component of stress. 

Furthermore, it is easily shown that for the yield function to be inde- 

pendent of the hydrostatic component of stress it must be a function only 

of the principal stress differences u1 - u2, o2 - a3, and a3 - ul. 
If the plastic volume change is zero, Eq. (33) can be used in either 

its differential or its integrated form without knowing the value of A. 

For zero plastic volume change the integrated form of Eq. (33) is simply 

where the constant of integration has been set equal to zero because.the 

plastic volume change is zero when all the plastic strains are zero. The 

plastic strains in Eq. (40) can always be expressed in terms of the total 
strains and the elastic strains according to Eq. (1). 
flow rule, the strain displacement relations, Hooke's law, the equilibrium 
equations, and the effective stress-strain relation it is often possible 
to reduce Eq.  ( 4 0 )  to a form that can be directly integrated. 

Then by using the 

Relationship Between the Yield Function 
and the Effective Stress * 

By comparing Eqs. ( 2 4 )  and (32) it can be seen that if the values 

of the plastic strain increments are to be the same for both derivations 

of the flow rule, 

3 
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By mul t ip ly ing  each of t he  expressions i n  Eq. (41) by t h e  corresponding 
s t r e s s  increment and adding t h e  r e s u l t s ,  Eq. (41) becomes 

By us ing  the  chain r u l e  and n0ting.E-q. ( 2 8 ) ,  Eq. ( 4 2 )  can be r e w r i t t e n  as 

P 
A dae f f  dEef f  - -  dwp - 2 df = 

2 
. ( 4 3 )  

I n  order  t o  so lve  Eq. ( 4 3 ) ,  another  express ion  involv ing  the  same quant i -  

t i e s  must f i r s t  be obtained.  S u b s t i t u t i n g  Eq. ( 3 2 )  i n t o  Eq. ( 9 )  gives 

To eva lua te  the  express ion  i n  parentheses  i n  Eq.  (u), Eq. (26) i s  r e -  

w r i t t e n  i n  the  form 

( 4 5 )  
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Since f has the dimensions of a stress, the partial derivatives of f are 

dimensionless, and they must be either functions of the stress ratios or 

constants. Therefore, if the stress ratios remain constant, the partial 
derivatives of f must remain constant, but if the stress ratios remain 
constant, the ratios of the stress increments must also remain constant. 

Since the yield function is specified algebraically, its value is the 
same for a given state of stress regardless of how that state of stress 
is reached. Therefore, Eq. ( 4 5 )  can be integrated over any path, includ- 

ing the path along which the stress ratios remain constant. 

that integration gives 

Performing 

If 

it follows that 

and 

f(O,O,O) = 0 , 

D = O ,  

Therefore, substituting Eq. (49) into Eq. (u) gives 

dWp = fh . 

(47) 

( 4 8 )  

( 4 9 )  

Of particular interest is the fact that Eq. (50) is independent of any 
assumptions regarding an effective stress-strain relation. 
since both dWp and f are known to be positive, A must be positive. Thus, 

the assumption that dwp is positive seems to have been unnecessary, since 

its only purpose was to make A positive. 

Furthermore, 

By combining E q s .  (50) and (lo), it can be seen that 
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Thus, since Eqs. ( 4 3 )  and (51) are general conditions, the plastic work 
increments dWp and dwP can always be represented as incremental areas 

under the effective stress-strain cwve, as shown in Fig. 4.. 

b 
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ef f 

EFFECTIVE PLASTIC STRAIN, - 
Fig. 4 .  Representation of the Plastic Work Increments as Incremental 

Areas Under the Effective Stress-Strain Curve. 

Combining Eqs. ( 4 3 )  and (51) also leads to the desired relationship 

between f and aeff. Dividing Eq. ( 4 3 )  by Eq. ( 5 1 )  and multiplying by 2 

gives 

which can be rewritten as 

d(log f) = d(hg aeff) . ( 5 3 )  
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Therefore, by direct integration, 

log f = log aeff + log A , 

where A is an arbitrary constant. Thus 

and by substituting Eq. (55) into Eq. (51), 

AA = dEeff P 

( 5 4 )  

The factor of proportionality, A, is thus defined simply by the equation 

A = - .  
A 

(57) 

Therefore, A is always a constant times the effective plastic strain in- 

crement, regardless of the yield function. 

trary, it is usually taken equal to unity, in which case 

Since the value of A is arbi- 

P A = dEeff 

and 

f = Ueff . (59) 

In general,.the stress fhnction on which the flow rule is based is 

called the plastic potential, and the stress function on which the effec- 

tive stress-strain relation is based is called the effective stress. Al- 
though it is mathematically possible to obtain solutions to plasticity 

problems if Eqs. (55) and (56) are not satisfied, in any such case, the 
condition of stability might not always be satisfied. 

literature on plasticity, the plastic potential and the effective stress 

are taken to be the same function. Therefore, the terms yield stress, 
yield function, plastic potential, and effective stress have come to be 

regarded as synonyms. However, in a trade of accuracy for simplicity it 

is worth remembering that the plastic potential and the effective stress 

In most of the 
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do no t  aiways have t o  s a t i s f y  Eq.  (55) .  

such a compromise. 

S t e e l e l l  g ives  a good example of  

The E f f e c t i v e  P l a s t i c  S t r a i n  Increment i n  Terms of 
t he  S t r e s s e s  and t h e  S t r e s s  Increments 

If the  tangent  modulus of t h e  e f f e c t i v e  s t r e s s - s t r a i n  curve \ i s  def ined  

as1* 

it fol lows t h a t  

Equation ( 6 1 )  can be s u b s t i t u t e d  i n t o  Eq. (32)  t o  o b t a i n  t h e  p r i n c i p a l  

p l a s t i c  s t r a i n  increments- as func t ions  o f  t h e  p r i n c i p a l  s t r e s s e s  and the  

p r i n c i p a l  stress increments .  l2 

ing, as given by Eq. (7), i s  assumed, 

For ins tance ,  i f  power-law s t r a i n  harden- 

F’ = n C ( E e f f  P )n-1  7 

b u t  from Eqs. (7)  and ( 5 9 ) ,  

and 

The r e f  ore  

and 

d f  df  
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If linear strain hardening, as given by Eq. ( 8 ) ,  is assumed, 

F' = aoH 

and 

df df 

It will be noted that if there is no strain hardening, F' is zero, and 

Eq. (61) becomes indeterminate. 

crements not being uniquely determined by the stresses and the stress 
increments for an ideally plastic material. 

This results from the plastic strain in- 

Associated and Integrated Flow Rules 

When a particular algebraic yield function is entered into the flow 

rule and the indicated partial differentiation performed, the flow rule 

becomes an associated flow rule (i.e., associated with that particular 

yield function). 
loading and the principal axes do not rotate, the flow rule equations can 

be integrated directly. The partial derivatives of f will remain constant 

during loading if f is a linear function of the principal stresses or if 

the principal stress ratios remain constant. 

ferred to as radial loading. Whenever the flow rule equations are written 
in integrated form? in terms of the total plastic strains, they are known 

If the partial derivatives of f remain constant during 

The latter condition is re- 

as an integrated flow rule. 

CHARACTERISTICS OF STRl3SS SPACE 

Basic Equations 

Since the yield function is a scalar function of the three principal 
stresses, it is convenient to represent it as a yield surface in stress 

space. Stress space is simply a three-dimensional coordinate system in 
which the values of the principal stresses (or strains) are the coordi- 

Such a set of coordinates is shown in Fig. 5. Although the 
relative magnitudes of the principal stresses may vary, it is assumed 
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n 

etc 

=2 

Fig.  5. Bas ic  C h a r a c t e r i s t i c s  of  S t r e s s  Space. 

f o r  t h i s  d i scuss ion  t h a t  t he  p r i n c i p a l  stresses cont inue t o  a c t  i n  t h e  1, 

2, and 3 d i r e c t i o n s ,  as shown i n  F ig .  2. Therefore,  i n  t h i s  d i scuss ion ,  

c o n t r a r y  t o  the  usual convention, t h e  s u b s c r i p t s  1, 2, and 3 do not  s i g -  

n i f y  t h e  re la t ive magnitudes of  t h e  p r i n c i p a l  s t r e s s e s  but only  i n d i c a t e  

t h e i r  d i r e c t i o n s .  

Re fe r r ing  t o  F ig .  5, t h e  t o t a l  s tate o f  stress a t  a p o i n t  ,in a body - 
can be represented  by a v e c t o r  u i n  s t r e s s  space.  

by t h e  equat ion  

The vec to r  2 i s  def ined  

(69) 
- - - - 

a = u 1 i + a 2 j  + a 3 k ,  

- -  
where t h e  vec to r s  i, j, and k are the u n i t  v e c t o r s  a c t i n g  - i n  t he  coord ina te  

d i r e c t i o n s .  

nen t s  such t h a t  

It i s  a l s o  p o s s i b l e  t o  r e so lve  t h e  v e c t o r  u i n t o  two compo- 
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- 
where on acts along the line n, which is equally inclined to all three 
coordinate axes, and z is perpendicular to Gn. The plane containing 7 
is called the octahedral plane,* and the line n is called the octahedral 
normal. Since the direction cosines of n are all 1/ay it follows that 

- 

where a, is the hydrostatic component of stress and is defined by13 

a1 + u2 + u3 
am = 

3 

By referring to Eq. (71) it can be seen that 

- - - -  
an = am(i + j + k) . ( 7 3 )  

- 
Substituting E q s .  (69) and (73) into Eq. (70) and solving for z gives 

- - - - 
z = (a1 - am)i + (a2 - am)j + (a3 - am)k . (74:) 

Consequently 

1 ~ 1  = [ ( G I  - + ( 0 2  - am) 2 + (03 - am)2]1’2 7 

and by using Eq.  (72) it can be shown that 

(75) 

where zoct is the octahedral shear stress and is defined by13 

= 7 1 [bl - u2)2 + (a* - a3)2  + (03 - 01)2]1’2 (77) 

In any octahedral plane in stress space, the hydrostatic component 

of stress is a constant. Furthermore, at any given radius perpendicular 

*Hill3 calls this plane the rr plane. 
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t o  t h e  oc tahedra l  norinal, t h e  oc t ahedra l  shear  stress i s  a cons t an t .  

a l l  t h r e e  p r i n c i p a l  E t r e s ses  are equa l  a long  the  oc t ahedra l  normal, by a 

change of  coord ina tes  it can be shown t h a t  a long  any l i n e  n’ p a r a l l e l  t o  

t he  oc t ahedra l  normal, a l l  t h e  p r i n c i p a l  stress d i f f e r e n c e s  a r e  cons t an t .  

Since 

The P l a s t i c  S t r a i n  Increment Vector 

It i s  now convenient t o  de f ine  a p l a s t i c  s t r a i n  increment vec to r  i n  

s t r e s s  space such t h a t  

-P P -  P -  
dc  = d E l  i + de; 5 + de3 k . 

By us ing  Eq. (32) ,  Eq. (78)  can be r e w r i t t e n  i n  t h e  form 

-P de = A of , 
where the  g rad ien t  o f  f, of, i s  def ined  by t h e  equat ion  

(79) 

It i s  known that  of i s  perpendicular  t o  t h e  y i e l d  su r face  and p o i n t s  i n  

t h e  d i r e c t i o n  of  i nc reas ing  f ,  which i s  outward. Since A i s  p o s i t i v e ,  it 
fo l lows  t h a t  t h e  p l a s t i c  s t r a i n  increment vec to r  i s  d i r e c t e d  a long  t h e  

outward normal t o  t he  y i e l d  su r face  as shown i n  Fig.  6 .  
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& P =  XOf 

Fig. 6 .  Sec t ion  o f  a Yield  Surface Showing 
P l a s t i c  S t r a i n  Increment Vector.  

t h e  Normality o f  t h e  
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Characteristics of Yield Surfaces 

-P Based on the definitions of dc and of, it is possible to determine 

two important characteristics of yield surfaces. The first characteristic 

is general and’applies to all yield surfaces. The second characteristic 

applies whenever the condition of zero plastic volume change is known or 
assumed to hold. 

The first commonly accepted characteristic of yield surfaces is that 

they must be flat or convex outward. The proof of this rule will not be 

given here, but one consequence of its violation will be discussed. Con- 

sider a set of strain measurements made on the surface of a structure 

that has undergone large plastic deformations under biaxial stress. If 

the biaxial yield locus of the shell material is allowed to have inflec- 

tion points, there will be three stress ratios for which the plastic strain 
increment ratios will be the same. This condition is shown in Fig. 7. 
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Fig. 7. Cross Section of a Yield Surface Having Both Convex Out- 
’ ward and Concave Outward Portions (Not Permitted by Theory). 

Under the assumption of an integrated flow rule (deformation theory) and 
rigid plasticity (elastic strains neglected) the solution for stresses 

will not be unique. The only way to avoid this ambiguity is to prevent 

its occurrence by preventing the yield locus from having concave outward 

portions. Thus the permissible characteristics of a yield surface are 

shown in Fig. 8 .  
ambiguity is avoided by avoiding concave outward angles. 

If the yield surface consists of flat pieces (planes), 
Consequently, 
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ARC PS = FLAT PORTION 

POINT S = OUTWARD POINTING 
CORNER 

ARC SP = CONTINUOUS CONVEX 
OUTWARD PORTION 

Fig.  8. Cross Sec t ion  of  a Yield Surface w i t h  C h a r a c t e r i s t i c s  Pel.- 
i 

- 1  mit t ed  by Theory. 

on ly  one s e t  of  assumptions regard ing  t h e  
minor p r i n c i p a l  axes* w i l l  r e s u l t  i n  a SO 

d i r e c t i o n s  of 
.ut ion s a t i s f y  

the  major and 

ng a l l  cond i t ions .  

It i s  mathematical ly  p o s s i b l e  t o  have an  outward p o i n t i n g  corner  i n  

t h e  y i e l d  sur face ,  such as t h e  p o i n t  S shown i n  F ig .  8. 

dc 

a l l  d i r e c t i o n s  of dTp a r e  assumed poss ib l e ,  t hen  dTp can a c t  i n  any d i -  

r e c t i o n  between t h e  normals t o  t h e  ad jacen t  s u r f a c e s .  Although t h e  d i -  

r e c t i o n  o f  dc 

corner ,  ambigui t ies  do no t  arise i n  t h e  s o l u t i o n  of  problems because t h e  

p l a s t i c  s t r a i n  increment r a t i o s  i n  "corner" reg ions  a r e  determined by colll- 

p a t  i~ i 1 it y . 

I n  t h i s  case,  

i s  confined t o  t h e  p lane  normal t o  t h e  edge l i n e  through S, b u t  i f  
-P 

-P i s  not  un ique ly  determined by t h e  s t a t e  of s t r e s s  a t  a 

I 

If t h e  cond i t ion  of ze ro  p l a s t i c  volume change i s  known o r  assumed 

t o  hold, t hen  Eq. (39) holds  a t  every  p o i n t  on t h e  y i e l d  su r face .  By 

us ing  E q s .  (80) and ( 3 6 ) ,  Eq. (39) can be r e w r i t t e n  i n  vec to r  form as 

- af 
- = Vf ( i + T + k ) = O ,  

which impl ies  t h a t  - 
V f  1 (I + 7 + K) 

*The major axis i s  t h e  d i r ec t5on  o f  ul. The minor a x i s  i s  the  d i -  
r e c t i o n  of  0 3 .  
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everywhere on t h e  y i e l d  su r face .  

change a s soc ia t ed  w i t h  a given y i e l d  funct ion,  t h e  y i e l d  su r face  f o r  t h a t  

y i e l d  func t ion  must be a prism of cons tan t  c r o s s  s e c t i o n  i n  stress space, 

w i t h  i t s  genera tors  a l l  p a r a l l e l  t o  t h e  oc t ahedra l  normal. 

su r f ace  i s  t h e r e f o r e  completely def ined  by i t s  l i n e s  of i n t e r s e c t i o n  wi th  

any p lane  o r  s e t  o f  p lanes  i n  s t r e s s  space.  

used y i e l d  func t ions  t h a t  are independent of t h e  h y d r o s t a t i c  component of  

s t r e s s  a r e  t h e  Von Mises y i e l d  h c t i o n  and t h e  Tresca y i e l d  func t ion .  

The Von Mises y i e l d  func t ion  i s  a cons tan t  t imes t h e  oc t ahedra l  shear  

stress. Therefore,  as shown i n  F ig .  9, i t s  l i n e  of i n t e r s e c t i o n  w i t h  t h e  

Therefore, i f  t h e r e  i s  no p l a s t i c  volume 

Such a y i e l d  

For example, two commonly 
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Fig .  9. I n t e r s e c t i o n  Lines of t h e  Tresca and Von Mises Yield Sur- 
f aces  w i t h  an  Octahedral  Plane i n  S t r e s s  Space. 
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octahedral plane is a circle; its line of intersection with a coordinate 

plane is an ellipse. 

maximum shear stress. 
ordinate planes are either rectangles or single straight lines and, as 
shown in Fig. 9, its line of intersection with the octahedral plane is 

a regular hexagon. If the two yield functions are made equivalent for 

uniaxial tension, they are equivalent whenever two principal stresses are 
equal. Under these conditions, the corners of the Tresca hexagon coin- 

cide with the Von Mises circle, as shown in Fig. 9. 

the Von Mises yiel? surface is convex outward everywhere and that the 

Tresca yield surfa,e is piecewise linear, with only outward pointing cor- 

The Tresca yield function is a constant times the 
Therefore, its lines of intersection with the CO- 

It car1 be seen that 

ners. 

Determination of the Yield LOCUS for 
a State of Biaxial Stress 

The intersection of a yield surface with any one coordinate plane 

in stress space, say the a3 = 0 plane, can be determined from a biaxial 
test in which the stresses and the plastic strain increments in the 1 

and 2 directions are measured. 
P From Eq. (32), the ratio dcl/d$ is given by 

but by the chain rule, 

af af au2 
- = - -  

where aa2/au, is the rate of change of u2 with respect to u1 with f and 
a3 held constant. Substituting Eq. ( 8 4 )  into Eq. (83) gives 
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where o2 = a2(a l ,03 , f ) .  Let us  de f ine  an angle  8 such t h a t  

dcf 30, 
- = - = t a n  8 . 
dc2 P au ,  

A t  an  arbitrary p o i n t  i n  t h e  ul,02 plane,  s ay  a t  t h e  p o i n t  B i n  F ig .  10, 

the  angle  ABC w i l l  be (90°  - e), and t h e  angle  CBD w i l l  be 8 .  

of  these  two angles ,  ABD, w i l l  always be 90". Therefore,  s i n c e  BD i s  

always tangent  t o  t h e  y i e l d  locus,  AB i s  always perpendicular  t o  t h e  y i e l d  

locus .  

The sum 

The y i e l d  locus can a l s o  be determined by connect ing a l l  t h e  p o i n t s  

i n  t h e  ol,a2 p lane  a t  which t h e  va lue  of t h e  p l a s t i c  work i s  t h e  same. 

This  method has t h e  advantage of depending upon i n t e g r a t i o n  r a t h e r  than 
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Fig .  10. Determination of t h e  Yield Locus f o r  Biaxial  S t r e s s .  
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differentiation. Therefore it should be more accurate numerically. Of 
course, theoretically, the two methods should give the same result. 

fore they can be used in combination with each other. 

There- 

Transformation of Yield Surface Equations into 
an Octahedral Coordinate System 

The surfaces of most commonly used yield functions are defined by 

their octahedral cross sections and by the variation in size of these cross 
sections with hydrostatic stress. 

refer the equation of a yield surface to a set of axes, two of which lie 

in the octahedral plane am = 0, and the third of which lies along the 
octahedral normal. ' 9 1 4  

by using vector notation. 
projection of the u1 axis onto the octahedral plane, the uv axis be per- 

pendicular to the u axis in the octahedral plane, and the an axis be the 
octahedral normal. 

Therefore it is often convenient to 

This transformation of coordinates is easily made 
Referring to Fig. 11, let the uu axis be the 

Since all projection lines to the octahedral plane 
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Fig. 11. Octahedral Coordinate Axes in Stress-Space (Adapted from 
Ref. 14). 
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a r e  p a r a l l e l  t o  t h e  an axis, any p o i n t  i n  t h e  ul,un p lane  w i l l  be p ro jec t ed  

onto t h e  aU a x i s .  

a2,a3 plane  has the  equat ion  

The l i n e  of  i n t e r s e c t i o n  of  t h e  ul,an p lane  wi th  the  

u2 = a 3 .  (87) 

a , = O .  ( 8 8 )  

The oc tahedra l  p lane  pass ing  through t h e  o r i g i n  has t h e  equat ion  

Therefore,  i f  a vec to r  i s  def ined  by t he  equat ion  

and i s  a l s o  assumed t o  l i e  a long the  uu axis i n  the  am = 0 plane,  i t s  

components must s a t i s f y  t h e  r e l a t i o n s  

x + y + z = o  

and 

y = z .  

Therefore 

x = -2y , (92)  

- 
u = ( y ) ( 2 i  - 5- E) . ( 9 3 )  

If 

(7) = 1 9  ( 9 4 )  

it  fol lows t h a t  
- - - -  
U = 2 i  - j - k . ( 9 5 )  

Therefore  t h e  u n i t  vec to r  i n  t h e  u d i r e c t i o n ,  denoted by gu, i s  given by 

It i s  w e l l  known t h a t  t h e  u n i t  v e c t o r  a long t h e  oc t ahedra l  normal, denoted 

here  by en, has t h e  equat ion 
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If t h e  transformed coord ina te  system i s  t o  be r i g h t  handed, 

t o r s  must s a t i s f y  t h e  r e l a t i o n  

i t s  u n i t  vec- 

e X e n = e  
U V 

S u b s t i t u t i n g  Eqs. (96) and (97) i n t o  E q .  (98) g ives  

Therefore the  p ro jec t ed  l eng ths  of any s t r e s s  vec to r  onto t h e  oc t ahedra l  

axes  a r e  given by 
- -  

u = ~ * e  
U u ’  

- -  
CT = ~ - e  . n n 

Since 

it fol lows t h a t 3 7 l 4  

1 

(100a) 

( lOOb ) 

(1ooc) 

( lOlb ) 

(101c) 
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Furthermore, it fol lows from the  Pythagorean theorem and Eq. (76) t h a t  

APPLICATIONS 

The foregoing p r i n c i p l e s  w i l l  now be app l i ed  t o  two r a t h e r  gene ra l  

The f i r s t  y i e l d  func t ion  i s  t h e  genera l ized  Von Mises y i e l d  func t ions .  

y i e l d  func t ion  proposed by H i l l 3 +  f o r  use w i t h  a n i s o t r o p i c  meta ls .  

second y i e l d  func t ion  i s  t h e  well-known Mohr-Coulomb y i e l d  func t ion  used 

i n  s o i l  mechanics. 

The 

The Generalized Von Mises Y i e l d  Function of  H i l l  

Equations o f  Anisotropic  Incremental  Theory 

Assuming tha t  t h e  c h a r a c t e r i s t i c  axes of an iso t ropy  co inc ide  wi th  

t h e  p r i n c i p a l  d i r e c t i o n s ,  H i l l ’ s  y i e l d  f ~ n c t i o n ~ , ~ ~ , ~ ~  i s  given by 

f = [ a l 2 ( U 1  - U 2 l 2  + a2Ju2 - “3)2 -t a31(u3 - u ~ ) ~ ] ” ~  , (103) 

where t h e  a ‘ s  are cons tan t s .  Since 
i j  

a f 2  af 

a, a, 
- -  

9 - 2f - 
i i 

it fol lows t h a t  

Since 
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ac d. 

f 

Similarly, 

(108b) 

and 

af  - -  - a31('3 - '1) - a23("2 - '3) ( 108c ) 
f 

303 

Consequently, from Eq. ( 3 2 ) ,  the associated incremental flow rule becomes 

(109c) 

Since f is a function only of the principal stress differences, it follows 

that there will be no plastic volume change, which is verified by summing 

Eqs. (109). 
Although any positive value of A w i l l  satisfy the flow rule, it is 

of interest to determine its algebraic form. By rearranging E q s .  (109), 
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u3 may be eliminated from E q s .  (110a) and (11Ob) by subtraction. 

tract ing 

Sub- 

Now, noting that u1 and u2 are both multiplied by the same coefficient, 
we let 

a23a31 = ’ (112) 

Then, by rearranging E q .  (lll), 

P P 
f dEl - a31 dE2 

u1 - is2 = - 9 

A G 
(113a) 

and noting the pattern of subscripts on the right-hand side of E q .  (113a), 

P P 
f a31 dE2 - a12 dE3 

A G 
a2 - a’3 = - ( 113b ) 

and 
P P 

f CX12 dc3 - a23 dEl 

A G 
*& = - - 

*3 (113~) 



Consequently, substituting Eq. (113) into Eq. (103) gives 

Therefore A represents a function of the principal plastic strain incre- 
ments, the form of which is determined by the form of the yield function. 
In addition, the three expressions in Eq. (113) can be combined to yield 

the general expression 

P A  

O2 - O3 O 3  - O1 f 

P P P P P 
CX23 dEl - a31 dc2 a31 dc2 - a12 dc3 a12 dc3 - a23 dEl 

= G - , (115) - - - - 
O1 - O2 

which i s  an  a l t e r n a t e  form o f  t h e  incrementa l  f l o w  rule. 

So far, there has been no condition invoked that would fix the alge- 
braic form of the effective plastic strain increment. 

sumed that 

Suppose it is as- 

Oeff = ( 116 ) 

and that2,3 

P dWp = f deeff . 
These assumptions are logical, since they require that not only should 

there be a consistent relationship between the effective stress and the 

effective plastic strain but also that the area under the effective stress- 

strain curve should equal plastic work. 

(9) gives 
Substituting Eq. (109) into Eq. 

and substituting Eq. (106) into Eq. (118) then gives 

dW = fh . 
P 
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Therefore, by combining Eqs. (117) and (119), 

= A ,  P 
eff dc 

a result which could have been anticipated by referring to Eq. (58). 

Equations of Anisotropic Deformation Theory 

If the ratios of the principal stresses are assumed to remain con- 

stant during loading, the ratios of the principal plastic strain incre- 

ments will also remain constant during loading. 

fulfilled under uniaxial loading. ) Under these conditions, Eqs. (114), 

(110), and (113) can be integrated directly to give a set of deformation 

theory equations. Integrating Eq. (114) and using Eq. (120) gives 

(These conditions are 

+ a31(a12E3 P - a 23 € p ) 2 ] 1 ' 2  1 . (121) 

If the secant modulus of the effective stress-strain curve is defined as 

then by using Eq. (120), the integral of Eq. (110) is 

(123a) 

( 123b ) 

By using Eqs. (115) and (120), the stress-plastic strain relations of 

anisotropic deformation theory can also be written in the alternate form 

n l-l D D D D D 
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It may be noted immediately that Eq. (123) is a set of linear stress- 

plastic strain relations that can be combined with Hooke's law, according 

to Eq. (l), to produce a set of linear stress-total strain relations. 

Of course, E 
of position. 

is actually a variable that must be determined as a function 

If power-law strain hardening is assumed, Eq.  (63) gives 
P 

E P = ($r'" f . 
If linear strain hardening is assumed, Eqs. (8) and (122) give 

- -  f 1  
- - P 

eff E 

and 

Hf 

1 p - -  
E = f  

f0 

Again, if there is no strain hardening, Ep is either undefined or indeter- 
minate, since the plastic strains are not uniquely determined by the 

stresses for ideally plastic material. 

The special case of deformation theory applied to an elastic-ideally 
plastic material presents an interesting problem from another point of 

view. For ideally plastic material, f remains constant, and for deforma- 

tion theory, solutions are exact only when the stress ratios remairi con- 

stant. These three conditions are sufficient to determine all three 

principal stresses. Therefore, no elastic-ideally plastic deformation- 

theory solution will ever be exact unless all three principal stresses 

stay constant after yielding. 

pal stresses for which an exact solution exists is the intersection point 

of a radial line in stress space with the yield surface. 

' 

In graphical terms, the only set of princi- 
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The Coefficients of Anisotropy, a12, a23,  and a31 

The three coefficients of anisotropy, q2, a 2 3 ,  and a31, can be 
evaluated by comparing the uniaxial stress-plastic strain curves in the 

1, 2, and 3 directions. 
For uniaxial loading in the 1 direction, u2 = a3 = 0, and the result 

of combining E q s .  (122) and (123a) is that 

but from Eq. (103), 

Therefore substituting Eq. (129) into Eq. (128) gives 

and from E q .  (129), 

Because of algebraic symmetry, it follows that for uniaxial loading in 
the 2 direction, a1 = a3 = 0, and 

Consequently E’ and f may be eliminated to give eff 

and 
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Using the substitution 

a23 + %2 

(a12 + J2 = a 

and taking logarit,hms on both sides of E q s .  (134) and (135) gives 

log e: = log + log a ( 137 ) 

and 

log a2 = log a1 - log a . (138) 

Consequently, the stress-plastic strain curves in the principal directions 

must plot parallel to each other on log-log paper, as shown in Fig. 12. 

LOG Q 

ORNL-DWG 67-3382 

Fig. 12. Parallel Relationship on Log-Log Plot of Stress-Plastic 
Strain Curves for Anisotropic Material Obeying Hill's Yield Function. 
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The factor log a equals the logarithmic coordinate differences between 

the points of intersection of the two stress-plastic strain curves with 

a straight line having a slope of minus one. 

From algebraic symmetry [interchanging the subscripts 2 and 3 in Eq. 

(136)] it follows that the scale factor between the 1 and 3 directions is 
defined by the equation 

Furthermore, b can be determined graphically from the equations 

P log c 3  = log + log b 

and 

For a given material it would be convenient to define the coeffi- 

cients C 5 , ,  CY23, and CY3, in such a way that under uniaxial loading in a 
specified direction, the effective stress-strain curve would coincide 

with the stress-plastic strain curve. If it is specified that when 
02 = 03  = 0, 

f = a  1 ’  (142) 

from Eq. (129) 

(al2 4- a ) = 1 4 31 

Substituting Eq. (143) into Eq. (130) then gives 

Three conditions are required for determining the three coefficients 

CY,,, 

is arbitrary. The other two conditions result from comparing the stress- 

plastic strain curves in the 2 and 3 directions with the stress-plastic 

strain curve in the 1 direction,2 as explained below. 

and CX31. The first condition, which is expressed by Eq. (143) 
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If the effective stress-strain curve is the stress-plastic strain 

curve in the 1 direction, Eq. (143) holds. Substituting Eq. (143) into 
Eqs. (136) and (139) gives 

and 

Squaring both sides of Eqs. (145) and (146) and adding gives 

Substituting Eq. (143) into Eq. (147) and rearranging then gives the fol- 
lowing equations for generally anisotropic material: 

7 ( 148) 
a2 3. b2 - 1 - - 

a23 - 2 

and substituting Eq. (148) into Eq. (145), squaring both sides, and re- 
arranging gives 

- a2 - b2 + 1 
%2 - 2 

From Eq. (143) it follows that 

b2 - a2 + 1 
a31 = 2 

For transversely isotropic material, 

a = b ,  

and consequently 

a12 = 1 /2  9 

a23 = a2 - 112 , 

a3i = 1/2 . 

(152a) 

(152b) 

(152c) 

I 
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Of course, the existence of a consistent theory does not constitute 

sufficient evidence to prove that all materials must obey it. Therefore, 
if the stress-plastic strain curves for a certain anisotropic material do 

not plot parallel on log-log paper, it cannot be concluded that either 

there is something wrong with the theory or with the material. If the 
curves are almost parallel, they can probably be fit by a set of parallel 

curves. If they are nowhere near parallel, it must be remembered that 

the C l  terms in the expression for f will have partial derivatives with 
respect to the principal stresses and will thereby affect both the flow 
rule and the definition of the effective plastic strain. 

If the effective stress-strain curve can be fit by either the power 

law or the linear strain-hardening law, an analytical determination of 

the factors "a" and "b" is possible. Taking antilogs on both sides of 

E q s .  (137) and (138) gives 

P P 
= aE1 

and 

O1 - -  
a 

u2 - (154) 

For power-law strain hardening, the stress-plastic strain curves in 

the 1 and 2 directions will be given by equations of the same form as 

Eq. (7). Therefore 

and 

n 
o2 = C * ( E Z )  . 

(155a) 

(155b) 

It should be noted that the strain-hardening exponent, n, must be the 
same in both directions. Substituting E q s .  (153) and (154) into E q .  

(155b) gives 

a 
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Substituting Eq. (155a) into Eq. (156) then gives 

Consequently 

n - C2a , cl - -  
a 

‘1 n+i - = a  , 
c2 

By the same argument, 

For linear strain hardening, the stress-plastic strain curves in the 
1 and 2 directions will be given by equations of the same form as Eq. (8). 

(162a) 

(162b) 

where ool and oo2 are the initial uniaxial yield stresses in the 1 and 2 
directions. Substituting Eqs . (153) and (154) into (162b) gives 

O1 P - = o o 2 ( l  + aH2cl) . 
a 



49 

Substituting Eq. (162a) into Eq. (163) then gives 

P Consequently, at = 0, 

001 

a 
- -  - 002 

and 

0 
a=-. 0 1  

‘ 0  2 

However, Eq. (166) must hold at all values of E:. 

Eq. (165) into the left-hand side of Eq. (164) gives 

Therefore, substituting 

which reduces directly to 

H, = aH2 , 
and thus 

By the same argument, 

Equations for Isotropic Material 

For isotropic material, a = 1, and it follows from Eq. (152) that 
when a = 1, 

- - a31 = 112 . 
*12 = * 2 3  
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Consequently, substituting Eq.  (171) into Eq. (103) gives 

1 
f = -  [(ul - u2)2 + (u2 - u3)2 + ( u 3  - ul)2]1'2 . (1'72) 

JT 

By comparing Eqs. (77) and (172) it can be seen that for isotropic material, 

3 
f = -  f i  ' 

Substituting Eq.  (1'71) into Eq.  (112) gives 

3 
L G = - .  (174) 

For incremental  theory> s u b s t i t u t i n g  Eqs .  (171) and (174) i n t o  E q .  

(114) and substituting E q .  (120) on the left-hand side gives 

P - - d 2 - P  [(dE1 - dE2)2 P + (dE2 P - dc3)2 P + (dEg P - del) 211'2 . (175) dEeff - 3 

In addition, applying E q s .  (171), (174), and (120) to E q .  (115) gives 

P P P P P P P 
dEeff dc3 - dEl dE2 - dE3 dEl - dc2 

For deformation theory, E q s .  (175) and (176) are integrated to give 

and 

P P P P P P  P 
€1 - E 2  E 2  - €3 € 3  - €1 E e f f  
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Equations (176) and (178) are known as the Von Mises incremental and de- 

formation theory flow rules, respectively. By using Eq. ( 4 0 ) ,  Eq. (177) 
can be rewritten in terms of any two principal plastic strains. For ex- 
ample, eliminating €5 gives 

2 
E P 
eff d3 

- - - [ ( E y  + ElE2 + ( € ; ) 2 ] l ”  . (179) 

Of course, Eq. (179) has its incremental counterpart, the same as Eqs. 
(177) and (178). 

Equations Relating the Total Strains to the Stresses for Isotropic 
Material 

If the applicability of deformation theory is assumed, it is possible 
to develop a sets of equations relating the stresses to the total strains. 
This is the approach taken by Mendelson and Manson17 in their work on 

thermal stresses. For isotropic material, Hooke’s law states that 

Furthermore, for isotropic material, Eq. (123) reduces to 

(180a) 

(180b) 

(180c) 

(181a) 

(181b) 
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(181c) 

Adding the elastic and plastic components of strain, as given by Eqs. 

(180) and (181), gives 
f 

(L + L) - (i + u) ( u 2  + a3)  + aT , 
EP EP €1 = ‘1 E 

E;! = ‘2  + m ,  

Subtracting Eqs.  (182) by pairs gives 

(182a) 

( 182b ) 

(182c) 

(183a) 

( 183b ) 

(183c) 

It should be noted that the aT terms have been eliminated by subtraction. 
Equation (183) can be rewritten in the form 

1 + v 1.5 
- - - + - .  € 3  - €1 €2 - € 3  €1 - €2 

o1 - o2 o2 - u3 ‘3 - ‘1 
- - - - 

E EP 

By squaring both sides of each expression in Eq. (183), and adding the 
re sult s , 

2 

(; = (%p f)2 (y + ”)‘ , EP 
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where, by d e f i n i t i o n ,  

Here E e f f  i s  c a l l e d  t h e  e f f e c t i v e  t o t a l  s t r a i n .  

bo th  s i d e s  of  Eq. (185) and d iv id ing  by .& gives  

Taking square r o o t s  on 

- E  3 e f f  = f (T l + V  + u) . 
EP 2 

S u b s t i t u t i n g  Eq,. (122)  i n t o  Eq.  (1m) gives  

3 = f - + 2 , P  1 f Y  
E 2 e f f  ' 

- - E  2 e f f  

Since,  according t o  t h e  e f f e c t i v e  s t r e s s - s t r a i n  r e l a t i o n ,  

Eq.  (18%) i s  a d i r e c t  r e l a t i o n s h i p  between t h e  e f f e c t i v e  t o t a l  s t r a i n  and 

t h e  e f f e c t i v e  p l a s t i c  s t r a i n .  Equation (188) can be inve r t ed  t o  g ive  the 

e f f e c t i v e  p l a s t i c  s t x a i n  i n  terms of  t h e  e f f e c t i v e  t o t a l  s t r a i n .  

s equen t ly  t h e  equat ion  

Con- 

where 

be used f o r  a n a l y s i s .  

b i n i n g  Hooke's l a w  w i t h  t h e  Von Mises condi t ion ,  and t h e r e f o r e  Eq. (190) 

i s  not  a redundant r e l a t i o n s h i p  between t h e  s t r e s s e s  and t h e  e l a s t i c  

s t ra ins .  It fol lows d i r e c t l y  from Eq. (188) t h a t  

i n d i c a t e s  a f u n c t i o n a l  r e l a t i o n s h i p ,  i s  a valid equat ion  t h a t  can 

It should be noted t h a t  Eq. (190) r e s u l t s  from com- 
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The Equation of Hill's Yield Function for Transversely Isotropic 
-.__I Material in t,he Octahedral Coordinate Sys& 

One important special form of Hill's yield function is the form ap- 

plicable to a material such as graphite,* which has one set of properties 
"with the grain" and another set of 2roperties in the plane perpendicular 

to the grain. Such a material is qalled a transversely isotropic material. 
For transversely isotropic material, according to E q .  (152), the constants 

a12 and 
2,3 plane is considered the plane of isotropy, and the 1 axis is considered 
the axis of anisotropy. The effective stress-strain curve is the stress- 

plastic strain curve in the 1 direction. Accordingly, the expression for 

f from E q .  (103) is given by 

may be taken equal to one-half. Under these conditions, the 

1 - 02)2 + a 2 3 ( u 2  - a3)2 + 5 ( 0 3  - u ~ ) ~ ] " ~  (192) 

and 

(193 ) 
1 1 
2 f2 = - (ul - 0 2 ) 2  + a23(02 - u 3 ) 2  + 7 ( u 3  - a1)2 . 

Now, by squaring both sides of Eq. (77) and multiplying by 9/2, 

( 194 1 1 1 1 
- T  2 oct 

Then, by subtracting Eq. (194) from E q .  (l93), 

Equation (195) can be transformed into the octahedral coordinate system 

by applying Eq. (102) on the left-hand side and Eq. (i01b) on the right- 
hand side. Performing these substitutions gives 

"Graphite does not actually exhibit a zero plastic volume change. 
However, until a more appropriate yield function can be derived, this 
assumption serves as an expedient. 
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02 = f2 , a 2 3  + 

3 

2 v 
- 02 + 

2 U 

which is the equation of an ellipse in the octahedral plane. 

taken equal to one-half, Eq. (197) reduces to 

If CX23 is 

2f2 u2 + u; =3, 
U 

which represents the Von Mises circle. 

The Mohr-Coulomb Yield Function 

Derivation of the Yield Function 

The principal reasons for discussing the Mohr-Coulomb yield function 

are that (1) the Mohr-Coulomb yield function is the only common example 
of a yield function that leads to a plastic volume change and (2) the 
equations for the Mohr-Coulomb yield function reveal the basic facts that 

slip is two dimensional and that plastic volume changes are caused by the 

occurrence of slip on planes other than the 45" planes of maximum shear 
stress. Plastic volume changes are the rule rather than the exception 

in the case of nonmetallic materials such as soil, concrete, and graphite. 

The derivation of the equations for the Mohr-Coulomb yield function demon- 

strates that plastic volume changes can be considered in plastic analysis 

by directly applying the principles contained in this report. 
Not all the predictions of the Mohr-Coulomb yield theory have been 

observed experimentally. 

the yield surface and the absence of any plastic strain in the direction 

of the intermediate principal stress are still conditions more hypotheti- 
cal than real. 

it has already been used extensively for analysis and because it still 

For instance, the occurrence of "corners" in 

Nevertheless, the theory is being presented here because 
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constitutes a very useful simplifying approximation for obtaining closed- 

form solutions to problems. 

The Mohr-Coulomb yield function is based on the concept that yield- 

ing is controled by internal friction plus c o h e s i ~ n . ~ ~ J ~ ~  

this theory, as shown in Fig. 13, the point of tangency of the outer Mohr 
stress circle and a linear envelope gives the state of stress c.1, and the 

inclination of, the plane of yielding. For the determination of ultimate. 

bearing capacities and limiting lateral earth pressures, soil .L-  usually 
treated as a rigid ideally plastic materi2.l. 

to prevent the Mohr-Coulomb yield function from being applied to a strain- 

hPr6ening material. 
conducted by Drucker, Gibson, and Henkel, 2 o  and by Haythornthwaite. 

According to 

However, there is nothing 

In fact, investigations along these lines have been 
21 

ORNL-DWG 67-3383 

POINT OF TANGENCY 7 t 

U C COT+ 0 t 

u, NORMAL STRESS- 

Fig.. 13. Mohr's Circle Diagram for the Mohr-Coulomb Yield Crite- 
rion. 
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18,19 From t h e  diagram shown i n  F ig .  13, it  can be seen t h a t  

(199) 
2 

where, i n  c o n t r a s t  t o  t he  prev ious  d iscuss ions ,  a1 i s  t h e  maximum p r i n c i -  

p a l  t e n s i l e  stress, a3 i s  t h e  minimum p r i n c i p a l  t e n s i l e  stress, c i s  cohe- 

s ion ,  and 4 i s  t h e  angle  whose tangent  equals  t h e  c o e f f i c i e n t  of  i n t e r n a l  

f r i c t i o n ;  4 i s  c a l l e d  t h e  angle  of  i n t e r n a l  f r i c t i o n .  

Eq. (199) becomes 

Clear ing  f r a c t i o n s ,  

o1 - a3 = -(a3 + ol) s i n  4 + 2c cos 4 . ( 2 0 0 )  

Cons e quent ly 

and 

If 

2c cos 4 - - 
1 - s i n  d 

S u b s t i t u t i n g  Eqs. (203) and 

= m ,  1 + s i n  4 
1 - s i n  4 

it fol lows tha t  

(204) i n t o  Eq. (202) g ives  

mal - u3 = 2cm 1 1 2  . 
When a1 = 0, a3 = -ac, and consequent ly  

2crn112 = ac . 
Theref o re  

mal - u3 = ac . 
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When a3 = 0, c~~ = at, and consequent ly  

- mat - ac 

and 

a 

cI 

C m = - .  
t 

For ana lys i s ,  t h e  y i e l d  funct ion,  f ,  i s  def ined  as 

It can now be seen  t h a t  t h e  

l inear  r e l a t i o n  be tween t h e  

addi t ion ,  i f  m i s  s e t  equal  

reduces t o  t h e  Tresca y i e l d  

f = m a  - a 3 .  (210) 
1 

Mohr-Coulomb y i e l d  func t ion  r ep resen t s  a 
major and t h e  minor p r i n c i p a l  s t r e s s e s .  

t o  un i ty ,  t h e  Mohr-Coulomb y i e l d  func t ion  

func t ion .  Furthermore, by adding a cons tan t  

I n  

am t o  bo th  p r i n c i p a l  s t r e s s e s ,  it can be seen  tha t ,  i n  general ,  f i s  not  

independent of um. 
Such volume changes a r e  observed i n  g ranu la r  s o i l . 2 o  

Therefore,  a p l a s t i c  volume change i s  t o  be expected.  

The Incremental  and I n t e g r a t e d  Flow Rules 

According t o  t h e  f low rule  given by Eq. (32), 

P af dcl = A aa, = mh , 

dc2 = A T  = 0 , P af 
02 

(211a) 

( 211b ) 

The p l a s t i c  s t r a i n  increment i n  t h e  d i r e c t i o n  of  t h e  in te rmedia te  p r i n c i -  

p a l  s t r e s s  i s  ze ro .  

i n  t h a t  d i r e c t i o n  f o r  an  e l a s t i c - p l a s t i c  material. 

func t ion  of t h e  p r i n c i p a l  s t r e s s e s ,  t h e  p l a s t i c  s t r a i n  increment r a t i o s  

a r e  constant ,  even i f  t h e  s t r e s s  r a t i o s  a r e  not,  p rovid ing  a= and a3 con- 

t i n u e  t o  a c t  i n  t h e  same d i r e c t i o n .  

i n t e g r a t e d  d i r e c t l y  t o  g ive  the  r a t i o s  o f  t he  t o t a l  p l a s t i c  s t r a i n s .  

cord ingly  

Therefore,  Hooke's l a w  w i l l  g ive t h e  t o t a l  s t r a i n  

Because f i s  a l i n e a r  

Therefore,  Eq. (211) can always be 

Ac- 
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P 
dEl 

and 

S t r e s s - P l a s t i c  S t r a i n  Rela t ionships  When the  Three P r i n c i p a l  S t r e s s e s  
Are Unequal 

If Eqs. (10) and (59) are aga in  assumed t o  hold, i t  fol lows t h a t  i n  

m u l t i a x i a l  loading,  w i th  u1 > u2 > u3, 

= a,mh - u , ~  = A(mal - a3) = fA . (214) 
P 
e f f  dWp = f dc 

Theref ore  

= A  P 
e f f  dc 

and 
P S A  = Eeff 

Consequently, i n t e g r a t i n g  Eqs .  (211) gives  

(217a) 

E * = O ,  P (217b) 

P P 
e f f  ’ c1 = mE 

(217c) P P 
E = -E 

3 e f f  

From Eqs. (217) it may be seen t h a t  t h e  p l a s t i c  volume change, a l s o  c a l l e d  

t h e  d i l a t a t i o n ,  i s  given by 

(218) 
P AV = ( m  - 1) teff , P 

and, us ing  Eq. (217), t h a t  

r 
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AT$ = ( m -  1)(-c3) P = m - l E P  - 
m 1 '  P 

The p l a s t i c  volume change i s  an  expansion. 

S t r e s s - P l a s t i c  S t r a i n  Rela t ionships  When Two P r i n c i p a l  S t r e s s e s  
Are Equal 

If two p r i n c i p a l  s t r e s s e s  are equal,  t h e  p l a s t i c  s t r a i n s  i n  t h e  d i -  

r e c t i o n s  of t h e  two equal  s t r e s s e s  are not  uniquely determined by t h e  flow 

r u l e .  

vec tor  i n t e g r a l  of  dc ) a t  a corner  can always be reso lved  i n t o  two com- 

However, as shown i n  F ig .  14, t h e  t o t a l  p l a s t i c  s t r a i n  vec to r  ( t h e  
-P 

ponents, one normal t o  each of  t h e  two ad jacen t  s i d e s .  

t h e  t o t a l  p l a s t i c  s t r a i n  vec to r  can then  be deduced from t h e  known prop- 

e r t i e s  o f  i t s  two components. 

The p r o p e r t i e s  of 

For 01 = u2 > 03, 
P P P 

El = rnfA + 0 = rn€A , 

P P P 
E* = 0 + m€B = rn€B , 

ORNL-DWG 67-3384 

(220a) 

(220b) 

F ig .  14. P l a s t i c  S t r a i n  Vector and I t s  Components a t  a Corner of  
t h e  Mob-Coulomb Y i e l d  Surface.  
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P where 

components of  t h e  t o t a l  p l a s t i c  s t r a i n  vec to r .  

and a r e  t h e  e f f e c t i v e  p l a s t i c  s t r a i n s  a s soc ia t ed  w i t h  t h e  two 

Adding E q s .  (220) g ives  

(221) 
P P  

AV = (m - + ‘B) ? P 

and, by us ing  E q .  ( 2 2 0 ~ ) ~  

(222) 
P AV = (m - l)(-~~) . 

P 

Furthermore, adding E q s .  (220a) and (220b) and us ing  E q .  (220c),  g ives  

( 223 ) 
P P  P 

E + E~ = -mE . 
1 3 

Therefore 

P P P P 
= a,(mdc3) + a3dE3 = (mu1 - o ~ ) ( - ~ E ~ )  = f(-dE3) (224) 

P 
dW = f deeff 

P 

and 

( 225) 
p -  P 

e f f  E3 - -E 

I n  uniaxial compression, when a1 = u2 = 0, 

u3 = -f . 
For a1 > u2 = u?, a similar analysis g ives  

P P (227a) 

P P (227b) B B ’  

( 2 2 7 4  

Therefore 
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and .by us ing  Eq. (227a), 

av =m m - l E P  
P 

Furthermore, adding E q s .  (227b) and (227c) and us ing  Eq.  (227a) gives  

m 

Therefore 

P 

d E l  = f - (231) 
P dEl P 

P m 
= 0 d E l  + o3 P 

m dW = f dEeff 1 

and 

P P 
1 eff  . E = rnE 

I n  uniaxial tens ion ,  when up = uq = 0, 

A Few Consequences of t h e  Mohr-Coulomb TkLzory 

The s t r e s s - p l a s t i c  s t r a i n  curve i n  u n i a x i a l  compre;sion g ives  t h e  

e f f e c t i v e  s t r e s s - s t r a i n  curve d i r e c t l y ,  bu t  t he  t e n s i l e  s t r e s s - p l a s t i c  

s t r a i n  curve i s  t h e  same curve w i t h  t h e  s t r e s s  d iv ided  by m and t h e  p l a s -  

t i c  s t r a i n  mul t ip l i ed  by m. The t e n s i l e  s t r e s s - p l a s t i c  s t r a i n  curve w i l l  

f a l l  below the  compressive s t r e s s - p l a s t i c  s t r a i n  curve f o r  m > 1. 

more, t h e  two curves must p l o t  p a r a l l e l  t o  each o t h e r  on log- log  paper .  

Therefore, m can a l s o  be determined by t h e  g raph ica l  method i l l u s t r a t e d  

i n  Fig.  12 .  

be determined by measuring t h e  axial s t r a i n  and the  p l a s t i c  volume change 

i n  a triaxial t e s t .  It may be noted f u r t h e r  t h a t  when m = 1, t h e  p l a s t i z  

volume change i s  always zero,  and t h e  t e n s i l e  and compressive s t r e s s -  

p l a s t i c  s t r a i n  curves  co inc ide .  

Further-  

From Eqs. (222) and (229),  it can be seen t h a t  m can a l s o  

These condi t ions  a r e  always assumed t o  
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hold for the special case of the Tresca yield function, which applies to 

materials without internal friction ( 4  = 0"). 

Another important observation concerning the Mohr-Coulomb and the 

Tresca equations is that although they utilize an integrated flow rule, 
they are still based on incremental theory. Therefore the Mohr-Coulomb 

and the Tresca yield functions possess an important advantage over the 
Von Mises deformation theory for ideally plastic materials in that they 

can produce exact solutions with an integrated flow rule, whereas the Von 

Mises deformation theory cannot. 

GEOMETRICAL DERIVATION OF THE FLOW RULES FOR TKE 
MOHR-COULOMB AND THE VON MISES YIELD FUNCTIONS 

The Mohr-Coulomb Yield Function 

It is interesting to note that the flow rule associated with the 
Mohr-Coulomb yield function can also be derived by assuming that yielding 
is a process of slippage between thin parallel sections, as shown in 

Fig. 15, and that no plastic strain occurs in the direction of slip. 
As shown in Figs. 13 and 16, the angle between the plane on which al acts 

and the slip plane is (45"  - 4/2). 
rection of cr2, which acts normal to the paper in Fig. 16, At, as shown 
in Fig. 15, is zero, and therefore c 2  is zero. It can also be seen in 

Fig. 16 that the angle between the direction of E: and the direction of 
zero plastic strain, which is the slip direction, is (45" - $/2). Con- 

sequently, the Mohr diagram of plastic strain is as shown in Fig. 17. 

It is correct to draw a Mohr diagram of plastic strain because Eq. (1) 

is linear. Therefore, if the element shown in Fig. 2 is unloaded, all 

the elastic strains vanish and leave the plastic strains unchanged but 

2 2  

Since no slippage occurs in the di- 

P 

equal to the total strains. From Fig. 17, it may be seen that 

P P 
- 3  + = - 

and that 
P P  

E - E3 1 x =  sin 4 . 
2 

(234)  

(235) 
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1 0 )  

h 

I 

\ 
Fig. 15. Displacement Model for the Mohr-Coulomb Yield Criterion. 

P Substituting Eq. (235) into Eq. ( 2 3 4 )  and solving for c1 gives 

P 1 + sin 4 
3 1 -  sin 4 ' 

P 
E = -E 
1 

By substituting Eq. ( 2 0 3 )  into Eq. ( 2 3 6 ) ,  it may be seen that 

P P 
3 '  

El = -mE 
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“3 

Fig .  16 .  S t r e s s  Diagram f o r  t h e  Mohr-Coulomb Yield C r i t e r i o n .  

which agrees  wi th  Eq. (213) .  From t h e  foregoing  argument, it appears  

t h a t  Hooke‘s law should apply  i n  t h e  d i r e c t i o n  of  s l i p ,  as w e l l  as i n  

t h e  d i r e c t i o n  of t he  in te rmedia te  p r i n c i p a l  s t r e s s .  

For a m a t e r i a l  t h a t  obeys t h e  Mohr-Coulomb y i e l d  funct ion,  s l i p  i s  

assumed t o  occur i n  only  one d i r e c t i o n .  Evident ly ,  f o r  such a ma te r i a l ,  

t h e  assumption t h a t  t h e  p l a s t i c  s t r a i n  increment r a t i o s  a r e  uniquely de- 

termined by t h e  s t a t e  of s t r e s s  i s  r e a l l y  equ iva len t  t o  t h e  assumptions 

t h a t  a l l  t h e  s l i p  p lanes  have a known o r i e n t a t i o n  and t h a t  t h e  p l a s t i c  
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E P  P L A S T I C  
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S T R A I N  

1 

2 

Fig .  17. Mohr Diagram of P l a s t i c  S t r a i n  f o r  t h e  Mob-Coulomb Yield 
C r i t e r i o n .  

s t r a i n  i n  t h e  d i r e c t i o n  of  s l i p  i s  ze ro .  For Mohr-Coulomb mater ia l ,  when 

o1 > o2 > 03 ,  t h e  r a t i o s  of  t h e  p l a s t i c  s t r a i n  increments a r e  independent 

of t he  p r i n c i p a l  s t r e s s  magnitudes and depend only  on the  d i r e c t i o n s  of  

t h e  major and minor p r i n c i p a l  axes .  !. 

From F igs .  13 and 17 it can be seen t h a t  a p l a s t i c  s t r a i n  vector ,  

t h e  components of which a r e  t h e  s l i p - p l a n e  p l a s t i c  shear  s t r a i n ,  (E: - E:) 

cos 6, and t h e  p l a s t i c  volume change, E: + c 3 ,  w i l l  be  normal t o  t h e  Mohr 

envelope i n  F ig .  13. This  same r e l a t i o n s h i p  can be proven d i r e c t l y  by 

us ing  t h e  flow r u l e  and a s l i g h t l y  d i f f e r e n t  express ion  f o r  t h e  y i e l d  

func t ion .  Refer r ing  t o  F ig .  18, t h e  y i e l d  cond i t ion  can be descr ibed  by 

t h e  equation2'  

-cf = c - uN t a n  4 , ( 2 3 8 )  
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I 
fn 
0 
W 

MOHR ENVELOPE, 

N O1 0 U 3 U 

u, NORMAL STRESS- 

Fig .  18. The Mohr Envelope and I t s  Associated P l a s t i c  S t r a i n  Incre-  
ment Vector.  

where Tf i s  t h e  shear  s t r e s s  on the  s l i p  plane,  c i s  cohesion, and an i s  

t h e  normal s t r e s s  on t h e  s l i p  p l ane .  

c i r c l e  envelope, t h e  y i e l d  cond i t ion  can be expressed by t h e  equation, 

Since c i s  a parameter of  t h e  Mohr's 

f' = Tf + UN t a n  4 . ( 2 3 9 )  

B y  r e f e r r i n g  t o  Eqs. (206), ( 2 0 7 ) ,  and (210), it can be seen t h a t  

f 

According t o  Eq. ( 3 8 )  t h e  incrementa l  p l a s t i c  volume change i s  given by 

df' dV = A' - . 
P 'Dm 

The term A' i s  def ined by t h e  condi t ion  

dWp = fh = f 'A'  . 
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Thus 

By the  chain ru l e ,  

af '  30, 
dVP = A /  - - 

m 
(244) a,, a u  

If a h y d r o s t a t i c  s t r e s s  i s  superimposed on t h e  s t a t e  of  s t r e s s  a c t i n g  on 

t h e  s l i p  plane,  a, changes by t h e  amount o f  t h e  added hydros t a t i c  s t r e s s ,  

b u t  Tf  i s  unaf fec ted .  Therefore 

- -  - 1 .  
30, 
a, 

m 

S u b s t i t u t i n g  Eq .  (245) i n t o  E q .  (244) and us ing  E q .  (239), 

dVP = A /  t a n  4 . ( 246 ) 

The s l ip -p l ane  p l a s t i c  shear  s t r a i n  increment w i l l  be given by 

From E q s .  (246) and (247), it fol lows t h a t  

- - - -  dVP - "'p - t a n  4 . 
dyP yP 

Therefore the  v e c t o r  whose components a r e  yp and AVp i s  normal t o  t h e  

Mahr's c i r c l e  envelope i n  Fig.  18. 

and (245) and from Fig.  17 t h a t  t h e  p l a s t i c  s t r a i n  normal t o  t h e  s l i p  

p lane  i s  equa l  t o  t h e  p l a s t i c  volume change. 

flow r u l e ,  it has t o  be, since the  p l a s t i c  s t r a i n s  i n  t h e  o t h e r  two mutu- 

a l l y  perpendicular  d i r e c t i o n s  a r e  ze ro . )  

It i s  a l s o  ev ident  from E q s .  (244) 

(Besides cons ider ing  t h e  
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The Von Mises Yield Function 

The above reasoning can also be applied to a material that yields 
simultaneously on three planes, with each plane being inclined to a dif- 
ferent pair of principal axes and having zero slope in the direction of the 
third.23 
direction of only two principal axes, the plastic strain along each axis 

is the sum of only two components: one for each of the two slip planes 

inclined to that axis. For instance, considering the plastic strain in 

the direction of ul, assuming m = 1, and assuming that the individual slip 

displacements are proportional to the corresponding maximum shear stresses, 

gives23 

Since the slippage along each plane causes plastic strain in the 

and 

L 

Adding E q s .  ( 2 4 9 )  and ( 2 5 0 )  gives 

P k  = - (20, - u2 - u3)  . 
€1 2 

If the value of k happens to be given by 

P 
‘e ff k=-, 
f 

it follows that 

P 
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Equation ( 2 5 3 )  is identical to the expression for an isotropic material 
obeying the Von Mises yield function and subjected to radial loading. 

incremental expression can be derived by assuming that 

An 

w he re up on 
D 

By rotating the indexes in Eq. ( 2 5 3 ) ,  expressions for E: and E: can be 
obtained, and by subtraction the deformation theory flow rule, as given 
by Eq. (17%), can be de r ived .  

expressions contained in Eq. (178), squaring both sides of each, and 
adding, 

Then by c l e a r i n g  f r a c t i o n s  i n  t h e  t h r e e  

P ( 4 - 2  f)2 [(E; - €;)2 + (€; - €;)2 + ( E 3  - € 3 2 1  = 

Therefore, if 

it follows that 

It is interesting to note that the geometrical derivation produces not 

only the Von Mises flow rule but also the definitions of the yield func- 
tion and the effective plastic strain. Since m was taken equal to unity 

and the individual plastic strains were linearly combined, there is no 

plastic volume change. 
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CROSS SECTIONS OF HILL'S YIELD SURFACE FOR TRANSVERSELY 
ISOTROPIC MATERIAL AND Tm MOHR-COULOMB Y I E L E  SURFACE 

A useful device for displaying information about a particular yield 
function is the cross section of the associated yield surface in an octa- 
hedral plane. Therefore, it is appropriate to plot typical octahedral 
cross sections for the two general yield functions discussed in this re- 
port. 

Hill's Yield Function for Transversely Isotropic Material 

The case of transverse isotropy is of particular interest with re- 

gard to graphite. The equation for the cross section of this yield sur- 

face is given by Eq. (197). Dividing both sides of Eq. (197) by f2 gives 

Let 

and 

Then 

0 
U 

= su 
*f 

U 

= s  . *f V 

+ 1  
2 
v s = l .  '.012 3 s2 + 

3 U 

The stress-plastic strain curves for EGCR-type AGOT graphite have 
been measured by Greenstreet et al.24 

the equations 

These curves can be expressed by 

(263a) 
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and 

Since Eq. (163) can be w r i t t e n  i n  t h e  form 

it  can be seen t h a t  

n = 117 , 
c, = A, ? 

C, = A, . 

S u b s t i t u t i n g  Eqs .  (265) i n t o  Eq. (160) g ives  

Consequently, us ing  Eq. (152b), 

( 26313) 

(265a) 

(265b) 

(265c) 

For EGCR-type AGOT g raph i t e ,  t h e  fo l lowing  average t e n s i l e  va lues  f o r  t h e  
cons t an t s  7, A l ,  and A2 can be obta ined  from Table 13 of Ref. 24: 

7, -1- V 2  2.34 -t 2.17 
- - = 2.25 , v =  

2 2 

A, = 45,800 , 

A2 = 27,400 . 

I n s e r t i n g  t h e s e  numerical  va lues  i n t o  Eq. (244) g ives  

CXZ3 = ( l . 67 )1*39  - 0.50 = 1.54 . 
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Therefore Eq. (262) can be rearranged to read 

Su = [l - (2.39) S:]1'2 . 
Based on Eq. (268), the concurrent values of S, and Sv for EGCR-type AGOT 

graphite with transverse isotropy are given below: 

0 1.00 
0.2 0.95 
0.3 0.89 
0.4 0.78 
0.5 0.64 
0.55 0.53 
0.60 0.37 
0.647 0 

Plotting these values of Su and S, gives the octahedral cross section of 
Hill's yield surface for EGCR-type AGOT graphite, as shown in Fig. 19. 

The Mohr-Coulomb Yield Function 

Because of material isotropy, the octahedral cross section of the 

Mohr-Coulomb yield surface is symmetrical about each of the projected 

principal stress axes. Since the yield surface cross section is also 
piecewise linear, it is completely defined by the relative distances be- 
tween the origin and any two opposite corners, all of which lie on the 
projected principal stress axes. As shown in Fig. 20, if the state of 
stress at the first corner is taken to represent uniaxial tension, then 

the state of stress at the opposite corner will represent a cylindrical 

state of stress having the same mean stress as the first corner. Since 

the mean stresses for both cases are equal, it follows that in case 2, 

In 

to 

in 

this discussion, letter subscripts are used instead of number subscripts 

prevent the ambiguity that would otherwise occur when there was a change 

the relative magnitude of the principal stresses. Since in case 2, 

o = o ,  
Z Y  
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Fig.  19 .  Octahedral  Cross Sec t ion  of H i l l ' s  Yield Surface f o r  EGCR- 
me AGOT Graphite w i th  Transverse I so t ropy .  

. 
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CASE 2 

t ux t uy t uz = Q 

Fig.  20. S t r e s s  S t a t e s  Used f o r  Defining t h e  Cross Sec t ion  of t h e  
Mohr-Coulomb Yield Surface.  

combining Eqs .  ( 2 7 0 )  and ( 2 6 9 )  gives  

is X + 2uY = ut * 

The va lue  of  t he  y i e l d  func t ion  i s  t h e  same i n  b o t h  cases ,  so 

f = m u  = m u  - u  . 
t Y X  

Adding E q s .  ( 2 7 1 )  and ( 2 7 2 )  gives  

t -  ( 2  + m ) a  = (1 + m ) a  
Y 

Therefore  

l + m ,  = -  
y 2 + m  t o  

111 
(-J = -  
x 2 + m ' t *  

( 2 7 4 )  

S u b s t i t u t i n g  Eq.  ( 2 7 4 )  i n t o  Eq.  ( 2 7 1 )  and r ea r r ang ing  then  g ives  

( 2 7 5 )  
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For case 2, substituting E q .  (270) into E q .  (101a) and substituting 

the subscripts x, y, and z for 1, 2, and 3 gives 

For case 1, 

If 

%2 

uu2 p = - -  
r r ,  

it follows that substituting E q s .  (276) and (277) into E q .  (278) gives 

u - u  
Y X  
t 

B =  (279) 

Then, by substituting E q s .  (274)  and (2'75) into Eq. (279), it is found 

that 

Substituting E q .  (203) into E q .  ( 2 8 0 )  then gives 

For many soils, the angle of internal friction is about 30". 
sin 4 = 1/2, it is found that 

For 4 = 30°, 

p = 7/5 . ( 2 8 2 )  

The cross section of the Mohr-Coulomb yield surface for 4 = 30" is shown 

in Fig. 21. Since the plotting scale for this figure is a matter of 



ORNL-DWG 67-3391 

U X  

5 
7 
- 

=Y 

I 
I 
I 

2 
U 

Fig. 21. Octahedral  Cross Sec t ion  of t h e  Mohr-Coulomb Yield Surface 
f o r  4 = 30". 

convenience , uu2 w a s  taken equal  t o  uni ty ,  and it w a s  found t h a t  

uul = 1/p = 5/7 . 

EXAMPLE PROBLEMS 

I n  most p r a c t i c a l  problems i n  m u l t i a x i a l  p l a s t i c i t y  the  s t r e s s e s  and 

the  p l a s t i c  s t r a i n s  cannot be determined independently of each o t h e r .  

However, i n  a few s i t u a t i o n s  the  s t r e s s e s  can be determined independently 

of t he  p l a s t i c  s t r a i n s .  The fol lowing two examples a r e  of  t h i s  type .  
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Because of their relative simplicity, these examples provide good initial 

illustrations of the general procedure for solving problems in multiaxial 

plasticity. 

Problem No. 1 - Hill's Yield Function 

A 1-in.-diam cylindrical nuclear reactor fuel element is enclosed 
within a 0.015-in.-thick zirconium alloy cladding. For a safety analysis 

the plastic strains in the cladding are to be determined under a net in- 
ternal pressure of 900 psi caused by fission-gas buildup. The operating 

temperature is 700°F. 
The uniaxial stress-plastic strain curves of the cladding material 

at 700°F have been obtained and found to have the following equations: 

a1 = 51,300 ( E ~ ) ~ * ~ ~  P p s i  , 

in the circumferential direction, and 

in the axial and radial directions. 
From statics, the computed stresses in the cladding are as follows: 

u1 = 30,000 psi , 
c ircumferent ially, and 

u = 15,000 psi , 
2 

axially. 
If the stress-plastic strain curve in the circumferential direction 

is chosen as the effective stress-strain relation, according to E q s .  (151) 
and (152), 

a,, = 0.50 , 

a31 = 0.50 , 

= a2 - 0.500 . a2 3 

J 
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Since power-law strain hardening has been assumed, the term "ar1 is de- 

termined by Eq. (160) : 

Consequently 

a23 - - ( 1 . 4 3 ) 2  - 0.500 = 1.54 . 

From Eq. (103), with a3 = 0, 

f = [0.50 (al - a 2 ) 2  + 1.54 a$ + 0.50 ( - o ~ ) ~ ]  1 1 2  . 

For the known values of the principal stresses, the yield function is 
computed to be 

f = 30,300 psi . 
Since the stress ratios remain constant during loading, deformation 

theory is valid and the total plastic strains are given by Eq. (123): 

c1 P 1  = - [a,(1.00) - a2(0.50)] , 
*P 

E P 1  = - [-a1(0.50) + 02(2 .04)]  , 
EP 
1 

E' = - [-u1(0.50) - u 2 ( 1 . % ) ]  . 
EP 

For power-law strain hardening, the plastic secant modulus, Ep, is given 

by Eq. ( 1 2 5 ) :  

(30,300) = 667,000 psi . EP 

The plastic strains are therefore computed to be 

E: = 0.033'7 , 
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E: = 0.0234 , 

E' = -0.0571 . 
3 

The sum of the plastic strains is zero as expected. 

Problem No. 2 - The Mohr-Coulomb Yield Function 

A prestressed concrete pressure vessel is lined internally with a 
1-in.-thick steel membrane liner anchored at close spacing to the con- 

crete. The inside diameter of the vessel is 60 ft. The concrete is to 

have an ultimate compressive strength, fd, of 6000 psi. 
stress in the concrete at the inside surface of the vessel is to be 2700 
psi circumferentially and 1350 psi axially. 
whether,the application of this much prestress to the concrete will cause 

general yielding in the steel liner. 
concrete, its circumferential and axial strains will match those of the 

concrete. Therefore, the problem is to compute the total strains in the 

concrete, at the inside surface of the vessel, due to the application of 

the prestressing only. 

The applied pre- 

It is desired to determine 

Since the liner is anchored to the 

The properties of the concrete can be taken as follows: 

E = 1000 f' = 6,000,000 psi , 
C 

v = 0.12 , 
= 0.003 

(ultimate strain in uniaxial compression), 
ul t E 

= 30" . 
The stress-strain curve of concrete in uniaxial compression can be as- 

sumed to have the equation 

E =;+ti) 2 , 

when IJ = f' E = 0.003, and therefore, B = 1.34 x lo5 psi. 
C' 



If the circumferential stress in the liner is assumed to be the yield 
stress, 30,000 psi, by statics the contact stress between the liner and 

the concrete is -83 psi (compression). 
Since all three principal stresses in the concrete are unequal, Eqs. 

(217)  apply, and 
P - P 

€1 - mEeff 9 

E 2 = 0 ,  P 

P 
E; = -Eeff . 

From Eq. (203 )  

From the ordering of the principal stresses 

a1 = or = -83 psi , 

o2 = uz = -1350 psi , 

a3 = a = -2'700 psi . 8 

From Eq. (210) ,  

f' = mal - a3 = (3 ) ( -83)  - (-2'700) = 2451 ps i  . 
As shown by Eqs. (225) and (226 ) ,  the uniaxial compressive stress- 

plastic strain curve is the effective stress-strain curve with both signs 
changed. Therefore 

P 
eff E 

and consequently 



Therefore the  p l a s t i c  s t r a i n s  i n  the  concrete  a r e  
\ 

P P  = = (3)(0.000334) = +0.00100 , 

P P  
E = E z = O ,  

2 

= E' = -0.00033 . 
€ 3  6 

Using Hooke's l a w ,  t h e  e l a s t i c  s t ra ins  i n  t h e  concrete  a r e  

= +0.00007 , r 

= -0.00017 , 
Z 

= -0.00042 . e 

The t o t a l  s t r a i n s  a r e  obtained by adding the  e l a s t i c  and the  p l a s t i c  

strains according t o  Eq.  (l), 

E = +0.00107 , r 

E = -0.00017 , 
Z 

E = - 0 . 0 0 0 7 5 .  
6 

Using Hooke's l a w  again,  t he  ca l cu la t ed  c i r cumfe ren t i a l  s t r e s s  i n  

t h e  s t e e l  l i n e r  f o r  E = 3 X l o7  p s i  and v = 0.30 i s  

E k e  + V E Z )  
ls= = 26,400 p s i  . 

1 - v 2  

This corresponds t o  a p res su re  between the  s t e e l  l i n e r  and the  concrete  

of -73 ps i  (compression).  Correc t ing  the  rad ia l  s t r e s s  r e s u l t s  i n  only 

a 1% change i n  the  va lue  of the  y i e l d  funct ion,  so  the  t o t a l  s t r a i n s  can 

be considered s u b s t a n t i a l l y  c o r r e c t .  

under the  a p p l i c a t i o n  of  p r e s t r e s s  nlone. 

Thus the  s t e e l  l i n e r  does not  y i e l d  
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LIMITATIONS AND EXTENSIONS OF THE THEORY 

The majority of the work in plasticity completed to date that has a 

direct engineering application consists of analytical, experimental, or 
numerical solutions to particular types of problems. In most cases, the 

behavior of metals was involved, and the condition of zero plastic volume 

change was known or assumed to hold. However, as has been explained, the 

general flow rule in plasticity is not restricted to yield functions that 
dictate a zero plastic volume change. In fact, some research has already 

been done in the field of soil mechanics that utilizes the Mohr-Coulomb 
function, which does lead to a nonzero plastic volume change. However, 

this yield function does not always give satisfactory results when ap- 

plied to real materials. 

The assumption of fixed principal axes made in this paper is not ac- 
tually a restriction on the theory but, rather, a simplifying assumption 

made for this paper. One restriction that does apply to the theory as 

discussed here is that the effects of unloading and reloading are not 

considered. ' 
different effective stress-strain curve, the theory must be extended to 

cover these cases. 

Since unloading and reloading may proceed according to a 

In order to handle the many unsolved problems of analyzing the in- 

elastic strains in nonmetallic materials such as soil, concrete, and graph- 

ite, some new yield functions will have to be derived. These new yield 
functions may indicate the occurrence of plastic volume increases under 

tensile loading but plastic volume decreases under compressive loading. 
A possible means of determining such a yield function would be to deter- 
mine the intersection curves of its surface with a set of planes in stress 
space. These intersection curves could then be fit by a surface mathe- 

matically. The individual intersection curves might be determined by a 
combination of triaxial and thin-walled tube tests. 

Another very interesting extension of the theory of plasticity is 

into the realm of nonlinear creep and relaxation. Considerable work of 
this nature has already been done.5,25-29 

and plasticity are very similar.5,25,26 

creep, a reexamination of the definition of the effective inelastic (creep) 

strain might prove useful. 

The theories of nonlinear creep 

Again, in the case of nonlinear 
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The basic equations of multiaxial plasticity have been derived with 

the use of only calculus and vector algebra. By clearly stating all as- 

sumptions and introducing the basic equations in the proper sequence, it 

has been demonstrated that all the familiar equations of multiaxial plas- 

ticity can be derived without making arbitrary assumptions, such as the 

algebraic form of the effective plastic strain increment. 
3 By using the plastic work equation, 

P dW = 0 dg p eff eff ' 
the flow rule has been derived without reference to the plastic work per- 

formed by the stress increments. Therefore, it appears that the classical 
concept 'of conservation of energy is sufficient, when combined with other 
accepted principles of mechanics, to establish a theory of plasticity. 

The basic assumptions regarding plastic behavior used in this paper 

are listed below, in the order of their occurrence: 

1. Plastic strains are time-independent nonlinear functions of the 

stresses and are permanent. 

2. Elastic strains are time independent linear functions of the 

stresses and are recoverable. 

3. Total strain equals elastic strain plus plastic strain combined 

linearly. 
4 .  Elastic strains ,can be computed by Hooke's law. 

4 

5. In general, no unique relationship exists between the stresses 

and the total plastic strains. 

6. A unique relationship exists between the stresses and the plastic 
strain increments. 

7. The principal axes of stress and strain coincide and remain fixed. 

(This condition is not a general characteristic of plastic behavior. 

ever, it is used in this paper to maintain algebraic simplicity.) 

How- 

8. The initiation and progression of yielding are controlled by a 

yield function that is a function only of the principal stresses. 

9. The yield function has the dimensions of a stress. 
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10. When y ie ld ing  occurs,  t h e  increment i n  the  y i e l d  func t ion  i s  

e i t h e r  zero  o r  p o s i t i v e .  

11. A s i n g l e  e f f e c t i v e  s t r e s s - s t r a i n  r e l a t i o n  holds f o r  a l l  s t a t e s  

of s t r e s s  i n  t h e  p l a s t i c  range. 

1 2 .  The e f f e c t i v e  s t r e s s  i s  a func t ion  only of  t h e  p r i n c i p a l  s t r e s s e s .  

13. The e f f e c t i v e  s t r e s s  has the  dimensions of a s t r e s s .  

14. The e f f e c t i v e  p l a s t i c  s t r a i n  i s  a func t ion  only  of t he  p r i n c i p a l  

p l a s t i c  s t r a i n s .  

15. The e f f e c t i v e  p l a s t i c  s t r a i n  has the  dimensions of  a p l a s t i c  

s t r a i n .  

16 .  The a l g e b r a i c  d e f i n i t i o n  of t he  e f f e c t i v e  s t r e s s  i s  always the  

same. 

17. The numerical  value of t h e  e f f e c t i v e  p l a s t i c  s t r a i n  i s  always 

the  same f o r  a given s t a t e  of s t r e s s ,  but  i t s  a l g e b r a i c  d e f i n i t i o n ,  i n  

terms of t he  p r i n c i p a l  p l a s t i c  s t r a i n s ,  may depend on p r i o r  loading  h i s -  

t o r y .  However, t he  a l g e b r a i c  d e f i n i t i o n  of t h e  e f f e c t i v e  p l a s t i c  s t r a i n  

increment i n  terms of t he  p r i n c i p a l  p l a s t i c  s t r a i n  increments i s  always 

t h e  same. 

18. The r a t i o s  of  t h e  p r i n c i p a l  p l a s t i c  s t r a i n  increments a r e  uniquely 

determined by t h e  s t a t e  of s t r e s s ,  independent of t he  r a t i o s  of  t he  s t r e s s  

increments.  

a t  which t h e  y i e l d  func t ion  i s  continuous.  A t  corners ,  t he  assumption 

does not  hold because s l i p  can occur independently i n  more than one d i -  

r e c t i o n .  ) 

(This  assumption w a s  shown t o  hold only a t  s t a t e s  of s t r e s s  

19. For every s t a t e  of s t r e s s ,  t h e r e  i s  some incremental  loading  

pa th  along which the  p l a s t i c  s t r a i n  increment r a t i o s  remain cons tan t .  

20. The p l a s t i c  work increment i s  t h e  product  of t h e  e f f e c t i v e  s t r e s s  

and t h e  e f f e c t i v e  p l a s t i c  s t r a i n  increment.  

21. The e f f e c t i v e  p l a s t i c  s t r a i n  increment i s  a func t ion  only  of t h e  

p r i n c i p a l  p l a s t i c  s t r a i n  increments.  

22. The e f f e c t i v e  p l a s t i c  s t r a i n  increment has t h e  dimensions of a 

p l a s t i c  s t r a i n  increment. 

23. The p l a s t i c  work performed by a s e t  of s t r e s s  increments i s  

zero  o r  p o s i t i v e .  (This  second-order d i f f e r e n t i a l  p l a s t i c  work q u a n t i t y  
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was used in only one derivation of the flow rule. The assumption of its 

positive value was shown to be unnecessary by the proof that dWp = fh.) 
24. The principal axes of stress and strain coincide with the axes 

of anisotropy, if any. 

general condition. 
the same manner as the normal stress terms.) 

(This too is a simplif'ying assumption, not a 

It is possible to consider the shear terms in basically 

25. 
The fact that a total of 25 assumptions was used to construct a theory 

Slip causes no plastic strain in the direction of slip. 

of plasticity helps to explain, at least in part, why assembling the vari- 

ous parts of the theory in the right order is difficult. 

out first putting the theory in proper order, it is difficult, if not im- 

possible, to fully understand or utilize the techniques of plastic analy- 

sis. But without plastic analysis, there is no way to obtain a better 
understanding of some very important problems involving structural be- 
havior and safety. For this reason, it is hoped that this report will 
contribute to a better understanding among practicing engineers of the 
basic principles of plasticity. 

However, with- 

J 
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