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ABSTRACT

Multiaxial plastic stress analysis techniques will become more widely
used by engineers once a straightforward derivation of the basic equations
of plasticity is available. The objective of this report is to present
such a derivation. The basic equations of plasticity are derived by using
only calculus and vector algebra; tensor notation is not usedf All as-
sumptions are explicitly stated. The flow rule is derived by two different
methods. In one method the area under the effective stress-strain curve
is assumed to equal the plastic work. ZFor the other method the plastic

1

material is assumed to be "stable.” 1In both derivations the ratios of
the principal plastic strain increments are uniquely determined by the
state of stress at any point on the yield surface, except at a discontinu-
ity. Plastic volume changes are related to the effects of hydrostatic
pressure on the yield function.

The equations of Hill's yield function and the Mohr-Coulomb yield
function are examined. For anisotropic materials that obey Hill's yield
function, the uniaxial stress-plastic strain curves in the principal di-
rections must plot parallel to each other on log-log paper; this leads
to a general method for determining the coefficients of anisotropy. The
plastic volume changes associated with the Mohr-Coulomb yield function
are examined. The tensile and compressive stress-plastic strain curves
for Mohr-Coulomb material must also plot parallel to each other on log-
log paper. Furthermore, the flow rules associated with the Mohr-Coulomb
and the Von Mises yield functions can both be derived by assuming that
slip causes no plastic strain in the direction of slip. Two example prob-
lems are solved: one uses Hill's yield function and the other the Mohr-
Coulomb yield functibn. Finally, present limitations and future exten-

sions of the theory are discussed.
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NOMENCLATURE

Arbitrary constant, dimensionless
Stress-plastic strain parameters, psi

Scaling factor for anisotropic stress-plastic strain
curves, dimensionless
'Plastic strain parameter, psi™>

Scaling factor for anisotropic stress-plastic strain
curves, dimensionless

Stress-plastic strain parameters, psi
Cohesion, psi

Arbitrary constant, psi

Width of a prismatic test specimen, in.
Modulus of elasticity, psi

Plastic secant modulus, psi

Unit vectors along the op Oy and o, axes in stress
space, dimensionless

Plastic tangent modulus, psi

Yield functions, psi

Gradient of the yield function, dimensionless
Derived function of (1., Qp3, and (331, dimensionless
General functional relationship

Strain-hardening parameters for linear strain hardening,
dimensionless
Height of a prismatic test specimen, in.
Unit vectors along the principal axes, dimensionless
Stress-plastic strain parameter, psi'l
: ;

Distance between two points on a line drawn parallel to
a slip plane in a prismatic test specimen, in.

Parameter in the Mohr-Coulomb yield function, dimension-
less '

Strain-hardening exponent for power-law strain hardening,
dimensionless '

Octahedral normal
Line parallel to the octahedral normal in stresé space
Point on a yield surface in stress space

Arbitrary constant, psi”?
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Point on a yield surface in stress space

Arbitrary constants, dimensionless

Point on a yield surface in stress space

Point on a corner of a yield surface in stress space
Normalized stresses, dimensionless

Temperature, °F

Thickness of a prismatic test specimen, in.

Stress vector along the o, axis in stress space, psi
Differential plastic volume change

Plastic volume change, dimensionless

Plastic work increment per unit volume, psi

Plastic work increment per unit volume performed by a
set of stress increments, psi

Scalar variables (stress or dimensionless, as indicated
by equations in which used); also subscripts indicat-

ing principal directions
Coefficient of thermal expansion, °F %

Coefficients of anisotropy in Hill's yield function,
dimensionless

Parameter that defines the shape of the Mohr-Coulomb
yield surface, dimensionless

Slip-plane plastic shear strain, dimensionless

Principal total strains, dimensionless

Principal elastic strains, dimensionless

' Principal plastic strains, dimensionless

Effective plastic strains associated with the components
of a plastic strain vector at the corner of a piecewise
linear yield surface, dimensionless

Effective total strain, dimensionless
Effective plastic strain, dimensionless

Plastic strain increment vector in strecs space, dimen-
sionless

Reciprocal of the strain-hardening exponent, dimension-
less

Factors of proportionality, dimensionless
Poisson's ratio, dimensionless

Principal stresses, psi
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ix

Principal stresses, psi

Yield stress in compression, psi
Effective stress, psi

Hydrostatic stress, psi

Normal stress on a slip plane, psi

Initial yield stresses for linear strain-hardening
material, psi

Yield stress in tension, psi

Coordinates of a point in stress space referred to
an octahedral coordinate system, psi

Stress components in the octahedral plane, psi

Total stress vector in stress space, psi

_Component of the total stress vector acting normal to

the octahedral plane in stress space, psi

Component of the total stress vector acting tangential
to the octahedral plane in stress space, psi

Shear stress on a slip plane, psi

Octahedral shear stress, psi

Angle of internal friction, deg

Functional relationship

Subscripts indicating the principal directions
Overbar indicating a vector quantity

Brackets indicating absolute magnitude (length) of a
vector

Symbol denoting perpendicular to
Indicates the cross product of two vectors

Indicates the dot product of two vectors
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DEFINITTIONS

Angle of internal friction — the angle with a tangent equal to the coef-

ficient of friction of a material slipping on itself.

Anisotropic material — a material with properties that vary with direc-

tion.

Associated flow rule — a flow rule applicable to a particular yield func-

tion.

Cohesion — the shear stress on a slip plane when there is zero normal

stress acting on that plane.

Deformation theory — a set of equations relating stress to total plastic

strain. Deformation theory is a special case of incremental theory.

FElastie strain — the strains related to the stresses by Hooke's law.

Elastic strains are recoverable by unloading.

Effective plastic strain increment — a function of the principal plastic

strain increments, the value of which can be determined from the ef-
fective stress-strain curve. The product of the effective stress and
the effective plastic strain increment equals the plastic work incre-
ment.

Effective stress — a known function of the principal stresses that uniquely

determines the amount of plastic work required to attain a particular
state of stress.

Effective stress-strain relation — a unique relation between the effective

stress and the effective plastic strain.

Effective total strain — a function of the principal total strains that

is uniquely related to the effective stress for isotropic deformation

theory.

Flow rule — a set of three partial differential equations relating the

principal plastic strain increments to the stresses and the stress
increments via the yield function.

Hydrogtatic stress — the average of the three principal stresses; also

the normal stress on the octahedral plane.

Tdeally plastic material — material that does not strain harden; therefore

the effective stress is a constant in the plastic range.
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Incremental theory — a set of equations in which the stresses are related

to the plastic strain increments.

Integrated flow rule — a set of stress-strain equations relating the

stresses to the total plastic strains.

Isotropic material — material with properties equal in all directions.

Modulus of elasticity — the initial slope of the uniaxial stress-strain

curve.

Mohr-Coulomb yield function — a yield function which specifies that the

shear stress on a slip plane equals cohesion plus the product of the
normal stress times the tangent of the angle of internal friction.

Octahedral coordinate system — a set of coordinates in stress space having

one axis colinear with the octahedral normal and the other two axes
lying in the octahedral plane.

Octahedral plane — a plane equally inclined to three mutually perpendicu-

lar directions.

Octahedral shear stress — the shear stress on the octahedral plane in'a

unit element.

Plastic strain — the difference between total strain and elastic strain.

Plastic strain increment vector — the vector in stress space whose com-

ponents are the principal plastic strain increments.

Plastic volume change condition — the equation resulting from summing the

principal plastic strain increments.

Plastic work — the work done by the total stresses on the plastic strains.

Poisson's ratio — the negative of the ratio of transverse elastic strain

to elastic strain in the direction of stress in a uniaxial test.

Principal strains — the normal strains in the three mutually perpendicular

directions between which there is no shear strain.

Principal stresses — the normal stresses on the three mutually perpendicu-

lar planes on which there is no shear stress.
Slip planés — planes of discontinuity formed by sliding during yielding.
Stability — the assumption that plastic material cannot do any net work
on its loads or their increments but must always have some work done

on itself during yielding.
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xiii

Strain-hardening material — material for which the derivative of effective

stress with respect to effective plastic strain is positive.

Stress space — a set of cartesian coordinates in which the unit vectors

apply to the stresses or strains in the principal directions.

Transversely isotropic material — material with equal properties in any

direction within a plane but another set of properties in the direc-
tion perpendicular to that plane.

Tresca yield function — the difference between the algebraically largest

and smallest principal stresses. According to this criterion, the
maximum shear stress controls yielding.

Ultimate strength analysis — the calculation of the actual strength of

a structure. The strength of a structure is the load that causes

failure.

Von Mises yield function — a constant times the octahedral shear stress.

Yield function — an algebraic function of the principal stresses having

the dimensions of a stress and controlling the ratios of the principal
plastic strain increments via the flow rule.

Yield stress — the value of stress at which yielding first occurs in a

uniaxial test.

Yield surface — a plot of the yield fﬁnction in stress space.
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AN ENGINEERING APPRCACH TO MULTIAXTAL PLASTICITY

J. G. Merkle

Within the past 15 years, failure criteria based on plastic stress

1 have become an important part of most structural design codes.

analysis
Previously, structures were assumed to behave elastically until failure
occurred; that is, no strength beyond yielding was recognized. In fact,
failure was usually defined as the occurrence of yielding (barring buck-
ling, fatigue, or brittle fracture). This criterion frequently led to

an uneconomical use of material. Therefore it was inevitable that plas-
tic analysis should be developed and applied to the design of structures.

More recently, another set of problems in plastic analysis has arisen
with regard to the design of structures for nuclear power plants. Among
these problems are the ultimate strength analysis of reactor containment
shells and pressure vessels and the ultimate strength analysis, for ther-
mal loading, of reactor fuel elements. The need for practical solutions
to these problems is now providing a strong motivation for the develop-
ment of plastic theory along practical lines.

The fact that plastic analysis has become a widely accepted method
of structural analysis for buildings is due primarily to two factors.

The first is the thorough program of analytical and experimental research
undertaken to develop and verify the theory. The second is the concur-
rent and equally important effort undertaken to explain the theory in its
gimplest terms.

Since beams, columns, and frames are usually assumed to carry only
uniaxial stress, the uniaxial stress-strain curve is usually sufficient
for their analysis. An exception occurs in the case of shear-moment in-
teraction in beams. However, for structures involving multiaxial stress,
such as reactor containment shells, pressure vessels, and fuel elements,
all the principles of the general theory of plasticity are required for
analysis. In most papers on multiaxial plastic stress analysis, however,
the basic principles of the theory are stated without proof, with refer-
ence usually being made to a few books or papers in which the basic theory

is developed. While it is true that collectively these references contain




the basic theory, their presentations are generally rather abstract. A
few attempts have been made to present the basic principles of plasticity
in a less abstract form, notably by Dorn and his co-workers® in 1945 and
by Hill® in 1950; however, in most of the more recent works on plasticity,
only a part of the theory is presented and some derivations are omitted.
It seems that only a few attempts have ever been made to simplify the
derivations of the basic equations of plasticity without abbreviating,

and not many attempts have been made to correlate the derivations of the
equations of plasticity with the procedures actually used for problem
solving. This paper constitutes such an attempt.

It may be argued that engineers do not need to know the derivations
of the equations they use but need only have available the final equations
in a ready-to-use form. The answer to this argument is that this philoso-
phy may be a workable expedient for solving routine problems, but it is
not an adequate basis for solving new problems. This is because new prob-
lems can be solved only through understanding, and understanding is gained
only by following derivations. An engineer who is not familiar with the
derivations of the equations he is now using is in no position to derive
new equations because he has no place to start. Therefore the most impor-
tant parts of this paper are not necessarily the final equations, most of
which can be found elsewhere (although not all in one place), but the sub-
ject matter outline, the statements of basic principles, and the unabbre-
viated derivations, many of which cannot be found elsewhere.

It is not the purpose of this paper to develop a new theory but,
rather, by progressing from the simple to the complex, to present a more
easily understood explanation of an existing theory. By so doing, it is
hoped that the many fine solutions to multiaxial stress problems in plas-
ticity that already exist will become more understandable and more useful

to students and enginesrs in practice.

STATEMENT OF THE BASIC PROBLEM

The behavior of material in the plastic range is best described in
terms of the stress-strain curve and other experimental observations of

actual inelastic behavior. Such a description is given in Ref. 4, which
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also contains the definitions of many terms encountered in the field of
inelastic analysis. For analytical purposes, certain assumptions concern-
ing plastic behavior are made in order to render an analysis tractable.
Reference 4 points out the degree to which these assumptions are approxi-
mations and discusses the limitations of present methods of plastic analy-
sis. '

The three most important assumed characteristics of plastic behavior
are nonlinearity, independence of time, and permanence of plastic strains.
For analytical simplicity, the uniaxial stress-strain curve for the load-
ing and unloading of a plastic material is assumed to be of the form shown

in Fig. 1. Loading is nonlinear, but unloading is assumed to be linear.

ORNL-DWG 67-337¢

L

STRESS, ¢ ——=

eP l eE

TOTAL STRAIN, ¢ —=

Fig. 1. Typical Uniaxial Elastic-Plastic Stress-Strain Curve.

The slope of the unloading curve is assumed to be the initial slope of
the loading curve. The elastic strain is deéfined as the linear recover-
able portion of the total strain. The plastic strain is defined as the

nonlinear irrecoverable portion of the total strain. Therefore, by defi-

nition,




e =B+ P (1)

where ¢ is the total strain, ¢E is the elastic strain, and ef is the plas-
tic strain. Thus, for the purpose of this discussion, yielding is as-
sumed to begin at the true proportional 1imit of the material rather than
at some arbitrarily defined yield point. Whether or not Eq. (1) holds
for a real material must be determined by experiment. This determination
is logically the first step in investigating the applicability of plastic
analysis to a real material, especially if cyclic locading is involved.

The basic problem in multiaxial plastic stress analysis can be de-

fined by considering the unit cube of material shown in Fig. 2. This cube

ORNL-DWG 67-3372
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Fig. 2. Unit Cube of Material Loaded into the Plastic Range.

of material is assumed to be loaded into the plastic range by & set of
principal stresses that act normal to its faces. The magnitudes of the
principal stresses are given, and the problem is to find the principal
strains. While there are only three principal total strains, each prin-
cipal total strain has two components, an elastic component and a plastic
component. Since the two components of total strain are physically sepa-
rate, there are six unknowns in the problem. However, if it is assumed

that the elastic strains can still be determined by Hooke's law, only




three unknowns remain in the problem without equations for their solution.
These unknowns are the three principal plastic strains. It follows that
plastic theory must provide three new equations for computing the three
principal plastic strains. In addition, if any new unknowns are intro-
duced into the problem, there must be oné additional equation for each
new unknown. Since the elastic and plastic strains are physically inde-
pendent of each other, the elastic strains should not appear in the equa-
tions for the plastic strains unless they are substituted for the stresses
according to Hooke's law.

Although the final objective of plastic analysis is to determine the
stresses and the total plastic strains, in many cases no unique algebraic
relationship between the two sets of variables will exist. This is be-
cause of the basic nonlinear nature of plastic deformation, which can
manifest itself by creating stress interaction terms in the differential
equations relating stress to plastic strain. These stress interaction
terms lead to indefinite integrals in the algebraic equations relating
stress to total plastic strain. These indefinite integrals can be evalu-
ated only by knowing the continuous relationship between the principal

stresses. For example, a differential equation of the form

def = po, do, (2)
has as its integral
o3
e =p—+a, (3)
2

which is always the same algebraic function, regardless of its nonlinear

form. However, the differential equation

def = p(oy + 0,) doy (4)
has as its integral
02 '
1
€f =D ;— +D jnoz doy +q’, (5)

which is not a unique algebraic function because of the interaction term,

po, doy, in the differential equation. If interaction terms are assumed




to exist in the differential equations relating the principal stresses to
the principal plastic strains, the three stress~plastic strain equations
must be derived in differential form. Thus the three unknowns in the
problem for which definite equations can be written are the three princi-
pal plastic strain increments. Therefore in a design analysis the total
plastic strains must be determined by a process of integration that con-
siders the continuous relationship between the principal stresses.
Plastic theories in which the effects of stress interaction are rec-
ognized and the total plastic strains are determined by integration are
known as "incremental" theories. Plastic theories in which the effects
of stress interaction are ignored and a unigque algebraic relationship
between the stresses and the total plastic strains is assumed are known
as "deformation" theories. Deformation theories are exact only for the
one assumed relationship between the principal stresses, which can be
used to derive them from incremental theory (usually constant stress ra-
tios). Otherwise, they are approximate, although often convenient. In
a few cases the differential equations of incremental theory contain no
interaction terms and can therefore be directly integrated. All three

types of equations are derived and discussed in this report.

BASIC EQUATIONS OF PLASTICITY

Assumption of Fixed Axes (A Simplifying Assumption
for This Report)

In many plasticity problems of immediate interest to design engineers,
the principal axes of stress and strain are assumed to coincide and to have
fixed directions. Although perfect. generality is lost by assuming such
conditions, a considerable amount of simplicity and clarity is gained.:

Therefore, such conditions are assumed for all the following discussion.

Number and Types of Equations

In general, there are seven independent equations involved in a plas-
tic stress analysis. The first four equations permit the evaluation of

the four auxiliary variables introduced into the problem. The remaining
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three equations specify the relative values of the three principal plas-
tic strain increments. The first equation is the definition of a function
of the principal stresses and is called the yield function, or the plas-
tic potential. The yield function is assumed to control the initiation
and progression of yielding by controlling the ratics of the principal
plastic strain increments. The second equation is a so-called "effective,

"2-5  This equation re-

generalized, or universal stress-strain relation.
lates an effective stress to an effective plastic strain. The third and
fourth equations are the definitions of the effective stress and the ef-
fective plastic strain. The last three equations are a set of equations
known as a flow rule. The flow rule is a set of three linear partial
differential equations that specify the relative values of the principal
Plastic strain increments in terms of the principal stresses and the ef-
fective plastic strain increment. An eighth equation, the plastic volume
change condition, although usually introduced as an independent condition,
can always be derived by taking the sum of the three flow rule equations.
Or if the plastic volume change condition is specified as an independent
condition, the definition of the yield function becomes a dependent con-
dition. Each of these equations is discussed in detail in the following

sections.

The Yield Function

In uniaxial and biaxial tests, on at least some materials, yielding
is observed to begin at a certain definite combination of the principal
stresses. TFurthermore, if after yielding, the load is reduced, the plas-
tic strains do not decrease but remain permanently. In other words, un-
loading from the plastic raﬁge is observed to be elastic. In addition,
in a uniaxial test at some load, if an increase in axial strain corrésponds
to a decrease in true stress, it is observed that behavior is not plastic
but involves some form of separation, such as cracking. Therefore it is
assumed that for multiaxial loéding, there is some function of the princi-
pal stresses, called the yield function, f, or the plastic potential, that

has the dimensions of a stress and either stays constant or increases when




yielding occurs. In other words, for behavior to be plastic,

af = 0 . (6)

The Effective Stress-Strain Relation

The effective stress-strain relation is a single algebraic or graphi-
cal relation between some function of the principal stresses and some

function of the principal plastic strains of the general form

_ P
Oefr = g(€eff) s

where g indicates a functional relationship, which is assumed to be always
satisfied in the plastic range under any state of stress.?”® Whether the
existence of the effective stress-strain relation is assumed before or
after the flow rule is derived depends on the method of deriving the flow
rule, as will be shown subsequently. In the effective stress-strain re-
lation, the principal stress function is called the effective stress, and
the principal plastic strain function is called the effective plastic
strain. The effective stress has the dimensions of a stress, and the ef-
" fective plastic strain has the dimensions of a plastic strain. The rate
of strain hardening is specified by the slope of the effective stress-
strain curve. If the rate of strain hardening is zero, the effective
stress-strain curve is a horizontal straight line; this indicates that
the effective stress is a constant that is independent of the plastic
strains. ©Such an effective stress-strain curve is characteristic of mild
steel for plastic strains less than about 1.4% (Ref. 6) and has been used
extensively for analysis. A uniaxial stress-strain curve for a material
without strain hardening is shown schematically in Fig. 3. Such a stress-
strain curve is called an "elastic-ideally plastic" or a "flat-top" stress-
strain curve.
The effective stress is always defined as an algebraic function of
the three principal stresses, and the effective plastic strain increment
is always defined as an algebraic function of the three principal plastic

strain increments. In incremental theory, the effective plastic strain
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Fig. 3. Elastic-Ideally Plastic Uniaxial Stress-Strain Curve.

\

is determined by integration. However, regardless of the algebraic ex-
pression for the effective plastic strain, its numerical value can always
be determined from the effective stress-strain curve once the numerical
value of the effective stress is known. The effective stress-strain curve
itself is usually determined from a conventional uniaxial tensile test.

The algebraic definition of the effective plastic strain increment
is an independently specified condition. However, it is usually chosen
as the algebraic form determined by the form of the effective stress func-
tion such that the area under the effective stress-strain curve equals
the plastic work. In deformation theory, theveffective plastic strain is
defined algebraically as the integral of the effective plastic strain
increment for constant plastic‘strain increment ratios.

The effective stress-strain curve may be utilized numerically, in
its original form, or it may be fit with an empirical equation. Two of
the most commonly used empirical equations for strain-hardening materials
are the power law and the linear strain-hardening law. The power law is

expressed by the equation
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oerr = Clelee)™ s (7)

and the linear strain-hardening law, by the equation
= 0. (1 + Hefop) (8)
Oeff 0 eff/ »

where Jg¢p 1S the effective stress, egff is the effective plastic strain,
and C, n, oy, and H are constants. The choice of an effective stress-
strain equation is independent of the other conditions in plasticity.
However, this choice may have a strong influence on the difficulty of
obtaining a closed~form mathematical solution for a given problem. Of
course, in principle, computer solutions can be obtained with any stress-

strain curve.

The Flow Rule

Since the yield function involves only a function of the principal
stresses, Eq. (6) does not, by itself, provide a complete basis for com-
puting the principal plastic strain increments. Some other relationship
involving the principal stresses and the principal plastic strain incre-
ments is needed. In order to derive such a relationship, it is necessary
to make some additional assumptions.

Two partially different approaches to deriving the flow rule can be
taken, but both essentially lead to the same conclusion. One approach is
based on the assumed existence of an effective stress-strain curve, the
area under which equals plastic work. The other approach is based on the
assumption of stability. Both derivations utilize the assumption that the
ratios of the principal plastic strain increments are uniquely determined

3

by the state of stress. Both derivations are shown below.

Derivation Based on the Assumed Existence of an Effective Stress-
Strain Relation

Referring to Fig. 2, consider a unit element of volume of strain-
hardening material at equilibrium in the plastic range under the action
of a set of principal stresses acting normal to its faces. If a set of

plastic strain increments occurs, the increment in plastic work performed




)

28

11

by the existing stresses is defined as”
= P P P
AWy, = 0y dey + 0, dej + o, dey - (9)

Now we will assume that there does exist an effective stress-strain re-
lation in the plastic range and that the incremental area under the ef-
fective stress-strain curve equals the increment in plastic work,3 that

is,

_ P
AWy = Ogpp d€00p - (10)

Combining Egs. (9) and (10) then gives

Oeff degff =0 def + 0, deg + 0,4 deg . (11)
Dividing both sides of Eq. (11) by del,, gives
P P P
de:L d€2 deB
Jaff = Op 5 + 0, T + 04 P . (l2>
deerr deerr degrr
For simplicity, we use the following substitutions:
def | deg deg
X = P ’ y = P ’ z = P (13)
deerf deerr degrr
Then combining Egs. (12) and (13) gives
Oeff = 03X + 0,y + 0,2 . (14)

A basic assumption in plastic theory is that the ratios of the plastic
strain increments are uniquely determined by the state of stress, inde-
pendently of the ratio of the stress increments.? Therefore, the ratios
of the plastic strain increments are the same for all incremental load-
ing paths into the plastic range that originate ét the same state of
stress. It follows that if the plastic strain increment ratios can be
determined for any particular incremental loading path from a given state

of stress, they are determined in general for that state of stress.
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Now we assume thrat from every state of stress in the plastic range
there is some incremental loading path along which the plastic strain in-
crement ratios stay constant. If the rule for determining the plastic
strain increment ratios can be fournc for this condition, the general rule
has been found by the previous argument.

Because degff can be determined from the effective stress-strain re-
lation, the numerical value of the effective plastic strain increment
mist be independent of the loading path. Since different total plastic
strains may exist at the same state of stress, depending on the loading
path, the effective plastic strain increment cannot be affected by the
total plastic strains. ‘

Therefore, the effective plastic strain increment must be a function
only of the plastic strain increments. Furthermore, since the effective
plastic strain increment has the dimensions of a plastic strain incre-
ment, %, y, and z should be functions only of the plastic strain incre-
ment ratios. Therefore, x, y, and z should remain constant when the
plastic strain increment ratios remain constant.

By the chain rule, the total differential of ogpr is given by

O0erf O0g O0err
dceff = —-a-gl—- dO’l + 502 d02 + - d03 K (15)

Substituting Eq. (14) into Eq. (15) and performing the indicated partial

differentiation gives

ox oy oz
dogrr = X + 0 — + 0y — + 03 — | do;
d0, d0y doy
ox oy oz
+\ly+to, — +0, — + 0, — ]do
1 2 3 2
do, do, d0,
ox dy dz
+ |z + 0y — + 0, — + 03 —| do; . (16)
803 803 803
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Rearranging terms in Eq. (16) gives

dogfe = X doy + y do, + 2z dog

[ ox ox ox
v + | — dol + — dc2 +— do3 oy
d0y da, do,
oy dy oy
do, da, 503
dz oz oz
+| ~— do., + — do, + — do o}
1 2 3 3
d0, 802 503

However, by the chain rule, Eq. (17) reduces to

dogep = x do; + y do, + 2 dog + 0 AX + 0, dy + 05 dz

‘Since x, y, and z were assumed to remain constant,

dx = dy =dz = 0,
and Eq. (18) reduces to

doepp = X do; + y do, + 2z do,

Equating the right-hand sides of Egs. (15) and (20) now gives

SEAY, 90 pr 3¢ pf
x do, +y do, + 2z doz = do, + do, + o,
aGl 602 503
Collecting terms and dividing by do, then gives
adeff aaeff d02 aoeff d03
X - +ly — - —_— 4+ |z - — =0 .
3oy 502 do, | 803 do,

(17)

(18)

(22)

The terms in parentheses are independent of the stress increment ratios.

Therefore, by taking the partial derivatives of the left-hand side of

Eq. (22) with respect to the ratios do,/do; and do3/dol, it follows that
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90 pe
v - =0 (232)
0,
and
aOeff
z — =0, (23b)
603
and by substituting Egs. (23a) and (23b) into Eq. (22),
oo
fr
X —— =0 . (23¢)
3o,

Consequently, by substituting Eq. (13) into Egq. (23) and rearranging,

do
eff
def = dEePff ’
d0,
do
eff
d(—:JZ'D = d€£ff ’ (24)
3o,
p p  O%err
d€3 = deeff _a_‘
93

Equation (24) is an "incremental" flow rule based on the assumed existence
of an effective stress-strain curve, the area under which equals plastic
work. Note that the factor of proportionality, d€£ff, is of differential
magnitude and has known physical significance. From Eq. (24) it can be
seen that the values of the plastic strain increments are independent of
the loading history.

Evidently, there are two ways to investigate the foregoing theory.
One is to experimentally test the existence of an effective stress-strain
relation that determines the plastic work, and the other is to derive the
flow rule without assuming the existence of an effective stress-strain
relation. Both these approaches to plastic theory have been under in-

vestigation for the past several years, but the relationship between them
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has not always been clear. In the next section the flow rule is derived

without the assumption of an effective stress-strain relation.

Derivation Based on the Assumption of Stability

The basic assumption underlying this approach to plastic theory is
that plastic material always satisfies the condition of stability.8-*0
This condition specifies that a unit volume of plastic material cannot do
any net plastic work upon its loads or their increments but must always
have some plastic work done upon it during loading. The first part of
this condition is expressed by the requirement that, during yielding, the
work done by the existing stresses on a set of plastic strain increments

must be positive. In other words,

— P
dwp = 0y del + o,

P P
dey + o, deg > O . (25)
There seems to be ample experimental evidence to justify this assumption.
The second part of the stability postulate seems to be based partly
on experimental evidence and partly on mathematical intuition. If we

write Eq. (6) in the form

of of of
df = — do; + — do, + — dos 2 0, (26)
Bol do, 503

a similarity in form between the right-hand sides of Egs. (25) and (26)
becomes evident. However, in Eq. (25),'the independent variables are the
stresses, and in Eq. (26) the independent variables are the stress incre-
ments. In order to obtain two equations involving the stress increments,
we are led, quite naturally, to consider the plastic work done by the

stress increments due to an increment in the applied loads. In uniaxial

loading a negative tahgent modulus indicates nonplastic behavior. Further-
more there is apparently no energy available for doing work on the stress
increments. Therefore, although it cannot be fully Justified thermedy-
namically, it seems reasonable to assume that dwp, the plastic work done

by the stress increments on a set of plastic strain increments, must be
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zero or positive. In other words,

1

P
d02 d€2 + 5

do, del 20 . (27)

aw, = % doy ac} + 3 :

1S 1 1 2
Becauce dwP and df are both scalars, it is possible to assume a general

relationship betwéen them of the form

aw. = —g ar (28)

where A is some unknown function.

From dimensi-nal analysis and the fact that both dwp and df have

been assumed positive, it follows that A has the dimensions of a plastic o

strain increment and a value greater than zero. Using Egs. (26) and (27),

Eq. (28) may be rewritten in the form

. o 5 of of of
de; do, + dej do, + dey doy = N — dog N —— do, + A — dog . (29)
do, da, 30,4

Combining terms, Eq. (29) becomes

of of of
aef — N — o, + [aef — A —]do, + |aef - A —)do, =0 . (30)
o o, do

1 3

Dividing both sides of Eq. (30) by the product A do; then gives .

def  dr \ do
_———] - + - =0 . (31)

Since A has the dimensions of a plastic strain increment, it is rea-
sonable to assume that A is a function only of the principal plastic
strain increments. Therefore, the terms def/% are functions only of the
principal plastic strain increment ratios. If these fatios are assumed ‘
independent of the stress increment ratios, then the terms in parentheses
are independent of the stress increment ratios. Consequently, Eq. (31)

has the same solution as Eq. (22), and the plastic strain increments are ‘;D
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given by

del = N — (32)

P
d€3 7\_— .

The assumption made in plasticity that the ratios of the plastic
strain increments are uniquely determined by the state of stress and are
independent of the ratics of the stress increments is analogous to the
assumption in creep analysis that creep strain rates are independent of
stress rates. From Eq. (32) it can be seen that the reason f is also
called the plastic potential i1s that the plastic strain increments are
proportional to its partial derivatives. It can also be seen that the
real effect of assuming dwp to be positive was to prevent a possible
ambiguity in the sign of A and hence in the sign of the plastic strain
increments.

Because Eq. (32) is a set of three equations in four unknowns, one
more equation relating the principal plastic strain increments to the
principal stresses is needed. For strain-hardening materials, this equa-
tion is obtained by assuming the existence of an effective stress-strain
relation, as discussed previously. For ideally plastic materials, the
effective plastic strain can have any value that satisfies compatibility,
but the effective stress must. have a constant value. For both types of
materials, an analysisvbased on the plastic volume change condition is

often used, as explained below.

The Plastic Volume Change Condition

The plastic volume change condition can be derived from the flow

rule by adding the three principal plastic strain increments. Therefore,
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by adding the three expressions in Eq. (32), the differential plastic

volume change, dVP, is given by the equation

of of of
+ del?? + d(—:%3 = A + + . (33)

P )
Bcl do, 503

Tt can be seen from Eq. (33) that the plastic volume change condition de-
- pends upon the yield function. Therefore, the two functions are not in-
dependent of each other.

Equation (33) may be rewritten in a simpler form by considering the
definition of the hydrostatic component of stress, which is defined by

the equation

o, = . (34)

Since the effects of hydrostatic stress are equal in all directions, it

follows that

501 } do, _ 503 (35)
Bom Bom Bom

Consequently, taking partial derivatives on both sides of Eq. (34) and
using Eq. (35) gives

da, 802 503
= = =1 (36)
8om Bom Bom

Therefore, Eq. (33) may be rewritten in the form

af 501 of 502 of 503
avy = A + + , (37)
Bol Bom 502 Bom 3o, doy,

1

which, by the chain rule, reduces to

avy = A — . (38)
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Experimental observation has shown that for many metals the plastic
volume change is zero.%s25%57 Therefore it is of interest to determine
what general conditions, if any, lead to a zero plastic volume change.
Since A is assumed to be nonzero for any incremental loading into the

plastic range the plastic volume change will be zerc if, and only if,
— =0 . (39)

Therefore the plastic volume change will be zero if, and only if, the
yield function is independent of the hydrostatic component of stress.
Furthermore, it is easily shown that for the yield function to be inde-
pendent of the hydrostatic component of stress it must be a function only
of the principal stress differences o, — 05, 0, — 03, and g5 — 0y .

If the plastic volume change is zero, Eq. (33) can be used in either
its differential or its integrated form without knowing the value of A.

For zero plastic volume change the integrated form of Eq. (33) is simply
P P P
€] €y +e53 =0, (40)

where the constant of integration has been set equal to zero because. the

plastic volume change is zero when all the plastic strains are zero. The

plastic strains in Eq. (40) can always be expressed in terms of the total
strains and the elastic strains according to Eq. (1). Then by using the
flow rule, the strain displacement relations, Hooke's law, the equilibrium
equations, and the effective stress-strain relation it is often possible

to reduce Eq. (40) to a form that can be directly integrated.

Relationship Between the Yield Function
and the Effective Stress o

By comparing Egs. (24) and (32) it can be seen that if the values
of the plastic strain increments are to be the same for both derivations

of the flow rule,
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Bf P Boeff
N T = deerr ;
501 doy
of do
eff
N — = delpp s (41)
802 30,
af P aceff
7\ —_— = deeff
503 803

By multiplying each of the expressions in Eq. (41) by the corresponding

stress increment and adding the results, Eg. (41) becomes

of of of
AN — do; + g—— do2 + S-_ do3 =
Bol o, Oy
30 £ aoeff aoeff
deg e do, + do, + —— daog) . (42)
do, do, da,

By using the chain rule and noting Eq. (28), Eq. (42) can be rewritten as

P
A do de
ff ff
duy - - ap - —SfL TEE - (43)
2 2
In order to solve Eq. (43), another expression involving the same quanti-

ties must first be obtained. Substituting Eq. (32) into Eq. (9) gives

af of of
Wy = Aoy — + 0y — * 05 — - (44)
* 801 2 502 - 503

To evaluate the expression in parentheses in Eq. (44), Eq. (26) is re-

written in the form

dOf Of do, Of dog
+ + do
do; o, do;  Ooy doy

ar (45)
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Since f has the dimensions of a stress, the partial derivatives of f are
dimensionless, and they must be either functions of the stress ratios or
constants. Therefore, if the stress ratios remain constant, the partial
derivatives of f must remain constant, but if the stress ratios remain
constant, the ratios of the stress increments must also remain constant.
Since the yield function is specified algebraically, its value is the
same for a given state of stress regardless of how that state of stress
is reached. Therefore, Eq. (45) can be integrated over any path, includ-
ing the path along which the stress ratios remain constant. Performing

that integration gives

of of of
f=\|0g —+0y —+03 —|—D. (46)
doy 502 S0,
If
£(0,0,0) = 0, (47)
it follows that
D=0, (48)
and
of of of
da, d0, do,

Therefore, substituting Eq. (49) into Eq. (44) gives

Wy, = A . (50)

Of particular interest is the fact that Eq. (50) is independent of any
assumptions regarding an effective stress-strain relation. Furthermore,
since both dWp, and T are known to be positive, A must bg positive. Thus,
the assumption that dwp is positive seems to have been unnecessary, since
its only purpose was to make A positive.

By combining Egs. (50) and (10), it can be seen that

= = P
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Thus, since Egs. (43) and (51) are general conditions, the plastic work

increments dwp and dwp can always be represented as incremental areas

under the effective stress-strain curve, as shown in Fig. 4.

ORNL-DWG 67-3374
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de = § do'eff deeff = —2—)\ df
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Fig. 4. Representation of the Plastic Work Increments as Incremental
Areas Under the Effective Stress-Strain Curve.

Combining Eqs. (43) and (51) also leads to the desired relationship

between f and ogpe. Dividing Eq. (43) by Eq. (51) and multiplying by 2

gives
arf dceff
= = (52)
T Oeff ?
which can be rewritten as
d(1log f) = d(log Oeff) (53)
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Therefore, by direct integration,

log f = log o pp + log A, (54)

e
where A is an arbitrary constant. Thus

f = Aoeff 3 (55)

and by substituting Eq. (55) into Eq. (51),

_ A.P
AN = defpp - (56)
The factor of proportionality, A, is thus defined simply by the equation

delpe
A = . (57)
A

Therefore, A\ is always a constant times the effective plastic strain in-
crement, regardless of the yield function. Since the value of A is arbi-

trary, it is usually taken equal to unity, in which case

>
1]

dGEff ) (58)

and

In general,.the stress function on which the flow rule is based is
called the plastic potential, and the stress function on which the effec-
tive stress-strain relation is based is c¢alled the effective stress. Al-
though it is mathematically possible to obtain solutions to plasticity
problems if Egs. (55) and (56) are not satisfied, in any such case, the
condition of stability might not always be satisfiedi In most of the
literature on plasticity, the plastic potential and the effective stréss
are taken to be the same function. Therefore, the terms yield stress,
yield function, plastic potential, and effective stress have come to be
regarded as synonyms. However, in a trade of accuracy for simplicity it

igs worth remembering that the plastic potential and the effective stress
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do not always have to satisfy Eq. (55). Steele! gives a good example of

such a compromise.

The Effective Plastic Strain Increment in Terms of
the Stresses and the Stress Increments

If the tangent modulus of the effective stress-strain curve is defined
AN

asl2

do af »

eff .
F/ = P =T . ’ (60)

deeff A

it follows that
af
A=37 o (61)

Equation (61) can be substituted into Eq. (32) to obtain the principal
plastic strain increments- as functions of the principal stresses and the

principal stress increments.t? For instance, if power-law strain harden-

ing, as given by Bq. (7), is assumed,

F/ = nC(egff)n_l s (62)
but from Egs. (7) and (59),
elpp = CTL/B £1/D (63)
and /
(eBeg)™* = cam)/n gln2)/n (64)
Therefore
p/ = not/ g(nt)/n (65)
and
ar af
A= —= . (66)

F pot/n f(n—l)/n
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If linear strain hardening, as given by Eq. (8), is assumed,

F/ = o, H (67)
and
afr _ af_
A= 7= ool . (68)

Tt will be noted that if there is no strain hardening, F’ is zero, and
Eq. (61) becomes indeterminate. This results from the plastic strain in-
crements not being uniquely determined by the stresses and the stress

increments for an ideally plastic material.

Associated and Integrated Flow Rules

When a particular algebraic yield function is entered into the flow
rule and the indicated partial differentiation performed, the flow rule
becomes an associated flow rule (i.e., associated with that particular
yield function). If the partial derivatives of f remain constant during
loading and the principal axes do not rotate, the flow rule equations can
be integrated directly. The partial derivatives of f will remain constant
during loading if f is a linear function of the principal stresses or if
the principal stress ratios remain constant. The latter condition is re-
ferred to as radial loading. Whenever the flow rule equations are written
in integrated form, in terms of the total plastic strains, they are known

as an integrated flow rule.
CHARACTERISTICS OF STRESS SPACE

Basic Equations

Since the yield function is.a scalar function of the three principal
stresses, it is convenient to represent it as a yield surface in stress
space. Stress space is simply a three-dimensional coordinate system in
which the values of the principal stresses (or strains) are the coordi-
nates.®»” Such a set of coordinates is shown in Fig. 5. Although the

relative magnitudes of the principal stresses may vary, it is assumed




26

ORNL-DWG 67~3375

,/OCTAHEDRAL
NORMAL
n

nln

OCTAHEDRAL 3
PLANE

Fig. 5. Basic Characteristics of Stress Space.

for this discussion that the principal stresses continue to act in the 1,
2, and 3 directions, as shown in Fig. 2. Therefore, in this discussion,
contrary to the usual convention, the subscripts 1, 2, and 3 do not sig-
nify the relative magnitudes of the principal stresses but only indicate
their directions.

Referring to Fig. 5, the total state of stress at a point in a body
can be represented by a vector G in stress space. The vector o is defined

by the equation

O = 0y1 + 0, + 03k , (69)

where the vectors I, 5, and k are the unit vectors acting in the coordinate
directions. It is alsc possible to resolve the vector o into two compo-

nents such that

o=o0, *+1, (70)
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where En acts along the line n, which is equally inclined to all three
coordinate axes, and T is perpendicular to En‘ The plane containing T
is called the octahedral plane,® and the line n is called the octahedral
normal. Since the direction cosines of n are all l/\/?, it follows that

i+ + E o, t o, * o

j
= = \/5 B (71)
N V5 “m

Ignl =E ¢

where o, 1s the hydrostatic component of stress and is defined byl3

o, + g, *+ 05
I = 3 . (72)

By referring to Eq. (71) it can be seen that

oy = om(z + 3 + k) . (73)
Substituting Egs. (69) and (73) into Eq. (70) and solving for T gives
= (0p = o)l + (0, — om)g + (05 — om)E . (74)

Consequently

||

[(o1 = o)? + (o5 = ap)? + (05 — o)?] /%, (75)

and by using Eq. (72) it can be shown that

17| - —0,)2 + (0p = 0,)% + (o5 — )2 )" = B e 5 (76)

1
[(o

V3

where T,y is the octahedral shear stress and is defined by'>

1/2

Toct © % [(01 — 03)% *+ (0p —03)% + (03 — 01)%] (77)

In any octahedral plane in stress space, fhe hydrostatic component

of stress is a constant. Furthermore, at any given radius perpendicular

*111% calls this plane the T plane.




28

to the octahedral norinal, the octahedral shear stress is a constant. Since
all three principal stresses are equal along the octahedral normal, by a
change of coordinates it can be shown that along any line n’ parallel to

the octahedral normal, all the principal stress differences are constant.

The Plastic Strain Increment Vector

It is now convenient to define a plastic strain increment vector in

slress space such that

-P P - P P -
de” = dey 1 + de, J + dej; k . (78)

By using Eq. (32), Eq. (78) can be rewritten in the form

aet = n e, (79)

where the gradient of f, §f, is defined by the equation

_Jdf _ of _  of _
Vf=—i+—3J+—%k. (80)
9o, da, 30,

It is known that Vf is perpendicular to the yield surface and points in
the direction of increasing f, which is outward. Since A is positive, it
follows that the plastic strain increment vector is directed along the

outward normal to the yield surface as shown in Fig. 6.

ORNL-DWG 67-3376
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Fig. 6. Section of a Yield Surface Showing the Normality of the
Plastic Strain Increment Vector.
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Characteristics of Yield Surfaces

Based on the definitions of dEP and ET, it dis possible to determine
two important characteristics of yield surfaces. The first characteristic
is general and applies to all yield surfaces. The second characteristic
applies whenever the condition of zero plastic volume change is known or
assumed to hold.

The first commonly accepted characteristic of yield surfaces is that
they must be flat or convex outward. The proof of this rule will not be
given here, but one consequence of its violation will be discussed. Con-
sider a set of strain measurements made on the surface of a structure
that has undergone large plastic deformations under biaxial stress. If
the biaxial yield locus of the shell material is allowed to have inflec-
tion points, there will be three stress ratios for which the plastic strain

increment ratics will be the same. This condition is shown in Fig. 7.

ORNL-DWG 67-3377

—P =P, =P
deplldeolldeR

Fig. 7. Cross Section of a Yield Surface Having Both Convex Out-
ward and Concave Outward Portions (Not Permitted by Theory).

Under the assumption of an integrated flow rule (deformation theory) and
rigid plasticity (elastic strains neglected) the solution for stresses
will not be unique. The only way to avoid this ambiguity 1s to prevent
its occurrence by preventing thé yield locus from having concave outward
portions. Thus the permissible characteristics of a yield surface are
shown in Fig. 8. If the yield surface consists of flat pieces (planes),

ambiguity is avoided by avoiding concave outward angles. Consequently,
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ARC PS = FLAT PORTION

POINT S = OQUTWARD POINTING
CORNER

ARC SP = CONTINUOUS CONVEX
OUTWARD PORTION

Fig. 8. Cross Section of a Yield Surface with Characteristics Pexr-
mitted by Theory.

only one set of assumptions regarding the directions of the major and
minor principal axes* will result in a solution satisfying all conditions.

It is mathematically possible to have an outward pointing corner in
the yield surface, such as the point S shown in Fig. 8. 1In this case,
dEP is confined to the plane normal to the edge line through 8, but if
all directions of d—P are assumed possible, then dEP can act in any di-
rection between the normals to the adjacent surfaces. Although the di-
rection of dEP is not uniquely determined by the state of stress at a
corner, ambiguities do not arise in the solution of problems because the
plastic strain increment ratios in "corner"” regions are determined by cou-
patibility.

If the condition of zero plastic volume change is known or assumed
to hold, then Eg. (39) holds at every point on the yield surface. By

using Egs. (80) and (36), Eq. (39) can be rewritten in vector form as
— =9 . (3+3+%k) =0, (81)

which implies that
Vel (T+F+K) (82)

*The major axis is the direction of o05. The minor axis is the di-
rection of gj-
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everywhere on the yield surface. Therefore,'if there is no plastic volume
change associated with a given yield function, the yield surface for that
yvield function must be a prism of constant cross section in stress space,
with its generators all parallel to the octahedral normal. Such a yield
surface is therefore completely defined by its lines of intersection with
any plane or set of planes in stress space. For example, two commonly
used yield functions that are independent of the hydrostatic component of
stress are the Von Miges yield function and the Tresca yield function.

The Von Mises yield function is a constant times the octahedral shear

stress. Therefore, as shown in Fig. 9, its line of intersection with the
ORNL-DWG 67-3379
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TRESCA
S Von MISES

Fig. 9. 1Intersection Lines of the Tresca and Von Mises Yield Sur-
faces with an Octahedral Plane in Stress Space.
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octahedral plane is a circle; its line of intersection with a coordinate
plane is an ellipse. The Tresca yield function is a constant times the
maximum shear stress. Therefore, its lines of intersection with the co-
ordinate planes are either rectangles or single straight lines and, as
shovn in Fig. 9, its line of intersection with the octahedral plane is

a regular hexagon. If the two yield functions are made equivalent for
uniaxial tension, they are equivalent whenever two principai stresses are
equal. Under these conditions, the corners of the Tresca hexagon coin-
cide with the Von Mises circle, as shown in Fig. 9. It cau be seen that
the Von Mises yield surface is convex outward everywhere and that the
Tresca yield surface is piecewise linear, with only outward pointing cor-

ners.

Determination of the Yield ILocus for
a State of Biaxial Stress

The intersection of a yield surface with any one coordinate plane
in stress space, say the 05 = O plane, can be determined from a biaxial
test in which the stresses and the plastic strain increments in the 1
and 2 directions are measured.

From Eq. (32), the ratio def/deg is given by

,
del doy
- _ - 83
def -a—f_ b4 ( )
do,
but by the chain,rule,
of of 502
= ) (84)
601 do, 0oy

where 802/501 is the rate of change of o, with respect to o, with £ and

0. held constant. Substituting Eq. (84) into Eq. (83) gives

3
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def do,
==, (85)
d€2 501

where 0, = 0,(01,05,f). ILet us define an angle 6 such that

def 802
——P=——=tan9. (86)
de, do,

At an arbitrary point in the o,,0, plane, say at the point B in Fig. 10,
the angle ABC will be (90° — 0), and the angle CBD will be 6. The sum

of these two angles, ABD, will always be 90°. Therefore, since BD is

always tangent to the yield locus, AB is always perpendicular to the yield

locus.
The yield locus can also be determined by connecting all the points
in the 0,,0, plane at which the value of the plastic work is the same.

This method has the advantage of depending upon integration rather than

ORNL-DWG 67-3380
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X ABD=(90°-6) + 8 =90°
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Fig. 10. Determination of the Yield Locus for Biaxial Stress.
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differentiation. Therefore it should be more accurate numerically. Of
course, theoretically, the two methods should give the same result. There-

fore they can be used in combination with each other.

' Transformation of Yield Surfacé Fquations into
an Octahedral Coordinate System

The surfaces of most commonly used yield functions are defined by
their octahedral cross sections and by the variation in size of these cross
sections with hydrostatic stress. Therefore it is often convenient to
refer the equation of a yield surface to a set of axes, two of which lie
in the octahedral plane Op = 0, and the third of which lies along the.
octahedral normal.?»1% This transfofmation of coordinates is easily made

by using vector notation. Referring to Fig. 11, let the o, axis be the

projection of the g, axis onto the octahedral plane, the o, axis be per-
pendicular to the u axis in the octahedral plane, and the o, axis be the

octahedral normal. Since all projectidn lines to the octahedral plane

ORNL-DWG 67-338{

0'1, O'u

0'1 On l
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(a) (b)

Fig. 11. Octahedral Coordinate Axes in Stress-Space (Adapted from
Ref. 14).
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are parallel to the o, axis, any point in the o,,0, plane will be projected

onto the o, axis. The line of intersection of the o,,0, Pplane with the

1
05,03 Plane has the equation

o, = 0, . (87)

o, = 0 . (88)
Therefore, if a vector U is defined by the equation
ﬁ=XE+y:j-+zE (89)

and is also assumed to lie along the o, axis in the op = O plane, its

components must satisfy the relations

x+y+z=0 (90)
and
y =2 . (91)
Thérefore
X = =2y , (92)
and
U= (y)(2i-35-% . (93)
If
(=y) =1, (94)
it follows that
U=2i~-3—k . (95)

Therefore the unit vector in the u direction, denoted by Eﬁ, is given by

Eu=§il_:\/_£___k . (96)
6

Tt is well known that the unit vector along the octahedral normal, denoted

here by e,, has the equation




i_+_J_+_k . (97)
V3

If the transformed coordinate system is to be right handed, its unit vec-

tors must satisfy the relation

e, X e, =e, - (98)

Substituting Eqs. (96) and (97) into Eq. (98) gives

Yy Shullh R (99)
o2

Therefore the projected lengths of any stress vector onto the octahedral

axes are given by

o, = T - Eu , (100a)
o = E] Ev s (100b)
o = o - gn . (100c)
Since
o = clz + 023 + 03E s (69)
it follows that3,»1%
1 .
oy = —— (205 — 0, = 03) , (1012)
6
1
oy = :7% (05 — 0,), (101b)
1
o, = ——; (03 + 0p + 03) - (101c)
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Furthermore, it follows from the Pythagorean theorem and Eq. (76) that

2 2 _ |72 _ a2
Wt ITI h 3Toct : (102)

APPLICATIONS

The foregoing principles will now be applied to two rather general
yield functions. The first yield function is the generalized Von Mises
yield function proposed by #i113,1° for use with anisotropic metals. The
second yield function is the well-known Mohr-Coulomb yield function used

in soil mechanics.

The Generalized Von Mises Yield Function of Hill

Equations of Anisotropic Incremental Theory

Assuming that the characteristic axes of anisotropy coincide with

the principal directions, Hill's yield function?®,1%,16 ig given by

1/2
r- [QﬁZ(Ol - G2)2 P C 03)2 * O‘31(03 - 01)2] ;o (103)

where the aij's are constants. Since

Of? Of
—_— = 2f — (104)
do, do,
1 1
it follows that
of?
of 50.
_— =, ‘ (105)
do 2f
Since
2 _ — 2 —_ 2 2
£2 = a,(0, = 0,)% + (0, =~ 0))® + (0, ~0,)%, (106)
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Sf?
— = 20, ,(0y —0,) — 20,, (05 = 0y) - (107)
801
and
of 0‘12("1 02) - oc31(03 - cl) (108)
ooy f :
Similarly,
3o, f
and
df i a31(03 - ol) - a23(02 - 03) (1080)
dg £

Consequently, from Eq. (32), the associated incremental flow rule becomes

P A

de; = % Edlz(cl - 02) - a31(03 - cli] 5 (109a)
P A

de, =3 E123(02 - 03) - o (o = 02)] s (109p)
P

ach = 2 [, (0, = 0y) = 500, = 03)] (109¢)

Since f is a function only of the principal stress differences, it follows
that there will be no plastic volume change, which is verified by summing
Egs. (109).

Although any positive value of A will satisfy the flow rule, it is

of interest to determine its algebraic form. By rearranging Egs. (109),

f P

S dey = 01 (Qqp + Qgy) — 0,00, — 0504, (110a)
£ 4 = = a + o (a,, +a ) — o0, (110b)
A 2 1712 2 23 12 3723 Y
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f P
S dey = —0,0y; — 0,0 (110c)

1%31 2Oy + 05(0y + O

23) J

0, may be eliminated from Egs. (1102) and (110b) by subtraction. Sub-

tracting

o, L aed = —ga 0 + 0, (0 0aq + Oy Oy ) — 0,0, 0

31 9€2 1% 2% 2\Up 3ty 12%1 3%23%

from .

P23 % def = 03 (0,0, + 0 Q) T 0,00 05 = 0,00 100,
gives

% (@, def — O3 deg) = 0y (0n )05 + 050, + Qgp0,)
= 0y (O 05 + Ol + Ogy0,) « (111)

Now, noting that o, and o, are both multiplied by the same coefficient,

we let
Qplpy + Qpglgy + Qg 00, =G . (112)

Then, by rearranging Eq. (111),

g, — 0, = — s (113a)

and noting the pattern of subscripts on the right-hand side of Eq. (113a),

P P
f a31 d€2 - aiz de3
0, — 0, = — (113vp)

and

o, — 0y, = — . (113c)
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Consequently, substituting Eq. (113) into Eq. (103) gives

1 P Pys P
AN=3C [Qﬁz(azs dey = 0y dey)® + yy(0y, dey —

Py2
G 12 4€3)

P P.,]1/2
deg — O, del)z] . (114)

+ aal(alé 3

Therefore A represents a function of the principal plastic strain incre-
ments, the form of which is determined by the form of the yield function.
In addition, the three expressions in Eq. (113) can be combined to yield
the general expression

P P P P
d€2 aBl d€2 - aiz de3 Qﬂz de3 - a23 de

= = =G -, (115)
2 2

P
Qpg dey = Qg

which is an alternate form of the incremental flow rule.
So far, there has been no condition invoked that would fix the alge-
braic form of the effective plastic strain increment. Suppose it is as-

sumed that

Ueff = f (116)

and that?,3

P
dwp = f deeff . o (117)

These assumptions are logical, since they require that not only should
there be a consistent relationship betWeen the effective stress and the
effective plastic strain but also that the area under the effective stress-
strain curve should equal plastic work. Substituting Eq. (109) into Egq.
(9) gives

A
aiy =5 [0y = 0)% * yloy = 03)7 + o5 (05 = 0))? ], (128)

and substituting Eq. (106) into Eq. (118) then gives

aw_ = £ . (119)
p
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Therefore, by combining Egs. (117) and (119),
de =N, (120)
a result which could have been anticipated by referring to Eq. (58).

Equations of Anisotropic Deformation Theory

If the ratios of the principal stresses are assumed to remain con-
stant during loading, the ratios of the principal plastic strain incre-
ments will alsc remein constant during loading. (These conditions are
fulfilled under uniaxial loading.) Under these conditions, Egs. (114),
(110), and (113) can be integrated directly to give a set of deformation
theory equations. Integrating Eq. (114) and using Eg. (120) gives

P P

1 P 2 P P 2
Cefr T G [al2(a23€1 — Ogy6,)° + Qyy(Qgpe, — Ogpe;)

P P\s]2/2
oy, (0,6t — 0pe0)?] 0 L (121)

If the secant modulus of the effective stress-strain curve is defined as

o] f
eff

B, =5 =T (122)
Ceff  Seff

then by using Eq. (120), the integral of Eg. (110) is

P 1

€ = E; [Gl(aﬁ2 + Qgy) — 0,04, — 03051] s (123a)

P 1

€2 T §_ [—ola12 + ooy (0y, +0p,) - 63@23] , (1230)
P .

P 1

€4 = E—- [—010631 - 02a23 + 03(0631 + Of23):, . (1230)
b

By using Egs. (115) and (120), the stress-plastic strain relations of

anisotropic deformation theory can also be written in the alternate form

P P P P P P P
€. —Q,.¢ x.,.e, — O € Q. .e. — O, .¢€ €
2371 31-2 3172 1273 1273 2371
_ _ _gleff (1)

gy — 0, 0, — 04 0, — 0y f

a
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Tt may be noted immediately that Eq. (123) is a set of linear stress-
plastic strain relations that can be combined with Hooke's law, according
to Eq. (1), to produce a set of linear stress-total strain relations.

Of course, Ep is actually a variable that must be determined as a function

of position. If power-law strain hardening is assumed, Eq. (63) gives

Ep = <%)1/n £ . (125)

If linear strain hardening is assumed, Egs. (8) and (122) give

-1
P 0
€ = ——— (126)
eff q
and
HF
Ep =5 - (127)
'f—“-l
0

Again, if there is no strain hardening, Ep i1s either undefined or indeter-
minate, since the plastic strains are not uniquely determined by the
stresses for ideally plastic material.

The special case of deformation theory applied to an elastic-ideally
prlastic material presents an interesting problem from another point of
view. For ideally plastic material, f remains constant, and for deforma-
tion theory, solutions are exact only when the stress ratios remain con-
stant. These three conditions are sufficient to determine all three
principal stresses. Therefore, no elastic-ideally plastic deformation-
theory solution will ever be exact unless all three principal stresses
stay constant after yielding. In graphical terms, the only set of princi-
pal stresses for which an exact solution exists is the intersection point

of a radial line in stress space with the yield surface.
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The Coefficients of Anisotropy, ¢ o}

127 %yo 80d Oy,

The three coefficients of anisotropy, O ,, &3, and C5,, can be
evaluated by comparing the uniaxial stress-plastic strain curves in the
1, 2, and 3 directions.

For uniaxial loading in the 1 direction, o, = 05 = 0, and the result

of combining Egs. (122) and (1232) is that

€P
P ff
€ = S (o, + Qg1)0; 5 (128)
but from Eq. (103),
1/2
f=0(0, + ) (129)
Therefore substituting Eq. (129) into Eq. (128) gives
P 1/2 P
ep = (g, +o,,) Ceff ? (130)
and from Eq. (129),
_ -1/2
%-_@Hz+au) f . (131)

Because of algebraic symmetry, it follows that for uniaxial loading in

the 2 direction, o, = g5 = O, and

1/2 P
€y = (% + ) Sopp ? (132)
o, = (0. + o, )% g (133)
2 = 23 P :
P - .
Consequently Corr and f may be eliminated to give
1/2
P Qpg + Opp P
©\o, 7o) © (134)
12 31

and

Ga3 * o mL/2
I ovaeony B (133)
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Using the substitution

1/2
Gps * %y (136)
=2 - = a
Gy + Qg

and taking logarithms on both sides of Egs. (134) and (135) gives

log eP = log &+ log a (137)

2 1
and
log 0, = log 0, — log a . (138)

Consequently, the stress-plastic strain curves in the principal directions

must plot parallel to each other on log-log paper, as shown in Fig. 12.

ORNL-DWG 67-3382
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Fig. 12. Parallel Relationship on Log-Log Plot of Stress-Plastic
Strain Curves for Anisotropic Material Obeying Hill's Yield Function.
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The factor log a equals the logarithmic coordinate differences between
the points of intersection of the two stress-plastic strain curves with
a straight line having a slope of minus one.

From algebraic symmetry [interchanging the subscripts 2 and 3 in Eq.
(136)] it follows that the scale factor between the 1 and 3 directions is
defined by the equation

a,. +a, \1/?
. - (_21___21) , (139)

Xy, + gy

Furthermore, b can be determined graphically from the equations

log ef = log ef + log b (140)
and

log 0, = log 0, — log b . (141)

For a given material it would be convenient to define the coeffi-
cients O4,, Oh5, and Oy, in such a way that under uniaxial loading in a
specified direction, the effective stress-strain curve would coincide
with the stress-plastic strain curve. If it is specified that when

02 = 03 = O,
f=oqa , (142)
from Eq. (129)

(o

1o t05) =1 . (143)

Substituting Eq. (143) into Eq. (130) then gives

P P
€err T €1 ¢ (244)

Three conditions are required for determining the three coefficients

O63.2’ O523’

is arbitrary. The otlier two conditions result from comparing the stress-

and @,,. The first condition, which is expressed by Eg. (143)

plastic strain curves in the 2 and 3 directions with the stress-plastic

2

strain curve in the 1 direction,” as explained below.
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If the effective stress-strain curve is the stress-plastic strain
curve in the 1 direction, Eq. (143) holds. Substituting Eq. (143) into
Eqs. (136) and (139) gives

o = (a,, +a,)? (145)
and
b = (0, + aBl)l/z (146)
Squaring both sides of Egs. (145) and (146) and adding gives
a? + b? = 20y, +Q, * O, . (147)

Substituting Eq. (143) into Eq. (147) and rearranging then gives the fol-

lowing equations for generally anisotropic material:

a,, = 22— L (148)

and substituting Eq. (148) into Eq. (145), squaring both sides, and re-

arranging gives

2 2
a® = b + 1
Ohp = T3 (149)

From Eq. (143) it follows that

p? —a? +1
oy, = ———. (150)

For transversely isotropic material,

a="5b, ‘ (151)
and consequently
a, =1/2, (152a)
Uy = 8% —1/2, _ (152p)
o, =1/2 . (152¢)
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Of course, the existence of a consistent theory does not constitute
sufficient evidence to prove that all materials must obey 1t. Therefore,
if the stress-plastic strain curves for a certain anisotropic material do
not plot parallel on log-log paper, it cannot be concluded that either
there is something wrong with the theory or with the material. If the
curves are almost parallel, they can probably be fit by a set of parallel
curves., If they are nowhere near parallel, it must be remembered that
the & terms in the expression for f will have partial derivatives with
respect to the principal stresses and will thereby affect both the flow
rule and the definition of the effective plastic strain.

If the effective stress-strain curve can be fit by either the power
law or the linear strain-hardening law, an analytical determination of

"o

the factors "a" and "b" is possible. Taking antilogs on both sides of

Egs. (137) and (138) gives

= ae; (153)

and

(154)

For power-law strain hardening, the stress-plastic strain curves in

the 1 and 2 directions will be given by equations of the same form as

Eq. (7). Therefore

n

o, = cl(ef) (1552)

and

’ n
o, = C,(ed) . (155b)

It should be noted that the strain-hardening exponent, n, must be the
same in both directions. Substituting Egs. (153) and (154) into Eq.
(155b) gives

). (156)
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Substituting Eq. (155a) into Eq. (156) then gives

PN
¢, ()
1VT1 p
—_— = Cz(ael) . (157)
a
Consequently
C
1
— = Cpa" (158)
a
C
1
= =a"" p) (159)
C
2
o \2/(n+2)
1
o = (E;> : (160)
By the same argument,
Cl l/(n+l)
b = (6;) . (161)

For linear strain hardening, the stress-plastic strain curves in the

1 and 2 directions will be given by equations of the same form as Eq. (8).

Therefore
0y = 0oy (1 + Hyel) (162a)
and
o, = 0,,(1 +H eP) (162p)
2 02 2727 2

where 045; and oy, are the initial uniaxial yileld stresses in the 1 and 2

directions. Substituting Eqs. (153) and (154) into (162b) gives

N P
— = 0,,(1 + aH,e;) . (163)
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t

Substituting Eq. (162a) into Eq. (163) then gives

P
01 (1 + Hyep) P
= 002(1 + aH,ey) (164)
a
P
Consequently, at €] = 0,
901
— = Oy, (165)
a
and
O -
a = 395 . (166)
02

However, Eg. (166) must hold at all values of ef. Therefore, substituting

Eq. (165) into the left-hand side of Eg. (164) gives
6., (1 + Hyel) = o, (1 + aHer) (167)
02 11/ T 02 2717 0

which reduces directly to

H, = aH, , (168)
and thus
H,y 91
a = R (169)
2 o2
By the same argument,
H ag
01
b = H—l = — -, (1'70)
3 Y03 :

Equations for Isotropic Material

For isotropic material, a = 1, and it follows from Eq. (152) that

when a = 1,

O, = Oy = gy = 1/2 . (171)
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Consequently, substituting Eq. (171) into Eq. (103) gives

1
f=— [(Ol - G2)2 + (0, — 03)2 + (o5 = 01)2]1/2 . (172)

J2

By comparing Egs. (77) and (172) it can be seen that for isotropic material,

3
Substituting Eq. (171) into Eq. (112) gives
3
G =7 (174)

For incremental theory, substituting Egs. (171) and (174) into Eq.
(114) and substituting Eq. (120) on the left-hand side gives

P V72 P P P P P Py,]1/2
deeff = T3 [(del - d€2>2 + (d€2 - d€3)2 + (de3 - del)?'] . (175)

In addition, applying Egs. (171), (174), and (120) to Eq. (115) gives

dell3 - de:QP des - def def - def 3 deP
- - - - —off (176)
g, — 0, 0, — 04 03 — 0y 2 T

For deformation theory, Egs. (175) and (176) are integrated to give

P P_ P P_P P p.Jr/2
Cerr © :éz [(61 — ;)% + (g5 —€5)® + (e5 = €l>2] (177)

and

P P P P 3 P
€1 — €5 €, — €5 €5 — €& €arr
f

0y — O2 0o — O3 03 — 01 -2_ (178)
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Equations (176) and (178) are known as the Von Mises incremental and de-
formation theory flow rules, respectively. By using Eq. (40), Eq. (177)

can be rewritten in terms of any two principal plastic strains. For ex-

ample, eliminating ef gives

2
P _ Pys PP Py
Ceff V3 [(€l> e et (62)]

/2 (179)

Of course, Eq. (179) has its incremental counterpart, the same as Egs.

(177) and (178).

-

Equations Relating the Total Strains to the Stresses for Isotropic
Material

If the applicability of deformation theory is assumed, it is possible

to develop a set of equations relating the stresses to the total strains.

17

This is the approach taken by Mendelson and Manson in their work on

thermal stresses. For isotropic material, Hooke's law states that

E 0, v

e, =— —— (0, + 03) + aT , (180a)
E E

g 9% Y

€, === (ol + 03) + QT , (180p)
E E
ag v

3
eE =—=— (0, +0,) +QT . (180¢c)
3 E B 1 2

Furthermore, for isotropic material, Eq. (123) reduces to

P o 0.5 ( ) (
€] =5 ==— (o, +0_), 181a)
1 Ep Ep 2 3
o} 0.5
P 2
€, == == (0, + 05) , (181p)
2 EP EP
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0.5

Ep

3

e = — =

o
s (o + 0,) - (181c)

el

Adding the elastic and plastic components of strain, as given by Egs.

(180) and (181), gives

1 1 v . 0.5 ,
€1 = 0q <E + E;) - <'E + Ep—) (02 + 03) + QT , (182a)
1,1 v, 0.5
€2=02(§+E5>“(E+E;>(%+°3)+O‘T’ (182v)
1.1 v 0.5
€3 7 %3 (E“LEp),"(E”LEp)(OJ.*Gz)“LO‘T- (182¢)

Subtracting Egs. (182) by pairs gives

& - = (0, = 5) (L—E—Vﬁ—i) (183a)
P
1+ v 1.5
e, = e, = (0, = ;) ( LY §> , (1830)
1+ v 1.5
€5 — € = (03 - ol) - + E£_> . (183c)

Tt should be noted that the OT terms have been eliminated by subtraction.

Equation (183) can be rewritten in the form

(184)

By squaring both sides of each expression in Eq. (183), and adding the

results,

3 2 |
(\_/__2_ eeff) - (7 1) (1 g 3};_2)2 , (185)

1%
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where, by definition,

1/2

€orp = 2%2 [(el —e,)% + (e, — €)% + (5 — 61)2] . (186)

Here €qfe is called the effective total strain. Taking square roots on

both sides of Eq. (185) and dividing by /2 gives

el 1.5
Cerr = T < £ Ep ) . (187)

lw

Substituting Eq. (122) into Eq. (187) gives

_ 1+v 3P
eeff = f = + 5 €off (188)

oW

Since, according to the effective stress-strain relation,

f=g (Ggff) ’ (189)

Eq. (188) is a direct relationship between the effective total strain and
the effective plastic strain. Equation (188) can be inverted to give the
effective plastic strain in terms of the effective total strain. Con-

sequently the equation

€£ff = W(eeff) ’ (190)
where ¥ indicates a functioﬁal relationship, is a valid equation that can
be used for analyéis. Tt should be noted that Eq. (190) results from com-
bining Hooke's law with the Von Mises condition, and therefore Eq. (190)
is not a redundant relationship between the stresses and the elastic
strains. It follows directly from Eq. (188) that

3E

— - P
£ =5+ (Cerr ~ cers) - (191)
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The Equation of Hill's Yield Function for Transversely Isotropic
Material in the QOctahedral Coordinate System

One important special form of Hill's yield function is the form ap-
plicable to a material such as graphite,* which has one set of properties
"with the grain' and another set of properties in the plane perpendicular
to the grain. Such a material is called a transversely isotropic material.
For transversely isotropic material, according to Eq. (152), the constants
Oy, and Qgy may be taken equal to one-half. Under these conditions, the
2,3 plane is considered the plane of isotropy, and the 1 axis is considered
the axis of anisotropy. The effective stress-strain curve is the stress-

plastic strain curve in the 1 direction. Accordingly, the expression for

f from Eq. (103) is given by
1 1 27+/?
£/=I:§ (0, = 0,)% + ayy(0, - 0,)° 5 (o5 = o) ] (192)
and
2
(03 = 0y)° . (193)

1
£2 = 5 (0, = 0,)° + Ou(0y = 03)% +

Now, by squaring both sides of Eq. (77) and multiplying by 9/2,

9 .2 -1 2 1 2 1 5
5 Toor =3 (01 = 02)% + 5 (0 = 03)% + 5 (05 —0))" . (194)
Then, by subtracting Eq. (194) from Eg. (193),
2 _ 2.2 . — i) IR
72 Toet T (O‘ZB 5) (0, = 03)" - (195)

Equation (195) can be transformed into the octahedral coordinate system
by applying Eq. (102) on the left-hand side and Eq. (10lb) on the right-

hand side. Performing these substitutions gives

*Graphite does not actually exhibit a zero plastic volume change.
However, until a more appropriate yield function can be derived, this
assumption serves as an expedient. »
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3 ' 1
£2 - 5 (0121 + 02) = (a23 - §> 202 . (196)
Therefore
3 4a23 +1
- oi o_ ai = 2, (197)
2 2
which is the equation of an ellipse in the octahedral plane. If Q, 5 is
taken equal to one-half, Eq. (197) reduces to
s o 2f?
or + oL = T3, (198)

which represents the Von Mises circle.

The Mohr-Coulomb Yield Function

Derivation of the Yield Function

The principal reasons for discussing the Mohr-Coulomb yield function
are that (1) the Mohr-Coulomb yield function is the only common example
of a yield function that leads to a plastic volume change and (2) the
equations for the Mohr-Coulomb yield function reveal the basic facts that
slip is two dimensional and that plastic volume changes are caused by the
occurrence of slip on planes other than the 45° planes of maximum shear
stress. Plastic volume changes are the rule rather than the exception
in the case of nonmetallic materials such as soil, concrete, and graphite.
The derivation of the equations for the Mohr-Coulomb yield function demon-
strates that plastic volume changes can be considered in plastic analysis
by directly applying the principles contained in this report.

Not all the predictions of the Mohr-Coulomb yield theory have been
observed experimentally. For instance, the occurrence of '"corners" in
the yield surface and the absence of any plastic strain in the direction
of the intermediate principal stress are étill conditions more hypotheti-
cal than real. Nevertheless, the theory is being presented here because

it has already been used extensively for analysis and because it still




56

constitutes a very useful simplifying approximation for obtaining closed-
form solutions to problems.
The Mohr-Coulomb yield function is based on the concept that yield-

18,19 According to

ing is controled by internal friction plus cohesion.
this theory, as shown in Fig. 13, the point of tangency of the outer Mohr
stress circle and a linear envelope gives the state of stress cn, and the
inclination of, the plane of yielding. For the determination of ultimate
bearing capacities and limiting lateral earth pressures, soil iz usually
treated as a rigid ideally plastic material. However, there is nothing

to prevent the Mohr-Coulomb yield function from being applied to a strain-
hardening material. In fact, investigations along these lines have been

conducted by Drucker, Gibson, and Henkel,20 and by Haythornthwaite-zl

ORNL-DWG 67-3383

POINT OF TANGENCY

T, SHEARING STRESS

73 % ‘\ oy b oy o 0 7, CCoTé

o, NORMAL STRESS —a=

Fig. 13. Mohr's Circle Diagram for the Mohr-Coulomb Yield Crite-
rion.
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From the diagram shown in Fig. 13, it can be seen that 18,1°

0, — 04 [—(03 + 0p)

= + ¢ cot ¢] sin ¢ , (199)

2 2

where, in contrast to the previous discussions, o, is the maximum princi-
pal tensile stress, 05 1is the minimum principal tensile stress, ¢ is cohe-
sion, and ¢ is the angle whose tangent equals the coefficient of intermal
friction; ¢ is called the angle of internal friction. Clearing fractions,
Eg. (199) becomes

g, — 03 = =(g; + 0y) sin ¢ + 2c cos ¢ . (200)
Consequently
o, (1 + sin ¢) = o5(1 — sin ¢) + 2c cos ¢ (201)
and
1+ sin ¢ _2c cos ¢
NI "sing "3 1-sing (202)
It
1+ sin ¢ _
1-sin¢ 7 (203)
it follows that
2c cos ¢ 1+ sin ¢ 1/2 _ 1/2
T=sing - 2¢c (if:—gzz—6> = 2cm . (204)
Substituting Eqs. (203) and (204) into Eg. (202) gives
mo, — g, = 2emt/? . (205)
When Oi = 0, 03 = —0qc, and consequently
2emt/2 = g, . (206)

Therefore

H
Q
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When o3 = 0, 0y = 04, and consequently

mo, = o, (208)
and
%
m=— . (209)
t
For analysis, the yield function, f, is defined as
f=mo, ~— o, . (210)

1 3

It can now be seen that the Mohr-Coulomb yield function represents a
linear relation between the major and the minor principal stresses. 1In
addition, if m is set equal to unity, the Mohr-Coulomb yield function
reduces to the Tresca yield function. Furthermore, by adding a constant
oy to both principal stresses, it can be seen that, in general, f is not
independent of o,. Therefore, a plastic volume change is to be expected.

Such volume changes are observed in granular so0i1.?0

The Incremental and Integrated Flow Rules

According to the flow rule given by Eq. (32),

P of

dey = A gl— = mh\ , (211a)
P of

d€2 = A 88-2— =0, (211b)
P of :

d€3 = A -573 = =\ . (211c;

The plastic strain increment in the direction of the intermediate princi-
pal stress is zero. Therefore, Hooke's law will give the total strain
in that direction for an elastic-plastic material. Because f is a linear
function of the principal stresses, the plastic strain increment ratios
are constant, even if the stress ratios are not, providing o, and o, con-
tinue to act in the same direction. Therefore, Eq. (211) can always be
integrated directly to give the ratios of the total plastic strains. Ac-

cordingly
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def
—= = (212)
deP
3
and
P P
e, = —me, (213)

Stress-Plastic Strain Relationships When the Three Principal Stresses

Are Unequal
If Egs. (10) and (59) are again assumed to hold, it follows that in

multiaxial loading, with o, > 0, > 03,

P
AWy, = £ de_op = oymh = oA = NMmoy, = 0,) = £ . (214)'
Therefore
P
de_p = A (215)
and
P
[ = € pr - (216)
Consequently, integrating Egs. (211) gives
P P
1% M€ pe s (217a)
< =0, (217D)
P P
€ = e pp (217¢)

From Egs. (217) it may be seen that the plastic volume change, also called

the dilatation, is given by

P

€ (218)

ANb = (m—-1)

and, using Eq. (217), that




60

o _ PN _m-—-1 P
A{p = (m — 1)( €3> =——=c - (219)

The plastic volume change is an expansion.

Stress-Plastic Strain Relationships When Two Principal Stresses

Are Equal

If two principal stresses are equal, the plastic strains in the di-

rections of the two equal stresses are not uniquely determined by the flow
rule. However, as shown in Fig. 14, the total plastic strain vector (the
vector integral of dEP) at a corner can always be resolved into two com~
ponents, one normal to each of the two adjacent sides. The properties of
the total plastic strain vector can then be deduced from the known prop-
erties of its two components.

For gy = 02 > 03,

P P P
e, =me, +0 =mey, (220a)
P P P
€, =0 + mep = meg , (220p)

ORNL-DWG 67-3384

Fig. 14. Plastic Strain Vector and Its Components at a Corner of
the Mohr-Coulomb Yield Surface.
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P P P _ _,P, P
€, = =€, — €y = (eA + eB) 5 (220c)

where eE and eg are the effective plastic strains associated with the two

components of the total plastic strain vector. Adding Egs. (220) gives

P P
AVP = (m — l)(eA + eB) N (221)
and, by using Eq. (220c),
AV = (m = l)(-—eP) . (222)
P 3

Furthermore, adding Egs. (220a) and (220b) and using Eq. (220c), gives

P P P
€, * e, =-me, . (223)
Therefore
P P P P P
dwp = fde oo = o, (-mde;) + o0,de; = (mo, — 0,)(—dey) = £(—de,) (224)
and
P P
€ = C pp ¢ (225)

In uniaxial compression, when 01 = o0 = O,

o, = —Ff . (226)

For o7 > 0o = 03, a similar analysis gives

P P P P P

€, =me, + mey = m(eA + eB) s (2272)
P P P
€, =0- € = 7€ » (227p)
P _ P _ P
€, =€, * 0=-—c, - (227¢)

Therefore

& = (m = 1)l + &), (228)
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and -by using Eq. (227a),

- m=—1 P
Aﬂb =€ - (229)

Furthermore, adding Eqs. (227b) and (227c) and using Eg. (227a) gives

P
P P 1
€, t ey, =—— . (230)
m
Therefore
P P
W= fdel =0, del + o, \- G) TS o
d b~ eeff = 0, dey g, = de; = £ — (231)
: m m m
and
P P
€, =M _op - (232)
In uniaxial tension, when o, = 0, = 0,
f
op =g (233)

A Few Consequences of the Mohr-Coulomb Thsory

The stress-plastic strain curve in uniaxial compression gives the
effective stress-strain curve directly, but the tensile stress-plastic
strain curve is the same curve with the stress divided by m and the plas-
tic strain multiplied by m. The tensile stress-plastic strain curve will
fall below the compressive stress-plastic strain curve for m > 1. Further-
more, the two curves must plot parallel to each other on log-log paper.
Therefore, m can also be determined by the graphical method illustrated
in Fig. 12. From Egs. (222) and (229), it can be seen that m can also
be determined by measuring the axial strain and the plastic volume change
in a triaxial test. It may be noted further that when m = 1, the plastic
volume change is always 2zero, and the tensile and compressive stress-

plastic strain curves coincide. These conditions are always assumed to
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hold for the special case of the Tresca yield function, which applies to
materials without internal friction (¢ = 0°).

Another important observation concerning the Mohr-Coulomb and the
Tresca equations is that although they utilize an integrated flow rule,
they are still based on incremental theory. Therefore the Mohr-Coulomb
and the Tresca yield functions possess an important advantage over the
Von Mises deformation theory for ideally plastic materials in that they
can produce exact solutions with an integrated flow rule, whereas the Von

Mises deformation theory cannot.

GEOMETRICAL DERIVATION OF THE FLOW RULES FOR THE
MOHR-COULOMB AND THE VON MISES YIELD FUNCTIONS

The Mohr-Coulomb Yield Function

It is interesting to note that the flow rule associated with the
Mohr-Coulomb yield function can also be derived by assuming that yielding
is a process of slippage between thin parallel sections, as shown in
Fig. 15, and that no plastic strain occurs in the direction of slip.??

As shown in Figs. 13 and 16, the angle between the plane on which o0y acts
and the slip plane is (45° — ¢/2). Since no slippage occurs in the di-
rection of o,, which acts normal to the paper in Fig. 16, At, as shown
in Fig. 15, is zero, and therefore €§ is zero. It can also be seen in
Fig. 16 that the angle between the direction of ef and the direction of
zero plastic strain, which is the slip direction, is (45° — ¢/2). Con-
sequently, the Mohr diagram of plastic strain is as shown in Fig. 17.

Tt is correct to draw a Mohr diagram of plastic strain because Eg. (1)

is linear. Therefore, if the element shown in Fig. 2 is unloaded, all
the elastic strains vanish and leave the plastic strains unchanged but

equal to the total strains. From Fig. 17, it may be seen that

P P
—€, + X =€ —X (234)
and that
F o F
x = —=—2g5in ¢ . (235)
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9

7

Fig. 15. Displacement Model for the Mohr-Coulomb Yield Criterion.

Substituting Eq. (235) into Eg. (234) and solving for ef gives

P P1l+gin ¢

©2 T3 T —5sin ¢ ° (236)
By substituting Eq. (203) into Eq. (236), it may be seen that

€ = -me, , ) (237)
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T3

45°- 2

-2 /
\\7

! /

Fig. 16. Stress Diagram for the Mohr-Coulomb Yield Criterion.

which agrees with Eq. (213). From the foregoing argumént, it appears
that Hooke's law should apply in the direction of slip, as well as in
the direction of the intermediate principal stress.

For a material that obeys the Mohr-Coulomb yield function, slip is
assumed to occur in only one direction. Evidently, for such a material,
the assumption that the plastic strain increment ratios are uniquely de-
termined by the state of stress is really equivalent to the assumptions

that all the slip planes have a known orientation and that the plastic
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ONE-HALF PLASTIC
SHEAR STRAIN

ORNL-DWG 67-3387
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Fig. 17. Mohr Diagram of Plastic Strain for the Mohr-Coulomb Yield

Criterion.

strain in the direction of slip is zero. For Mohr-Coulomb material, when

0, > 0, > 04, the ratios of the plastic strain increments are independent

of the principal stress magnitudes and depend only on the directions of

the major and minor principal axes.

From Figs. 13 and 17 it can be seen that a plastic strain vector,

the components of which are the slip-plane plastic shear strain, (ef - €

cos ¢, and the plastic volume change, ef + eg,

P
3

will be normal to the Mohr

envelope in Fig. 13. This same relationship can be proven directly by

using the flow rule and a slightly different expression for the yield

function. Referring to Fig. 18, the yield condition can be described by

the equationzo

Te = C — oy tan ¢,

(238)

)
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T, SHEARING STRESS

MOHR ENVELOPE,

T,2Cc-ay TAN§

o, NORMAL STRESS —=—

Fig. 18. The Mohr Envelope and Its Associated Plastic Strain Incre-
ment Vector.

where Tp 1s the shear stress on the slip plane, ¢ is cohesion, and 0, is
the normal stress on the slip plane. Since ¢ is a parameter of the Mohr's

circle envelope, the yield condition can be expressed by the equation,

f/ = 1p + oy tan ¢ . (239)
By referring to Egs. (206), (207), and (210), it can be seen that

f

£/ = — . (240)
‘2m1/2

According to Eq. (38) the incremental plastic volume change is given by

/
dVb = N %i— .
Om

(241)
The term A’ is defined by the condition

Wy, = A = £IN . (242)
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Thus
AN o= 2m/ 2. (243)
By the chain rule,
of’ oy .
aVp = N == — . (244)
N " m

If a hydrostatic stress is superimposed on the state of stress acting on
the slip plane, oy changes by the amount of the added hydrostatic stress,
but T ig unaffected. Therefore
do
N
— =1. 245
do : (245)
m
Substituting Eq. (245) into Eq. (244) and using Eq. (239),

v, = N tan ¢ . (246)

The slip-plane plastic shear strain increment will be given by

of”/
BTf

d’)’p = _)\/ = 7\/ . (24’7)

From Egs. (246) and (247), it follows that

av. AV,
-(-i—g = ——B = tan (b . (248)

Therefore the vector whose components’are ’p and Aﬂb is normal to the
Mohr's circle envelope in Fig. 18. It is also evident from Egs. (244)
and (245) and from Fig. 17 that the plastic strain normel to the slip
plane is equal to the plastic volume change. (Besides considering the
flow rule, it has to be, since the plastic strains in the other two mutu-

ally perpendicular directions are zero.)
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The Von Mises Yield Function

The above reasoning can also be applied to a material that yields
simultaneously on three planes, with each plane being inclined to a dif-
ferent pair of principal axes and having zerc slope in the direction of the
third.?>? Since the slippage along each plane causes plastic strain in the
direction of only two principal axes, the plastic strain along each axis
is the sum of only two components: one for each of the two slip planes
inclined to that axis. For instance, considering the plastic strain in
the direction of o;, assuming m = 1, and assuming that the individual slip
displacements are proportional to the corresponding meximum shear stresses,

gives23

P k(oy — o5)

€y = (249)
2
and
k(o, — 0,)
k3 2
&, s (250)
2
Adding Egs. (249) and (250) gives
P k
€, =3 (201 -0, 03) . (251)
If the value of k happens to be given by
P
€
ff
K = — s (252)
T
it follows that
€P
P eff )
€, = (20, = 0, — 05) . (253)
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Equation (253) is identical to the expression for an isotropic material
obeying the Von Mises yield function and subjected to radial loading. An

incremental expression can be derived by assuming that

deP
g = —Sff ; (254)
f
whereupon
., P
de
P eff
dey = . (20l -0, ~ 03) . (255)

By rotating the indexes in Eq. (253), expressions for €§ and ef can be
obtained, and by subtraction the deformation theory flow rule, as given
by Eq. (178), can be derived. Then by clearing fractions in the three
expressions contained in Eg. (178), squaring both sides of each, and

adding,

(VZ )2 [(£ - D)2+ (5 — 92 + (5 — e1)?] =

3 2
(’:/—2_ Eiff) [(Gl - 02)2 + (02 - 03)2 + (03 - 01)2] . (256)

Therefore, if

1
£f=—1(op = 02)2 + (o, — 03)2 + (04 — 01)211/2 s (257)

V2

it follows that
P V2 P P P P P P.,l1/2
T O N G L CAC O L I €20

Tt is interesting to note that the geometrical derivation produces not
only the Von Mises flow rule but also the definitions of the yield func-
tion and the effective plastic strain. Since m was taken equal to unity
and the individual plastic strains were linearly combined, there is no

plastic volume change.

A
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CROSS SECTIONS OF HILL'S YIELD SURFACE FOR TRANSVERSELY
ISOTROPIC MATERIAL AND THE MOHR-~COULOMB YIEID SURFACE

A useful device for displaying information about a particular yield
function is the cross section of the associated yield surface in an octa-
hedral plane. Therefore, it is appropriate to plot typical octahedral
cross sections for the two general yield functions discussed in this re-

port.

Hill's Yield Function for Transversely Isotropic Material

The case of transverse isotropy is of particular interest with re-
gard to graphite. The equation for the cross section of this yield sur-

face is given by Eq. (197). Dividing both sides of Eq. (197) by £? gives

( o, 2 40,4 + 1 ( o, 2 (259)
+ =1 . 259
V2/3 f) 3 V2/3 f)

Let
Ou
Vi e ® (260)
and
cI'V'
Then
bop .+ 1
2
g 4 22 s2 -1 . (262)
u 3 A'a

The stress-plastic strain curves for EGCR-type AGOT graphite have

been measured by Greenstreet et al.?* These curves can be expressed by

n
)
e; = (-Ai) (263a)

the equations
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and
N
g
e, =\=] . (263b)
2 A2
Since Eq. (163) can be written in the form
P £ l/l’l
Cerf = (6) ’ (264)
it can be seen that
n=1/1, (2652)
c, =4, (265b)
C, = A, (265c)

Substituting Egs. (265) into Eq. (160) gives

(Al>n/(n+1) (e
a =\— . 266

Az

Consequently, using Eq. (152b),

A 2n/(n+1)
A

Ay

(267)

ST

For EGCR-type AGOT graphite, the following average tensile values for the
constants N, Ay, and Ap can be obtained from Table 13 of Ref. 24

nl + 7, 2.34 + 2.17
N = = = 2.25,
2 2
Al = 45,800 ,
A = 27,400 .
2

Inserting these numerical values into Eg. (244) gives

Oy = (1.67)%2° — 0.50 = 1.54 .
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Therefore Eq. (262) can be rearranged to read

s, = [1-(2.39) 33]1/2 . (268)

Based on Eq. (268), the concurrent values of S, and 8, for EGCR-type AGOT

graphite with transverse isotropy are given below:

3 S

v u
0 1.00
0.2 0.95
0.3 0.89
0.4 0.78
0.5 0.64
0.55 0.53
0.60 0.37
0.647 0

Plotting these values of Su and SV gives the octahedral cross section of

Hill's yield surface for EGCR-type AGOT graphite, as shown in Fig. 19.

The Mohr-Coulomb Yield Function

Because of material isotropy, the octahedral cross section of the
Mohr-Coulomb yield surface is symmetrical about each of the projected
principal stress axes. Since the yield surface cross section is also
piecewise linear, it is completely defined by the relative distances be-
tween the origin and any two opposite corners, all of which lie on the
projected principal stress axes. As shown in Fig. 20, if the state of
stress at the first corner is taken to represent uniaxial tension, then
the state of stress at the opposite corner will represent a cylindrical
state of stress having the same mean stress as the first corner. Since

the mean stresses for both cases are equal, it follows that in case 2,

o, * o+ 0, - o - (269)

In this discussion, letter subscripts are used instead of number subscripts

to prevent the ambiguity that would otherwise occur when there was a change

in the relative magnitude of the principal stresses. Since in case 2,

5 =0, ' (270)
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Fig. 19. Octahedral Cross Section of Hill's Yield Surface for EGCR-
Type AGOT Graphite with Transverse Isotropy. ™
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CASE 1
o-xzcrt
cry:a'zzo

ORNL-DWG 67-3390

y z
CASE 2

o, + ay + o, =0,

o, =0,

Fig. 20. Stress States Used for Defining the Cross Section of the

Mohr-Coulomb Yield Surface.

‘combining Egs. (270) and (269) gives

+ = .
O, 20y o,

The value of the yield function is the same in both cases, so

f =mo, =mo — 0O

t y x

Adding Egs. (271) and (272) gives

(2 + m)cy

i
—
=
+
=]
~
Q
ct

Therefore

(271)

(272)

(273)

(274)

(275)
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For case 2, substituting Eq. (270) into Eq. (10la) and substituting

the subscripts x, y, and z for 1, 2, and 3 gives

2(0X - 5..)
¥
Ouz = T . (276)
For case 1,
2a
t
O == - (277)
e
If
o
2
B =-— ?U;— s (278)
ul

g = L ——X (279)

Then, by substituting Egs. (274) and (275) into Eq. (279), it is found
that

B = =—— . (280)

Substituting Eq. (203) into Eq. (280) then gives

_ 3 + 8in ¢
B = 3 —sin ¢ ° (281)

For many soils, the angle of internal friction is about 30°. For ¢ = 30°,

sin ¢ = 1/2, it is found that
B =7/5. (282)

The cross section of the Mohr-Coulomb yield surface for ¢ = 30° is shown

in Fig. 21. Since the plotting scale for this figure is a matter of

L.
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Fig. 21. Octahedral Cross Section of the Mohr-Coulomb Yield Surface
for ¢ = 30°. ’

was taken equal to unity, and it was found that

o4 = 1/B =5/7 .

convenlience, O'u2

EXAMPLE PROBLEMS

In most practical problems in multiaxial plasticity the stresses and
the plastic strains cannot be determined independently of each other.
However, in a few situations the stresses can be determined independently

of the plastic strains.  The following two examples are of this type.
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Because of their relative simplicity, these examples provide good initial
illustrations of the general procedure for solving problems in multiaxial

plasticity.

Problem No. 1 — Hill's Yield Function

A l1-in.-diam cylindrical nuclear reactor fuel element is enclosed
within a 0.015-in.~thick zirconium alloy cladding. For a safety analysis
the plastic strains in the cladding are to be determined under a net in-
ternal pressure of 900 psi caused by fission-gas buildup. The operating
temperature is 700°F. )

. The uniaxial stress-plastic strain curves of the cladding material

at 700°F have been obtained and found to have the following equations:
o, = 51,300 (e1)0-17 psi ,
in the circumferential direction, and

o, = 33,800 (e3)°27 psi

in the axial and radial directions.

From statics, the computed stresses in the c¢ladding are as follows:

30,000 psi ,

Oy

circumferentially, and

= 15,000 psi ,

Q
|

axially.
If the stress-plastic strain curve in the circumferential direction
is chosen as the effective stress-strain relation, according to Egs. (151)

and (152),

&, = 0.50,
,, = 0.50,
O, = a® — 0.500 .

fe
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fn_n

Since power-law strain hardening has been assumed, the term "a” 1is de-

termined by Eq. (160):

c.\2/(n+1) 1/1.17
.. (_1) i (_L__ﬁl 300) e

c, 33, 800

Consequently

Oy = (1.43)2% — 0.500 = 1.54 .

From Eq. (103), with o4 = O,
i/2
f = [0.50 (0 — 0,)% + 1.54 o5 + 0.50 (—01)2] /
For the known values of the principal stresses, the yield function is
computed to be
f = 30,300 psi

Since the stress ratios remain constant during loading, deformation

theory is valid and the total plastic strains are given by Eq. (123):

e = %; [0,(1.00) = 0,(0.50)] ,
ef = %5 [~0,(0.50) + 0,(2.04)] ,
ef = %5 [—01(0.50) — 02(1.54)] .

For power-law strain hardening, the plastic secant modulus, Ep, is given

by Eq. (125):

(c\/m . (51,300\%/0-27 i _
Bp = (?) f= <§O,BOO> (30,300) = 667,000 psi .

The plastic strains are therefore computed to be

ef = 0.0337 ,
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€, = 0.0234 ,
ef = -0.0571 .

The sum of the plastic strains is zero as expected.

Problem No. 2 — The Mohr-Coulomb Yield Function

A prestressed concrete pressure vessel is lined internally with a
l1-in.-thick steel membrane liner anchored at close spacing to the con-
crete. The inside diameter of the vessel is 60 ft. The concrete is to
have an ultimate compressive strength, fé, of 6000 psi. The applied pre-
stress in the concrete at the inside surface of the vessel is to be 2700
psi circumferentially and 1350 psi axially. It i1s desired to determine
whether -the application of this much prestress to the concrete will cause
general yielding in the steel liner. Since the liner is anchored to the
concrete, its circumferential and axial strains will match those of the
concrete. Therefore, the problem is to compute the total strains in the
concrete, at the inside surface of the vessel, due to the application of
the prestressing only.

The properties of the concrete can be taken as follows:

E = 1000 fé = 6,000,000 psi ,
v = 0.12 ,
€t = 0.-003

(ultimate strain in uniaxial compression),
¢ = 30°

The stress-strain curve of concrete in uniaxial compression can be as-

2
g g

when o = fé, e = 0.003, and therefore, B = 1.34 X 10° psi.

sumed to have the equation

— (Y
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If the circumferential stress in the liner is assumed to be the yield
stress, 30,000 psi, by statics the contact stress between the liner and
the concrete is —83 psi (compression).

Since all three principal stresses in the concrete are unequal, Egs.

(217) apply, and

€ T MEofr

From Eq. (203)

l+sin¢ 1 +1/2

T 1l-—sin¢ 1-—1/2 3

From the ordering of the principal stresses

o, = 0, = =83 psi,
o, = 0, = —1350 psi ,
0y = 0y = —_2700 psi

From Eq. (210),

f =m0 —o0, = (3)(—83) = (—2700) = 2451 psi .

As shown by Egs. (225) and (226), the uniaxial compressive stress-
plastic strain curve is the effective stress-strain curve with both signs

changed. Therefore

and consequently

P (2.451 x 103

3
= 0.000334 .
eff 1.34 x 10° )
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Therefore the plastic strains in the concrete are

P

f = & - (3)(0.000334) = +0.00100 ,

€y = —0.00033

Using Hooke's law, the elastic strains in the concrete are

& - +0.00007
r
E
ef = =0.00017 ,
eg - —0.00042 .

The total strains are obtained by adding the elastic and the plastic

strains according to Eq. (1),

e, = +0.00007 ,
e, = —0.00017 ,
e, = —0.00075 .

Using Hooke's law again, the calculated circumferential stress in
the steel liner for E = 3 x 107 psi and v = 0.30 is
+
5 Vez)

0g = —————— = 26,400 psi .

This corresponds to a pressure between the steel liner and the concrete
of —73 psi (compression). Correcting the radial stress results in only
a 1% change in the value of the yield function, so the total strains can
be considered substantially correct. Thus the steel liner does not yield

under the application of prestress alone.

¥ 41
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LIMITATIONS AND EXTENSIONS OF THE THEORY

The majority of the work in plasticity completed to date that has a
direct engineering application consists of analytical, experimental, or
numerical solutions to particular types of problems. In most cases, the
behavior of metals was involved, and the condition of zero plastic volume
change was known or assumed to hold. However, as has been explained, the
general flow rule in plasticity is not restricted to yield functions that
dictate a zero plastic volume change. In fact, some research has already
been done in the field of soil mechanics that utilizes the Mohr-Coulomb
function, which does lead to a nonzero plastic volume change. However,
this yield function does not always give satisfactory results when ap-
plied to real materials.

The assumption of fixed principal axes made in this paper is not ac-
tually a restriction on the theory but, rather, a simplifying assumption
made for this paper. One restriction that does apply to the theory as
discussed here is that the effects of unloading and reloading are not
considered.”* Since unloading and reloading may proceed according to a
different effective stress-strain curve, the theory must be extended to
cover these cases.

In order to handle the many unsolved problems of analyzing the in-
elastic strains in nonmetallic materials such as soil, concrete, and graph-
ite, some new yield functions will have to be derived. These new yield
functions may indicate the occurrence of plastic volume increases under
tensile loading but plastic volume decreases under compressive loading.

A possible means of determining such a yield function would be to deter-

“mine the intersection curves of its surface with a set of planes in stress

space. These intersection curves could then be fit by a surface mathe-
matically. The individual intersection curves might be determined by a
combination of triaxial and thin-walled tube tests.

Another very interesting extension of the theory of plasticity is
into the realm of nonlinear creep and relaxation. Considerable work of

this nature has already been done.’s»?°-2°

5,25,26

The theories of nonlinear creep
and plasticity are very similar. Again, in the case of nonlinear
creep, a reexamination of the definition of the effective inelastic (creep)

strain might prove useful.
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SUMMARY

The basic equations of multiaxial plasticity have been derived with
the use of only calculus and vector algebra. By clearly stating all as-
sumptions and introducing the basic equations in the proper sequence, it
has been demonstrated that all the familiar equations of multlaxial plas-
ticity can be derived without making arbitrary assumptions, such as the

algebraic form of the effective plastic strain increment.

By using the plastic work equation,3
aw_ = o aet (10)
P eff ~eff’

the flow rule has been derived without reference to the plastic work per-
formed by the stress increments. Therefore, it appears that the classical
concept of conservation of energy is sufficient, when combined with other
accepted principles of mechanics, to establish a theory of plasticity.

The basic assumptions regarding plastic behavior used in this paper
are listed below, in the order of their occurrence:

1. Plastic strains are time-independent nbnlinear functions of the
stresses and are permanent.

2. Elastic strains are time independent linear functions of the
stresses and are recoverable.

3. Total strain equals elastic strain plus plastic strain combined
linearly.

4. FElastic strains -can be computed by Hooke's law.

5. 1In general, no unique relationship exists between the stresses
and the total plastic strains.

6. A unique relationship exists between the stresses and the plastic
strain increments.

7. The principal axes of stress and strain coincide and remain fixed.
(This condition is not a general characteristic of plastic behavior. How-
ever, it is used in this paper to maintain algebraic simplicity.)

8. The initiation and progression of yielding are controlled by a
yield function that is a function only of the principal stresses.

9. The yield function has the dimensions of a stress.
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10. When yielding occurs, the increment in the yield function is
either zero or positive.

11. A single effective stress-strain relation holds for all states
of stress in the plastic range.

12. The effective stress is a function only of the principal stresses.

13. The effective stress has the dimensions of a stress.

14. The effective plastic strain is a function only of the principal
plastic strains.

15. The effective plastic strain has the dimensions of a plastic
strain.

16. The algebraic definition of the effective stress is always the
same.

17. The numerical value of the effective plastic strain is always
the same for a given state of stress, but its algebraic definition, in
terms of the principal plastic strains, may depend on prior locading his-
tory. However, the algebraic definition of the effective plastic strain
increment in terms of the principal plastic strain increments is always
the same.

18. The ratios of the principal plastic strain increments are uniquely
determined by the state of stress, independent of the ratios of the stress
increments. (This assumption was shown to hold only at states of stress
at which the yield function is continuous. At corners, the assumption
does not hold because slip can occur independently in more than one di-
rection.)

19. For every state of stress, there is some incremental loading
path along which the plastic strain increment ratios remain constant.

20. The plastic work increment is the product of the effective stress
and the effective plastic strain increment.

21. The effective plastic strain increment is a function only of the
principal plastic strain increments.

22. The effective plastic strain increment has the dimensions of a
plastic strain increment.

23. The plastic work performed by a set of stress increments is

zero or positive. (This second-order differential plastic work gquantity
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was used in only one derivation of the flow rule. The assumption of its
positive value was shown to be unnecessary by the proof that dW? = fA.)

24. The principal axes of stress and strain coincide with the axes
of anisotropy, if any. (This too is a simplifying assumption, not a
general condition. It is possible to consider the shear terms in basically
the same manner as the normal stress terms.)

25. Slip causes no plastic strain in the direction of slip.

The fact that a total of 25 assumptions was used to construct a theory
of plasticity helps to explain, at least in part, why assembling the vari-
ous parts of the theory in the right order is difficult. However, with-
out first putting the theory in proper order, it is difficult, if not im-
possible, to fully understand or utilize the techniques of plastic analy-
sis. But without plastic analysis, there is no way to obtain a better
understanding of some very important problems involving structural be--
havior and safety. For this reason, it is hoped that this report will
contribute to a better understanding among practicing engineers of the

basic principles of plasticity.

.
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