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EXPERIMENTAL BOILING WATER REACTOR (EBWR) 
SHIELD DESIGN 

by 

M. Grotenhuis and J . W. Butler 

ABSTRACT 

The Exper imenta l Boiling Water Reactor (EBWR) shield 
and the methods used in the design a r e descr ibed . The r e ­
port includes shie ldadjus tments n e c e s s a r y to make a change 
from l ight-water modera tor to heavy-water mode ra to r . 

I, INTRODUCTION 

The design of the EBWR shield consisted of two phases j each of 
which was a separa te shield study. The f i r s t design(l9 2) was for the o r ig i ­
nal conception of the EBWR: a light wa te r -mode ra t ed r eac to r with an o r d i ­
nary concrete biological shield. The second study(3s4) came about when 
the decision was made to include the possibi l i ty of operat ing the same facility 
a s a heavy wa te r -modera t ed r e a c t o r . The shielding p rob lems encountered in 
the second study indicated that heavy water-mioderated operat ion would r e ­
quire m o r e shielding? howevers it was not economically feasible to a l te r the 
reac tor vesse l or the total shield th ickness . The additional shielding was 
incorpora ted , therefores by including a boron-s t ee l t h e r m a l shield and by in­
creas ing the density of pa r t of the concre te shield. 

The factors leading to the requi red i n c r e a s e in shielding were a mod­
e ra t e inc rease in the fast neutron flux and a r a the r la rge i nc r ea se in t h e r m a l 
neutron fiux. These factors and their effect on the shield design will be 
t r ea ted in detai l in the sections of th is r epor t dealing with the design ca lcu­
la t ions . Briefly, these fJux i n c r e a s e s affected the total shield design in two 
wayss the radiat ion heating in the r eac to r vesse l and the capture g a m m a - r a y 
fjuxes penetrat ing the shield were both inc reased substant ia l ly . 

II„ METHOD OF ANALYSIS 

In the p rac t i ca l design of a r eac to r shield it i s n e c e s s a r y to f i r s t 
compute the emergent fast neutron dose, then the t h e r m a l neutron flxix, and 
finally the emergent g a m m a - r a y dose . If the total dose r a t e at the outer s\ir-
face of the shield exceeds design specifications, i t i s then n e c e s s a r y to a l te r 
the amount and disposit ion of the shielding m a t e r i a l s and to repeat the 
calculation^ 
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The neutron analys is used in this r epo r t follows the removal 
theory" of shield design, which was implici t ly introduced by Welton and 
Albertl^s ") and has since been given a f i rmer foundation and a somewhat 
different conceptual bas i s by the work of Bl izard and other in the Oak 
Ridge Shielding Group. The cen t ra l concept in this theory is that of the 
removal c ro s s sect ion. (7, 12, 13) This quantity can best be defined by 
descr ibing an ideal exper iment for measur ing i t . 

Considers as in F ig . 1, an infinite medium composed of ma te r i a l •§-! 
in which there is a plane source of neutrons with a cer ta in energy spec-
t rum, usually a f ission spec t rum. At some distance from the source , 
depending on the nature of the medium and upon the energy and angular 
distr ibution of the source , the neutron distr ibution will have a c h a r a c t e r ­
is t ic shape which is independent of the angular distr ibution of the source 
neut rons ; fu r the rmore , th is shape will be independent of the energy r e ­
sponse of the detecting ins t rument used to m e a s u r e i t . 

MATERIAL 1 - . - . 

/ V \ • 'JATERIAL 2 

\—PLANE Z . MEASURING 
SOURCE INSTRUVIEt<T 

FIG. i 
ARRAKGEMffiT iOP REl/OVAL CROSS SECT IO, MEASUREMtNT 

A slab of another ma te r i a l , called ma te r i a l #2, in now introduced 
into the medium, and the neutron flux in the medium of ma te r i a l #1 is 
measu red at a sufficient distance from the slab so that the cha rac te r i s t i c 
flux shape is again es tabl ished. If the slab of ma te r i a l ffZ is now removed, 
leaving the void which it occupied, the flux as measu red at this sarae 
point will i n c r e a s e . If th is exper iment is repeated for a range of slab 
th icknesses and posi t ions, and if it i s found that the attenuation caused by 
the slab of ma te r i a l -#2 can be descr ibed by an exponential function of a 
constant of proport ional i ty t imes i ts th ickness , this constant i s then de ­
fined to be the removal c ro s s section of m a t e r i a l #2 with respec t to 
ma te r i a l #1 , 



In ca ses in which this method is di rect ly applicable, the neutron 
attenuation of the shield is accomplished principal ly by one dominant 
ma te r i a l , usually water or other hydrogenous ma te r i a l , and the effect of 
introducing other m a t e r i a l s , s t ruc tu re , e t c . , is descr ibed by use of the 
removal c ro s s sect ion. The exper iment descr ibed above i s , of course , 
highly idealized, and in both measu remen t and application geometr ica l 
compromises a r e made . Thus, most removal c ro s s sections have been 
m e a s u r e d in the Lid Tank Faci l i ty at Oak Ridge, (14) which consis ts of a 
la rge tank of water containing a 28-in. diaineter disc source of f ission 
neu t rons . Hence, the values so obtained a r e removal c ro s s sections with 
respec t to water as the pr incipal neutron-at tenuat ing substance. 

In o rder to make prac t ica l use of these nunnbers, some method 
must be introduced for dealing with geometr ica l configurations met in 
p rac t i ce . This may be done by assuming that the radiat ion t r ave l s from 
source to detector along the optical path connecting them, the attenuation 
due to each ma te r i a l being apportioned according to the thickness of that 
m a t e r i a l t r a v e r s e d by the optical path. The attenuation in the water com­
ponent i s calculated by making use of the measu red attenuation for that 
thickness of water ; the attenuation in the other components is taken into 
account by use of removal c ro s s sections as descr ibed above. Once the 
principle of s t r a igh t - r ay propagation has been accepted, the radiat ion 
from sources of complex shape surrounded by appropr ia te shield configu­
rat ions can be calculated by integrat ion of contributions from different 
pa r t s of the source . While this i s simple in pr inciple , ve ry complicated 
in tegra l express ions inay resu l t unless the geometry is simplified as much 
as poss ib le . In a general situation, such as in F ig . 2, 

FIG. 2 
ILLUSTRATION FOR PAST NEUTRON FLUX CALCULATION 
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the fast flux is given by 

where Qn(^) i s the neutron source s t rength and B(x,|_) i s the b e a m -
attenuation kerne l for the optical path connecting the points x and ^ . If the 
shield consis ts pr incipal ly of wate r , th i s ke rne l i s given by 

B(?»i) = N(p) exp ~ I dt Or (t) (2) 

where 

N( ' ' ) i s the m e a s u r e d beam-at tenuat ion kerne l for water , 

P i s the effective th ickness of wate r , at unit densi ty, between 
the points x and _|_, 

and 

CTJ.(') i s the r emova l c r o s s section of the other m a t e r i a l s 
t r a v e r s e d by the r a y . 

A s imi la r express ion , 

(3) m- ljy,H^^0o^ii) . 
may be wri t ten for the cu r r en t of fast neu t rons . Since^ in any cases the 
fast flux must be calculated in o rde r to evaluate the effects of fast neutrons 
penetrat ing the shield, it i s usual ly sufficiently accura te to util ize only 
Eq . (1) and to a s s u m e that the fast cu r r en t i s equal in magnitude to the fast 
fliix and has the di rect ion of i t s gradient . This p rocedure tends to o v e r e s t i ­
mate the fast neutron cu r ren t ; however , it saves a considerable amount of 
numer i ca l work„ The fast cu r r en t i s needed in o rde r to compute the t h e r m a l 
neutron flux dis t r ibut ion in the shield. 

The computation of the t h e r m a l flux dis t r ibut ion i s a re la t ive ly weak 
point in this scheme of shield design, and no general ly accepted method 
exis ts for making such calculat ions J A reasonable procedure i s to compute 
the negative of the divergence of the fast cu r r en t and to take this to be the 
source t e r m in a t h e r m a l neutron diffusion equation of the usual form, solv­
able by s tandard methods . If a s i s often the case , the fast neutron a t tenua­
tion along a r a y i s near ly exponential , th is prac t ica l ly amounts to taking the 
t h e r m a l neutron source to be the r emova l c r o s s section timies the fast 
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cu r r en t . The t he rma l flux so obtained is used to calculate g a m m a - r a y 
source densi t ies in the capturing m a t e r i a l s . Implicit in such a t r ea tmen t 
of the slowing down p r o c e s s i s the assumpt ion that the lower energy com­
ponents of the fast neutron flux a r e at tenuated m o r e strongly than the 
higher energy components . 

The assumpt ion of s t r a i g h t - r a y propagation i s again introduced for 
the gamma radiation^ the dose outside of the shield i s de termined by an 
in tegra l express ion which is identical in form to Eq. ( l ) . The g a m m a - r a y 
attenuation along the ray i s he re taken to be exponential with l inear build­
up, which means that the kerne l B in Eq, (l) iSs for th i s ca se , given by 

(4) 

where a(*) i s now the total photon coll ision c r o s s section for the m a t e r i a l 
t r a v e r s e d by the ray (Fig. 2). The dose contribution is calculated for 
each energy in the g a m m a - r a y source spec t rum and the r e su l t s added. 

I l l , DESIGN PROCEDURE AND SPECIAL PROBLEMS 

The procedure followed in o rde r to a r r i v e at a fixed shield design 
was to compute, in the following sequence, the fast neutron flux, t h e r m a l 
neutron fliix, and g a m m a - r a y flux. This was f i r s t done for a p re l imina ry 
a r rangement of modera to r and r e a c t o r vesse l in o rde r to es t imate the 
magnitude of the nuclear heating in the ves se l wall and to de termine the 
amount of t h e r m a l shielding n e c e s s a r y . 

When the r eac to r ve s se l and t h e r m a l shield a r r angemen t were de -
terjfnined, the fluxes were extended and the heating in the concre te was 
established^ The concre te heating was adjusted by adding lead until it was 
at a sa t is factory level . As inc reas ing the th ickness of the lead a lso de ­
c r e a s e s the total concre te th ickness to some extent, the total amount of 
lead chosen was the resu l t of a combination of these two f ac to r s . 

F ina l select ion of the concre te thickness was made after the com­
posit ion of the inner regions had been specified. This choice natura l ly 
included some factor of safety. P e s s i m i s m injected into the calculat ions 
se rved this purpose , as well a s rounding off the concre te th ickness to an 
even number of feet . 

A s imi la r p rocedure was followed to de te rmine the shield th ickness 
above and below the r e a c t o r core? however, t he re was not unlimited space 
in these d i r ec t ions . Shield design was thus somewhat l imited to what m a ­
t e r i a l could bes t be placed in the available space . 

B(x,i) = 1 + 
/ 

dt 0 (t) e x p 
<-/n 

dt 0 (t) 
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Above the core the re were 12 inches of space available for m a t e r i a l 
which was to be selected solely on the bas i s of i t s shielding value. The r e ­
mainder of the shield m.aterial in this region was selected p r imar i l y for 
purposes other than shieldingo The r e su l t was an inordinate amount of i ron 
in the shield. While from a shielding standpoint th is does not appear to be 
a very efficient select ion of m a t e r i a l s , it p r e sen t s very l i t t le problem in the 
light wa t e r -mode ra t ed reactors, a s the fluxes a r e not exces s ive . Doubts do 
a r i s e because of the lack of modera t ing m a t e r i a l . In such a shield the p r e ­
dominant effect on the fast neutrons is that of ine las t ic sca t t e r ing . This r e ­
duces the neutron energy, but not to t h e r m a l leve ls , and therefore i s not 
consis tent with the theory of attenuation involved; thus , the r e su l t s cannot 
be considered completely a c c u r a t e . To par t ia l ly nnake up for this lack of 
modera to r , o rd inary concre te was selected a s the most convenient m a t e r i a l . 

Operat ion a s a heavy wa te r -mode ra t ed r eac to r r e su l t s in an inc rease 
in neutron fluxes, and the lack of modera t ion in the shield above the r eac to r 
core becomes m o r e c r i t i c a l . Accordingly, it was then decided to use water 
a s the modera t ing m a t e r i a l . While heavy concrete i s , in genera l , a more 
effective shield, and, by this type of calculat ion looks m o r e efficient than 
water , it must be r e m e m b e r e d that incons is tencies with the theory se rve to 
miake the calculat ion subject to g r ea t e r suspicion. It i s doubtful whether 
any calculat ions can accura te ly evaluate the si tuation; however , m e a s u r e ­
ments during operat ion a s a light wa t e r -mode ra t ed r eac to r may yield infor­
mat ion that could shed some light on this p rob lem. Due to the fact that other 
s tee l s t ruc tu re above the r eac to r shield reduced the radia t ion level from that 
which was calculated, and that s t r eaming from voids and c r acks inc reased 
the radia t ion level f rom that which was calculated, it may be difficult to d e ­
cide even then what the best m a t e r i a l for the shield should have been . 

After some study of the ves se l heating above the core and ref lector 
region during heavy wa te r -mode ra t ed operat ion, i t was decided to include a 
bora ted s teel plate above the core but just below the water level . This s teel 
plate r ep laces the portion of the bora ted s teel t h e r m a l shield that extends 
above the water level . It should aid in reducing capture gamma r ays from 
the s teel above the core as well as in protect ing the vesse l itself. In addi ­
tion, the problem of cooling a t h e r m a l shield extending above the water level 
i s avoided. 

The shield design below the core was l imited by the m a t e r i a l s that 
could best be uti l ized in the four-foot space avai lable . The r e a s o n for the 
four-foot th ickness i s that the control rods penet ra te th is region and it i s ad­
vantageous to keep them as short as poss ib le . Under the c i r cums tances heavy 
concrete seemed the obvious choice and, accordingly, the design procedure 
was very much the sam.e a s for the r ad ia l shield. 

Hope of attaining radia t ion levels that personnel might endure in the 
sub-pi le room during operat ion i s r a the r slimi because of the numerous 
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penet ra t ions , A p r i m a r y considerat ion is that of equipment act ivation and, 
at leas t in the light wa te r -modera t ed vers ion , this does not appear to be a 
p rob lem. The radiat ion level after shutdown is a lso of concern; this may be 
reduced to pe rmiss ib le levels by placing lead below the penetrat ions through 
which the forced circulat ion pipes p a s s . The maximum thickness of this 
lead is es t imated to be eight inches , but it i s recommended that this be de ­
te rmined empir ica l ly after operat ional experience has been accumulated. 

Other shielding p rob lems include those of compensating for voids 
caused by piping or s t ruc tu ra l cons idera t ions . The procedure used was to 
keep a constant shield density on a line of sight from core to shield ex te r io r . 
While this has but l i t t le theore t ica l justification, it will suffice if ca re i s 
taken that no unreasonable shield a r r angemen t s occur . Fo r ins tance , r e d u c ­
ing the shield to lead in any given di rect ion would not be economical , nor 
would it be likely to produce an adequate shield. 

IV. SHIELD DESIGN CALCULATIONS 

A, F a s t Neutron Flux 

1. Light Water -Modera ted EBWR 

The fast neutron flux for the light wa te r -modera t ed v e r ­
sion of the EBWR was calculated on the bas i s of "removal theory, " as 

descr ibed in SectionII 
of this r epo r t . The 
geometr ica l configu­
rat ion chosen to 
r ep re sen t the p rob ­
lem was that of a 
spher ica l core su r ­
rounded by modera to r 
and shielded with 
infinite slab shields 
(see F ig . 3). In 
addition, the core 
was assumed to be 
re la t ively opaque to 
fast neu t rons . The 
express ion for the 
fast neutron flux 
[Eq. (1)] thus 
becomes FIG. 3 

SPHERICAL SOURCE WITH SLAB SHIELD 
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%(R) QnKn 
20 „ 

did Nip (p.)] exp ^lll'ri^i 
i=i 

n / cm. sec (5) 

While the select ion of an o rd inary concre te shield i s not 
consis tent with the theory a s r ep resen ted , i t i s felt that o rd inary concre te 
i s enough of a modera to r to be r ep re sen t ed as such. Supporting this use 
i s the fact that the m e a s u r e d re laxat ion length for fast neut rons in o r d i ­
na ry concrete(13) approximates the r ec ip roca l of the calculated remova l 
c r o s s section (0,091 cna~^). In the axial d i rect ion, the heavy concrete in 
the bottom shield r e p r e s e n t s a g r ea t e r deviation from fulfilling the r e ­
qu i rements of the theory , but the method i s applied with hope that , with 
the usual p e s s i m i s m involved, i t i s not an unde res t ima te . The c r o s s s e c ­
tion for the heavy concre te was der ived f rom the m e a s u r e d re laxat ion 
length of fast neut rons in Brookhaven heavy conc re t e . (13) in. the axial 
d i rec t ion above the r eac to r the grea t amount of i ron a lso r e p r e s e n t s a 
deviation from the theory, but it i s felt to be an adequate shield a s d i s ­
cussed in Section III. 

The shield configurations on the r eac to r core center l ines 
in the th ree d i rec t ions cons idered a r e given in Table I, along with the con­
s tants per t inent to the calculations The source t e r m at 20-mw operat ion 
power is 

r̂  20 X 10^ (watts) , , ^̂  / 3 Q = _i^ - 14 wat ts /cm^ 
^ Volume (cm^) ^ 

and is a s sumed to be a uniformly dis t r ibuted i so t ropic s o u r c e . The value 
of K^ i s 69 .4 (n/cm^ s e c ) / ( m r e p / h r ) . The function N(p) has the d imen­
sions (mLrep/hr)/(watt/cm.^). (8, 13) The fast neutron flux i s , then, in units 
of n / c m s e c . F igu re 4 shows a sect ion of the r eac to r vesse l and shield. 
The fast neutron flux dis t r ibut ions in the th ree d i rec t ions a r e given in 
F i g . 5 . At the outer shield surface the fast neut ron flxix is 1 x 10"^, 5 x 1 0 " " 
and 1 X 10"^ n /cm^ sec in the d i rec t ions rad ia l , axial above the co re , and 
axial below the co re , r espec t ive ly . The spec t rum of neutrons Involved i s 
init ial ly the f ission spec t rum, and, at the shield outer sur face , the f ission 
spec t rum as degraded by the shield m a t e r i a l s . Effectively, this i s a s sumed 
to be r ep re sen t ed by 2-Mev neut rons a s far a s human to lerance i s con­
ce rned . This means that the pe rmi s s ib l e fast neutron flux is 40 n /cm^ s e c . 

2. Heavy Water -Modera ted EBWR 

The calculat ion of the fast neutron flux for the heavy w a t e r -
mioderated ve r s ion of the EBWR r e p r e s e n t s a st i l l g r e a t e r deviation irom 
the " removal theory" desc r ibed , A possible justif ication for i t s use is that 
the reduct ion of the total c r o s s sect ion to remova l c r o s s section may be 



Table I 

CONSTANTS USED FOR THE CALCULATION OF THE FAST 
NEUTRON FLUX IN LIGHT WATER-MODERATED 

EBWR SHIELDING 

Mater ia l 

Core 

Light Water 

Steel 

Insulation 

Helium 

Lead 

Concre te (Ordinary) 

Core 

Light Water 

Steam 

Steel 

Concre te (Ordinary) 

Core 

Light Water 

Steel 

Insulation 

Helium 

Lead 

Concrete 
(Ordinary) 
(Magnetite & 

Punching s) 
Steel 

Density, 
g m / c c 

Radial Shield 

, 

0 . 8 

7.85 

0 , 0 

0 , 0 

11.1 

2 . 4 

Thickness , 
cm 

70 

30,5 

6.35 

7.62 

7.62 

7.62 

244. 

Axial Shield Above Core 

-

0 . 6 

0 , 0 

7,85 

2 , 4 

70 

137.16 

292,10 

60.96 

30.5 

Axial Shield Below Core 

-

0 . 8 

7.85 

0 , 0 

0 , 0 

11.1 

2.4 

4 .26 

70 

104.14 

6.35 

7.62 

13.97 

7.62 

122. 

122, 

Rem.oval 
C r o s s 

Section, 
cm~^ 

0.1642 

-

0.1635 

0 . 0 

0 . 0 

0.1122 

0.0901 

0.1642 

» 

0 . 0 

0.1635 

0.0901 

0,1642 

-

0.1635 

0 . 0 

0 . 0 

0.1122 

0.0901 

0.1587 
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looked upon to r e p r e s e n t a method of es t imat ing the buildup of fast neu^ 
t rons as given by exper imenta l methods . It i s felt that this would give 
r e su l t s r epresen ta t ive of the fast neutron flux distr ibut ion, and this a t t i ­
tude is supported by the fact that the re is no c lea r ly c o r r e c t way available 
to compute the fast neutron flxix in such a si tuat ion. The function N(P) in 
E q . (5) i s rep laced by e" ® , where a o i s the r emova l c r o s s section for 
D2O. 

The shield configuration as modified for operat ion a s a 
heavy wa te r - r e f l ec t ed r e a c t o r i s given in Fig» 6, The constants and the 
shield th ickness a r e l i s ted in Table II. The source s t rength, based on 
40-megawat t operat ion, is 

40 X lO^x 3.1 X 10^°x Z.5 , , , nl2 / 3 Q = = 2.Z X 10^ n/cm, sec 
Volume 

This i s expres sed in units different than the l ight-water source t e r m b e ­
cause the ke rne l N(P) i s not used, and it did c a r r y d imens ions . The fast 
neutron flux dis t r ibut ions in the th ree d i rec t ions a r e given in F ig . 7. The 
fluxes on the r e a c t o r core center l ine at the outer shield surfaces a r e 
1 X 10"' \ 10^ to 10^, and 3 x 1 0 ' ^ n/cm^ sec in the d i rec t ions rad ia l , axial 
above the core , and axial below the co re , respec t ive ly . 

B . The rma l Neutron Flux 

1. Light Wate r -Modera ted EBWR 

The t h e r m a l neutron flux dis t r ibut ions were computed by 
means of the one-group diffusion equation in slab geomet ry . The source 
t e r m , as d i scussed in Section II, i s the negative divergence of the fast neu­
t ron c u r r e n t . The simplifying assumpt ion that the fast neutron flux i s the 
same as the fast neutron cu r ren t was included. The source t e r m was r e ­
presen ted by an exponential in al l c a s e s . The equation thus obtained for the 
t h e r m a l neutron flux i s 

$g(x) = Ai e+'^i^ + Bi e-'^i^ + Cj e'^^i^ n/cm^ sec (6) 

where 

g i % i (Q) 

and As and B^ a r e the a r b i t r a r y coefficients for the region i . 
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TOP SHIELD (STEEL) 

THERMAL INSULATION 

FIG. 6 
VERTICAL SECTION OF THE EBWR VESSEL AND SHIELD AS ALTERED 
TO INCLUDE OPERATION AS A HEAVY WATER MODERATED REACTOR 
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Table II 

CONSTANTS USED FOR THE CALCULATION OF THE FAST 
NEUTRON FLUX IN HEAVY WATER-MODERATED 

EBWR SHIELDING 

Z l 

Ma te r i a l 

Core 

Heavy Water 

Steel (Borated) 

Steel 

Insulat ion 

A i r 

Lead 

Concre te (Magnetite) 

Concre te (Ordinary) 

Core 

Heavy Water 

Steam 

Steel 

Light Water 
or 

Concre t e (Magnetite & 
Steel Punchings) 

Steel 

Core 

Heavy Water 

Steel 

Insulat ion 

A i r 

Lead 

Concre te (Magnetite 4 
Steel Punchings) 

Densi ty , 
g m / c c 

Radia l Shield 

_ 

0 . 8 

7.85 

7.85 

0 . 0 

0 . 0 

11.1 

3 . 2 

Z . 4 

Axial Shield Above 

_ 

0.66 

0 . 0 

7.85 

1,0 

4 .26 

7.85 

Th ickness , 
cm 

70 

30.5 

2 .54 

6.35 

7 .62 

7 .62 

7 .62 

152.5 

91 .5 

Core 

70 

137.16 

320.0 

55 .88 

25 .4 

25 .4 

17.78 

Axial Shield Below Core 

-

0 . 8 

7.85 

0 . 0 

0 . 0 

11.3 

4.Z6 

70 

104.14 

6.35 

7 .62 

7.62 

7 .62 

122. 

Removal 
C r o s s 

Section, 
c m - i 

0.0760 

0.0760 

0.1635 

0.1635 

0 . 0 

0 . 0 

0.1122 

0.102 

0.0901 

0.0760 

0.0760 

0 . 0 

0.1635 

0.0773 

0.1587 

0.1635 

0.0760 

0.0760 

0.1635 

0 . 0 

0 . 0 

0.1122 

0.1587 
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The boundary conditions imposed a r e that the the rma l neu­
t ron flux at the core surface be given, that the t he rma l neutron flux and 
t he rma l neutron cu r ren t be continuous at each shield interface^ and that the 
the rma l neutron flux be zero after an infinite thickness of the final region. 

The use of slab geometry simplifies the comiputation very 
much, pa r t i cu la r ly when the work is done by hand. Several p re l iminary 
calculat ions were made to check the accuracy involved in the simplification 
of the geometry to that of infinite s l abs . The methods utilized included 
spher ica l geometry , both by hand and by IBM CPC, slab geometry as de­
scr ibed, and slab geometry as applied in the two-group diffusion equat ions. 
The spread of the t he rma l neutron fluxes was within a factor of two for the 
var ious methods employed. This included t he rma l neutron flux d is t r ibu­
tions calculated throughout the ref lec tor , p r e s s u r e vesse l , and concrete 
regions of the EBWR. This study made the slab approximation seem r e l a ­
tively accura te as far as shielding calculations a r e concerned, and accord­
ingly, the remainder of the computations were in the slab geometry . 

The constants used to determine the the rmal neutron flux 
dis tr ibut ions in the light wa te r -modera t ed EBWR operated at 20 megawatts 
a r e l is ted in Table III. The resul t ing t h e r m a l neutron flux distr ibutions 
a r e given in F i g s . 8, 9, and 10. 

Table I I I 

CONSTANTS USED FOe THE CALCULATlOiS OF TIIF THFBMAL NEUTRON 
I-

Mate r i a l 

Light Water 
Steel 
Insulation Si He 
Lead 
Concrete 
(Ordinary) 

Light Water 
Steam 
Steel 
Concrete 
(Ordinary) 

Liph t ?tater 
S t ee l 
I n s u l a t i o n & He 
Lead 
Concrete 

(Ordinary) 
Concre te 

(Magnet i te & 
S t e e l Punching 

LUX IN THE LIGHT WATFR-MODEBATrU FISftR SHIELDING 

Density^ 

0.8 
7.85 
0.000293 

11.1 

2 .4 

Axial 

0 .6 
0.00293 
7.85 

2.4 

C l l 

Badial Sh 

0.2291 
0.3604 
7 X 102 
0.9213 

0.8452 

Sh ie ld Abo 

0.3055 
7 X 102 
0.3e04 

0.8452 

.> 

i e l j 

0.2256 
O.t»210 
3.3 X 10-4 
0.08346 

0.08148 

ve the Core 

0.1603 
3.3 X 10-* 
0.6210 

0.08148 

rr-'i 

0.1854 
0.2012 
0.02112 
0.1363 

0.1045 

0.1062 
6.7 X u r ^ 
0.1500 

0.092'J 5 

4f 
/ 2 I ' /cm^ 

3.3 
4 .3 
1.2 
8.7 

3.1 

3.3 
1.6 
2.2 

8.0 

X 

X 

X 

X 

X 

X 

X 

X 

JC 

0). 
sec 

l O " 
109 
109 
108 

108 

1 0 " 
106 
los 

10° 

Axial Sh ie ld Below the Core 

0.8 
7.85 
0.00293 

11 .3 

0.22«)1 
0.3604 
7 X 102 
0.9213 

0.2256 
0.6210 
3.3 X 10-4 
0.08346 

0.1386 
0.1319 
0.01143 
0.0741O 

3 .3 X 10^2 
1.8 X 106 
5.8 X 10* 
4 .9 X 10* 

2 .4 0.81.52 0.08148 0.1008 2.8 x 10^ 

's) 4.26 0.4947 0.4402 0.1755 2 . 8 x 10* 
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2. Heavv Water -Modera ted EBWR 

The method of calculating the t he rma l neutron flux d i s t r i ­
butions in the heavy wa te r -mode ra t ed EBWR is the same as for the light 
wa te r -modera t ed r e a c t o r . While the shield design for the heavy wate r -
modera ted EBWR was in p r o g r e s s , it soon became obvious that a judicious 
placement of boron would be quite beneficial . The boron-s t ee l t h e r m a l 
shield and the boron-s tee l plate above the r eac to r a r e two such places 
a l ready mentioned. In additions a one-mch thick p las te r made of f e r r o -
boron and Por t land cement was placed between the lead and concre te in 
the radia l shield and a l so in the shield below the co re . All of these l aye r s 
were t r e a t e d as black boundar ies , in so far as the t h e r m a l neutron flux was 
concerned, except for the Z% bora ted steel t h e r m a l shield. This region was 
ass igned constants and a flux distr ibution calculated m. o rder to es t imate 
the capture gamma r ays from i ron absorpt ions occurr ing in the t h e r m a l 
shield. F o r compar ison purposes , the t h e r m a l neutron flux is plotted both 
with and without these boron reg ions . A steel plate below the reac to r core , 
which was neglected for the sake of p e s s i m i s m in the fast neutron flux 
calculat ions, has been included m the t h e r m a l neutron flux calculat ion. 

The constants used in the de terminat ion of the t h e r m a l 
neutron flux for the heavy wa te r -mode ra t ed EBWR a r e l i s ted in Table IV. 
The t h e r m a l neutron fliax dis tr ibut ions a r e plotted m F i g s . 11, 12, and 13, 
Note that, as for the fast neutron flux calculat ions; the power level a s sumed 
for the heavy w a t e r - m o d e r a t e d r eac to r i s twice that for the light wa te r -
modera ted reactors or 40 megawat t s . 

C. Gamma-Ray F lux 

The g a m m a - r a y flux distribu<-ions throughout the shield were 
computed by means of formulas der ived from the bas ic considerat ions in 
Section II. This included exponential at tenuation with l inear buildup. 

The g a m m a - r a y flux from sources located in the r e a c t o r core 
was deduced on the bas i s of the geometry r ep re sen t ed in F ig . 3. Additional 
assumpt ions were that the source be constant throughout the core and that 
contributions from the far side of the core were negl igible . On these 
bases the g a m m a - r a y flux is 

1 + ^ o P + I ^ I j <JiRi) X 

7/cm^ sec . (7) exp f i i = i 7 
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Table IV 

CONSTANTS USED FOR THE CALCULATION OF THE 
THERMAL NEUTRON FLUX IN THE HEAVY 
WATER-MODERATED EBWR SHIELDING 

Material 

Heavy Water 

Steel (2%B) 

Steel 

Lead 

Cijncrete (Ordinary) 

or 
Concrete (Magnetite) 

(Ordinary) 

Heavy Water 

Steel 

Light Water 

Steel 

Steel 

Concrete (Magnetite 
& s tee l punchings) 

Steel 

Heavy Water 

Steel 

Heavy Water 

Steel 

Lead 

Concrete (Magnetite 
& s tee l punchings) 

Density 
gm/cc 

0.8 

7.85 

7.85 

11.3 

2.4 

3.2 

2.4 

Axial 

0.6 

7.85 

0.96 

7.85 

7.85 

4.26 

7.85 

Axial 

0.8 

7.85 

0.8 

7.85 

11.3 

4.26 

cm 

Radial Shie 

1.104 

0.3015 

0.3604 

0.9213 

0.8452 

0.6051 

0.8452 

K , 

cm * 

Id 

0.006O 

4.7393 

0.621 

0.08346 

0.08198 

0.293 

0.08198 

Shield Aove the Core 

1.47 

0.3^04 

0.1913 

0.3604 

0.3604 

0.4947 

0.3654 

Shield Below 

1.104 

0.3604 

1.104 

0.3604 

0.9213 

0.4947 

0.00518 

0,621 

0.2702 

0.6210 

0.6210 

0.4143 

0.6210 

the Core 

0.0069 

0.6210 

0.0069 

0.6210 

0.08346 

0.4143 

a , 
cm" •* 

0.1198 

0.205 

0.205 

0.136 

0.106 

0.1155 

0.0958 

0.0710 

0.1677 

0.08130 

0.1670 

0.1677 

0.1587 

0.1670 

0.0920 

0.0894 

0.0783 

0.1782 

0.1462 

0.1645 

^f (0), 
n/cm" sec 

2.0 X 1 0 " 

5.3 X 10^1 

3.1 X 1 0 " 

8.5 X 1 0 " 

3.0 X 1 0 " 

3.0 X 10^'' 

6.8 X 10^ 

2.0 X 1 0 " 

1.7 X 10® 

1,4 X 10* 

1.8 X 10^ 

1.7 X 10® 

1.4 X 10* 

2.6 X 10^ 

2.0 X 1 0 " 

5.5 X 1 0 " 

2.25 X 1 0 " 

1.4 X 10^ 

3.8 X 10® 

1.5 X 10® 
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The g a m m a - r a y flux from sources outside the core , that i s , 
neutron capture in shield mater ia l ss was computed on the bas i s of slab 
geometry as i l lu s t r a t ed in F ig . 14. 

F o r a source which i s constant the express ion for the g a m m a - r a y flux i s 

Q-v 
<l)(a) = - ^ [2 Eg (aa) - 2 Eg ( ^ t + Oa) 

<50g 

+ 9a Ei(aa)-(#-gt + 0a )Ei (ag t + 0a)]7 /cm^ sec . (8) 

The source term. "Q J ' i s the number of gamma rays born per cubic centi­
me te r each second and i s r e l a t ed to the t h e r m a l neutron flux 

The functions Ej^(x) a r e defined as 

E^(x) =/ d u ^ - ^ . (9) 
u^ 

A complete discussion, tab les of values , and in tegra l s of the functions a r e 
contained in r epo r t s by Placzek^^^) and LeCaine . i l " ) More complete tables 
of the f i rs t o rder E function, E^ (x), a r e included in the WPA Tables(17) 
under the nomencla ture of Jahnke-Em.de: 

E,. (x) = - E i (-x) . 

Convenient graphs a r e located in the Shielding Design Manual. '9) The 
higher o rde r E functions may be com.puted by means of the r ecu r s ion 
formula: 

n - 1 

or by means of the formula 

En(x) = - i _ [ e - x . x E ^ _ j (x)], n > l , (10) 

^J^^__^Z1_^,^>1 " "̂) 

The graphs of fjj(x) fromi the same repor t a r e reproduced h e r e a s F ig . 15. 

http://LeCaine.il
http://Jahnke-Em.de
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The g a m m a - r a y flux f r o m a s o u r c e which i s e x p o n e n t i a l l y 
d i s t r i b u t e d in the s a m e s l a b g e o m e t r y ( F i g . 14) m a y be e x p r e s s e d : 

w h e r e v < 1 a s 

* ( a ) - ^ e ^ t E j (Ogt + ô a) - E l (aa) 

e - a a [ e ( k - a s ) t . i ] 
(IZ) 

+ e 

( k " 5 s ) 

- ^ ^ ^ ^ { E I [ a a ( l " y ) ] - El [(Ogt + oa)( l - v ) ] } (/r—'^ y / c m s e c . 

or w h e r e f > 1 a s 

e k t E i (agt + oa) - Ej (aa) 

(k - CTs) 

(13) 

+ e 

s 

-voa J E i [(agt + Oa)(^ '» l ) ] - E i [ a a ( v » l ) ] } (/r^^ 7 / c m sec 
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The source t e r m i s r e l a t ed to the t h e r m a l neut ron flux a s before: 

Q^(v) =cra*s(v) N7 7/cm^ sec , 

but now the t h e r m a l flux i s of the fo rm 

<tg(v) =$0 6^'^ n/cm^ sec 

Here "v" i s a var iab le which i s z e ro at the source shield interface and 
i n c r e a s e s with distance into the sou rce . While the t h e r m a l flux may not 
always be r ep resen tab le by a single exponential, it can always be r e p r e ­
sented by, at most , the sum of t h r e e exponentials , because the method of 
calculation has a max imum of t h r e e t e r m s . The ftmction Ei(x) i s tabulated 
in the WPA TablesCl'^) and presen ted graphical ly in the Shielding Manual.^1^) 
It is defined a s 

Ei (x) = / d u ^ . (14) 

The express ion for the g a m m a - r a y flux at the edge of a source 
which is exponentially d is t r ibuted i s a l so of u se , and, because the formulas 
do not follow in a s imple a lgebra ic fashion by letting a-»-o in E q s . (12) and 
(13), they a r e reproduced. 

F o r v < 1: 

F o r V > It 

# (t) = 2 ^ { e k * El (0st) - ln(l-.i.) - E^ [ a s t ( l - v ) ] 

€>(t) = . ^ { e k t E i (agt) - I n ( v - l ) + E i [ a s t ( v - 1 ) ] 

+ | ^ ^ [ e ( k " ^ s ) t . i j | ^ / c m 2 sec . (I6) 

The preceding formulas for the g a m m a - r a y flux have been 
der ived on the bas i s of monochromat ic radiat ion. While this is r a r e ly , if 
ever , a r e a l situation, t h e r e a r e ways of approximating the spec t rum to 
adapt it to these monochromat ic fo rmulas . A single effective energy may 
be chosen to r ep re sen t the en t i re spec t rum, or , st i l l be t te r , a s e r i e s of 
effective energ ies or a l ine spec t rum m a y be chosen. F o r this r epor t the 
l a t t e r choice was made . F i s s ion gamma rays were cons idered to be in 
e i ther the 1-mev or the 2,5-inev energy range . The prompt fission gamma" 
r ay energy was ass igned to the 2.5-inev energy group and the fission p r o ­
duct g a m m a - r a y energy was ass igned in the proport ion 25% to the 1-mev 



group and 75% to the Z.5-mev group. More detailed information concerning 
the spec t ra of these gamma rays may be found in the Shielding Manual.(11) 
Capture g a m m a - r a y energy was ass igned according to the NDA-NBS com­
pilat ion,(l") The net resu l t is a line spec t rum with lines at 1, 2.5, 4, 6, 
and 8 mev. The re la t ive importance of each line depends upon the position 
in the shield; for example: the two lov/er energy lines were important in 
determining the heating in the vesse l , and the two higher energy l ines were 
important in determining total shield leakage. 

The g a m m a - r a y absorpt ion coefficients^ ^ used in determining 
the shield design for the light wa te r -modera t ed reac tor a r e compiled in 
Table V. G a m m a - r a y fluxes a r e plotted in F i g s . l 6 , 17, and 18. 

Tab le V 

GAMMA-RAY ABSORPTION COEFFICIENTS (HgO REFLECTOR) 

(in cm" ) 

Gamna-ray Energy, mev 

Material 

Cbre 

Ligkt Water 

Steel 

Lead 

Concrete (Ord.) 

(Magnetite & 

steel punchings) 

Density, 
gm/cc 

. 

0.8 

7.85 

11.1 

2.4 

4.26 

1 

0.3429 

0.0565 

0.46Q4 

0.7803 

0.1524 

0.2731 

2.5 

0.2101 

0.0356 

0.3069 

0.4823 

0 .0%% 

0.1737 

4 

0.2086 

0.0271 

0.2591 

0.4618 

0.07608 

0.13fi3 

6 

0.1998 

0.0222 

0.2394 

0.4940 

0.06432 

0.1152 

8 

0.2081 

0.0194 

0.2339 

0.5228 

0.05832 

0.1045 

The gannma-ray fluxes in the heavy wate r - re f lec ted reac to r 
were computed in a s imi la r manner . The g a m m a - r a y absorpt ion coef­
ficients a r e l is ted in Table VI. The g a m m a - r a y fluxes a r e plotted in 
F ig . 19. 
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Table VI 

GAMMA-RAY ABSORPTION COEFFICIENTS (DgO REFLECTOR) 

(in cm" ) 

Gamma-ray Energy, mev 

Material 

Cbre 

Heavy Water 

Steel 

Lead 

Gjncrete (Ord,) 

(Magnetite) 

(Magnetite S' 

steel punchings) 

Density, 

m/cc 

-

0.8 

7.85 

11.3 

2.4 

3.2 

4.26 

1 

0.1316 

0.0621 

0.4694 

0.7803 

0.1524 

0.2032 

0.2731 

2.5 

0.0779 

0.0392 

0.3069 

0.4823 

0.09696 

0.1293 

0.1737 

4 

0.0688 

0.0298 

0.2591 

0.4618 

0.07608 

0.1014 

0.1363 

6 

0.0660 

0.0244 

0.2394 

0.4940 

0.06432 

0.0858 

0.1152 

8 

0.0657 

0.0213 

0.2339 

0.5228 

0.05832 

0.0778 

0,1045 

V. HEAT GENERATION 

While it i s not p r e c i s e in n a t u r e , i t i s often suf f ic ient ly a c c u r a t e to 
a s 3 u m e tha t a l l n u c l e a r h e a t i n g i s c a u s e d by g a m m a r a y s tha t a r e a b ­
s o r b e d , r e l e a s i n g t h e i r e n t i r e e n e r g y a s hea t a t the point of a b s o r p t i o n . 
A c o r r e c t i o n m a y be a p p l i e d by u s i n g the e n e r g y a b s o r p t i o n c r o s s s e c t i o n 
r a t h e r t h a n the t o t a l a b s o r p t i o n c r o s s s e c t i o n . Since t h i s i s r a r e l y in 
e r r o r by a s m u c h a s a f ac to r of two, and i s in the p e s s i m i s t i c d i r e c t i o n , 
the t o t a l a b s o r p t i o n c r o s s s e c t i o n has been u s e d for a l l the m a t e r i a l s 
excep t the s t e e l and l e a d . 

It i s n e c e s s a r y t o m a k e s u r e a l l s o u r c e s of g a m m a r a y s have b e e n 
i n c l u d e d in d e t e r m i n i n g the g a i n m a - r a y flux. In g e n e r a l , t he m o s t i m ­
p o r t a n t s o u r c e , ou t s ide of the f i s s i o n p r o c e s s i tself , i s tha t p r o d u c e d by 
n e u t r o n a b s o r p t i o n . T h i s u s u a l l y can be c o n s i d e r e d p r e d o m i n a n t l y r e ­
su l t ing f r o m t h e r m a l n e u t r o n c a p t u r e s . It i s we l l , h o w e v e r , t o e s t i m a t e 
h e a t i n g due to fas t n e u t r o n s c a t t e r i n g , bo th e l a s t i c and i n e l a s t i c , a s wel l 
a s fas t n e u t r o n a b s o r p t i o n . An o r d e r of inagn i tude e s t i m a t e can be m a d e 
qui te r a p i d l y to e l i m i n a t e ooub t s . 
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A formula that exp re s se s the heat generat ion, once the g a m m a - r a y 
flux has been determined, is 

H = aE'J>-y m e v / c m ' sec , (17) 

where 

O = gamraa - r ay energy absorpt ion coefficient (cin"i), 

E = g a m m a - r a y energy (mev), 

'̂  7 ~ g a m m a - r a y flux (7/cm^ sec) . 

While this is quite a naive approach it must be r e m e m b e r e d that the 
heating cannot be m o r e accura te ly de termined than the g a m m a - r a y flux. In 
addition, the longer per iod of t ime spent in a m o r e accu ra t e analys is may 
cost m o r e than the accuracy w a r r a n t s . 

The heat generat ion for the EBWR shield has been de termined on 
the bas i s of the preceding discuss ion. The r e su l t s for the light water -
modera ted design a r e plotted in F ig . ZO. The re su l t s for the heavy wa te r -
modera ted vers ion a r e plotted in F ig . 21 . 
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