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ABSTRACT 

The po ten t i a l  of geothermal energy i n  sa t i s fy ing  the  na t ion ' s  energy 
needs depends i n  p a r t  on the s i z e  and extent  of hydrothermal reservoi rs  and 
on the  economics of ex t rac t ing  energy from such reservoi rs  t o  be converted 
to  e l e c t r i c  power. 
ac tua l  t e s t ing )  of u t i l i z i n g  water a t  temperatures w e l l  below what i s  now 
considered the commercially v i a b l e  range. 
temperatures of less than 150°C (302'F). 
major considerat ion i n  t h i s  pro jec t ,  and w i l l  include the  re- inject ion of a l l  
waste geothermal f l u i d s  without contaminating the abundant near-surface aqui fe r .  

The R a f t  River Project  w i l l  s tudy the  techniques (by 

Geochemical ind ica tors  show reservoi r  
Environmental condi t ions w i l l  be  a 

T h e  f i r s t  d r a f t  of this repor t  was Pssued Ju ly  27, 1973, and made p a r t  of t he  
testimony t o  the August 10, 1973, U.S. Senate Subcommittee Hearings on Water 
and Power, Committee of I n t e r i o r  and Insu lar  Affairs .  
received minor rev is ions  as progress on the Raft  River Pro jec t  has developed. 

P r inc ipa l  authors are: 

The r epor t -has  subsequently 

J. F. Kunze and L. G. Miller of Aerojet  Nuclear Company 

D. T, N e i l l ,  a professor  at Idaho S t a t e  University who w a s  temporarily 
employed hy Aerojet  Nuclear Company during the  summer of 1973. 

C. R. Nichols, a professor a t  Boise S t a t e  University who w a s  a consul tant  
t o  Aerojet  Nuclear Company i n  t h e  summer of 1973. 

Major cont r ibu t ions  t o  the organizat ion and development of this  pro jec t  were 
made by: 

Edwin C. Schlender, Manager, Raft River Electric Cooperation 

Jack A, Barnet t ,  Geological Consultant t o  Raft  River Electric Cooperative. 

In addi t ion,  the authors . w i s h  t o  acknowledge t h e  contr ibut ions t o  t h i s  work by 
R, M. Brugger and E. R, C h r i s t i e  of Aerojet  Nuclear Company and R. E. Wood and 
J. L. G r i f f i t h  of the U.S. Atomic Energy Commission, Idaho Operations Office. 
The Northwest Publ ic  Power Council (Vancouver, Washington) and t h e  Snake River 
Power Association membership have a l s o  provided valuable  support and ideas.  



TABLE OF CONTENTS 

1.0 INTRODUCTION AND SCOPE . . . . . . . . . . . . . . . . . .  
2 . 0  THE GEOLOGICAL SETTING AND PRE-CONSTRUCTION INVESTIGATIONS 

2.1 Geothermal Evidence. . . . . . . . . . . . . . . . .  
2 . 2  Previous Invest igat ions.  . . . . . . . . . . . . . .  
2 . 3  Geologic Se t t ing  . . . . . . . . . . . . . . . . . .  
2.4 Geologic Objective and Research Plan . . . . . . . .  

3 . 0  POWER PLANT DESIGN CONSIDERATIONS. . . . . . . . . . . . .  
3 . 1  Steam Cycle. . . . . . . . . . . . . . . . . . . . .  
3 . 2  Binary Cycle . . . . . . . . . . . . . . . . . . . .  
3 . 3  Combined Cycle . . . . . . . . . . . . . . . . . . .  

PaRe 
. .  1 

. .  7 

. .  8 

. .  9 

. .  9 

. . 10 

. . 16 

. .  16 

. . 21 

. . 25 

3 . 4  Two Stage Steam Flash. . . . . . . . . . . . . . . . . .  27 
3 . 5  Geothermal Well Flow . . . . . . . . . . . . . . . . . .  31 

3 .6  Flow From t h e  Well t o  t h e  Power P lan t .  . . . . . . . . .  34 

3.7  Summary of Power P lan t  Design Considerations . . . . . .  36 

4.0 OPERATION AND RESEARCH INVESTIGATIONS W I T H  THE PLANT . . . . .  38 

4 . 1  Environmental Considerations . . . . . . . . . . . . . .  39 
4.2 Test ing Program t o  Achieve Objectives.  . . . . . . . . .  40 

5 . 0  SCHEDULE AND BUDGET . . . . . . . . . . . . . . . . . . . . .  44 

6 . 0  PARTICIPANTS AND FUNDING ARRANGEMENTS. . . . . . . . . . . . .  45 

7.0 REFERENCES.. . . . . . . . . . . . . . . . . . . . . . . . .  47 

i v  



. 
TABLE OF CONTENTS (Cont'd) 

Page 

FIGURES 

1 Thermal Springs in the Western U.S. . . . . . . . . . . . . .  
2 Raft River Valley and Snake River Volcanic Rift Area . . . . .  
3 Geothermal Steam Cycle . . . . . . . . . . . . . . . . . . . .  
4 Geothermal Binary (Organic Fluid) Cycle . . . . . . . . . . .  
5. Combined Steam-Freon Cycle (True Binary) . . . . . . . . . . .  
6 Calculated Well Flows with Cold Hydrostatic Head . . . . . . .  
7 Raft River Valley Area . . . . . . . . . . . . . . . . . . . .  

3 

4 

17 

22 

26 

32 

43 

TABLES 

I Line Identification Key for Figure 3 (Steam Cycle) . . . . . . . . .  18 
I1 10 m(e) Steam Rankine Cycle Comparison Cycle. . . . . . . . . . . .  l!' 
I11 Organic F+uid 10 MW(e) Comparison Table . . . . . . . . . . . . . .  23 
IV Operating Parameters for Combined Cycle . . . . . . . . . . . . . .  24 
V Two Stage Steam Flash. . . . . . . . . . . . . . . . . . . . . . . .  30 

VI Hydrostatic Pressures with 2OoC Cold Leg . . . . . . . . . . . . . .  33 
VI1 Flows Between the Well and Power Plant . . . . . . . . . . . . . . .  35 

42 VIII Chemical Content and Other Characteristics of Boiling Raft River 
Wells............................... 

V 



1.0 INTRODUCTION AND SCOPE 

The area of Southern Idaho is one of the  most promising regions within 
the  United S t a t e s  f o r  near surface,  economically recoverable geothermal energy. 
It is  iden t i f i ed  by geologis ts  a s  t he  younger end of a major Volcanic R i f t  
Province. The Raft  River Valley is  a fau l ted ,  north-south trending sedimentary 
basin in t e r sec t ing  t h e  major volcanic  r i f t  known as the  Snake River Plain.  It 
is  i n  t h e  Raft  River Basin tha t  a number of w e l l s ,  d r i l l e d  f o r  i r r i g a t i o n  pur- 
poses, unexpectedly yielded warm t o  hot water. Two such w e l l s  bottoming a t  
400 and 540 f t  y i e ld  boi l ing  water under a r t e s i a n  flow. These w e l l s  are near 
t he  Malta, Idaho headquarters of t he  Raft  River Rural Electrical Cooperative, 
Inc., an REA financed power company serving 10,000 sq m i l e s  of Southcentral  
Idaho, Northwestern Utah, and Northeastern Nevada. The National Reactor Testing 
S ta t ion ,  with its 5,000 man work force  and extensive research and development 
f a c i l i t i e s  is located approximately 40 m i l e s  nor th  of t h e  Raft  River Electric 
se rv ice  area, with its headquarters (those of t h e  Idaho Operations Office) 
located i n  Idaho Fa l l s .  
contractor  t o  t h e  U.S. Atomic Energy Commission a t  t h e  National Reactor Testing 
S t a t  ion. 

Aerojet  Nuclear Company is  the  p r inc ipa l  and an exclusive 

The occurrence of the  boi l ing  water i n  the  Malta, Idaho area prompted the  
R a f t  River Rural E l e c t r i c  Cooperative to  conduct preliminary geological  inves t i -  
gat ions per t inent  t o  the  p o s s i b i l i t y  of es tab l i sh ing  a geothermal power p lan t  i n  
the area f o r  t h e  production of e l e c t r i c i t y .  Simultaneously, the Coop management 
began securing geothermal leases on the  p r iva t e  land owned by i t s  members. 
Aerojet  Nuclear Company entered i n t o  a preliminary engineering and f e a s i b i l i t y  
study, including ass i s tance  i n  gathering addi t iona l  geophysical information from 
the  Raft  River Valley. 

The harnessing of geothermal energy f o r  electric power production i n  the  
United States has occurred only i n  one area, the  Geysers i n  Northern Cal i fornia .  
There, the  geology provides a dry steam production area a t  4,000 t o  8,000 f t  
depth, where pressures  are only 500 p s i  and temperatures are approximately 
195OC (380OF). 
because of high f l u i d  content and hence high pressure (2,000 t o  4,000 ps i )  a t  these 
depths. Most geothermal f i e l d s  are therefore  hot  water f i e l d s .  
t h e  lower the  temperature of t h e  water, t he  more of i t  occurs throughout t h e  nation. 
Theoret ical ly ,  a power p lan t  can be operated on f l u i d  of any temperature above the 
hea t  s ink  (condenser ) temper a t u r  e. 

A t  low temperatures the most common working f l u i d ,  water, has extremely 

Unfortunately, t h i s  type of geothermal anamoly is rare, pr imari ly  

As would be expected, 

low densi ty  as a gas. 
handle t h i s  gas. 
the  turb ine  could t r ans fe r  heat t o  a f l u i d  having higher densi ty  (such as freon) ,  
allowing the  turb ine  t o  be smaller than a steam turb ine  of t he  same output.  
advantage of a smaller turbine is coupled with t h e  disadvantage of needing the two 
hea t  exchangers. 
capab i l i t y  of approaching but  never a t t a in ing  the  idea l  Carnot cycle  e f f ic iency  of 

Turbine machinery must therefore  be extremely l a rge  t o  
On t h e  other  hand, a hea t  exchanger on the "front  and rear" of 

The 

Theoret ical ly ,  both systems can be considered as having the  

. 
T1 - T2 

T1 
Eff = 

T 
e ra tu re ,  both on the  absolute  temperature sca le .  

i s  the ho t  source temperature (geothermal f l u i d )  and T2 is  the  condenser temp- 
1 

1 



I n  prac t ice ,  few machines can a t t a i n  t h i s  i d e a l  e f f ic iency .  But a l so ,  
i n  p rac t i ce ,  work can be  done wi th  a machine f o r  which t h e  heat  source (That) 
i s  a t  a higher temperature than t h e  hea t  s ink  (Tcold). 
Russians are reportedly operating geothermal power p l a n t s  i n  one case between 
80°C (186°F) and 15°C (59°F) and i n  another case between 40°C (110°F) and 5'C 
(41°F). 
thermal energy attractive almost any place i n  t h e  world, bu t  pa r t i cu la r ly  so 
i n  t h e  western United States with i t s  abundant near sur face  hot  water. Figure 
1 shows t h e  major ho t  spr ing  areas ,  of which Idaho is  the  most prominent region. 
To demonstrate t h a t  e lectr ic  power can be  generated e f f ec t ive ly  and economically 
from hot  water geothermal sources would make ava i l ab le  t o  t h e  na t ion  (and the  
world) a very abundant, sa fe ,  and non-polluting i o m  of energy. 

A s  an example, t he  

To be  ab le  t o  do so eas i ly  with competitive cos t s  would make geo- 

The objec t ive  of t h i s  pro jec t  is  t o  construct  a 20 m ( e )  dua l  cyc le  (one 
steam, one binary) geothermal power p lan t  operat ing from a r e l a t i v e l y  low Cemp- 
e ra tu re  (approximately 150°C), highly convective geothermal area. This tempera- 
t u r e  i s  t h e  indicated (minimum) geochemical thermometer va lue  obtained from t h e  
Raft River hot  w e l l s .  Also, 150°C (300'F) represents  t he  t y p i c a l  indicated geo- 
thermal reservoi r  temperatures from most of t he  w e l l s  and ho t  spr ings  i n  Soutnern 
Idaho. (Young and Mitchel l ,  1973). 

The f i r s t  phase of t h i s  pro jec t  w i l l  r e s u l t  i n  t h e  construct ion and opera- 
t i on  by winter  1975-76,of a demonstration geothermal power p l an t  of approximately 
10 MW capacity using a l o w  temperature steam rankine cycle.  
b u i l t  i n  t h e  Snake River P la in  region within t h e  se rv ice  a rea  of t he  Raft  River Rural 
E l e c t r i c a l  Cooperative. 
s i z e  by t h e  addi t ion  of another 10 MW u n i t  operating on a binary f l u i d  rankine 
cycle.  
the  supply-recharge c a p a b i l i t i e s  of t he  geothermal f i e l d ,  of the  temper- 
a tu re  of t h e  supply f l u i d ,  of t h e  p l an t  performance, and of t he  require- 
ments f o r  demonstrating the  performance of a binary f l u i d  power system. 
s i t e  t o  be chosen is  expected t o  be a r e l a t i v e l y  low temperature, wet-convective 
geothermal area, with maximum temperatures i n  t h e  range of 150°C (302°F). This 
program thus w i l l  demonstrate t h e  capaci ty  of harnessing the  low temperature 
geothermal sources r e l a t i v e l y  near t o  t h e  surface.  The exact  s i t e  f o r  t he  power 
p lan t  w i l l  be  se lec ted  from geophysical s tud ie s  to be performed initially i n  t h i s  
program. The s i te  i n  any case w i l l  be  i n  o r  immediately contiguous t o  the  se rv ice  
area of t h e  REA company serving Southcentral  Idaho, Northwestern Utah, and North- 
eas te rn  Nevada. 
publ ic ly  owned and serves  1,750 customers over a 10,000 square m i l e  area. Figure 
2 shows t h e  Raft  River service area and t h e  NRTS geographic re la t ionship .  Its 
present  peak winter  load is 10  MW, and i t s  summer i r r i g a t i o n  season peak i s  40 MW. 
All its power is cur ren t ly  purchase from t h e  Bonneville Power Administration a t  
approximately 3 mills/kW hr. The BPA is  wi l l i ng  t o  make arrangements t o  "wheel" 
any excess power t o  neighboring publ ic  u t i l i t e s  which a geothermal p l an t  i n  the  
area might develop. The need f o r  geothermal power development i n  t h e  area is of 
pa r t i cu la r  s ign i f icance  because cur ren t ly  a l l  ava i l ab le  hydroe lec t r ic  eneygy is  
being u t i l i z e d .  Coal, gas,  o r  o i l  suppl ies  f o r  any type of f o s s i l  p l an t  must.be 
shipped from a g rea t  dis tance.  
resu l ted  i n  a steady 10% growth i n  electric power assumption i n  t h i s  area. The 
po ten t i a l  f o r  l a r g e  mineral  ex t rac t ion  indus t i r e s  a t  t he  Great S a l t  Lake, i n  t h e  
southwest p a r t  of t h e  Raft  River Cooperative serv ice  area, is a l s o  of s ign i f icance  
in  regard t o  fu tu re  power growth requirements. 

The p l an t  w i l l  be 

Phase I1 w i l l  r e s u l t  i n  expansion of t h e  power p l an t  

Performance and ef f ic iency  of t he  two component p l an t  w i l l  depend on 

The 

This company, t h e  Raft  River Rural Electrical  Cooperative is 

Expansion i n  i r r i g a t i o n  pumping requirements have 
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The AEC and its contractor  w i l l  design and i n s t a l l  t he  geothermal plant.  
W 

Raft River Rural Electric w i l l  arrange f o r  l ea s ing  of t he  private-land geothermal 
r i g h t s  on which i t  now has an option. 
electrical connections and use of t h e  power. The AEC w i l l  a c t ive ly  monitor and 
manage t h e  geothermal f i e l d ,  which though highly convective exists i n  a region 
where ground water suppl ies  have been shown t o  be q u i t e  s e n s i t i v e  t o  withdrawal 
rates. 
cold-water aquifer)  is  considered a l i k e l y  necessity.  
operation is achieved, t h e  f i e l d  operation w i l l  be turned over t o  the  Raft  River 
Electric o r  t o  its associated publ ic  power group, t he  Snake River Power Association. 

The scope of this program includes two p r inc ipa l  goals unl ike other  current  
geothermal projects :  

1. 

The u t i l i t y  w i l l  a l s o  provide f o r  the 

Reinjection of both geothermal and condenser cooling-water (from t h e  
Once a nominally s t a b l e  

The u t i l i z a t i o n  of r e l a t i v e l y  low temperature geothermal f l u i d  (15OoC), 
invoicing comparison s t u d i e s  of both t h e  steam and binary (organic f l u i d )  
rankine cycles. 
w i l l  be  made. 

The  managing of t h e  f i e l d  hy re- inject ion of both thermal and condenser 
cooling w a t e r s  t o  minfmize environmental islpact and t o  achieve long f i e l d  
119 e. 

Cost comparisons f o r  subsequent commercial appl icat ions 

2. 

T h e s e  a h w e  goals  w i l l  involve t h e  harnessing of energy from a t y p i c a l  t ec ton ic  
v a l l e y  s t r u c t u r e  f o r  the Western U.S., with adequate wet-convective energy t o  
run a 100 MK(e) p l a n t  f o r  several hundred years. 
t o  other  areas i n  the Western U.S. s iou ld  6e expedited. 

Thus, technology t r a n s f e r  

The Raft  River area is i d e a l  f o r  demonstrating t h e  harnessing of t he  power pro- 
ducing p o t e n t i a l  i n  warm, not  hot ,  water. 
conventional steam turbine systems appear only marginal f o r  normal appl icat ions.  
But, t h e  Raft  River Valley's near su r face  aquifer  is q u i t e  cold, approximately 
10°C (50'F). 
a t t r a c t i v e .  
can be withdrawn from this  w a t e r  and converted t o  mechanical energy by using the 
1 0 ° C  s ink.  
d e f i n i t i o n  cannot be given. 
thermal water, a 15% ef f i c i ency  can be defined. 

With only 150°C water an t i c ipa t ed ,  

With such a cold temperature hea t  s ink,  1 5 O O C  water becomes q u i t e  
Approximately 15% of t h e  s e n s i b l e  hea t  ( r e l a t i v e  t o  O°C o r  32'F) 

Since t h e  heat  is  f r e e  i n  a sense,  a cycle  e f f i c i ency  hy t h e  normal 
But s t a t e d  relatfye t o  the heat s to red  i n  the geo- 

The cbj.chof 10 BXkl as the s i z e  of tlie demonstratLon p lan t  modules is 
based, a t  least p a r t i a l l y ,  on s p e c i f i c  considerations r e l a t i n g  t o  convenience. 
The f u l l  output of t h e  f i r s t  10 MW power p l an t  output could e a s i l y  be absorbed 
by t h e  Raft River Rural Electric Coop., except perhaps during off-peak condi- 
t i o n s  on warm winter  days. 
during i r r i g a t i o n  season and could, a t  other  times, be transmitted t o  adjacent 
u t i l i t i e s  of t h e  Snake River Power Association. A f u r t h e r  consideration f o r  t h e  
steam p lan t  is t h e  f a c t  t h a t  t he re  e x i s t  "off-the-shelf" t u rb ine  generator u n i t s  
capable of operating on 15OoC saturated steam and de l ive r ing  nearly 10 MW(e) output. 
The binary (organic f l u i d )  cycle  t o  be added f o r  t h e  second 10 MW u n i t  w i l l  prob- 
ably be somewhat undersized compared to the t o t a l  amount of ex t r ac t ab le  heat  t h a t  
can be obtained from t h e  geothermal f l u i d  used t o  d r i v e  the  f i r s t  
(See Section 3.4) 
pressures  and temperatures are determined, t he  appropriate  design size f o r  t he  
binary p l an t  cannot be determined. 

The second 10 MW output could be absorbed e a s i l y  

steam plant.  
However, u n t i l  t he  f i r s t  w e l l  is dug and the  bottom hole  
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Small geothermal power p l an t s  i n  the 10 t o  20 MW(e) a l s o  have pa r t i -  
c u l a t  s ign i f i cance  t o  t h i s  region of t h e  nation. With t h e  spa r se  population, 
electric u t i l i t y  load centers  are l a rge ly  of t h e  magnitude range 10 t o  50 EN, 
with 50 t o  100 m i l e s  separat ing load centers of t h i s  type. 
of t h e  power consumed by t h e  consumer-owned u t i l i t i e s  i n  Southern Idaho is 
generated by the  hydroelectr ic  fac i l i t i es  i n  t h e  Columbia River Basin, 300 t o  
700 m i l e s  away. 
ing of new transmission l ines when needed w i l l  be expensive ( typ ica l ly  $150,000/ 
m i l e ) .  Therefore, construction of small-sized generating f a c i l i t i e s  a t  these 
many s m a l l ,  i so l a t ed  load centers  not only provides a secure generating base f o r  
the center  bu t  helps t o  buoy-up t h e  e n t i r e  transmission system wi th in  the northwest 
power grid.  
of t he  nation, p l an t s  of t h i s  s i z e  placed as discussed are of g r e a t  advantage i n  
this region of the country. 

Currently, most 

Transmission lo ses  are l a rge ,  t h e  order of 15%, and the  build- 

D e s p i t e  t he  insignif icance of 10 t o  20 MW(e) t o  the t o t a l  power needs 

Plant s i z e s  i n  thh range of 20 t o  200 MW(e) are probably of optimum 
s i z e  economically f o r  appl icat ion of geothermal energy, because of i ts  r e l a t i v e l y  
d i f f u s e  nature.  
between 3 and 10 MW(e), depending on the  exact conditions.  
s u f f i c i e n t l y  f a r  apa r t  (i.e., one p e r  40 acres) so as t o  have i n s i g n i f i c a n t  i n t e r -  
action. 
without excessive expense and l o s s  of f l u M  enthalpy. 
that 10 t o  20 w e l l s  is the maximum number that could serve one power p l an t  module. 
For this reason, i t  seems th t  200 WCe] may. be the maximum p r a c t i c a l  t u rb ine  s i z e  
t o  consider f o r  even the bes t  of geothermal f f e l d s .  

A s i n g l e  w e l l  can probably produce f l u i d  s u f f i c i e n t  t o  generate 
Wells must be spaced 

And, t h e  f l u i d  cannot be piped Over too long a d i s t ance  t o  t h e  generator 
Therefore, i t  would appear 

The purposes of the Raft River Project  are t o  perform the necessary research 
and development t o  a t t a i n  the major p r inc ipa l  object ives  l i s t e d  above. Hopefully, 
performance and cost  da t a  from t h e  experrence on this pro jec t  w i l l  show t h a t  t he  
commercial construction of geothermal power p l a n t s  operating on medium temperature 
water can b e  competitfye w i t h  o t k  forms of energy. If €ndeed th2s can be demon- 
s t r a t e d ,  then subsequent expanslon of tFie 'Raft R i t r e r  p l an t  and construction of 
p l an t s  elsewhere can 6 e  undertaken without government funding.* 

J( 

prime, wholly integrated contractor  t o  the  U. S. Atomic Energy Commission, t o  
produce e l e c t r i c  power f o r  commercial markets. 
Inc., is pa r t i c ipa t ing  i n  t h i s  program f o r  two p r inc ipa l  reasons: 1) t o  encourage 
and support the necessary research and development t o  make medium temperature geo- 
themial f i e l d s  of value t o  t h e  na t ion ' s  energy requirements, and 2) t o  a s su re  t h a t  
t he  power developed i n  such a research e f f o r t  is not wasted bu t  is indeed u t i l i z e d  
within t h e  northwest power grid.  

It i s  n e i t h e r  the charter nor the in t en t ion  of the Aerojet  Nuclear Company, a 

The Raft  River Rural Electric Coop., 

6 



2.0 THE GEOLOGICAL SETTING AND PRE-CONSTRUCTION INVESTIGATIONS 

The  presence of two w e l l s  w h i c h  produce water a t  o r  near t h e  bo i l ing  

point  has a t t r a c t e d  considerable geologic a t t e n t i o n  t o  the Raft  River Valley. 

(Fig. 2)  

Valley w e l l s  and one spr ing near Salmon produce the only su r face  water a t  o r  

near the bo i l ing  po in t  (Ross, 1970). 

Tinough Idaho is  a state with abundant hot  spr ing a c t i v i t y ,  the Raft  River 

T h e  Raft  River Valley appears t o  be i d e a l l y  s i t u a t e d  f o r  a geothermal 

demonstration p ro jec t  i n  terms of its geologic s e t t i n g .  

t i o n s  f o r  the occurrence of hot water i n  t h e  Raft  River w e l l s  are possible  on 

the b a s i s  of ava i l ab le  data.  

Two a l t e r n a t i v e  explana- 

1. T h e  hot water occurs wi th in  a down fau l t ed  

t y p i c a l  i n  many respects  of hundreds of s i m i l a r  va l l eys  i n  
the Basin and Range Province of Utah, Nevada, and Idaho. 

T h e  thermal water may r e f l e c t  simply the r e s u l t  of deep 

convective c i r c u l a t i o n  of ground water t o  depths of about 

6,000 f t  i n  an  area of regional ly  high heat flow. 

The thermal waters a t  Raft River may r e s u l t  from heating by 

a cooling i n t r u s i v e  m a s s  emplaced a t  r e l a t i v e l y  shallow depths 

beneath o r  adjacent t o  the val ley.  

v a l l e y  which is 

2. 

I f  the f i r s t  explanation is t h e  co r rec t  one, the r e s u l t s  of t he  study 

would be d i r e c t l y  appl icable  t o  the numerous other f au l t ed  va l l ey  s i t u a t i o n s  

throughout t he  e n t i r e  Basin and Range province of t he  western United States .  

The 145OC minimum temperatures geochemically predicted f o r  t he  Raft  River 

w e l l s  are t y p i c a l  of t h e  geothermal systems throughout t h e  western United States .  

I f ,  however, a l o c a l  intense heat  source is encountered within the va l l ey ,  

t he  chances of a higher temperature, more e f f i c i e n t  power generation f a c i l i t y  

would b e  enhanced. 

geologically f eas ib l e .  

I n  e i t h e r  instance an e f f e c t i v e  demonstration p ro jec t  appears 
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2.1 Geothermal Evidence 

I n i t i a l  i n t e r e s t  w a s  drawn t o  the Raft  River Valley because of two 

w e l l s  d r i l l e d  many years  ago f o r  i r r i g a t i o n ,  w e l l s  t h a t  turned out t o  be 

a r t e s i a n  hot  water w e l l s  w i t h  temperatures near t he  boi l ing  point .  

w e l l  w a s  abandoned, but  t h e  other  has subsequently been u t i l i z e d  f o r  heating 

a greenhouse. 

d r i l l e d  f o r  cold water source and found t o  y i e ld  warm water, 10 t o  25 degrees C 

above t h e  average near sur face  aqui fe r  temperature. 

passing through a shallow cold w a t e r  aqui fe r  these w e l l s  reach high tempera- 

t u r e  water a t  depths of 350 t o  450 f ee t .  

One 

Several  other  w e l l s  throughout t he  Raft  River Valley were 

It appears t h a t  a f t e r  

The Raft  River Valley is a n i r r r g a t e d  farming and l i ves tock  r a i s i n g  

area. Most of i t  is  i r r i g a t e d  from underground water. There are about 1,000 

w e l l s  varying i n  depth from 50 t o  1300 fee t .  A number of these have been 

abandoned because unexpected high water temperature has destroyed the  crops. 

Most of the w e l l s ,  though,are fed by cold and warm aqui fe rs  so  t h a t  water 

is useable fo r  i r r iga t ion .  

Temperature logs on numerous w e l l s  throughout t h e  va l l ey  ind ica t e  

cold water aqui fe rs  are down t o  depths of 300 f e e t  a t  the  upper va l ley  

and 500 f e e t  i n  t h e  lower va l ley  with a warm o r  ho t  water aqui fe r  below 

these leve ls .  The water t a b l e  a l s o  drops about 200 f e e t  from the  upper t o  

lower va l ley .  The warm o r  hot  water aqui fe r  appears t o  be a near continuous 

aqui fe r  with t h e  higher temperatures general ly  along t h e  western s i d e  of the  

val ley.  A known f a u l t  a l s o  runs along t h i s  s i d e  of t he  va l l ey  and most a r t e s i a n  

w e l l s  are located along t h i s  same s i d e  of t he  va l ley .  

These c h a r a c t e r i s t i c s  seem t o  ind ica t e  some maj-or hea t  source south 

of Malta which is inf luencing a major p a r t  of t he  val ley.  Since the  hea t  can 

move l a t e r a l l y  more e a s i l y  than v e r t i c a l l y  through the  va l ley  f i l l ,  hea t  is 
being supplied from below the  hot  aqui fe r  over p a r t s  of t he  val ley,with hot  

water under pressure being forced up the  f a u l t  l i n e  t o  produce t h e  hot  

a r t e s i a n  w e l l s .  
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As added evidence f o r  t he  above model, a nose of a magnetic high 

pushes i n t o  the  area j u s t  north of t he  h o t t e s t  water w e l l  and an anomalous 

high g rav i ty  Both of these would 

possibly i n d i c a t e  some buried s tock o r  i n t r u s i v e  mass a t  not t o  g r e a t  a 

depth. However, its age and i n t r i n s i c  heat  cannot be in fe r r ed  from the  

ex i s t ing  information. 

measurement covers t h i s  same region. 

2.2 Prevgous Invest igat ions 

Previous geologic inves t iga t ions  of t h e  region include a compre- 

hensive study by Anderson (1931) and more recent  i nves t iga t ions  emphasizing 

hydrologic aspects  of the area by Nace et al., (19611, Armstrong (19661, 

Comptor (19661, Damond (19661, and Malker et al., (19701, Gravity and 

magnetic mapping on a regional  s c a l e  which include this area have been 

accomplished by Don Mabey of t h e  Regional Geologic Branch, Denver Region, 

United S t a t e s  Geologic Survey. 

f i l e  b a s i s  a t  the Denver Survey Office. 

This information is ava i l ab le  on an open 

Approximately a year of geothermally or iented geologic work has been 

accomplished by M r .  Jack Barnett, Consulting Geologist f o r  t h e  Raft  River 
Rural Electric Cooperative. T h i s  i nves t iga t ion  has included de ta i l ed  w e l l  

water temperature and chemistry surveys I n  the Raft: River Basin, app l i ca t ion  

of t he  S i 0  geothermometer technique, s e l f -po ten t i a l  surveys and temperature 
measurements i n  shallow d r i l l  holes. 

2 

2.3 GeoloRic S e t t i n g  

-The Raft River Valley is a Basin and Range type north-south trending 

s t r u c t u r a l  depression which has as its northern l i m i t  t h e  Snake River Plain.  

Stone (1969) has suggested that recent  b a s a l t i c  volcanism at  the north end 

of -the v a l l e y  m a r k s  the i n t e r s e c t i o n  of three major t ec ton ic  features ,  t he  

r i f t  zones of the e a s t e r n  and western Snake River Plains ,  and the  major 

north-south trending f a u l t i n g  of t h e  Raft River Valley. 

s epa ra t e  the va l l ey  from the  C o t t r e l l  Range t o  the w e s t  and the Sub le t t  and 

Black Pine Ranges on the  east. 

westward-tilted, down fau l t ed  block, whereas t h e  C o t t r e l l  range is an 

upfaulted block which a l s o  has a westward d i p  (Anderson 19311, 

These f a u l t s  

The f l o o r  of the Raft River Valley is a 
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The south end of t he  va l l ey  is terminated by the  east-uest trending 

Raft River Range. 

considerations i n  the  v i c i n i t y  of "The Narrows'' a t  the southern terminus 

of t h e  C o t t r e l l  Range and the Raft  River Valley near the v i c i n i t y  of the 

hot w e l l s  and the  F raz i e r  KGRA. 

A west-trending f a u l t  zone is  suggested by topographic 

*, 

(Known Geothermal Resource Area, Figure 7) .  

T h e  Raft Formation of Quaternary Age and the S a l t  Lake Formation of 

Te r t i a ry  Age occurs within t h e  s t r u c t u r a l  depression or  graben of the Raft  

River Valley. 

6000 f e e t  of sedimentary and volcanic f i l l  withindeeper po r t ions  of the 

valley.  The S a l t  Lake  formation cons i s t s  of sandstones, s i l t y  sandstone, 

t u f f s  and welded t u f f s  with a max imum aggregate exposed thickness of 2,500 
f e e t  (Malker et al.,  19701. 

Open f i l e  USGS g rav i ty  da t a  ind ica t e s  a t o t a l  thickness of 

T h e  Raft Formation cons i s t s  of an exposed thickness of 1,000 f e e t  of 
a l l u v i a l ,  f l u i v i o g l a c i a l  and l u c a s t r i n e  sands and gravels.  The percentage of 

coarse-grained material i n  the Raft Formation i n  the v a l l e y  increases  markedly 

toward the south. Both the Raft Formation and S a l t  Lake Formation serve as 

aquifers  i n  the valley.  

u n i t  of the S a l t  Lake Formation is about 1,600 gpm (Ibib,  p 25). 
The  median y i e l d  of 18 w e l l s  completed i n  the upper 

2.4 Geologic, Obi e c t i v e  and Research Plan 

The geologic phase of the proposed researchwould have as i ts  primary 

object ive the loca t ion  of s p e c i f i c  d r i l l i n g  sites within the Raft River area 

which possess the optimum p o t e n t i a l  f o r  producing high temperature and high 

volume thermal f l u i d s .  

geologic, geochemical and geophysical techniques would be u t i l i z e d  t o  expand 

the present understanding of t h e  geothermal system within t h e  Raft River 

Valley. Techniques t o  be employed i n  an approximate chronological order 

could be: 

I n  order t o  accomplish this goal  a combination of 

1. Detailed geologic mapping a s s i s t e d  by both "black and white" 

and "false-color" infra-red s t e r e o  aerial  photography. 

2. A de ta i l ed  i n t e r p r e t a t i o n  of ava i l ab le  aero-magnetic and g rav i ty  

da t a  f o r  t he  Raft River Valley. 
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3. 

4. 

5 .  

6 .  

7. 

8. 

1. 

Microseismic and ground no i se  monitoring. . 
Dipole-Dipole r e s i s i t i v i t y  mapping of suspected thermal zones. 

Thermal gradient  measurements i n  intermediate-depth bore holes 

and heat flow calculat ions.  

Refraction seismic techniques applied t o  suspected f a u l t  zones. 

Analysis of d a t a  and s e l e c t i o n  of an i n i t i a l  test site. 

Geologic, geochemical, and geophysical monitoring of test d r i l l i n g .  

Detailed Geologic Mapping 

A d e t a i l e d  knowledge of the s t r u c t u r a l  and s t r a t i g r a p h i c  frame- 

work of a geothermal zone is an absolute  requirement f o r  optimum 

w e l l  s i t i n g  and completion. 

gat ion and p a r t i c u l a r l y  the d e t a i l e d  geologic mapping is the  

base on which a l l  o the r  d a t a  is accumulated. 

of this phase of the work is  the  de l inea t ion  of the s t r u c t u r a l  and 

The p r e d r i l l i n g  geologic invest i -  

The primary object ive 

s t r a t i g r a p h i c  con t ro l s  on hot  water occurrences a t  t h e  demonstra- 

t i o n  site. 
u t i l i z e d  as the s t a r t i n g  point  f o r  more de t a i l ed  inves t iga t ions  

of the f a u l t  d i s t r ibu t ions .  

Geologic mapping by previous inves t iga to r s  w i l l  be 

Available stereo, black and w h i t e  aerial photography from t h e  

Geologic Survey w i l l  be  supplemented by "false-color" infra-red 

photography work. It is an t i c ipa t ed  t h a t  the moisture sensi- 

t ive infra-red photography w i l l  p o t e n t i a l l y  aid i n  t h e  de t ec t ion  

of the f l u i d  bearing, cove red - fau l t  zones. The f a u l t s  bordering 

t h e  Raft  River Valley are only suggested i n  conventional photo- 

graphy by s u b t l e  l i n e a r  trends. 

I n  add i t ion  t o  d e t a i l e d  geologic mapping, samples of the  Raft  

and S a l t  Lake Formations w i l l  be co l l ec t ed  i n  order t o  obtain 

laboratory measurements of this density.  

u t i l i z e d  i n  t h e  d e t a i l e d  ana lys i s  of the gravi ty  data already 

avai lable .  The geologic mapping w i l l  be continuously ref ined 

i n  terms of newly acquired geophysical da t a  as the  program 

progressed. 

These i n  t u r n  w i l l  be 

11 



2. Detailed Analysis of Available Geophysical Data 

Aeromagnetic and gravi ty  d a t a  are ava i l ab le  f o r  the Raft  River 

Valley as t h e  r e s u l t  of continuing regional  i nves t iga t ions  by 

geophysicis and geologis ts  of the Geology Branch, Denver Region, 

USGS. A preliminary ana lys i s  of this d a t a  has suggested the 

possible  presence of a buried in t rus ion  i n  the v i c i n i t y  of the 

hot  wells,whose surface manifestations may be a s m a l l  impediment. 

Detailed analysis  of the g rav i ty  and aeromagnetic anamoly maps 

w i l l  be undertaken i n  order t o  more accurately estimate the 

depths of va l l ey  f i l l  and c l a r i f y  the possible  presence of 

i n t r u s i v e  rock, 

3. Microseismic and Ground Noise Invest igaf ion 

T h e  c lose  spat ia l  r e l a t ionsh ip  between micro-earthquakes 

(Magnitude - 2 t o  4 on the Richter scale) and geothermal zones 

has been noted by Kard (1972), Hamilton and Muffler (1972), 

Palmason (19711, Rinehart (1968), and Ward, Palmason and Drake 

(1969). Intense micro-earthquake swarm a c t i v i t y  i n  southeast  

Idaho has been reported by Keslphal and Lange (1966), Sbar e t  al.,  

(19721, and Smith and Sbar (1973, i n  press) .  

Micro-earthquake monitoring i n  the  Raft River Valley would be 

u t i l i z e d  both as an exploration t o o l  f o r  the obtaining of f a u l t  

plane so lu t ions  and accurate  f a u l t  plane loca t ions  and as a 
monitoring system during subsequent production. 

A r e l a t e d  technique involves the monitoring of low frequency 

ground noise" as an indicat ion of l o c a l  geothermal zone develop- 11 

ment. 

and Jacob (1970)and Iyer  (19711, seem less conelusive and more 

d i f f i c u l t  t o  i n t e r p r e t  than do micro-earthquakes bu t  the re l a t ion -  

sh ip  between ground noise  and a c t i v e  geothermal systems Seas real. 
The proposed study would include t h e  monitoring of ground noise  

i n  addi t ion t o  micro-earthquake detection. 

Ground noise  techniques as desaribed by Clacey (1969), Ward 
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4. Dipole-Dipole Resistivity Mapping 

! 

i 

An induced electric f i e l d  d ipo le  survey w i l l  be made i n  areas 
of i n t e r e s t .  

is located somewhat outs ide the  prospect area i n  order t o  achieve 

s u f f i c i e n t  penetration i n  the  prospect area. The s i g n a l  transmitted 

by t h e  source is a square wave of period 30 seconds and of amplitude 

To implement a d ipo le  survey, a grounded wire source 

up t o  seve ra l  hundred ampere. 

generates an electrical f i e l d  which is  detected by two orthogonal 

electric dipoles  or iented p a r a l l e l  and perpendicular t o  the  source 

so t h a t - t h e  f i e l d  components i n  these d i r ec t ions  can be added 

v e c t o r i a l l y  t o  f ind t h e  t o t a l  f i e l d .  

w i l l  be made using computer techniques. 

modified government surplus  device and t h e  detect ion equipment and 

expe r t i s e  is ava i l ab le  at the NRTS. 

The flow of cu r ren t  i n  the  ground 

I n t e r p r e t a t i o n  of t he  da t a  
The generator may be a 

5. Thermal Gradient Measurements i n  Intermediate Depth Bore Holes 

and Heat Flow Calculations 

Several  intermediate dep th  test holes  (300 t o  4QO f t )  w i l l  be  

d r i l l e d  i n t o  the S a l t  Lake Formation near t he  C o t t r e l l  Range i n  

order t o  evaluate  the hea t  flow s i t u a t i o n  e x i s t i n g  wi th in  the  

Raft  River Basin. These w e l l s  w i l l  provide gradient  informa- 

t i o n  w h i c h  w i l l  be  extrapolated t o  the probable depth of t h e  

v a l l e y  f i l l  (6,000 f t )  i n  order t o  provide an estimate of 
maximum temperatures. 

ments of temperature gradients  i n  a l l  a v a i l a b l e  i r r i g a t i o n  w e l l s  

i n  the area and unpublished regional  heat flow d a t a  r ecen t ly  made 

avai lable .  Hopefully t h e  na tu re  of the thermal anamoly ( loca l  

i n t ense  heat source vs deep c i r c u l a t i o n  i n  a basin within a region 

of h igh  heat flow area) could thus be determined. 

, 

These da ta  would be compared w i t h  measure- 
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6. Refraction Seismic Techniques 

The d i f f i c u l t y  i n  in t e rp re t ing  active seismic da ta  i n  the complex 

geothermal environment is w e l l  documented (Hayakawa, 1970). 

the ac t ive  seismic techniques, t h e  r e f r ac t ion  metEod has been 

applied w i t h  more success i n  geothermal exploration. 

Hunt (1970) f o r  example have discussed the appl ica t ion  of r e f r ac t ion  

and r e f l e c t i o n  techniques i n  New Zealand, concluding t h a t  the 

r e f r ac t ion  technique is of grea te r  value. 

gat ion proposes the l imi ted  appl ica t ion  of r e f r ac t ion  techniques 

i n  the de f in i t i on  of the s t r u c t u r a l  framework of t h e  Raft  River 

Valley. 

eventual d r i l l i n g  t a rge t  is determined t o  be a f a u l t  cont ro l led  

thermal f l u i d  d i s t r i b u t i o n  pat tern.  

be u t i l i z e d  i n  determinations of volcanic  in te r faces .  

Of 
. 

Hochstein and 

T h e  present  invest i -  

Refraction techniques may be  of g rea t  va lue  i f  the 

The r e f r ac t ion  da ta  w i l l  a l s o  

7. Analysis of Data and Select ion of a Deep T e s t  S i t e  

A t  this point  i n  the pro jec t  a decis ion would be  made concerning 

the f e a s i b i l i t y  of deep tes t  d r i l l i n g .  

chemical and geophysical da ta  accumulated a t  that time indica tes  

t he  probable presence of s u f f i c i e n t  volume of 1 5 O O C  f l u i d  t o  

operate  the demonstration p lan t ,  an i n i t i a l  d r i l l i n g  s i te  would 

be selected.  

I f  the geologic,  geo- 

8. Geologic, Geochemical, and Geophysical Monitoring of the Deet 
T e s t  D r i l l i n g  

Geologic monitoring of t he  d r i l l i n g  w i i i  be provided continuously 

during the  w e l l  d r i l l i n g  operation. Mineralogic and petrographic 

ana lys i s  of cu t t ings  and cores by standard o p t i a a l  and X-ray d i f -  

f r ac t ion  techniques w i l l  be performed. 

deemed appropriate  f o r  usefu l  s c i e n t i f i c  information. 

encountered during the  d r i l l i n g  operat ion w i l l  be chemically analyzed 

and monitored f o r  poss ib le  waste water d isposa l  problems. 

and Na/K/Ca geothermometer w i l l  be applied t o  thermal f lu ids .  

e l e c t r i c ,  rad ioac t iv i ty ,  d r i l l i n g  t i m e ,  and temperature logging 

Corings w i l l  be made as 

Fluids  

The Si02 

Standard 
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w i l l  be  contracted through establ ished commercial firms. 

acqu i s i t i on  during the d r i l l i n g  phase w i l l  be  given a h i g h  

p r i o r i t y .  

Data 

9 -  Recent Deer, Dr i l l i ng  i n  the  Area 

I n  the  f a l l  of 1973, two deep oil- and gas-exploratory w e l l s  were 
d r i l l e d  by a p r i v a t e  company (Standard American) within approximately 

15 m i l e s  of t h e  older ,  400 t o  500 f t  deep bo i l ing  w e l l s .  

and gas w e l l s  w e r e  sunk nominallyto t h e  Paleozoic age, limestone, and 
dolomite rock a t  approximately 6,000 f t .  

material is mostly volcanic t u f f s , s i l t s t o n e ,  shale, and sandstone. 

Neither w e l l  yielded commercial q u a n t i t i e s  of gas o r  o i l .  Nor did 
either w e l l  y i e l d  ho t  water i n i t i a l l y .  

t o  spout hot water (8OOC) approximately th ree  weeks a f t e r  being 

abandoned. 

mud probably w a s  t h e  cause of the time delay. 

helow 600 f t ,  and mfxing of thermal waters from deep with cooler waters 

from above is a p o s s i b i l i t y ,  making it  d i f f i c u l t  t o  assess a r e se rvo i r  

temperature f o r  that area. 
chemical work v i r t u a l l y  impractical .  

These o i l  

Above t h i s  depth, t he  

The one w e l l ,  however, began 

The slow percolat ion of t h e  hot  water through d r i l l i n g  

This w e l l  w a s  not  cased 

D r i l l i n g  mud contamination a l s o  made geo- 

15 



3.0 POWER PLANT DESIGN CONSIDERATIONS 

T h e  production of electrical power us€ng steam obtained d i r e c t l y  

from geothermal sources bas been pract iced f o r  a numEier of years.  

the ex i s t ing  systems w e r e  designed t o  u t i l i z e  the r e l a t i v e l y  h ightempera ture  

geothermal sources which have been exploi ted t o  date .  

Most of 

T h e  Raft River area geothermal sources may have temperatures only as 

h igh  as 302°F (150°C) while cooling w a t e r  is ava i l ab le  a t  about 50°F (10°C). 

These condi t ions are considerably d i f f e r e n t  from those ava i l ab le  a t  the 

developed geothermal f i e l d s ,  ye t  they are c h a r a c t e r i s t i c s  of condi t ions 

whichmay be ava i l ab le  over l a rge  areas w h i l e  the h igh  temperature sources 

are ava i l ab le  a t  only a few, spec ia l  locat ions.  

The  two major p o s s i b i l i t i e s  f o r  producing e l e c t r i c a l  power from geo- 

thermal sources such as the Raft  River area are d i r e c t  low pressure steam o r  

an organic type f l u i d  (pentane, freon, e t c . ) .  I n  order t o  provide some idea 

of the conditions and parameters w h i c h  would b e  typ ica l  of such power p l an t s ,  

ca lcu la t ions  have been made f o r  each type of p lan t .  

3.1 Steam Cycle 

T h e  Raft  River area may provide sa tura ted  steam a t  300°F o r  sa tura ted  

water a t  300°F so ca lcu la t ions  w e r e  made f o r  a steam obtained by f lash ing  

from 69 p s i a  down t o  60 ps i a  and down t o  35 p s i a .  

f o r  such a system. 

c i r c l ed  numbers on Figure 3 .  Table I1 presents  t h e  flow rates temperatures 

and pressures  i n  each l i n e  f o r  each geothermal supply condition. 

Figure 1 i s  a flow diagram 

Table L is a descr ip t ion  of each l i n e  indicated by the  

The following assumptions were common t o  each calculat ion:  

1. T h e  power generation equaled 10 m(e) 

2. T h e  generator e f f ic iency  is  90% and the turb ine  e f f ic iency  

is 75%. 

3. The condensers are a l l  d i r e c t  contact  type. 

16 
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Table I 

Line I d e n t i f i c a t i o n  Key 
(for  Figure 3) 

L Geothermal water o r  steam from production w e l l s  r 

2 

3 

3A Steam flow t o  t h e  turbine 

Geothermal water t o  re- inject ion w e l l s  

Steam from t h e  moisture separator  

3B 

4 

5 

Steam flow t o  t h e  e j e c t o r s  

Steam from t h e  turbine discharge 

Non-condensable gases and entrained moisture 

(50150 mixture by weight) 

6 Cooling water supply 

6A 

6B 

Cooling water t o  the  turbine condenser 

Cooling water t o  the  e j e c t o r  condensers 

7 ’  Turbine condenser o u t l e t  with 3% geothermal condensate 

8 Ejector condenser o u t l e t  with 15% geothermal condensate 

9 Non-condensable gases vented t o  t h e  atmosphere. 
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Table I1 

Comparison Table 
10  MW(e) Steam Rankine Cycle Geothermal P lan ts  

System 
Cases 

Line \ 
Designations 

1 

2 

3 

3 A  

3 B  

4 

5 

6 

Steam 
From t h e  F ie ld  

Steam 
0.184 x 10 lb /h r  

300°F 
69 p s i a .  

Mater 
Negligible Flow 

300'F 
69 p s i a  

Steam 

300°F 
69 p s i a  

0.184 x lo6 lb /h r  

0.166 x lo6 lb /h r  

4 1.8 x 10 l b / h r  

Steam with 14% 

0.17 x 10 lb /h r  % Maistur 

79°F 
1 i n  HgA 

Gas wi th  Moisture 
En t ra iged  

1.66 x 10 lb /h r  

1.66 x lo3 lb /h r  
(gas) 

(water) 
79'F 

1 i n  HgA 

Water 
5.66 x lo6 lb /h r  

(11,320 gpm) 
52°F 
1 a t m  

Geothermal Water 
From t h e  F ie ld  

Flashed t o  60 p s i a  

Water 
19.3 x l o6  lb /h r  

(38,700 gpm) 
300'F 
69 ps i a  

Water 
19.1 x lo6 lb /hr  

293'F 
60 ps i a  

(38,300 gpm) 

Ste? 
0.195 x 10 lb /h r  

293°F 
60 p s i a  

6 0.172 x 10 lb /h r  

2.3 x l o4  l b / h r  

Steam with 13.8% 
Mo is t u r  e 

0.19 x l o6  l b l h r  
79°F 

1 i n  HgA 

G a s  wi th  Moisture 
Entrained 

1.92 x lo3 lb /h r  

1.92 x 10 lb /h r  
(water) 

79'F 
1 i n  HgA 

(gag) 

Watgr 
5.85 x 10 lb /hr  

(11,700 gpm) 
52'F 
1 a t m  

Geothermal Water 
From the  F ie ld  

Flashed t o  35 psia 

Water 
5.0 x lo6 lb /hr  

( ~ 0 , 0 0 0  gpm) 
300'F 
69 p s i a  

Water 
4.76 x lo6 l b /h r  

259'F 
35 p s i a  

(9,540 gpm) 

S t e y  
0.235 x 10 lb /h r  

259'F 
35 p s i a  

0.195 x l o6  Ib /hr  

4.0 x 10 4 lb /h r  

Steam with 12.5% 
Mo is tgr e 

0.23 x 10 lb /hr  
79°F 

1 i n  HgA 

Gas wi th  Moisture 
Entrained 

2.85 x lo3 lb /h r  
(gas) 

2.85 x lo3 lb /h r  
(water) 

79'F 
1 i n  HgA 

Watt' 
6.93 x 10 lb /hr  

52'F 
1 atm 

(13,900 gpm) 
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Table I1 (continued) 

system 
Cases Geothermal Water Geothermal Water 

Line From t h e  Field From the  F ie ld  
+Resignations From t h e  F ie ld  Flashed t o  60 psia Flashed t o  35 psia 
\ Steam 

6A 5.55 x lo6 lb /hr  5.79 x lo6 lb /hr  6.69 x lo6 lb /hr  

6B 1.15 x lo5 lb /hr  1.46 x lo5  lb /hr  2.45 x lo5 l b / h r  

7 Water Watgr Watgr 
5.72 x lo6 lb /h r  5.95 x 10 lb /h r  6.93 x 10 lb /hr  

(11,500 gpm) (11,800 gpm) (13,900 gpm) 
79'F 79'F 79'F 
1 atm 1 atm 1 a t m  

8 

9 

Water5 Waty Waty 
1.35 x 10 lb /hr  1.68 x 10 lb /h r  2.85 x 10 lb /h r  

(270 g p d  (335 gpm) (570 gpm) 
200'F 200'F 200'F 
1 a t m  1 a t m  1 a t m  

3 G a s  Gas G a s  
1.65 x lo3  lb /h r  1.92 x lo3 lb /h r  2.85 x 10 lb /h r  

(240 scfm) (280 scfm) (420 scfm) 
200'F 200'F 200'F 
1 a t m  1 a t m  1 a t m  

All l i qu id  volume flow rates based on water a t  70'F. 

A l l  gas volume flow rates based on C02 a t  70'F, 1 a t m .  

! 
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5 .  T h e  entraned gas is 1% hy weight i n  the 300°F, 69 p s i a  steam, 

1-13 w/o in the 6Q p s i a  steam and 1.5 w/o i n  the 35 pa ia  steam. 

T h e  e j e c t o r  capacity w a s  assumed t o  follow those values  given 

hp Perry's Cli. Engr. Handbook, p. 1454. 

The  hot  w a t e r  expanded a t  constant enthalpy t o  produce the l o w  

pressure steam. 

6 .  

7. 

It is rather apparent t h a t  a l o t  of 300'F geothermal w a t e r  must be 

brought t o  the su r face  t o  produce the necessary steam by f lashing and t h a t  a 

l o t  of usable heat remains €n the sa tu ra t ed  water from the f l a she r .  

u t i l i z e  that heat is t o  i n s t a l l  an organic or  binary cycle. 

One way t o  

3.2 Binary Cycle 

T h r e e  d i f f e r e n t  working f l u i d s  were considered f o r  the binary cycle,  

Freon-11, Freon-12, and Freon-21. 

water f o r  each case. 
r e s u l t i n g  flow rates, temperature and pressure fo r  each numbered l i n e  and 

working f l u i d  are l i s t e d  i n  Table IIL 

The heat source w a s  assumed t o  be 300°F 

The Figure 4 is a flow diagram of the binary cycle. 

The same electrical power generation and generator e f f i c i ency  w e r e  

used as f o r  the steam cycle  but  the tu rb ine  e f f i c i ency  w a s  set a t  85% t o  be 

more r ep resen ta t ive  of organic f l u i d  turbines.  

w a s  that minimum pinch-points of 10°F were set on a l l  heat exchangers and 

bo i l e r s .  

The other  major assumption 

The  major d i f f e rence  between the  working f l u i d s  is that Freon-12 is 

a s u p e r c r i t i c a l  f l u i d  through the heater so i t  does not bo i l .  

the geothermal water temperature can be lowered some 90°F and the maximum 

use is made of the heat ava i l ab le  in each pound of geothermal water. The 

Freon-11 and Freon-21 ho thwere  assumed t o  b o i l  a t  250OF. This bo i l ing  means 

that the 10°F pinch point  temperature d i f f e rence  restricts the amount of heat 

w h i c h  can he extracted from the geothermal water. 

of geothermal water must b e  supplied t o  the system. 

temperature of the geothermal r e tu rn  water would be about 235'F f o r  e i t h e r  

Freon-11 o r  Freon-21. 

Consequently, 

Therefore, l a r g e r  amounts 

As shown i n  Table I11 t he  
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.Table 111 

Comparison Table 
Qrganic Fluid "Binary" Cycle 

10  WCeT Output 
system 
Cases Geothermal 

Line \ Water from 
D e s i m a t i o n d  Fie ld  t o  Freon-11 

1 Wateg 
3.01 x 10 lb /h r  

300'F 
>69 ps i a  

(6,050 gpm) 

4 

Wateg 
3.01 x 10 lb /hr  

234'F 

Freon-11 
Sat.  Vapo 
2.06 x 10 lb /h r  

250'F 
180 ps i a  

Freon-11 

ii Sat.  Vapo 
2.06 x 10 lb /h r  

80'F 
16  ps i a  

5 Freon-11 
. Sat.  Liqu d t 2.06 x 10 * lb /hr  

80'F 
16  ps i a  

6 Fr  eon-11 
Comp. Liqgid 
2.06 x 10 lb /h r  

82'F 
180 ps ia  

7 Watgr 
8.1 x 10 olb/hr 

(16,300 gpm) 
50'F 

8 Watgr 
8.1 x 10 lb /h r  70'F 

Geothermal 
Water from 

FieId t o  Freon-12 

Wateg 
1.05 x 10 lb /hr  

300'F 
>69 p s i a  

(2,110 gpm) 

Wateg 
1.05 x 10 l b / h r  

90'F 

Freon-12 
Super Crikical 
2.92 x 10 lb /h r  

290'F 
700 p s i a  

Freon-12 

t Sat.  Vapo 
2.92 x 10 lb /hr  

117'F 
99 ps i a  

Freon-12 
Sat .  Liqu d 
2.92 x- 10 lb /hr  

80'F 
99 ps i a  

6 

Freon-12 
Comp. Liquid 
2.92 x lo6 l b / h r  ' 

88'F 
700 ps ia  

Watgr 
9.4 x 10 lb /h r  

50'F 
(19,900 gpm) 

Watgr 
9.4 x 10 lb /h r  70'F 

Geothermal 
Water from 

Fie ld  t o  Freon-21 

Water 
3.35 x lo6 lb /hr  

300'F 
>69 ps i a  

(6,750 gpm) 

Wateg 
3.35 x 10 lb /h r  

237°F 

Fr  eon-21 
Super Hea ed 
1.72 x 10 l b / h r  

290'F 
300 ps i a  

6 

Fr eon-21 

5 Sat.  Vapo 
1.72 x 10 lb /h r  

80°F 
28 p s i a  

Freon-21 
Sat.  Liqugd 
1.72 x 10 lb /h r  

80'F 
28 p s i a  

Freon-21 
Comp. Liqgid 
1.72 x 10 lb /hr  

83OF . 
300 p s i a  

Watgr 
8.7 x 10 lb /h r  

(17,400 gpm) 
5O0F 

Watgr 
8.7 x 10 lb /h r  70'F 
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Table I V  

1 

Operating Parameters 
Combined True Binary System 

Line Number Conditions 

1 Geothermal water and steam 2.23 x lo6 lb /h r ,  300'F 

2 

2A 

2B 

3 

3A 

3B 

4 

5 

6 

6A 

6B 

6C 

7 

8 

9 

10  

11 

12 

13 

14  

15  

6 Geothermalwater 2.03 x 10 lb /h r ,  300'F, 69 p s i a  

1.05 x lo6  lb /h r ,  300'F 

0.98 x lo6  lb /hr ,  300'F 

Saturated steam, 0.203 x 10 lb /h r ,  300"F, 69 p s i a  

0.188 x lo6  lb /h r  

0.015 x 10 lb /hr  

Steam with 13% moisture,  102'F, 2 i n  HgA 

Non-condensate gas with entrained moisture,  0.188 x 10 l b / h r  
(gas, 0.188 x lo4  lb /h r  (moisture), 102'F, 2 i n  HgA 

Cooling water, 9.4 x 10 lb /h r ,  (18,800 gpm) , 50'F 

3.4 x l o6  lb /h r ,  70'F 

5.9 x 10 lb /h r ,  70'F 

0.11 x l o 6  lb /h r ,  70'F Water 

6 Water condensate, 6.1 x 10 lb /h r  (12,200 gprn), 102'F 

Water condensate, 0.11 x 10 l b / h r ,  (220 gpm), 200'F 

Cooling water and condensate, 9.61 x 10 lb /h r  (19,200 gpm) 
92'F 

Geothermal water, 1.05 x 10 lb /hr ,  90'F 

Geothermalwater,  2.03 x 10 lb /hr ,  192'F 

Non-condensable gas, 0.188 x 10 lb/hr,  (275 scfm), 200'F 

Freon-12, Super-heated vapor, 2.92 x 10 lb /hr ,  290'F 

6 

6 

4 

6 

6 

6 

6 

6 

6 

4 

6 

6 Freon-12, Superheated vapor, 2.92 x 10 lb /hr ,  117'F, 99 p s i a  

Freon-12, Saturated Liquid, 2.92 x 10 lb /h r ,  80'F, 99 p s i a  6 
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This p i n c h q o i n t  l i m i t  can he o f f s e t  somewhat hy s p l i t t i n g  the heat 

exchanger and b o i l e r  . into sepa ra t e  u n i t s  and supplying each w i t h  300'F water 
o r  by u t i l i z i n g  reheat at  lower s t a g e s  of the  turbine.  

r e q u i r e  s i g n i f i c a n t  c a p i t a l  cos t  over  that required liy the Freon-12 system. 

Both so lu t ions  would 

It is impossible a t  this time t o  make any f i n a l  s e l ec t ion  on such 

matters as t h e  type of organic f l u i d ;  e spec ia l ly  s i n c e  the Freon-12 system 

operates  a t  s i g n i f i c a n t l y  higher pressures than either the Freon-11 or 
Freon-21 systems. 

Also, the hot water from t h e  f l a s h e r  of the geothermal steam system 

could b e  used f o r  reheating a t  the low& steam tu rb ine  s tages ,  However, t he  

complete u t i l i z a t i o n  of the heat i n  t h e  geothermalwater by an organic cycle  

should b e  more attractive-at least f o r  the demonstration plant .  

3.3 Combined System 

Figure 5 is the flow diagram for 8 combined, t r u e  binary system- 

Steam is separated a t  300'F and s e n t  t o  the steam tu rb ine  and associated con- 

densers, e j e c t o r s ,  etc, 

system. 

returned t o  the geothermal aquifer ,  During the  summer months when the  demand 

f o r  i r r i g a t i o n  water is high, the spent geothermal water can probably be used 

by the area farmers, 

water would b e  returned t o  the geothermal aquifer ,  

i r r i g a t i o n  w e l l s  could b e  used t o  recharge t h e  geothermal aqu i f e r  during t h e  

off-season, 

f o r  everyone. 

Table Tv presents  operating parameters f o r  the combined 

The hot  w a t e r  from the separator  is used t o  heat Freon-12 before  being 

During the i r r i g a t i o n  off-season the spent geothermal 

I f  needed, t h e  regular  

Such t rading would serve t o  smooth the power and water demands 

The amount of geothermal water w h i c h  w i l l  be  produced per  pound of 

s t e a m  w i l l  depend on the aggregate conditions of a l l  t h e  geothermal w e l l s  
which supply the f l a sh ing  un i t .  

that 90% of the g e o t h e r n a l w e l l  f l o w  would be w a t e r  and 10% steam. 

assumed that the steam would contain 1 w/o non-condensable gases. 

For the purposes of this design, w e  assumed 

M e  a l s o  

T h e  s i z e  of the Freon-12 systeq was  set a t  10 W(e] so it u t i l i z e s  

only ahout half  of the geothermal water that i s  ava i l ab le  from the f l a s h e r  . 
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Fig. 5 Combined Steam-Freon Cycle 
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separator.  

a b l e  geothermal water is unwarranted u n t i l  we have more d a t a  on what the 

geothermal w e l l s  produce. 

Trying t o  optimize the s i z e  o f  the Freon42 system t o  the avail-  

Cooling the geothermal w a t e r  t o  90”P i n  the Freon-12 system may b e  

impract ical  due t o  the p r e c i p i t a t i o n  of sol ids .  

restrict t h e  lower geothermal water temperature t o  say. 150’F; which w i l l  mean 

that more geothermalwater is required f o r  the Breon-12 system. 

Such a l i m i t a t i o n  may w e l l  

Regeneration has not  been incorporated i n t o  these  designs because it 

has no economic m e r i t  on geothermal% power cycles. 

raise t h e  heat e f f i c i ency  of power cycles  but s i n c e  geothermal power does 

not  have t o  purchase any f u e l  such e f f i c i e n c i e s  are not good ind ica to r s  of 

m e r i t .  The only t r u e  economic ind ica to r  is the t o t a l  cos t  per kW-hr which 

includes f u e l  cos t s ,  operating and maintenance costs ,  and amortization of t h e  

c a p i t a l  investment. 

last two f ac to r s .  

Regeneration does indeed 

The cos t  of geothermal power w i l l  be  dominated by t h e  

3.4 Two Stage Steam Flash SV- 

Discarding of 95% of the  geothermalwater a f t e r  a s i n g l e  f l a s h  t o  260°F 

is obviously undesirable. 

atmospheric conditions (210’F) and fed t o  a l a r g e r ,  low pressure tu rb ine  t i e d  
t o  t h e  shaft of t he  high pressure turbine.  By f lashing a t  no lower than a t m o s -  

pher ic  pressure,  leakage problems f o r  t h e  f l a sh ing  u n i t  are minimized. Figure Sa 

shows such a cycle,  and TableIVa g i v e s t h e  flow rates, temperatures and pressures 

f o r  each numbered l i n e  on t h e  f igure.  This two s t a g e  f l a s h  system discards  90% 

of t h e  o r i g i n a l  water. However, 45% of t h e  enthalpy has been removed (relative 

t o  condenser conditions) before t h e  water is discharged. The low pressure tu rb ine  

W i l l  have approximately the  same steam mass flow as t h e  high pressure turbine,  and 

the i n l e t  steam densi ty  w i l l  be only about 1 /2  t h a t  of t he  high pressure s tage.  

For t h i s  example, both turbines  w i l l  b e  operated a t  a 1 in.  Hg back-pressure. 

low pressure turbine w i l l  need t o  be much l a r g e r  (nominally 1.5 times the diameter) 

than t h e  high pressure turbine.  This add i t iona l  t u rb ine  s i z e  and cos t  needs t o  be 

contrasted with the heat  exchanger and organic f l u i d  tu rb ine  f o r  t he  binary cycle.  

T h i s  water could be flashed i n  a second s t a g e  t o  

The 

k/ 
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Ultimately, unknown technical factors such as  the precipitation and fueling 

by dissolved so l ids  and the amount of non-condensables i n  the geothermal f lu id ,  

w i l l  be  major deciding factors i n  determining the most economical geothermal 

power system. 
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Table V 

Two Stage Steam Flash 

1 

2 

3 

3A 
3B 
4 

5 

6 

6A 
68 
7 

8 

9 

i 

10 

11 

F i r s t  Staae Second StaRe Condenser Stage 

6Uater 

302.F 
69 ps ia  

5 x 10 lb /hr  (10.000 ppm) 

Ugter 

260.F 
4.8 X 10 lb/hr  (9.540 gpm) 

35 ps ia  
Stgam 

0.24 x 10 lb fhr  
2600F 
35 p s i a  

0.20 x lo6 l b l h r  
4.0 x lo4 lb /hr  
Steam v i t h  13% moisture 

en rained 
0.23 x 10 l b f h r  
79.F. 1 in. Hg A 
G a s  wi h moisture entrained 
3 x lo3 l b l h r  (gas) 
5 x 10 lb/hr (water) 
79.F. 1 in. Hg A 

6 

6 

Power Output 10 rm(e) 
vith 75% turbine 
a d  90% generator 
eff ic iency 

Steam 
L24 x 10' l b l h r  

210.F 14.1 ppia 
Steam with 
11% mots tu re  

0.24 x 10 lb /hr  
79.F. 1 in. IIgA 

10 MW(e) 

Water6 
12.2 x 10 l b l h r  

(21,fiOO gpm) 
52.P 
1 atm 

11.7 x' lo6 l b f h r  
5 x lo5 l b l h r  

Water6 
12.2 x 10 l b l h r  

U.500 gpm 
79.F. 1 atm 
Wager 

6 x 10 l b l h r  
(1200 gpm) 
200*F, 1 atm - 

G9s 6 x 10 lb /hr  
900 rcfm 
20O*F, 1 atm 

All l iqu id  volumes based on water a t  70.P 
All gas volumes based on C02 a t  70.F. 1 atm 
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3.5 Geothermal Well Flow 

The a r t e s i a n  flow from a geothermal w e l l  is governed by numerous 
variables-the permeability and porosi ty  of t h e  strata i n  the barefoot 
sect ion,  t h e  f l u i d  resupply t o  such, t he  down hole  pressure,  and the  geothermal 
f i e l d  temperature. 
t he  question arises of how w e l l  a r t e s i a n  pumping occurs from assumed hydros t a t i c  
head differences.  
t o t a l  problem of w e l l  flow. Assuming adequate supply of geothermal f l u i d  t o  the  
bottom of the w e l l  bore, what are the maximum pumping rates t h a t  can be expected. 

When dealing with low o r  medium temperature geothermal f l u i d ,  

The following analysis  d i r e c t s  i t s e l f  t o  t h a t  port ion of t h e  

Figure 6 i s  a graph of calculated w e l l  flow v e l o c i t i e s  from d i f f e r e n t  
depth w e l l s .  
d i f f e rence  between hot  and cold legs  was used as the ava i l ab le  head f o r  
producing flow. 
water i n j e c t i o n  w e l l .  
probably not too realist ic,  but i t  is a good working assumption i n  the 
absence of de t a i l ed  information. 
flowing up the  pipe casing i n  the w e l l .  The geothermalwater temperature 
probably wouldn't remain constant,  nor would s teel  pipe casing extend the 
whole depth of t h e  w e l l ;  but again those are good working assumptions. 

The hydros t a t i c  pressure difference due t o  the  densi ty  

The cold l e g  is e s s e n t i a l l y  water-logged s o i l  o r  a cold 
The assumed 2OoC constant cold l e g  temperature is  

The hot l eg  i s  the  geothermal water 

The value of Lm shown f o r  each temperature on Figure 6 i s  the w e l l  depth 
required t o  produce a w e l l  top pressure equal t o  the hot l e g  sa tu ra t ion  
pressure by the hydros t a t i c  pressure difference between t h e  hot and cold 
legs.  As the  w e l l  depth is increased beyond Lm, the w e l l  flow ve loc i ty  
from Figure 6 is  t h a t  
equal t o  t h e  s a t u r a t i o n  pressure. The geothermal water should not  b o i l  
as it rises t o  the  surface.  
w i l l  su re ly  increase the  f r i c t i o n  lo s ses  and r e s u l t  i n  less t o t a l  flow 
from a given pipe s ize .  I n  addi t ion,  t h e f r i c t i o n  lo s ses  i n  the above 
ground piping network between t h e  w e l l s  and the power p l an t  proper can be 
e a s i l y  and inexpensively overcome by pumping i f  the f l u i d  is a liquid.. 
But only a thorough study of a given system would reveal the  most economical 
method of bringing t h e  geothermal heat t o  the  surface i n  a usable vehicle.  

t h a t  could be a t t a ined  with a w e l l  top pressure 

The two-phase flow which r e su l t s  from bo i l ing  

The above set of assumptions addresses only t h e  i d e a l  s i t u a t i o n  of flow with 
the  postulated hydros t a t i c  pumping force,  
been ignored. 
head d i f f e rences  can pump, then of course y i e lds  w i l l  be reduced. 
the e f f e c t i v e  depth of t h e  w e l l  might be much g rea t e r  than the a c t u a l  bore depth, 
i f  adequate permeabili ty exists between the  bottom of the  w e l l  and t h e  reservoir .  

The producing zone permeability has 
I f  i t  is inadequate t o  supply the  flows t h a t  t he  hydros t a t i c  

Furthermore, 

The r e su l t s  presented i n  Figure 6 are r a t h e r  thorough calculat ions on 

Perry's  Chem. Engr. Handbook, 3rd ed i t i on ,  
t h e  simple flow model assumed. 
from t h e  following equation given 
page 282: * 

The flawing f r i c t i o n  f a c t o r  was calculated 

f = 0.0014 + 0.090(Re)-0*23 

2 The entrance and acceleration losses were assumed t o  be 1.5 V /2p i n  a l l  
cases. 
which cari be used t o  ad jus t  r e s u l t s  on Figure 6 t o  other s i t u a t i o n s .  

Table V presents  some values which were used i n  the calculat&s and 

5 * Note, this equation should not be used f o r  excessively high (>lo ) Reynolds 
numbers. 31 
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TABLE V I  

Hydrostatic Pressures (Cold leg temp. = 20°C) 

Hot Leg 
Temp. Difference densi ty  difference.  

Density Hydrostatic pressure per  100 f t .  due t o  the  

("C) (lbu/ft3) (psf)  (psi)  Liquid head a t  20°C(ft) 

100 2.496 249.6 1.73 4.0 

150 5.064 506.4 3.52 8.1 

200 8.339 833.9 5.79 13.4 

For example: 
150°C water a t  80 psig.  
l eg  w e l l  depth equivalent t o  80 psig: 

say a 15 inch diameter w e l l  i s  d r i l l e d  t o  5000 f t  and encounters 
Using the  da ta  i n  Table V we can determine hot  leg lco ld  

Equivalent w e l l  depth = 80 

Equivalent w e l l  depth = 2270 f t  * 
s i  

d b $ i / l O O  f t depth 

From Figure 6 ,  the  flow ve loc i ty  from 2270 f t  w e l l  would be 14 f t / s ec .  
However, s ince  the  a c t u a l  w e l l  contains 5000 f t .  of pipe,  t he  square of 
t he  flow v e l o c i t i e s  should be reduced by the  inverse r a t i o  of t h e  w e l l  depths 

9 

(v€lct)L P 

(' Fig. 6 l2 Lact 

(VactI2 = 0 4 1 2  (-) 

I) 
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This. estimating technique neglec ts  the d i f fe rence  between the  entrance 
and acce lera t ion  losses  and between t h e  f r i c t i o n  coe f f i c i en t s  f o r  t he  two 
ve loc i t i e s ;  however, that e r ro r  should be q u i t e  small compared t o  other  uncer- 
t a i n t i e s  such as the  va r i a t ion  i n  t h e  w e l l  water temperature, t he  e f f e c t s  of 
strata permeability, etc. 

From the  capaci ty  t a b l e  on Figure 6, w e  see that t h e  w e l l  woul produce about 
5,250 gpm. I f  we assume the geothermal p lan t  requi res  some 5 x 10 i? , l b /h r  
(10,000 gpm a t  STP), then e igh t  geothermal w e l l s  would be required t o  produce 
the  water required-by a 10 MW(e) p lan t  which f lashes  only 5% of the  geothermal 
water t o  steam f o r  t h e  turbines.  
encountered anywhere i n  t h e  world, and production rates of 1500 t o  2000 gpm are 
considered l i k e l y  f o r  planning purposes. Thus, 5 t o  6 producing w e l l s  would be 
needed. 

Such high producing w e l l s  have seldom been 

3.6 Flow From the U e l l  t o  the Power P lan t  

Assume that the geothermal water from the  sca t t e red  w e l l s  are col lec ted  i n t o  
headers, say two w e l l s  per header, and pumped one m i l e  throug a pipe t o  the power 

a t  7 0 * F l . ,  Assuming an economic pipe ve loc i ty  of 10  f p s  the  required pipe diameter 
is 21 in . ,  the pressure drop is 26 p s i ,  and the pumping power is 123 kW. 
t o t a l  system would requi re  near ly  500 kM f o r  pumping. The 10 fps  ve loc i ty  is 
somewhat higher than the  usual  economic ve loc i ty  i n  a p ipe l ine ,  however, t he  
necessi ty  of i n su la t ing  the p ipe l ine  w i l l  encourage a f a s t e r  flow. 
geothermal water has been passed through the power p l an t ,  i t  w i l l  have t o  be  

w i l l  r equ i r e  another 500 kK of pumping power. 
1000 ISH f o r  t h i s  system. 

p lan t -  Each-pipel ine w i l l  have t o  carry approximately 5 x 10 B l b /h r  (10,000 gpm 

The 

After  the 

returned" a l i k e  d is tance  before  i t  is in jec ted  back i n t o  the aqui fe r  and t h i s  
The t o t a l  pumping power would be  

11 

A s  mentioned above, i f  approximately 5% of the  geothermalwater  is t o  be 
f lashed t o  steam, 10,000 gpm w i l l  produce 10 MWwith 26OOF steam. I f  a higher 
percentage is f lashed,  the r e s u l t  w i l l  be lower steam pressure and temperature 
condi t ions requir ing a much l a rge r  turbine.  
tremendous amount of heat which can be used t o  generate  poweg through a binary 
cycle.  T h i s  proposal c a l l s  €or using approixmately 1.0 x 10 
water Cor its equivalent from the bottom of the f lasher / separa tor  un i t )  and 
using Freon-12 as a working f l u i d  t o  produce an addi t iona l  10 MW (e) t o  15 MW, 
depending on heat  exchanger performance. 

The remaining w a t e r  contains  a 

lb /h r  of 125'C 

Even w i t h  both power producing systems i n  operat ion some 94% of the  
geothermal water w i l l  still contain a tremendous amount (over 90%) of hea t  
which could be used f o r  other  things such as space heat ing,  chemical production, 
e t c -  
ment t o  u t i l i z e  the heat  i s  not. 

A t  this poin t  t h a t  hea t  i s  cheap; however, the capital  cos t  of the equip- 

Rather than t ransport ing a l l  the geothermal water t o  and from the power 
p lan t ,  i t  could be  f lashed a t  the w e l l  and only the required steam and water 
pumped t o  the power plant .  
l i n e s  o r  they could be  transported as a mixture. 

The water and steam could be t ransported i n  sepa ra t e  

6 Assume the geothermal water is f lashed t o  produce enough steam (0.24 x 10  
lb /hr )  t o  generate  10 MW(e) through the steam turb ine  and enough hot  water t o  
generate  another 10 MW through a Freon-12 binary cycle.  
ported one m i l e  wi th  a pressure lo s s  of about 13  ps i .  

The steam could be  trans- 
The water could be 
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TABLE V I 1  

Flow Between The Wells and the Power P lan t  

Mas flow Pipe l ine  Velocity AI? f o r  1 mile Pumping 
Rate ( lb /hr )  Diameter ( in )  (f t / s e c )  (psi) Power (kw) 

20 x lo6 2 1  10 26 123 

10.6 10 26 24.6 

28.3 145 13 910 

55 3,900 23.7 

6 

6 

6 

1.0 x 10 

- 
s t eawwater  

w 
VI 

I - One percent of t he  water is f lashed t o  steam f o r  production of 10  MW . The remaining 
water is ava i l ab le  t o  hea t  a binary cycle  f o r  power generat ion o r  to's2 other  things.  

generate  10 MW and water t o  generate  10 MW through a binary cycle  a r e  
t ransported t o  the  power p lan t  ideeeparate  pipel ines .  (e)  

I11 - The steam and water f o r  Case I1 are tranported i n  a s i n g l e  p ipe l ine  as a two-phase mixture. 



transported a t  a pressure loss of 26 p s i  as previously developed. 
steam-water mixture could be t ransported i n  a s i n g l e  l i n e  wi th  a pressure 
l o s s  of 55 ps i .  
summarized i n  Table V I .  These r e s u l t s  are very in t e re s t ing ;  pa r t i cu la r ly  
t h e  l a rge  pumping power required t o  recover the pressure drop losses .  

And the  

The necessary pipe l i n e  s i zes ,  pumping power, etc. are 

Transporting the  steam and water as a mixture seems too 
impractical f o r  f u r t h e r  consideration. 

The seperate  steam and water p ipe l ines  would requi re  some 935 KW 
of punrping power between the  production w e l l  s i te  and t h e  power p lan t .  
However, the  w a t e r  out of t he  power p l an t  would have t o  be pumped t o  the  
in j ec t ion  w e l l  s i te through a m i l e  long 10-inch diameter pipel ine.  
The water from the  separators  a t  the  production w e l l s  m u l d  a l s o  have t o  
be pumped t o  the  in j ec t ion  w e l l  s i te and should r equ i r e  four- 
21-inch diameter pipel ines .  For e s sen t i a l ly  the  same geographical layout,  
t h i s  system would requi re  an estimated 1800 KW of pumping power. 

These steam and two phase flaw pressure lo s s  r e s u l t s  are not  based 
on simple handbook calculat ions,  but  on combined experimental and calcu- 
l a t e d  results of Y. Takahashi, et. al. as reported a t  the  P isa  Geothermics 
Symposium. 
Mixtrues a t  t he  Otake Geothermal Field", Proceedings of the  P i s a  Symposium, 
vo le  11, PP 882-891) They obtained good agreement between experimental r e s u l t s  
and ca lcu la t ions  by the  Lockhart-Martinelli method. Since t h e i r  experi- 
mental conditions were c lose  t o  the  conditions expected i n  the  Raft' River 
area, t h e i r  r e s u l t s  were simply adjusted t o  the required mass flowrates.  

("An Experiment on P ipe l ine  Transportation of Steam-Water 

Same addi t iona l  estimates based on the  Takahasua r t i c l e  are: 

1) Pressure l o s s e s  a t  t he  well-head Christmas tree 2 p s i  
2) Pressure losses  across  the  f lasher / separa tor  = 3 p s i  
3) Pressure lo s ses  through the turbine i n l e t  header = 5 p s i  

There is l i t t l e  w e  can do about t he  losses  under items (2) and (3) 
without compressing t h e  steam so the  necess i ty  of conserving the  pressure 
from t h e  w e l l  t o  t he  power p lan t  is again emphasized. 

Since we do not  expect t o  have much pressure t o  spare  from the  w e l l s ,  
our contention t h a t  bo i l ing  o r  f lash ing  shculd be  avoided u n t i l  t h e  last 
s t e p  before the  turbine would appear t o  be ju s t ig i ed .  

3.7 Summary of Power P lan t  Design Considerations 

The design of a geothermal power p l an t  must be done from a s y s t e m  
The approach because of t h e  in te r locking  e f f e c t s  of so many decisions.  

a c t u a l  economics of t he  trade-offs between s i z e ,  number of w e l l s ,  number 
of p ipe l ines ,  equipment costs ,  power cos ts ,  etc. are unknown. Obviously, 
t h e  evaluation of these  choices w i l l  r equi re  a major engineering e f f o r t  
t o  achieve an economic design. Also, the  trade-off between the  economics 
of a power p l an t  and f l e x i b i l i t y  of purpose f o r  a demonstration p l an t  must 
be considered i n  any f i n a l  decisions.  For instance,  as a r e s u l t  of this 
study, t he  choice has been made t o  pump a l l  t he  geothermal water t o  and 
from t h e  power'pla t. 
t o  produce 

Such a p l a n t w i l l  requi re  at l e a a t  four 15-in. dia.  w e l l s  t 5 x 10 lb /h r  of 15OoC water from a 5,000 f t  depth with a bottom 
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hole  pressure of 80 psig and 55 psig a t  t he  surface,  This is s u f f i c i e n t  t o  
run a 10  MW(e) steam p lan t  by f lash ing  only 5% of the  water (extract ing 25% 
of the  enthalpy).  The u l t imate  capab i l i t y  of t h i s  t o t a l  flow with an organic 
f l u i d  turb ine  (binary cycle) is  approximately 40 MW(e) i f  heat  down t o  36OC 
is extracted from t h e  geothermal water. Thus t h e  proposed combination of a 
10 MW(e) steam and 10 MW(e) organic f l u i d  power p lan t  w i l l  e i t h e r  not  u t i l i z e  
the  f u l l  capab i l i t y  of t he  binary system t o  ex t r ac t  heat  from t h e  f l u i d ,  o r  
w i l l  r e s u l t  i n  a steam plant  which w i l l  no t  de l ive r  lO.MW(e). 
may not be ab le  t o  de l ive r  10 m(e) w i t h  s i n g l e  s t age  steam f l a sh ,  but  t h e i r  
t o t a l  capabi l i ty  w i t h  two s tages  of steam f l a sh .  
low pinch poin t  temperature d i f fe rence  capab i l i t y  i n  a heat  exchanger grea te r  
than 30 MW(e1 might be achieved. 

Four w e l l s  

U t i l i z ing  a binary cycle  with 

Transporting a l l  t h e  geothermal water t o  and from the  power p l an t  w i l l  
r equi re  four  21-inch diameter p ipe l ines  and consume almost 1000 kW of pumping 
power over t he  2 m i l e  d is tance.  
5% of t h e  t o t a l  proposed p lan t  output. 

T h i s  is  10% (or more) of t h e  steam plant  output;  
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4.0 OPERATION AM) RESEARCH INVESTIGATIONS W I T H  THE PLANT 

The documentation power p l an t  w i l l  cons is t ,  i n i t i a l l y ,  of a 10 MW(e) 
steam turbine driven generator. This w i l l  be followed, approximately a year 
later, by a binary (organic) f l u i d  system. The binary f l u i d  w i l l  probably 

be  Freon-12 although a de ta i l ed  study i s  needed before  a f i n a l  choice can be 

made. 

hot water t o  heat  t he  Freon w i l l  come from t h e  bottom of the  steam f l a she r /  

separator  un i t .  The two methods of converting geothermal hea t  i n t o  e l e c t r i c i t y  

can be d i r e c t l y  compared. The maintenance and operating problems of t he  w e l l s ,  

p ipel ines ,  heat  exchanger, turbines ,  pumps, etc. can be evaluated and new 

techniques t o  solve such problems tes ted.  

The Freon-12 system w i l l  be placed adjacent t o  t h e  steam plant  since the  

As pointed out i n  Section 3.5, there  w i l l  b e a  l o t  of hea t  ava i l ab le  f o r  

studying other  ways t o  u t i l i z e  geothermal energy. space heat ing,  

a g r i c u l t u r a l  heat ing,  production of f u e l  gas from a g r i c u l t u r a l  wastes, chemical 

production, absorption r e f r ige ra t ion ,  hea t  pump a u p e n t a t i o n  and s o l a r  heat 

apgmentation. 

be  plenty of hea t  t o  produce much more than 20 MW(e) electrical power by using 

the  organic f l u i d '  cycles.  

For example: 

Even with such d iverse  a c t i v i t i e s  and inves t iga t ions  there should 

The prolonged performance of these w e l l s  is a c r i t i ca l  f ac to r  i n  deter-  

mining t h e  economics of the  power p lan t  operation. A new w e l l ,  if required, 

w i l l  cos t  two t o  th ree  t i m e s  t he  annual rout ine  operating expenses of t he  

power plant .  Thus, t h e  performance of t he  underground geothermal f i e l d  i n  

continuing t o  supply the  w e l l s ,  needs t o  be s tudied c lose ly  and be w e l l  

understood before this  research and development e f f o r t  can be replaced by a 

rout ine  operation. 

The geothermal po ten t i a l  of t h e  Raft  River Basin can be estimated. 

It appears t h a t  t he  basin might be a standard Basin and Range type. 

va l l ey  f i l l  has s u f f i c i e n t l y  low thermal conductivity so  t h a t  a t  a depth of 

approximately 5000 f t ,  uniform 15OOC temperatures can be expected. 

has  an area of approximately 300 square m i l e s .  

t he  heat from a 500 f t  l ayer  of rock and water (from 4500 t o  5000 f t  depth) 

The 

The va l ley  

I f  one considers ex t rac t ing  20°F of 
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with  a n e t  "efficiency" of only 10% (i.e., only 10% of sens ib l e  hea t  is con- 
W 

verted t o  e l e c t r i c i t y ) ,  then the  va l ley  could run a 100 MW(e) p lan t  f o r  more 

than 250 years.  

Note, heat flow (conduction) upwards from the  basement rock is too 

small t o  b e  of interest, on the  average, being ab le  t o  supply only 10 W(e) 

over t h e  e n t i r e  va l l ey  wi th  hea t  flow of 3 x cal/cm sec. This assumes no 

near surface,  ho t ,  i n t rus ive  igneous body. However, i f  a hot i n t r u s i v e  

body is  present ,  then heat  flow alone can cont r ibu te  subs t an t i a l ly  more 

than t h i s  amount of power. 

2 

The geothermal waters i n  the  Raft River Valley contain severa l  

thousand parts-per-million (ppm) of dissolved so l ids .  (Present ind ica t ions  

are 3000 ppm.) 

standards,  it is highly e ros ive  t o  most conventional turbine materials. 

In addi t ion,  deposi t ion is  a problem on w e l l  casings,  piping, and turb ine  blades. 

Methods of reducing such depos i t i  

tenance cos t s  are t o  be  minimized 

p lan t  operat ion phases. 

Though this  could be considered "pure" water t o  geothermal 

are e s s e n t i a l  i f  re -dr i l l ing  and main- 

Various methods w i l l  be s tudied during 

4.1 Environmental Considerations 

The proposed power p lan t  w i l l  be located i n  a r e l a t i v e l y  i so l a t ed  

port ion of t h e  state. 
landscape w i t h  a spr inkler - i r r iga ted  region encompassing the more f l a t  r i v e r  

va l l ey  area. The powe lant  w i l l  be 1 st l i k e l y  on f e d e r a l  (BLM) 
land with hot water w e  

The general  terrain cons is t s  of sagebrush-covered r o l l i n g  

ter w e l l s  on both pr ivate* 

ate land. (See Figure 7). 

t a t e  land has resent  r ec rea t iona l  developments 
a g r i c u l t u r a l  value * 

er and qua l i ty  of the  s o  

cause of t h e  sparse  population 

l a n t  requires  few operating 

* The Raft  River E l e c t r i c  Co. has acquired 5 year leases on Over 100,000 acres 
of Pr iva te  land i n  t h e  area Of interest .  

Project ,  i t  is assumed t h a t  the needed f ede ra l  and s ta te  land w i l l  be resewed.  

As a research and development u 
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personnel and can be made t o  be '  e s t h e t i c a l l y  pleasing t o  minimize v i s u a l  

pol lut ion t o  t h e  surrounding area. The proposed power p lan t  w i l l  not  

release steam t o  t h e  atmosphere from unused hot  w e l l s  o r  cooling towers as 

is done i n  steam f i e l d s .  Cooling water w i l l  be pumped from the  cold water 

aquifer  and returned t o  e i t h e r  t h e  cold water or  ho t  water aquifer .  All 

cold water l i n e s  w i l l  be buried underground. Insulated hot  water l ines w i l l  
probably be placed above ground because of considerations of temperature 

expansion and maintenance, but  w i l l  be made t o  blend with landscape. 

One power subs ta t ion  w i l l  be required with a high vol tage power l i n e  

connecting the  subs ta t ion  t o  the  main north-south power g r id  seve ra l  m i l e s  

away. 

and ex is t ing  roads w i l l  be u t i l i z e d  as much as possible.  

Roads w i l l  be paved from the  power s t a t i o n  t o  the  Raft  River highway 

4.2 Testing Promam t o  Achieve Objectives 

The t e s t ing  program w i l l  be aimed a t  es tab l i sh ing  the information 

needed t o  achieve the two pr inc ipa l  goals:  1) economical power production 

from medium temperature geothermal water, and 2) minimum environmental impact 

i n  w h i c h  a l l  brackish geothermal f l u i d s  are re-injected without contaminating 

domestic and i r r i g a t i o n  aquifers .  Among the s p e c i f i c  items which the t e s t ing  

program w i l l  address are the following: 

Turb i n e s  Steam turb ine  s i zes  w i l l  b e  l a r g e r ,  w i t h  unusually 

low pressure operation. 

though smaller, w i l l  be  subjec t  t o  poss ib le  corrosive 

attack from minor decomposition rates i n  what is other- 

w i s e  an innocuous working f l u i d .  

Organic f l u i d  turbines ,  

Condenser Performance, both steam and organic,  u t i l i z i n g  the 

max imum extent of the low temperature hea t  r e j ec t ion  

reservoir .  

Study and prevention of corrosion and deposit ion.  

For organic f l u i d s ,  the deposi t ion on the geothermal 

water s i d e  and the re su l t i ng  degradation of heat exchanger 

performance must be s tud ied  and minimized. 

M e 1 1  Casing & 

Heat Exchangers 

Piping 
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Re-inj ec t ion  Both of t h e  geothermal f l u i d s ,  and t h e  condenser 

coolant i f  aquifer  water is t o  be used. 

F i e ld  Performance Maintenance of geothermal f l u i d  r e se rvo i r  content, 

and production capab i l i t y  of w e l l s  through re- inject ion 

and other  means. 

Also, f l u i d  composition w i l l  not only a f f e c t  power p l an t  

material performance, but t h e  information may lead t o  

methods of determining c h a r a c t e r i s t i c  changes i n  the  

reservoir. 
acteristics of t h e  water now flowing from the  two boi l -  

ing w e l l s  i n  t h e  Raft  River Valley. 

Monitoring of micro-seismic a c t i v i t y .  

Table V I 1  gives t h e  composition and char- 
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Table VI11 

Chemical Content and Other Charac te r i s t ics  of Boiling Raft River Wells 

Bridge (BLM) Well 

Report Depth ( f t )  414 

Discharge kate (gpm) 58 

Discharge Temperature ("C) 93 

S i l i c a  (ppm Si )  90 

C a  (ppm f o r  following) 53 

Mg 0.4 

N a  560 

K 22 

55 

0 

57 

0 
c1 900 

F 5.7 

"O3 

c03 

s04 
P 

0.54 

1720 Tota l  Dissolved Sol ids  
Hardness as CaC03 13 0 
Spec i f ic  Conductance (mhos) 3050 

N03 

PH 7.4 

S i l i c a  deduced reservoi r  temperature 135OC 

Na/K/Ca deduced reservoi r  temperature 145'C 

Crank Greenhouse Well 

540 

60 

>90 
97 

130 

0.4 

1110 

55 

36 

0 

61 

0.01 

1900 

14 

0.57 

3360 

330 

6090 

7.7 
135'C 

14OOC 
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5.0 SCHEDULE AND BUDGET 

The  need is imperative f o r  a researchdemonstrat ion of a geothermal 

power p l a n t  operating on low temperature f lu id .  

power i n  the northwest r e q u i r e  tha t  addft ional  tFLermal power p l an t s  be added 

quickly. Therefore, the following schedule 2s based on as rapid as f e a s i b l e  

design and construction schedule. Certain cons t r a in t s  have been considered, 

p a r t i c u l a r l y  the f a c t  t h a t  f i s c a l  year 1974 budget authorizat ions f o r  geo- 

thermal research and development are no t  l i k e l y  t o  b e  large.  

a c t i v i t y ,  Emwever, shows a s u b s t a n t i a l  scale up of e f f o r t  beginning i n  f i s c a l  

year 1975. 

T h e  dwindling suppl i& of 

The scheduled 

The c r i t i ca l  items which govern t h e  construction schedule f o r  

the steam power p l an t  demonstration phase are the completion of conceptual 

design and the authorizat ion of T i t l e  Z f i n a l  design. A three month l apse  

between these events is  assumed. The steam power is shown ready f o r  check 

out  and operation approximately 15 months a f t e r  t h e  beginning of T i t l e  I 

design, 18 months a f t e r  t h e  start of deep d r i l l i n g  of the f i r s t  of t h ree  

t o  four  w e l l s  needed f o r  production. 

d r i l l i n g  this f i r s t  w e l l  must b e  under the research phase of the program 
and need not await t he  construction phase. 

Thus. the bidding authorizat ion f o r  

The estimated budget is based on a schedule which would see the  

steam turbine phase of t he  p l an t  operat ional  by ea r ly  i n  1977, and the  

binary cycle  (or possibly a second s t a g e  f l a s h  cycle) operat ional  about one 

year later.  

$2.5 mil l ion.  

operating on the steam cycle  is  approximately $5.0 million.* 

constructing t h e  binary cycle p l an t  is expected t o  be somewhat higher,  approxi- 

mately $7 mil l ion.  

of add i t iona l  research and conceptual design, perhaps t o t a l l i n g  $1 million. 

The i n i t i a l  research and development phase is estimated t o  cos t  

Construction and s i t i n g  cost  of t h e  f i r s t  10 MW(e> power p l an t  

The cos t  of 

Its construction must be preceded by a s i g n i f i c a n t  amount 

~ ~~ 

* Plus an add i t iona l  $1.0 mi l l i on  unallocated contingency added t o  the 

construction d a t a  sheet  estimate (Schedule 44, # 75-ID-010). 
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6.0 PARTICIPANTS AND mMDING ARRANGEMENTS 

The proposed demonstration pro jec t  is being undertaken by two 

p r inc ipa l  partners--Aerojet Nuclear Company of Idaho Fa l l s ,  a prime con- 

t r a c t o r  t o  t h e  Atomic  Energy Commission, and Raft  River Electric Company, 

an e l e c t r i c a l  cooperative serving 10,000 square miles covering port ions 

of Idaho, Utah, and Nevada. Aerojet w i l l  a l s o  subcontract port ions of t he  

research e f f o r t  t o  th ree  state-funded un ive r s i t i e s ,  University of Utah, i n  

S a l t  Lake City,  Idaho S t a t e  University i n  Pocatel lo ,  and Boise S t a t e  College 

i n  Boise, Idaho. Thus, t h e  s ta te  governments of both Idaho and Utah w i l l  

have d i r e c t  access  t o  the  r e sea rchand  development information from t h i s  

p ro jec t  . 

A l l  of the-involved parties are undertaking t h i s  p ro jec t  as a non- 

p r o f i t  research and development e f f o r t .  

t i ng  mostly from t h e  f ede ra l  government, with t h e  Atomic Energy Commission 

(AEC) administering the program and Aerojet  Nuclear Company as t he  prime 

Funding is  being proposed as origina- 

contractor .  Direct AEC adminis t ra t ive cont ro l  would be with t h e  Idaho 

Operat3ons Off ice  i n  Idaho Fa l l s ,  approximately 100 m i l e s  from the  Raft  

River Electric Co. of f ices .  The National Reactor Testing S ta t ion ,  where 

most of t he  preliminary design and development work w i l l  be  performed is 

40 miles nor th  of the Raft  River Electric Co. s e rv i ce  area. 

Associated organizations of the Raft  River Electric Co., nand7 the 

Snake River Power Aasociation and t h e  Publ ic  Power Council have contributed 

appropriate  "seed" funding during t h e  ea r ly  phases of t he  pro jec t .  

these organizat ions regulated,  and consumer owned, t h e i r  

resources fo r  research are q u i t e  l imited.  Their contr ibut ion therefore  is 

expected t o  be  less than 3% of t h e  t o t a l  estimated p ro jec t  cos t  of $16 mi l l i on  

over 4 years. Raft  R i v  

l i n e s  so as t o  appropriately u t i l i z e  the  power generated by t 

March 1974, Snake River Power Association and Raft  River Rural Electric have 

invested approximately $60,000 i n t o  geological  s tud ie s  and t h e  acquiring of 

leases. 
mately $200,000 through June 1974. 

toward add i t iona l  geological  and geophysical work by t h e  U.S. Geological Survey. 

But since 

E l e c t r i c  w i l l  supply the switch gear and transmission 

p lan ts .  As of 

Federal  funding from the Atomic Energy Commission w i l l  t o t a l  approxi- 

A nominal 40% of t h i s  t o t a l  is being d i rec ted  
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Once t h e  p lan ts  become operat ional ,  Raft  River u t i l i t y  o r  the  Snake 

River Power Association w i l l  be responsible f o r  the  rout ine  d a i l y  operation. 

The f ede ra l  government, however, w i l l  r e t a i n  ownership throughout t he  research 
and t e s t ing  phases and may pre-empt operation f o r  research t e s t i n g  purposes. 

A t  such t i m e  as t h e  p lan ts  are no longer needed f o r  research, the Raft  River Rural 

Electric Coop. w i l l  be given t h e  opt ion of e i t h e r  purczhasing the  p lan ts  or of 

leas ing  the  p l an t s  from the  government. 

During the  research phases of t h e  work, t he  net worth of a l l  power 

generated w i l l  be calculated,  and t h a t  port ion which would be c h a r a c t e r i s t i c  

of average f u e l  cos t s  f o r  a conventional thermal power p l an t  w i l l  be used t o  

determine the  Lease roya l t i e s  ( typ ica l ly  10% of t h e  resource value).  

It is ant ic ipa ted  t h a t  the rout ine  opera t iona l  cos t s  (borne by Raft  

River Electric Company) f o r  these p l an t s  w i l l  be  less than the  current  whole- 

sale e l e c t r i c  power cos t s  i n  the  area (%& m i l l s  i n  1974). I f  indeed t h i s  is 

the  case,  then the  d i f fe rence  may 

p lan t  cos ts  (not t he  research cos ts ) .  

be  used f o r  appropriate  amortization of the  

Note added Aupust 10, 1973 

On August 10, 1973, t he  Northwest Publ ic  Power Association and t h e  Publ ic  

Power Council t e s t i f i e d  t o  the  Senate I n t e r i o r  Subcommittee on Water and 

Power t h a t  they endorsed and would support t he  proposed Raft  River Geothermal 

Ddons t r a t ion  Power Plant.  Spec i f ica l ly ,  t h e  Publ ic  Power Council w i l l  supply, 

through its 104-member organizations , f inanc ia l  backing t o  the  Raft  River Rural 

Electric Cooperative. 

geothermal leas ing ,  and some geological  information and consulting cos t s  which 

would be t h e  r e spons ib i l i t y  of t he  u t i l i t y .  Letters of i n t e n t  t o  support such 

p ro jec t  involvement have been received from a l a r g e  f r ac t ion  of t h e  104 u t i l i t y  

membership. Funding d e t a i l s  .are cur ren t ly  (March 1974) i n  the  process of being 

determined. 

Such support would include the  generation switchgear, 
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