Der 43.2

ORNL-4503, Volume II, Revised UC-25 - Materials

Contract No. W-7405-eng-26

216 13

METALS AND CERAMICS DIVISION

THORIUM CERAMICS DATA MANUAL

Volume II – Nitrides

Revised

Sigfred Peterson and C. E. Curtis

NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any pleteness or usefulness of any information, apparatus, would not infringe privately owned rights,

OCTOBER 1973

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION

DISTRIBUTION OF THIS DOLUMENT IS UNLIMITER

Volume II. Nitrides

ABSTRACT

Physical, chemical, and mechanical properties of thorium nitrides, alone and in combination with other nitrides and other thorium compounds, are collected from the literature through January 1973 (51 references). The thorium-nitrogen phase equilibrium is reviewed. Although mechanical property data are still sparse, recent physical and chemical characterization of ThN has confirmed its high metallic conductivity, furnished detail on hydrolysis and oxidation, and expanded the knowledge of the (Th,U)N and Th(C,N) systems.

This volume will include the following divisions: system information, thorium mononitride systems, and Th_3N_4 systems. The carbonitrides that are substitution products of the mononitride will be covered with it. The oxynitride and other complex compounds are covered under Th_3N_4 systems. carbon lowering the activity of ThN, shifting the equilibrium to higher nitrogen pressure in

$$Th_3 N_4 \neq 3ThN + \frac{1}{2}N_2 .$$

SYSTEM INFORMATION

The thorium-nitrogen phase diagram, taken from Benz et al.,¹ is shown in Fig. 1. The only stable compounds shown are ThN and Th₃N₄. The reported^{2,3} Th₂N₃ has been identified⁴ as the oxynitride Th₂N₂O. This compound is formed from heating ThN and ThO₂ in nitrogen. The high-temperature homogeneity range of ThN is much tess than indicated by Fig. 1. Reexamination of the phase boundaries at the same laboratory^{5,6} has narrowed the range: the thorium-rich limit is at least 0.975, and the nitrogen-rich limit is stoichiometric. The nitrogen pressure in equilibrium with both liquid thorium and ThN is reported by Olson and Mulford⁷ over the range 2416 to 2790°C to be

$$\log p (atm) = 8.086 - 33,224/T + 0.958 \times 10^{-17} T^5$$

or

 $\log p (N/m^2) = 13.092 - 33,224/T + 0.958 \times 10^{-17} T^5,$

where T is in °K. Oxygen contamination greatly increases this pressure. The equilibrium nitrogen pressure over ThN and Th₃N₄, measured by several investigators, is shown in Fig. 2. The disagreement is likely due to carbon contamination, as expected from dissolved

Fig. 1. The Thorium-Nitrogen Phase Diagram. From R. Benz, C. G. Hoffman, and G. N. Rupert.¹ Copyright by the American Chemical Society and seprinted with permission,

Fig. 2. Nitregen Pressure over ThN-Th₃N₄, as measured by Aroneon and Auchern,⁸ Benz,⁹ and Kusakabe and Imote.¹⁰

The increase in dissociation pressure in the presence of carbon has been verified experimentally by Benz.⁹

THORIUM MONONITRIDE SYSTEMS

A. Therium Mononitride

1. Composition

The thorium-rich boundary of the ThN phase was found by Benz⁶ at a nitrogen-to-thorium atom ratio of 0.975 ± 0.01 at 2019 and 2100°C. Benz and Troxel⁵ regard that ratio as a lower bound and indicate that the nitrogen-rich limit is the stoichiometric ratio.

2. Preparation

Thorium mononitride is generally made as powder from the hydride or metal (usually powdered by hydriding and dehydriding) by heating in nitrogen or from the hydride and ammonia. Synthesis below 1000°C gives Th_3N_4 ; this is decomposed to ThN at higher temperatures. Benz et al.⁴ prepared speciments by cold and hot pressing. Olson and Mulford⁷ induction melted thorium under 2 atm N₂ at 2000°C to get ThN ingots. Weaver¹³ prepared dense ThN specimens by zone melting thorium rods in 1.3 atm N₂. He found the porosity was too great in pressed and sintered samples and too nonuniform in arc-cast samples for measurement of thermal and electrical conductivity.

3. Crystal Properties

Structure. Face-centered cubic NaCl type.

Lattice Parameter and Thormal Exponsion. Values of the room-temperature lattice parameter of carefully prepared ThN range from 5.155 to 5.162 A. Most investigators^{5,7,12,13} report close to 5,159. The value most precisely reported is 5.16190 ± 0.00015 by Venard et al.14 Measurements to 900°C by Street and Waters^{1,2} are shown in Fig. 3; they derive a mean coefficient of expansion of (7.39 ± 0.042) × 10⁻⁰/°C over the range measured. Aromion et al.1.3 made x-ray diffraction measurements over the range 800 to 1300°C: Fig. 4 compares their expansion values for ThN and some other thorism compounds studied in the same work. The coefficient of expansion of ThN corresponding to these results is 8.2 X 10⁻⁶/°C over the range 200 to 1300°C. The data of Aronson et al. and Street and Waters agree reasonably well in the region of overlap. Lattice parameters measured up to 2300°C in a study¹⁵ of the Th-N-C system are presented with those of Th(C,N) in Section F3.

Fig. 3. Tomperature Variation of the Lattice Parameter of ThN. Based on Street and Waters.¹³

Fig. 4. Thermal Expansion of ThN. Copied from S. Atonson $et = aL^{3/2}$ with permission of the American Cetamic Society. Similarly suranized expansions of other thorises compounds are included for computing.

Colur. Colden yellow, ⁷ green-yellow.^{1 *} Density. The density corresponding to $\sigma_0 = 5.159$ is

11.901 g.cm².

4. Thermodynamic Properties

The specific heat from 3 to 9°K was found by de Norion and Costa^{1,2,3,8} to be given by

$$C_{-}/T = 3.12 \pm 0.0547T^2$$
 mJ mole⁻¹ (*K)⁻²

Values by Danan et al.^{1,*} to 300°K are given in Table 1. From these specific heat measurements Danan et al. calculated the following standard functions for ThN at 298.15°K.

- 11 110 = \$450 ± 150 J'mole
 - = 2040 ± 35 cal/mole ;

$$(G = H_0) = 8250 \pm 150 \text{ J/mole}$$

= 1970 ± 35 cal/mole .

Table 1. Hest Capacity of Thorium Monunitride From Danan et al.¹⁹

Te mpe rature 1°K)	Cp. Heat Capacity			
	(J mole ⁻¹ "K ⁻¹)	(cal mole "! "K ")		
10	0.138	0.035		
15	0.488	0.117		
20	1.38	0.30		
25	2.79	0.667		
30	4.60	1.10		
40	8.25	1.97		
50	11.5	2.75		
24	i4.35	3.43		
70	16.95	4.05		
80	19.4	4.64		
90	21.7	5.19		
100	23.9	5.72		
110	27.8	6.65		
140	31.2	7.46		
160	34.1	8.15		
180	36.6	8.75		
200	34.7	9.25		
320	40.5	9.68		
240	42.0	10.03		
260	43.2	10.12		
280	44.75	10.58		
100	45,1	10.78		

From their measurements of the decomposition pressure of Th₃N₄, Aronson and Auskern⁸ and Kusakabe and Imoto^{1,0} have derived the following functions of formation at 298.15^{\circ}K:

	A and A ^s	K and I ¹¹
sile, kl/mak	379	390
kcal/mate	90.6	93.1
کد , J mole ⁻¹ ("K) ⁻¹	98.3	105
cal mole ⁻¹ (⁶ K) ⁻¹	23.5	25.1

Gingerich^{2,0} estimates the heat of sublimation as 203.1 \pm 10 kcal/mole, or 849 \pm 42 kJ/mole. Venard and Spruiell^{3,1} estimate the standard free energy of formation to be 51.1 kcal/mole, or -214 kJ/mole, at 1000°C.

5. Change of State

Thorium mononitride melts congruently under sufficient nitrogen pressure. Reported melting points are $2820 \pm 30^{\circ}$ C under 2 atm (2 × 10⁵ N/m²)N₂ by Benz et 2.2° 2020 ± 35 under 2.6 atm N₂ by Benz,⁵ and 2790 ± 30^oC at slightly under 1 atm N₂ by Olson and Mulford.⁷ The melting point is lowered by impurities, particularly oxide,^{1,7} which is almost always present in

ThN. Blum and Guinet^{2,2} demonstrated eutectic formation between ThN and ThO₂, and Benz^{2,3} showed that under at least 100 torr N₂ the eutectic occurs at 19 mole % ThO₂ and 2660°°C. Also, melting under too little nitrogen lowers the meiling point with loss of nitrogen.¹ Chiotti³ found melting at 2630°C under helium.

Solid-gas equilibria are given under "System Information."

6. Electrical and Magnetic Properties

Auskern and Aronson^{1,6} measured several electrical properties of ThN specimens pressed in vacuum at 5000 psi (35 MN/m²) and 1275°C and then annealed in vacuum 13 hr at 1800°C to a density of 9.95 g/cni². The results are shown in Fig. 5. The second Hall effect specimen was annealed only 4 hr at 1800°C but reached a density of 10.6 g/cm³.

Weaver¹¹ reports two sets of electrical resistivity measurements on a specimen of zone-melted ThN. Figure 6 shows his low-temperature results. His high-

Fig. 5. Hall Coefficient, Thermoelectric Power, and Electrical Resistivity of ThN as Functions of Temperature. Reprinted with permission from A. B. Auskern and S. Aronsun,¹⁴ copyright by Pergamon.

temperature results over the rang: 300 to 1300°K are fitted by $-0.347 \pm 0.0581447 \ \mu\Omega$ -cm. In the range of overlap these results are about 16% below those in Fig. 5. Weaver¹¹ also measured the absolute thermoelectric power of both arc-cast and zone-melted ThN from 80 to 400°K. The variation about zero was slight, less than $\ \muV/^{\circ}K$, over the range measured.

Aronson and Auskern²⁴ measured the magnetic susceptibility of three ThN specimens at 190, 76, and 22°C; values ranged from 1.65 to 1.84 \times 10⁻⁷ emu/g, and the decrease with increasing temperature was less than the difference among specimens. Raphael and de Novion²³ found a susceptibility of 1.42 \times 10⁻⁷ emu/g, constant over the range 4 to 300°K. However, Didchenko and Gortsema²⁶ found ThN diamagnetic.

Measuring the nuclear magnetic resonance of ¹⁴ N in ThN, Kuznietz²⁷ found a positive Knight shift of (10.7 \pm 1.5) \times 10⁻⁴. Giorgi et al.²⁸ found ThN superconducting up to 3.2^{*}K.

7. Hest and Mass Transport

Diffusion. Benz⁹ has interpreted the growth rate of ThN scales on liquid thorium in nitrogen in terms of an average interdiffusion coefficient in the ThN phase. His coefficients average 2.3×10^{-6} cm²/sec at 1900°C, 1.7 $\times 10^{-7}$ cm²/sec at 2100°C, and 1.83 $\times 10^{-6}$ cm²/sec at 2400°C. The temperature dependence corresponds to an activation energy of 99.4 ± ...0 kcal/mole, or 416 ± 125 kJ/mole.

Thermal Conductivity. Measurements by Weaver¹¹ on zone-melted specimens are shown in Fig. 7. From these data, electrical resistivity data, and a separation of thermal conductivity into lattice and electronic components, Weaver extrapolated his results to obtain the high-temperature estimate given in Fig. 8.

Emissivity. Kusakabe and Imoto^{3, \bullet} report the following values for emissivity at the wavelength 0.65 μ m.

π	ETHN
1508	0.900
1566	0.865
1625	0.814
1680	0.790
1740	0.756
i915	0 699

8. Mechanical Properties

No information is available yet.

Fig. &. Electrical Resistivity of ThN, (Th,U)N, and UN. From Weaver. 11

9. Chemical Properties

Olson and Mulford⁷ report that ThN inguts exposed to air acquire a black film within minutes and that the powder reacts readily with air to form ThO₂. Chiotti³ reports that the powder can be readily handled in air but disintegrates in a short time in moist air and burns vigorously when ignited. Also, ThN reacts with water and is readily attacked by nitric acid.³ Aronson et al.¹³ found that above 1300°C, ThN reacted with the residual vapors in a vacuum system at 5×10^{-4} torr (0.07 N/m²), apparently with gradual substitution of carbon to form ThC and ultimately ThC₂.

Sughara and Imoto^{2,*} measured the hydrolysis of ThN powder. Their reaction curves shown in Fig. 9 can be fitted by first-order kinetics with an activation

Fig. 7. Thermal Conductivity of ThN. From Weaver.¹¹

Fig. 8. Thermal Conductivity of ThN and (Th,U)N Extrapolated to High Temperatures. From Weaver.¹¹

energy of 15 kcal/mole (63 kJ/mole). The products are hydrogen gas, dissolved ammonia, and ThO₂. When ThN was exposed to water vapor at a heating rate of $S^{\circ}C/min$, ammonia and hydrogen were evolved as shown in Fig. 10.

Ozaki et al.³⁰ found little difference in the oxidation of ThN powder in 0.2 and 1.0 atm O₂. The reaction was about 15% complete in 4 hr at 395°C and 75% at 480°C. The conversion ratio C followed the expression $1 - (1 - C)^{1/3} = kt$ with an activation energy ranging from 16 to 20 kcal/mole (65 to 80 kJ/mole). The powder ignited at 520°C. Y-119430

Fig. 9. Hydrolysis of ThN at Various Temperatures. From Sugihara and Imoto. 29

Fig. 10. Gas Evolution during Heating ThN in Water Vapor. From Sugihara and Imoto.²⁹

10. Surface Properties

No information is available.

B. Thorium-Uranium Mononitrides

1. Composition

Thorium and uranium mononitrides form a continuous series of solid solutions. Equilibria between the mixed nitride phase and the component metals at 1000°C were determined by Venard and Spruiell.²¹

68

Fig. 11. Phase Equilibria in the Th-U-N System at 1000° C. From Venard and Spruell.²¹ Copyright by North-Holland Publishing Company and reproduced with permission. Lattice parameters are shown for (Th,U)N for several overall compositions. Compiler's note: The parameters for the two highest uranium contents at 40 at. \in N are quite low for the (Th,U)N compositions that would have to be in equilibrium with metallic uranium to give the overall composition indicated. Very likely, these values reflect incomplete equilibration.

Their equilibrium diagram is Fig. 11. The greatest hypostoichiometry was for the composition $Th_{0.944}U_{0.056}N_{0.866}$, which exists at 1000°C in equilibrium with both metals. No information was obtained on the nitrogen-rich composition limits.

2. Preparation

Coarse (Th,U)N powders were prepared from arcmilted thorium-uranium alloys by two hydridedelightide cycles, reaction with flowing nitrogen at 400 to 800°C, and decomposition to (Th U)N at 1450 to 1500°C under vacuum.²¹ To avoid the heterogeneous thorium-uranium alloys as starting materials, de Novion^{1,7} pressed and sintered mixed 10-µm ThN and UN powders. Despite three cycles of crushing, pressing, and sintering at 1600°C, the specimens were not homogeneous as determined by x-ray diffraction.

Weaver^{1,1} prepared ThN specimens containing up to SE UN by zone melting thorium-uranium alloys under 1.3 atm N₂. Uranium-rich specimens were difficult to obtain this way because of their lower melting points and concomitant slower diffusion. Material prepared by are melting the metallic alloys under nicrogen contained porosity that was too great and too irregular to permit transport property measurements that could be corrected for porosity.

3. Crystal Properties

Lattice parameters for (Th,U)N were determined by Venard et al.¹⁵ and are shown in Table 2. "Agreement with Vegard's law is quite good."¹²

Table 2. Lattice Parameters of (Th,U)N

ł	លគា	Venard	c 1	4	ł	5
---	-----	--------	------------	---	---	---

slole (ThN	Lattice Parameter (A)
0	4,89034 ± 0,00025
10.24	4.91561 ± 0.00015
20,40	4.95712 ± 0.90086
30.54	4,97434 ±0,00079
40,60	5,00608 ± 0,00105
50,00	5,03219 ± 0,00043
60,64	5,06339 ± 9,00115
70,56	5,06531 ± 0,00060
80_38	5,10826 ± 0,00019
90.24	5,13461 ± 0,00046
;00,00;	5,16190 ± 0,00015

4. Thermodynamic Properties

No information is available.

69

Table 3. Smoothed Values of Absolute Thermoelectric Power of (Th,U)N From Weaver¹¹

	Thermoelectric Power $(\mu V/^{\circ}K)$				
Temperature	Arc	Arc Melied		Melted	
· · · · · · · · · · · · · · · · · · ·	(Th-1% U)N	(Th-5% U)N	(Th-2% U)N	(Th-5% U)N	
80			3.8	5.3	
90	1.4	5.9	4.2	5.6	
100	1.5	6.0	4.6	5.8	
110	1.6	6.3	4.9	6.1	
120	1.8	6.6	5.3	6.5	
1 30	1.9	7.0	5.6	6.8	
140	2.0	7.4	6.0	7.2	
150	2.1	7.9	6.3	7.5	
160	2.2	8.5	6.6	7.9	
170	2.3	8.9	6.9	8.3	
180	2.4	9.4	7.2	8.8	
190	2.5	9.8	7.5	9.2	
200	2.6	10 2	7. 7	9.6	
210	2.7	10.5	7.9	9.9	
220	2.7	10.8	8.2	10.2	
230	28	11.1	8.4	10.5	
240	28	11.3	8.5	10.6	
250	2.8	11.4	8.6	10.8	
260	27	11.5	8.7	10.9	
270	2.7	11.6	8.7	11.0	
280	2.5	11.5	8.7	10.9	
290	2.3	11.4	8.6	10.8	
300	1.9	11.1	8.5	10.6	
310	1.7	11.1	8.4	10.5	
320	1.7	11.4	8.5	10.7	
330	1.8	11.7	8.8	10.9	
340	2.1	11.9	9.1	11.1	
350	2.4	12.0	9.4	11.2	
360	2.6	12.1	9.7	1.3	
370	2.7	12.2	9.9	<u>!1.4</u>	
380	2.8	12.3	10.1	11.4	
390	2.8	12.4	10.3	11.4	
440	2.7	12.4	10.6	11.4	

5. Change of State

No information is available.

6. Electrical and Magnetic Properties

Electrical resistivity measurements by Weaver¹¹ on zone-melted specimens are given in Fig. 6. His absolute thermoelectric power measurements are listed in Table 3. De Novion¹⁷ measured the magnetic susceptibility from a few degrees Kelvin to room temperature for imperfectly homogenized (Th.U)N. The susceptibility increases regularly with uranium content, except uranium-rich specimens show magnetic ordering at low temperatures. A transformation was observed in $Th_{0,2}U_{0,8}N$ at $32^{\circ}K$: none was observed at 60 mole % UN or less.

7. Heat and Mass Transport

Thermal conductivity measured by Weaver¹¹ is shown in Fig. 12. His extrapolated values for higher temperatures are shown in Fig. 8.

8. Mechanical Properties

No information is available.

Fig. 12. Thermal Conductivity of (Th,U)N. Measured by Weaver.¹¹

9. Chemical Properties

Weaver¹¹ found that samples of porous arc-cast (Th,U)N left exposed to the air were completely converted to oxide in about two days.

10. Surface Properties

No information is available.

C. Thorium Plutonium Mononitrides

Fardue et al.³¹ prepared a mononitride from Pu-20% Th, isostatically pressed it at 1540°C and 10,000 psi (70 MN/m²), and heated it 48 hr in flowing nitrogen at 1720°C. Its lattice parameter was 4.980 ± 0.001 Å, and its evaporation loss was 0.0296 g/cm² in 5 hr at 1550°C.

D. Binary Systems with Nonfuel Nitrides

Benz and Zachariasen³² prepared and determined the crystal structure of the orthorhombic compounds Th_2MnN_3 and Th_2CrN_3 . They have respective decomposition pressures of 11 torr N₂ at 1300°C and 1 torr at 1600°C.

E. Ternary and More Complex Systems with Other Nitrides

No information is available.

F. Thorizan Caribonitrides

1. Composition

Street and Waters³³ found complete solid solubility between ThC and ThN. As carbon is substituted for nitrogen in ThN, the tolerance of nonmetal vacancies by the lattice increases, permitting an increasing range of hypostoichiometric compositions. This is shown in the ternary phase diagrams of Fig. 13, taken from Benz and Troxel.⁶ The lowest temperature of these diagrams (1500°C) is in the range of complete miscibility of ThC and α -thorium, but a small nitrogen content produces a miscibility gap. Also Fig. 13 shows that inclusion of carbon at very high temperatures permits hyperstoichiometry as the range of miscibility of ThC and γ -ThC₂ is approached.

2. Preparation

Carbonitrides have been made by heating cold-pressed pellets of the mixed carbide and nitride at 1600°C (ref. 33) or 2000°C (ref. 5). Hypostoichiometric solid solutions have been made^{24,34} by heating mixtures of ThN, thorium, and carbon in vacuum at 1700 to 1860°C. Samples for electrical measurements³⁴ were hot pressed at 1300°C and 5000 psi (35 MN/m²) in vacuum and then annealed in vacuum at 1800°C for 5 to 17 hr. Sugmara and Imoto²⁹ prepared Th(C,N) samples by cold pressing a mixture of ThN and carbon powders and then heating 4 hr in vacuum at 1700 to 1750°C. Benz and Trexel⁶ reported that mixtures of ThC and ThN were not completely homogenized in 0.5 hr at 2200°C. Benz and Balog¹⁵ homogenized in vacuum for 1 min at 2100°C, but to achieve uniformity they crushed, pressed, and homogenized three times.

3. Crystal Properties

Street and Waters^{3,3} found linear variation of the lattice parameter with composition from 5.338 Å for ThC to 5.158 Å for ThN. Benz⁵ found parameters in agreement with those of Street and Waters; both worked with material close to stoichiometric. For hypostoichiometric materials Auskern and Ar nson³⁴ found agreement with measured parameters and a near interpolation between values for ThN and ThC_x, with x chosen to fit the composition. Their values are:

ThC _{0.778} N _{0.108}	5,320 Å
ThC _{0.625} N _{0.275}	5 .288 Å
ThC _{0.537} N _{0.389}	5,266 Å
ThC 0.461 N 0.489	5,246 Å
ThC _{0.203} N _{0.738}	5.197 Å
The oneNo ar	5.165 Å

High-temperature lattice parameters for ThC-ThN compositions reported by Benz and Balog¹⁵ are shown

Fig. 13. The Thorium-Carbon-Nitrogen System. (a) 1500°C. (b) 1715°C. (c) 2000°C. (d) 2200°C. From Eenz and Troxel.⁶ Copyright by Academic Press, Inc., and reprinted with permission.

72

Fig. 14. Lattice Constants of Th(C,N) Compositions. From Benz and Balog.¹⁶ Copyright by Academic Press and reproduced with permission.

in Fig. 14. Their results show agreement with Vegard's law at 1800°C.

4. Thermodynamic Properties

Benz⁵ gives the following for the relative internal free energies of mixing of ThC and ThN in the solid and liquid states:

$$\Delta G^{M(s)} = 7.2 [X_{ThN}^{(s)}(T - 3090) + X_{ThC}^{(s)}(T - 2770)] + RT [X_{ThN}^{(s)} \ln X_{ThN}^{(s)} + X_{ThC}^{(s)} \ln X_{ThC}^{(s)}] - (13,000 \pm 7,000) X_{ThN}^{(s)} X_{ThC}^{(s)} cal/mole = 30 [X_{ThN}^{(s)}(T - 3090) + X_{ThC}^{(s)}(T - 2770)] + RT [X_{ThN}^{(s)} \ln X_{ThN}^{(s)} + X_{ThC}^{(s)} \ln X_{ThC}^{(s)}] -$$

 $-(54,000 \pm 29,000)X^{(s)}_{ThN}X^{(s)}_{ThC}$ J/mole;

$$\Delta G^{M(l)} = RT[X_{ThN}^{(l)} \ln X_{ThN}^{(l)} + X_{ThC}^{(l)} \ln X_{ThC}^{(l)})] - (6,600 \pm 7,000)X_{ThN}^{(l)} X_{ThC}^{(l)} \text{ cal/mole}$$

$$= RT[X_{\text{ThN}}^{(l)} \ln X_{\text{ThN}}^{(l)} + X_{\text{ThC}}^{(l)} \ln X_{\text{ThC}}^{(l)})] - (28,000 \pm 29,000)X_{\text{ThN}}^{(l)}X_{\text{ThC}}^{(l)} \text{ J/mole };$$

the X's are mole fractions.

5. Change of Stat

Melting points and equilibrium nitrogen pressures given by Benz⁵ for carbonitride solid solutions are listed in Table 4. Note the maximum.

Table 4. Melting Points of Th(C,N) Solid Solutions

From Benz ⁵						
	Lattice	Melting	Nitrogen P	essure		
Composition	Patameter (Å) ^e	Point (°C) ^b	(atm)	(N/m ²)		
				× 10 ⁵		
ThCa.97	5.346	2500				
ThC.80N0.21	5,310	2670	0.01 ± 0.005	0.01		
ThC _{0.70} N _{0.23}	5,305	27 2 0	0.05 ± 0.01	0.05		
ThC _{0.57} N _{0.3y}	5.276	2810	0.18±0.03	0.18		
ThC _{0.48} N _{0.49}	5.262	2850	0.30 ± 0.04	0.30		
ThC _{0.47} N _{0.47}	5,241	2910	(1.5) ^c	(1.5) ^c		
ThC _{0.34} N _{0.56}	5.225	29 10	(2.0) ^c	(2.0) ^c		
ThC _{0.28} N _{0.63}	5.220	2920	(2.0) ^c	(2.0) ^c		
ThC _{0.1} N _{0.9} ^d	5.188	2875				
ThN _{1.00}	5.158	2820	2.6 ± 0.6	2.6		

#±0.001 Å

₽35°C.

Probably below true equilibrium pressure, since the composition, measured after melting, shows loss of nitrogen. d_{Nominal.}

6. Electrical and Magnetic Properties

Several electrical properties of hypostoichiometric carbonitrides were measured by Auskern and Aronson.³⁴ The resistivity, Hall coefficient, and thermoelectric power are given in Figs. 15-17 respectively. The same authors' magnetic susceptibility values²⁴ are listed in Table 5.

Giorgi et al.²⁸ found thorium carbonitrides superconducting, with the transition temperature a maximum of 5.8°K at 78% ThC, dropping off sharply with increasing carbide content, and dropping off gradually to about 3°K at 50% ThC.

7. Heat and Mass Transport

Benz⁹ has interpreted the growth rates of (Th,U)N scales on thorium-carbon alloys in nitrogen in terms of a composition-average interdiffusion coefficient in the ThN phase. His coefficients average 5.6×10^{-11} cm^2/sec at 1400°C, 1.0 × 10⁻¹⁰ cm²/sec at 1500°C, 6.7 X 10⁻¹⁰ cm²/sec at 1600°C, 2.9 X 10⁻⁹ cm²/sec at 1700°C, 4.9×10^{-9} cm²/sec at 1750°C, and $6.9 \times$ 10⁻⁹ cm²/sec at 1800°C. These values are fitted quite well by an Arrhenius extrapolation of the higher temperature values for ThN cited from the same work in Section A7.

Fig. 15. Electrical Resistivity of Thorium Carbonitrides. Values have been corrected to zero porosity by multiplying by (1 - P)/(1 + P/2), where P is the pore fraction. Copied from A. B. Auskern and S. Aronson³⁴ with permission; copyright by American Institute of Physics.

Fig. 16. Hall Coefficient of Thorium Carbontrides. Values have been corrected to zero porosity by multiplying by 1 - P, where P is the pore fraction. Copied from A, B, Auskern and S. Aronson³⁴ with permission; copyright by American Institute of Physics.

THERMOELECTHIC POWER, NV/DEGREE

Fig. 17. Absolute Thermoelectric Power of Thoriu: Carbonitrides. Copied from A. B. Auskern and S. Aronson³⁴ with permission; copyright by American Institute of Physics.

Table 5.	Magnetic S	Susceptibilities	of Thorium	Carbonitrides
	From	Aronson and	Auskern ²⁴	

Composition	Lattice	Susceptibility (emu/g) at -		
	Parametez (Å)	Arameter 22°C -76°C	-76°C	190°C
		× 10 ⁻⁶	× 10 ⁻⁶	× 10 ⁻⁶
ThC _{0.775} N _{0.113}	5.320	14,6	14.6	15.2
ThC _{0.625} N _{0.275}	5,288	13.5	13.6	13.9
ThC _{0.459} N _{0.489}	5,246	14,2	14.2	14.5
ThC _{0.202} N _{0.734}	5,197	15,6	15.9	16.0
ThC _{0.206} N _{0.749}	5,199	14,6	14.7	14,8
ThC _{0.251} N _{0.936}	5.164	18,3	18.6	18.8

^aCompiler's note: This composition appears to be in error; a carbon subscript of 0,03 to 0,06 would be more consistent with other information in the paper.

8. Mechanical Properties

No information is available.

9. Chemical Properties

 $Benz^5$ melted carbon-rich carbonitrides on tantalum and other carbonitrides on tungsten without evidence

Y-119724

Fig. 18. Rate of Hydrolysis of ThC_{0.62}N_{0.38}. Copied from Sugihara and Imoto.²⁹

100

Time(min.)

of interaction. Auskern and Aronson³⁴ found no interaction with molybdenum dies during hot pressing with 30 min contact at 1300°C.

Rate curves reported by Sugihara and Imoto²⁹ for the hydrolysis of $ThC_{0.62}N_{0.38}$ are given in Fig. 18. One curve for ThN is included to show the accelerating effect of carbon. The reaction products were dissolved ammonia and gaseous H₂, CH₄, and C₂H₆. Heating carbonitrides with a range of compositions in water vapor gave principally ammonia, methane, and hydrogen, with small amounts of ethane and methylamine and a carbonaceous residue.

10. Surface Properties

0

No information is available.

G. ThN-Oxide System

Two investigations have sought the limiting composition $ThN_{1...x}O_x$ by measuring the simultaneous solubility of thorium and ThO_2 in ThN, with conflicting results. Benz²³ found the limiting x in the formula to be 0.04 at 1600°C, increasing to 0.12 at 2100°C and then decreasing to zero at 2600°C. Kusakabe and Imoto³⁵ report a limiting x of about 0.2 at 160.7°C and 0.3 at 1800°C. Benz²³ also found that the solubility of ThN in ThO₂ becomes detectable (about 0.5 mole %) at 2550°C and increases to 10 mole % under 100 tot N₂ at the eutectic temperature of 2660°C. The ThO₂-ThN eutectic is described in Section A5. Selected equilibrium diagrams given by Benz²³ for the Th-N-O system are shown in Fig. 19.

Fig. 19. The Th-N-O System. (a) 1580°C, (b) 1738°C, (c) 1850°C, (d) 2740°C, from Benz.^{2,3} Copyright by North-Holland Publishing Company and reprinted with permission

ThINA SYSTEMS

Systems with other nitrides (parts B through E) have not been studied, except that Palisaw and Juza³⁶ have prepared and crystallographically characterized the compounds $Li_2 ThN_2$ and BeThN₂. Compounds between Th_3N_4 and other thereium compounds are briefly described in parts F, G, H, and I.

A. Th₃N₄

1. Composition

Below 1000°C Benz et al.¹ report $Th_3 N_4$ stoichiometric; at higher temperatures they found the following metal-rich limits on the nitrogen-to-thorium atom ratio:

1603°C	1.33 ± 0.03 under 33 torr N ₂ (4400 N/m ²)
1760°C	1.31 under 255 torr N_2 (34,000 N/m ²)
1960°C	1.28 under 920 torr N_2 (323,000 N/m ²).

2. Preparation

The first Th₃N₄ characterized^{3,7,3,8} was synthesized from the elements, and this is still the usual method.^{4,1,6} Conditions can vary widely. Benz et al.⁴ obtained Th₃N₄ from the hydride and nitrogen at 200 to 900°C. Benz and Zachariasen⁴ reacted ThN with 0.13 atm (1.3 × 10⁴ N/m²) N₂ at 1320°C. Dusing and Huniger^{3,9} precipitated Th₃N₄ from thorium vapor and nitrogen. Specimens for electrical measurements^{1,6} have been hot pressed at 1340 to 1400°C in Latm (1 × 10⁵ N/m²) N₂.

3. Crystal Properties

Benz and Zachariasen⁴ find for Th_3N_4 a rhombohedral structure, space group $R\overline{3}m$, with parameters $a_0 = 9.398$ A and $\alpha = 23.78^\circ$, with the corresponding

Table 6. High-Temperature Hexagonal Lattice Parameters of Th₁N₄, Meanwood by Sone and Balog^{1.5}

Temperature (°C)	N2	N ₂ Pressure		C A
	(loff)	(kN/m ²)	(Å)	(Å)
25	Vac.		3.874	27.39;
760	- 18 C.		3.891	27.55
1016	10	1.3	3.907	27.7
1236	10	1.3	3.917	27.83
1446	30	4	3.92	27.91
1512	570	76	3.91	28.0
1555	570	76	3.92	28.0
1680	570	76	3.92	28.01
1765	70	76	3.92	28.1
1905	600	80	3.9%	28.14

hexagonal cell having $a_0 = 3871$ Å, $c_0 = 27.385$ Å. Using neutron diffraction to permit location of the nitrogen atoms, Bowman and Arnold⁴⁰ confirmed this structure and gave hexagonal parameters $a_0 = 3.875$ Å, $c_0 =$ 27.39 Å. High-temperature hexagonal parameters reported by Benz and Balog¹⁵ are given in Table 6. A metastable monoclinic form is reported by Juza and Gerke⁴¹ with $a_0 = 6.95$, $b_0 = 3.83$, $c_0 = 6.20$ Å, and β = 90.7⁶.

The color of Th_3N_4 has been described as yellowmaroon,^{37,38} maroon³ dark maroon,¹⁶ dark brown, almost black,⁴² and black.³⁹ Chiotti³ describes his higher nitride as reddish brown, but he called it Th_2N_3 and may have had Th_2N_2O

4. Thermodynamic Properties

Heat of Formation. - By direct measurement Neumann et al.⁴² obtained $\Delta H_{291}^{o} = -308.4$ kcal/mole = -1290 kJ/mole. From a heat of combustion of 564.8 kcal/mole (2363 J/mole) Neumann et al.⁴³ found $\Delta H_{292}^{o} = -312.4$ kcal/mole = -1307 kJ/mole. Brewer et al.⁴⁴ give $\Delta H_{291}^{o} = -310.4$ kcal/mole = -1299 kJ/mole.

Free Energy of Formation. – Brewer et al. give $\Delta G_{2+8}^{\circ} = -283.6 \text{ kcal/mole} = -1187 \text{ kJ/mole}.$ Entropy of Formation. – Brewer et al. give $\Delta S_{2+8}^{\circ} = -89.6 \text{ cal mole}^{-1} (^{\circ}\text{K})^{-1} = -375 \text{ J mole}^{-1} (^{\circ}\text{K})^{-1}.$

Heat Capacity. - Sato4 s gives for 0 to 503°C

$$c_p = 0.04895 + 4.436 \times 10^{-5} t$$

$$-1.1384 \times 10^{-8} t^2 \text{ cal g}^{-1} (^{\circ}\text{C})^{-1}$$

 $= 0.2048 + 1.856 \times 10^{-4}$

 $\sim 4.763 \times 10^{-8} t^2 \text{ Jg}^{-1} (^{\circ}\text{C})^{-1}$.

Free Energy Function. – From a Russian compilation, Voitovich^{4,6} calculates the following values for $(G - H_{198}^{e})/T$:

Temperature. °C	298	500	1000	1 500	2000
Function, cal mole ⁻¹	43,2	45,8	59,5	71.7	82,5
Function, J mole ⁻¹ (⁶ K) ⁻¹	180.7	191.6	248.9	308.0	345.2

5. Change of State

Decomposition pressure data are given under "System Information."

6. Electrical and Magnetic Properties

Auskern and Aronson¹⁶ found the resistivity of Th₃N₄ to be very sensitive to heat treatment and to range from 10^5 to 10^6 ohm-cm at room temperature. Aronson and Auskern²⁴ found values of the magnetic susceptibility ranging from 0.3 to 0.6 X 10^{-8} emu/g over the range --190 to 22° C.

7. Heat and Mass Transport

No information is available yet.

8. Mechanical Properties

No information is available yet.

9. Chemical Properties

Early investigations^{37,38} showed that Th₃N₄ hydrolyzes slowly in cold water and immediately on boiling and that it burns in oxygen, less luminously than thorium. Quantitative measurements of the hydrolysis by Sugihara and Imoto²⁹ are shown in Fig. 20. The products are ThO₂ and dissolved ammonia. Ozaki *et al.*³⁰ found that the reaction of Th₃N₄ powder with 0.2 atm O₂ was roughly fitted by $1 - (1 - C)^{1/3} = kt$, where C is the conversion ratio. The reaction was 25% complete in 7 hr at 340°C and 0.5 hr at 480°C. The activation energy over this range was 15.2 ± 1.7 kcal/mole (64 kJ/mole). Over the temperature range 1400 to 1800°C, the nitrogen decomposition pressure of Th₃N₄ in the presence of ThCN and Th(C,N) as measured by Benz⁹ can be fitted by

 $\log p (\text{atm}) = 7.95 - 1.69 \times 10^4 / T$,

 $\log p (N/m^2) = 12.96 - 1.69 \times 10^4/T$.

20

Time(min.)

40

Fig. 20. Hydrolysis Rates of Th₃N₄ and Th₂N₂O. Copied from Sugihura and Imoto.²⁹

10. Surface Properties

0

No information is available.

F. Th_2N_2O

Benz⁴⁷ obtained equilibrium between Th_3N_4 , Th_2N_2O , and ThO_2 by heating mixtures of thorium, ThN, and ThO₂ in the range 1550 to 2000°C. At equilibrium the phases present were Th_3N_4 and $Th_1 N_2O$, only $Th_2 N_2O$, or $Th_2 N_2O$ and ThO_2 , depending on whether the initial mixture contained less than, close to, or more than 25 mole % ThO_2 respectively. The Th₂N₂O phase ranged in composition from $\text{ThN}_{1,22}O_{0,20}$ to $\text{ThN}_{1,0}O_{0,5}$ at 1600 ± 40°C and $\text{ThN}_{1.28}O_{0.10}$ to $\text{ThN}_{1.0}O_{0.5}$ at 2000 ± 48°C. The ThO₂ phase showed no variability at 1600°C but extended to approximately ThN_{0.1}O_{1.85} at 2000°C. On cooling, precipitation removed nonstoich ornetry from these phases. No solubility of oxygen ir, Th_3N_4 could be detected. The oxynitride was gray to maroon, depending on grain size. Benz and Zachariasen' give the crystal structure of Th_2N_2O as hexagonal with $a_0 =$ 3.8833 ± 0.0002 Å and $c_0 = 6.1870 \pm 0.0003$ Å.

Equilibrium between Th_2N_2O and othe solids has been investigated by Benz;³² selected equilibrium diagrams are given in Fig. 19. The decomposition pressure, presumably according to the equation

$$2 \text{ Th}_2 \text{N}_2 \text{O} \neq 3 \text{Th} \text{N} + \text{Th} \text{O}_2 + \frac{1}{2} \text{N}_2$$
,

was reported by Kusakabe and Imoto¹⁰ over the range 1690 to 1985°C to be fitted by

$$\log \rho_{\rm N}$$
, (atm) = 13.544 3.095 × 10⁴/7

O

$$\log p_{\rm N}$$
, (N/m²) = 18.550 - 3.095 × 10⁴/T.

From this decomposition pressure they calculated the enthalpy and entropy of formation of Th_2N_2O to be $\Delta H_{202} = -321.7 \text{ kcal/mole} = -1346 \text{ kJ/mole}$ and $\Delta S_{200} = -76.2 \text{ cal mole}^{-1} (^{\circ}\text{K})^{-1} = -319 \text{ J mole}^{-1} (^{\circ}\text{K})^{-1}$. They also report the following emissivities at the wavelength 0.65 μ m:

700	ETh2N20
1577	0.331
1667	0.343
1725	0.346
1815	0.345
1925	0.367

Rates of hydrolysis to ThO_2 and dissolved ammonia, measured by Sugihara and Imoto,²⁹ are shown in Fig. 20.

G. Thorium Nitride-Halides

Juza and Sievers^{4 a} have prepared and characterized a series of compounds ThNX, where X is F, Cl, Br, or I. All arise from reaction of the appropriate thorium tetrahalide with ammonia or Th₃N₄. The fluoride is insoluble and stable to aqueous reagents; it decomposes in 3 hr at 1320°C or in 15 min at 1550°C. The other compounds have reactivities that increase with the atomic weight of the halogen. The fluoride can dissolve up to 10% ThO₂.

The crystal structures have been worked out in detail.⁴⁸ The fluoride is rhombohedral, and the others are tetragonal. Two intermediate nitride fluorides, ThN_xF_{4-3x} , were also observed, tetragonal with x from 0.88 to 0.94 and orthorhombic with x from 0.79 to 0.87.

H. ThCN

In an investigation of phase equilibria in the Th-N-C system, Benz and Troxel⁶ found the compound ThCN with little if any variation in composition near stoichiometric. Figure 13 shows solid-phase relationships involving this compound. The crystal structure was

Y-119428

Temperature (°C)	Unit-a	Unit-cell dimensions (A)			N ₂ Pressure	
	•0	۵.	~	(deg)	(tort)	(kN/m ²)
25	7.02,	3.94	7.275	95 .7	¥3C.	
760	7.02	4.002	7.301	94.1	VIC.	
99 0	7.02,	4.00	7 30	93.7	5	0.7
1100	7.02	4.00;	7.337	93.6	200	27
1260	7.032	4.01	7.34	93.9	570	76
1400	7.03,	4.00	7.37	94.1	570	76
1500	7.062	4.012	7.365	94.7	600	80
1620	7.07,	4.03	7.37	34 .7	ÓŨŨ	ĴŪ

Table 7. High-Temperature Lattice Parameters of ThCN. Measured by Banz and Balug^{1.5}

determined by Benz et al.⁴⁹ to be C-centered monoclinic, space group C2/m (C_{2k}^{0}), with lattice parameters $a_0 = 7.0249 \pm 0.0006$ Å, $b_0 = 3.9461 \pm 0.0002$ Å, $c_0 = 7.2763 \pm 0.0009$ Å, and $\beta = 95.67 \pm 0.01^{\circ}$. Neutron diffraction showed the carbon atoms to be in triply bonded pairs, showing the compound to be a mixed nitride-acetylide. High-temperature parameters measured by Benz and Balog^{1.5} are given in Table 7. Decomposition pressure measurements by Benz⁹ over the range 1500 to 1900°C in the presence of the phases ThC₂ and Th(C,N) can be represented by

 $\log p (\text{atm}) = 7.82 - 1.76 \times 10^4 / T$,

 $\log p (N/m^2) = 12.825 - 1.76 \times 10^4/T$.

I. Complex Thorium Nitrides

Several complex nitrides not separately described have been reported by Benz and Zachariasen.^{50,51} Some⁵⁰ have the hexagonal Ce₂O₂S-type crystal structure, space group P3ml. Others^{5 1} are tetragonal, space group I4/mmm. The x-ray diffraction characterization is summarized in Table 8.

Table 8. Some Complex Thorium Nitride	
from Bonz and Zachariason	

Company	Lattice Para	Theoretical		
Сонфонна	40	¢.	(g/cm ³)	
	Hexago	val ⁵⁰		
Th ₂ NOAs	4.041 ± 0.001	6.979 ± 0.002	9.58	
Th ₂ N ₂ Se	4.0287 ± 0.0002	7.156 ± 0.001	9.43	
Th ₂ NOP	4.0285 ± 0.0003	6.835 ± 0.001	9.08	
Th ₂ N ₂ S	4.008 ± 0.001	6.920 ± 0.002	9.04	
	Tetrago	nai ^{5 I}		
Th ₂ N ₂ Sb	4.049 ± 0.001	13.57 ± 0.01	9.17	
ThaN3USb2	$4.C45 \pm 0.00$.	13.18 ± 0.04	9.47	
Th ₂ NOSb	4.041 ± 0.001	12.84 ± 0.01	9.76	
Th ₂ N ₂ Te	4.0939 ± 0.0004	13.014 ± 0.001	9.44	
Th ₂ N ₂ Bi	4.075 ± 0.001	13.6?0 ± 0.01	10.30	

REFERENCES

- 1. R. Benz, C. G. Hoffman, and G. N. Rupert, "Some Phase Equilibria in the Thorium-Nitrogen System," J. Am. Chem. Soc. 89, 191-97 (1967).
- W. H. Zacharinsen, "Crystal Chemical Studies of the 5/ Series of Elements. XII. New Compounds Representing Known Structure Types," Acta Cryst. 2, 388-90 (1949).
- P. Chiotti, "Experimental Refractory Bodies of High-Melting Nitrides, Carbides, and Uranium Dioxide," J. Arc. Centr. Soc. 35, 123-30 (1952).
- R. Benz and W. H. Zacharinsen, "Th₃N₄ Crystal Structure and Comparison with That of Th₂N₂O," Acta Cryst. 21, 838-40 (1966).
- R. Benz, "Melting Point Maximu of ThC-ThN and of UC-UN Solid Solutions," J. Nucl. Mater. 31, 93–98 (1969).
- 6. R. Benz and J. E. Troxel, "TE-C-N Phase Diagram," High Temp. Sci. 3, 422 32 (1971).
- W. M. Olson and R. N. R. Mulford, "The Decomposition Pressure and Melting Point of Thorium Moreonitride," J. Phys. Chem. 69, 1223-26 (1965).
- S. Aronson and A. B. Auskern, "Vapor Pressure Measurements on T^{*}-xium Nitrides," J. Phys. Chem. 70, 3937-41 (1966).
- R. Benz, "Nitride Layer Growths on Liquid Thorium and on Solid Thorium Carbon Alloys," J. Electrochem. Soc. 119, 1596-1602 (1972).
- T. Kusakabe and S. Imoto, "Decomposition of Fh₃N₄ and Th₂N₂O," Nippon Kinzoka Gakkaishi 35, 1115–20 (1971).
- S. C. Weaver, An Investigation of the Thermal Conductivity, Electrical Resistivity, and Thermoelectric Power of Thorium Nitride - Unanium Nitride Alloys, Ph.D. dissertation, The University of Tennessee, Knoxville, March 1972.
- 12. R. S. Street and T. N. Waters, The Thermal Expansion of ThC and ThN, AERE-M-1115 (October 1962).
- S. Aronson, E. Cisney, and K. A. Gingsrich, "Thermal Expansion of Some Cubic Refractory Compounds of Thorium," J. Am. Cemm. Soc. 50, 248-52 (1967).
- 14. J. T. Venard, J. E. Spruiell, and O. B. Cavin, "Lattice Parameters Across the UN-ThN Pseudobinary," J. Nucl. Mater. 24, 245-46 (1967).
- R. Benz and G. Balog, "X-Ray Diffraction of Elevated-Temperature Th-C-N Alloys," High Temp. Sci. 3, 511-22 (1971).
- A. B. Auskern and S. Aronson, "Electrical Properties of Thorium Nitrides," J. Phys. Chem. Solids 28, 1069-71 (1967).
- 17. C. H. de Novion, Electronic Properties of Actinide Carbides and Nitrides, CEA-R-4113 (December 1970).
- C. H. de Novion and P. Costa, "Electronic Structure of Uranium Carbonitrides UC_{1-x}N_x," C. R. Acad. Sci. Ser. B 270, 1415-18 (1970).
- J. Danan, C. H. De Novion, and H. Dallaporta, "Specific Heat of Thorium Mononitride from 7 to 300K," Solid State Commun. 10, 775--78 (1972).
- K. A. Gingerich, "Gaseous Metal Nitrides. III. On the Dissociation Energy of Thorium Mononitride and Predicted Dissociation Energies of Diatomic Group III-VI Transition-Metal Nitrides," J. Chem. Phys. 49, 19-24 (1968).
- 21. J. T. Venard and J. E. Spruiell, "Phase Relations in the Th-U-N Ternary System at 1000°C," J. Nucl. Mater. 27, 257-63 (1968).
- 22. P. Blum and P. Guinet, "Formation of a Eutectic in Certain Metal Oxide/Nitride Pseudobinary Systems," Compt. Rend. 253, 1053-55 (1961).
- 23. R. Benz, "Th-N-O Phase Diagram," J. Nucl. Mater. 43, 1-7 (1972).
- 24. S. Aronson and A. B. Auskern, "Magnetic Susceptibility of Thorium Carbides, Nitrides, and Carbonitrides," J. Chem. Phys. 48, 1760-65 (1968).
- 25. G. Raphael and C. de Novion, "Magnetic Susceptibilities of the Mononitrides and Sesquicarbides of Thorium, Uranium, and Plutonium," Solid State Commun. 7, 791-93 (1969).

- R. Didchenko and F. P. Gortsens, "Magnetic and Electric Properties of Monosulfides and Mononitrides of Thorium and Uranium," Inorg. Chem. 2, 1079-80 (1963).
- 27. M. Kuznietz, "MMR Properties of 14 N in ThN and of 31 P in ThP," J. Chem. Phys. 49, 3731-32 (1968).
- A. L. Giorgi, E. G. Szklarz, and M. C. Krupka, Superconductivity of Various Temary Thorium Compounds, LA-DC-13299 (CONF-711027) (1970).
- S. Sugihara and S. Imoto, "Hydrolysis of Thorium Nitrides and Carbonitrides." J. Nov.'. Sci. Technol. (Tokyo) 8, 630–36 (1971).
- 30. S. Ozaki, M. Kanno, and T. Mukaibo, "Oxidation of Thorium Nitrides." J. Nucl. Sci. Technol. (Tokyo) 8, 41-47 (1971).
- W. M. Paráne, V. W. Stothok, and R. A. Smith, "Properties of Plutonium Mononitride and Its Alloys," pp. 721-38 in Plutonium 1965, Proceedings of the Third International Conference on Plutonium, London, 1965, ed. by A. E. Kay and M. B. Waidron, Chapman and Hall, London, 1967.
- 32. R. Benz and W. H. Zachariasen, "Crystal Structures of Th₂CrN₃, Th₂MnN₃, U₂CrN₃, and U₂MnN₃," J. Nucl. Mater. 37, 109 13 (1970).
- 33. R. S. Street and T. N. Waters, "The UC/UN and ThC/ThN Systems," J. Less-Common Metals 5, 295-97 (1963).
- 34. A. B. Auskem and S. Aronson, Electrical Properties of Thorium Carbonitrides, BNL-12591; J. Appl. Phys. 41, 227-32 (1970).
- T. Kusakabe and S. Imoto, "Phase Behavior in the ThN-ThO₂-Th System," Nippon Kinzoku Gakkaishi 36, 305 9 (1972).
- A. P. Palisaar and R. Juza, "Ternary Nitrides of Zirconium, Thorium, and Uranium," Z. Anorg. Aligem. Chem. 384, 1-11 (1971).
- C. Matignon and M. Delépine, "Composition of the Hydride and the Nitride of Thorium," Compt. Rend. 132, 36-38 (1901).
- 38. C. Matignon and M. Delépine, "Chloride, OxycLloride, Hydride, and Nitride of Thorium," Ann. Chim. Phys. [8] 10, 130--44 (1907).
- 39. W. Düsing and M. Huniger, "Thorium Nitride and a Nitrogen Determination Method for Inorganic Noncombustible Substances," Tech. Wiss. Abhandl. Osram-Konzern 2, 357-65 (1931), as cited by Chem. Zentr. 1932 1, 203-4.
- 40. A. L. Bowman and G. P. Arnold, "Crystal Structure of Th₃N₄," Acta Crystallogr. Sect. B 27, 243-44 (1971).
- 41. R. Juzz and H. Gerke, "Contribution to the Knowledge of Thorium-Nitrogen Compounds," Z. Anorg. Aligem. Chem. 363, 245-57 (1968).
- 42. B. Neumann, C. Kröger, and H. Haebler, "Heats of Formation of Nitrides. IV. Uranium, Thorium, and Lanthanum Nitrides," Z. Anorg. Aligem. Chem. 207, 145-49 (1932).
- B. Neumann, C. Kröger, and H. Kunz, "Heats of Formation of Nitrides. V. Heats of Combustion of Some Metals and Metal Nitrides," Z. Anorg. Aligem. Chem. 218, 379-401 (1934).
- L. Brewer et al., "Thermodynamic Properties of Nitrides, Carbides, Sulfides, Silicides, and Phosphides," pp. 40-59 in Chemistry and Metalhurgy of Miscellaneous Materials, Thermodynamics, L. L. Quill, ed., McGraw-Hill, New York, 1950.
- S. Sato, "Specific Heats of Thorium Nitride, Lithium Nitride, and Zinc Nitride," Sci. Papers Inst. Phys. Chem. Research (Tokyo) 35, 182-90 (1939); cited in Chem. Abstr. 33, 41 18⁷ (1939).
- 46. R. F. Voitovich, "Calculation of the Reduced Thermodynamic Potentials of Some Carbides and Nitrides," Soviet Powder Met. Metal Ceram. (English Transl.) 1967, 117-19.
- R. Benz, "Ranges of Composition of the Th₂N₂O and ThO₂ Phases Equilibrated with Different Nitrogen (plus Oxygen) Atmospheres," J. Am. Chem. Soc. 89, 197-99 (1967).
- 48. R. Juza and R. Sievers, "Thorium Nitride-Halides," Z. Anorg. Allgem. Chem. 363, 258-72 (1968).
- 49. R. Benz, G. P. Arnold, and W. H. Zachariasen, "ThCN Crystal Structure," Acta Crystallogr. Sect. B 28, 785-89 (1972).
- 50. R. Benz and W. H. Zachariasen, "Crystal Structure of the Compounds U₂N₂X and Th₂(N,O)₂X with X = P, S, As, and Se," Acta Cryst. B25, 294-96 (1969).
- 51. R. Benz and W. H. Zachariasen, "Crystal Structure of the Compounds U₂N₂X and Th₂N₂X with X = Sb, Te, and Bi," Acta Crystallogr. Sect. B 26, 823-27 (1976).