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Abstract

Frequency-chirped free-electron lasers (FELs) are use-
ful to generate a large photon bandwidth or a shorter x-
ray pulse duration. In this paper, we present a three-
dimensional analysis of a high-gain FEL driven by the
energy-chirped electron beam. We show that the FEL
eigenmode equation is the same for a frequency-chirped
FEL as for an undulator-tapered FEL. We study the trans-
verse effects of such FELs including mode properties and
transverse coherence.

INTRODUCTION

Frequency-chirped free-electron lasers (FELs) can be
produced by an energy-chirped electron beam and can pro-
vide a relatively large bandwidth for x-ray applications
and manipulations. One-dimensional theory of frequency-
chirped FELs have been developed in Refs. [1–3]. In
this paper, we present a three-dimensional analysis of
frequency-chirped FELs, focusing on the case of self-
amplified spontaneous emission (SASE). We study the
transverse effects including mode properties and trans-
verse coherence and discuss possible applications to short-
wavelength FELs.

FREQUENCY CHIRP AND UNDULATOR
TAPER

In this section, we show analytically the equivalent effect
on the FEL gain between frequency chirp and undulator
taper, first discussed in Ref. [2] through simulation studies.
We assume a parallel electron beam without emittance and
start with the FEL pendulum equation

dθ

dz̄
= η̄ ,

dη̄

dz̄
= aeiθ + c. c. , (1)

where θ = (kr + ku)z − ωrt is the electron phase vari-
able, λu = 2π/ku is the undulator period, λr = λu(1 +
K2/2)/(2γ2

0) = 2π/kr = 2πc/ωr is the resonant wave-
length, γ0 is the average beam energy in units of mc2, K is
the undulator parameter, z̄ = 2kuρz, η̄ = (γ − γr)/(γ0ρ)
is the scaled energy variable, ρ is the FEL parameter [5],
a(x̄, θ; z̄) is the scaled (complex) field amplitude, and c.
c. stands for complex conjugate. We consider an electron
beam with a linear energy chirp given by

h = −dγ/γ0
dt

1
2ρ2ωr

. (2)

Note that the scaled chirp parameter is defined as the rela-
tive energy change (normalized by ρ) over a cooperation
length λr/(4πρ). For a positive chirp, the head of the
bunch has a higher energy than the tail.

The linearized Vlasov equation for the electron distribu-
tion function is

∂f1

∂z̄
+ η̄

∂f1

∂θ
+ (aeiθ + c. c.)

∂f0

∂η̄
= 0 , (3)

where f1 is the perturbed distribution function describing
the FEL microbunching, f0 = U(x̄)δ(η̄ − h2ρθ) is the
average distribution function, δ is the Dirac delta function
for a beam with a vanishing slice energy spread, U(x̄) is
the transverse profile of the electron beam with the normal-
ization U(0) = 1, and x̄ =

√
2kukr(x, y) represents the

(scaled) transverse coordinates. The solution of the Vlasov
equation is

f1(θ, η̄; z̄) = f1(θ, η̄; 0)−
∫ z̄

0

ds̄
[
a(s̄)ei[θ+η̄(s̄−z̄)]

+ c. c.
]∂f0

∂η̄
. (4)

The Maxwell equation under the slowly varying ampli-
tude and phase approximation is(

∂

∂z̄
+

∂

2ρ∂θ
+

∇2
⊥

2i

)
a = −e−iθ

∫
f1(θ, η̄; z̄)dη̄

=− e−iθ
∫
f1(θ, η̄; 0)dη̄ + iU(x̄)

×
∫ z̄

0

ds̄(z̄ − s̄)a(s̄)eih2ρθ(s̄−z̄) , (5)

where ∇2
⊥ = ∂2/∂x̄2. The first term of the last expres-

sion corresponds to shot noise modulations that start the
FEL process (or any other modulations near the resonant
wavelength imprinted on the beam). Let us drop this term
for now and focus on the second term that gives rise to the
exponential growth. We introduce a new field variable

ã(x̄, θ; z̄) = a(x̄, θ; z̄) exp
[
ih
(
2ρθz̄ − 2ρ2θ2

)]
(6)

and insert into Eq. (5) to obtain(
∂

∂z̄
+

∂

2ρ∂θ
+

∇2
⊥

2i

)
ã = iU(x̄)

∫ z̄

0

ds̄(z̄ − s̄)ã(s̄)

+ ihz̄ã(z̄) . (7)

Let us take Fourier transformation of the electric field

ã(x̄, θ; z̄) =
∫
dνãν(x̄; z̄)eiνθ . (8)
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The field equation in the frequency domain is[
∂

∂z̄
+ iν̂ +

∇2
⊥

2i

]
ãν = iU(x̄)

∫ z̄

0

ds̄(z̄ − s̄)ãν(s̄) , (9)

where ν̂ = ν̄ − hz̄, and ν̄ = ν/(2ρ) = (ω−ωr)/(2ρωr) is
the scaled detune parameter.

Following the treatment of undulator taper in Ref. [4]
(especially Appendix B), one can show that the field equa-
tion for the undulator taper is the same as Eq. (9), except
that ν̂ = ν̄−uz̄. Here u = −KdK/dz(2ρ2ku(2 +K2)) is
the rate of the undulator taper. In presence of both fre-
quency chirp and undulator taper, one can then arrange
h = −u to cancel these two terms in the field equation.
Thus, the effects on the FEL gain from a chirped beam
can be compensated by tapering the undulator properly, as
pointed out in Ref. [2].

For |h| < 1, the field equation can be studied through
the WKB approximation [4]. The solution can be written
in the form

ãν(x̄; z̄) ≈ A(x̄; z̄) exp
[
−i
∫ z̄

0

(µ0(τ) + µ1(τ))dτ
]
,

(10)
where µ0 is the zeroth-order growth rate, and µ1 is the first-
order correction to the growth rate that can have a signifi-
cant contribution to the final power level. The FEL mode
equation for the zeroth-order solution is[

µ0 − ν̂ +
∇2
⊥

2

]
A(x̄; z̄) =

1
µ2

0

A(x̄; z̄)U(x̄) , (11)

Here ν̂ = ν̄−hz̄ is a z̄-dependent frequency detune because
of the energy chirp. Thus, the main effect of frequency
chirp on the transverse mode is through the frequency de-
tune. In what follows, we develop a simplified solution to
the FEL mode equation and study the transverse effects in-
troduced by frequency chirp (and undulator taper).

A SIMPLIFIED SOLUTION TO THE
MODE EQUATION

For a Gaussian transverse profile of the electron beam,
the FEL mode equation can be solved numerically using
the matrix formulation [6]. In the x-ray region where the
diffraction effect is small, the radiation mode size is typi-
cally narrower than the electron beam size. Assume equal
rms beam size σx = σy , we can expand

U(x̄) = U(r) = exp
(
− r2

2σ̄2
x

)
≈ 1− r2

2σ̄2
x

, (12)

where r =
√

2kukrρ(x2 + y2) is the scaled radial coordi-
nate, σ̄x = σx

√
2kukrρ is the scaled rms beam size, and

σ̄2
x � 1 is assumed for the last approximation. Let us sepa-

rate the radiation profile in radial and azimuthal coordinates
as

A(x̄) = B(r)eimφ . (13)

Note that we suppress the explicit z̄-dependence in Eq. (13)
since A(x̄) depends on z̄ through the changing frequency
detune in Eq. (11), which now becomes[

µ0 − ν̂ +
1
2r

d

dr

(
r
d

dr

)
− m2

2r2

]
B(r)

=
1
µ2

0

B(r)
(

1− r2

2σ̄2
x

)
. (14)

The exact solution for this differential equation is

B(r) = exp
(
−ir2

2µ0σ̄x

)
rmLmn

(
ir2

µ0σ̄x

)
, (15)

where Lmn is the associated Laguerre polynomial, and

n =
1
2

(
−1−m+

iσ̄x
µ0
− iµ2

0σ̄x + iµ0νσ̄x

)
(16)

must be an integer so that B(r) is bounded in r. This con-
dition yields the dispersion relation

µ0 − ν̂ − i
(1 +m+ 2n)

σ̄xµ0
− 1
µ2

0

= 0 . (17)

Equations (15) and (17) are the generalization of Ref. [7]
with azimuthal modes. In the limit when σ̄x � 1 (or σx �
1/
√

2k1kuρ), we can drop the 1/σ̄x term and arrive at the
familar 1D dispersion relation (see, e.g., Ref. [5]).

Fundamental Mode
For the fundamental mode with n = m = 0, we can

denote
w = iσ̄x/(2µ0) (18)

and write the rms mode size and angular divergence as

σr =
σx
2

[
wr

(
1 +

w2
i

w2
r

)]−1/2

(19)

σr′ =
λ1

2πσx

[
wr

(
1 +

w2
i

w2
r

)]1/2

. (20)

In the limit when σ̄x � 1 and at the optimal detune ν̂ = 0,
µ0 ≈ (−1 + i

√
3)/2, we then have

σr =
σx

2
√√

2kuk1ρ/3σx
=
√
σxσD , (21)

where

σD =
√

3
32kuk1ρ

≈
√
λ1

4π
LG (22)

is the diffraction beam size, and

LG =
λu

4π
√

3ρ
(23)

is the 1D power gain length. Since σ̄x � 1, we have
σx � σD. Equation (21) indicates that σr < σx, which is
required in order for the expansion in Eq. (12) to be valid.
An expression similar to Eq. (12) was discussed in Ref. [8].



-4 -2 0 2 4

0.2

0.4

0.6

0.8

frequency detune Ν
`

G
ro

w
th

ra
te

Im
HΜ

0L

Figure 1: The growth rate µ0 for the first three lowest-order
modes: m = n = 0 (red); m = 1 and n = 0 (green);
m = 0 and n = 1 (blue).

Higher-order Mode
For arbitrary n and m, the FEL mode is given by

Anm(x̄) = rmLmn

(
ir2

µ0σ̄x

)
exp

(
−i r2

2µ0σ̄x
+ imφ

)
.

(24)
For example, we consider the case of the LCLS hard x-ray
FEL at λr = 1.5 Å. For a 13.6 GeV beam with a normal-
ized slice emittance 0.4 µm, an average beta function 30 m
in the undulator, we have σx = 21 µm. For ρ = 5.8×10−4

and λu = 3 cm, we have σ̄x ≈ 2.1. In Fig. 1, we show the
zeroth-order growth rates of the first three lowest modes
calculated from Eq. (17). We emphasize that this solution
does not include the emittance and local energy spread ef-
fects, which are reasonably small for the high-brightness
beam generated by the LCLS accelerator.

We note that when the frequency detune ν̂ < −1.5
(when the FEL wavelength is longer than the resonant
wavelength), higher-order modes can have higher growth
rate than the fundamental mode. Such higher-order modes
have larger angular divergence than the fundamental mode,
which in turn shift the resonant wavelength towards the
FEL wavelength and results in more efficient interactions
with the electron beam.

TRANSVERSE EFFECTS OF
FREQUENCY CHIRPED FELS

We now study the transverse effects of a SASE FEL in-
troduced by frequency chirp (as well as undulator taper).
Unlike a seeded FEL that has a well-defined frequency, a
SASE FEL will determine its frequency spectrum through
the gain process. Following the analysis of Ref. [4] (i.e.,
Eq. (44)), we find the central frequency of the SASE spec-
trum moves half as fast as does the optimal frequency (for
maximum zeroth-order growth rate) due to the changing
resonant condition, i.e., ν̄c = hz̄/2. Thus, we may write
the frequency detune in Eq. (11) as

ν̂ = ν̄ − hz̄ = ν̄ − ν̄c −
hz̄

2
= ∆ν̄ − hz̄

2
, (25)

where ∆ν̄ = ν̄ − ν̄c. Thus, the effective frequency de-
tune from the central frequency of a chirped SASE FEL is
−hz̄/2. We can also assume a (normalized) SASE spec-
trum as

P (∆ν̄) =
1√

2πσν̄
exp

[
− (∆ν̄)2

2σ2
ν̄

]
. (26)

The FEL saturation typically occurs when z ≈ λu/ρ or
z̄ ≈ 4π. At saturation we also have σν̄ ≈ 0.5 or σν ≈ ρ.

Near the FEL saturation, the fundamental mode usually
dominates over the higher-order modes. To study the ef-
fects of frequency chirp on the transverse mode and co-
herence properties, we neglect the higher-order modes and
take

A(x) ≈ exp
(
−w x̄2

σ̄2
x

)
= exp

(
−wx2

σ2
x

)
. (27)

We introduce the Wigner function for the transverse phase
space of the radiation beam [9]

Φ(x,p) =
∫
dyA

(
x +

y

2

)
A∗
(
x− y

2

)
eikrp·y

= exp
[
− 1

2βεr
(αx + βp)2

]
, (28)

where

α =
wi
wr

, β =
krσ

2
x

2wr
, εr =

1
2kr

=
λr
4π

. (29)

Here we use the analogous Twiss parameters to describe the
transverse phase space of the FEL beam, and εr is the so-
called diffraction-limited radiation emittance. Both α and
β have strong dependence on the frequency detune. Hence
the phase space ellipse for each frequency component has
a slightly different orientation. For a SASE FEL with a fi-
nite bandwidth, the smearing of the transverse phase space
ellipses contributes to a larger overall emittance than the
diffraction-limited emittance εr and degrade the transverse
coherence [10, 11]. To quantify this effect, we compute
the second moment projected in the x direction at the FEL
saturation when z̄ = 4π:

〈x2〉 =
∫
dν̄εrβP (∆ν̄) =

∫
dν̂εrβP (ν̂ + 2πh) ,

〈xpx〉 =−
∫
dν̄εrαP (∆ν̄) = −

∫
dν̂εrαP (ν̂ + 2πh) ,

〈p2
x〉 =

∫
dν̄εr

1 + α2

β
P (∆ν̄)

=
∫
dν̂εr

1 + α2

β
P (ν̂ + 2πh) , (30)

and define the effective emittance for the radiation beam as

εeff
r =

√
〈x2〉〈p2

x〉 − 〈xpx〉2 . (31)

Similar expressions exist in the y direction. Note that both
the angular divergence and the effective emittance are func-
tions of the chirp parameter h. To calculate the degree
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Figure 2: Angular divergence of the fundamental mode vs.
frequency chirp.
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Figure 3: Degree of transverse coherence vs. frequency
chirp.

of transverse coherence, we take the ratio of diffraction-
limited emittance and the effective emittance in both x and
y directions as

ζ =
(
εr
εeff
r

)2

. (32)

To illustrate the above analysis, we consider again the
case of the LCLS hard x-ray FEL at λr = 1.5 Å and
σ̄x = 2.1. Defining the average rms divergence of the ra-
diation beam as σφ = (〈p2

x〉)1/2 and using Eq. (30), we
calculate the ratio σφ(h)/σφ(0) as a function of the fre-
quency chirp h in Fig. 2. We see that the angular divergence
increases with increasing chirp amplitude. In Fig. 3, we
show the degree of transverse coherence as computed from
Eq. (32). We note that the transverse coherence decreases
for a positive chirp but increases for a negative chirp. These
effects have been observed in simulations as well.

DISCUSSIONS
As discussed in Ref. [2] for frequency chirp and Ref. [4]

for undulator taper, slightly positive chirp and taper can en-
hance the FEL gain and increase the saturation power by a
factor of ∼ 2. Through this 3D analysis, we show that
positive chirp and taper decrease the transverse coherence
while increase the angular divergence of such FELs.

We note that a small scaled chirp parameter h can mean
a large relative chirp for the whole bunch. For example,
h = 0.1 for the LCLS hard x-ray FEL means ∼ 6% energy
chirp over 70 fs bunch duration. However, if the bunch de-
velops energy modulations through microbunching insta-
bility, then the local chirp can easily reach or exceed this
value (i.e., h = 0.1 corresponds to an energy modulation
amplitude ∼ 5× 10−4 for 1-µm modulation period).

Finally, for a bunch with a large positive chirp (i.e., head
has a higher energy), the effective frequency detune is neg-
ative so that a higher-order mode may become dominant
over the fundamental mode in a certain parameter regime,
as illustrated in Fig. 1. The positive energy chirp can
be created by off-crest rf acceleration or by longitudinal
space charge, CSR and linac wakefield of a high-brightness
beam. We note that the higher-order mode lasing was pre-
viously observed in the VISA FEL experiment [12].
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