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Abstract

In the past decade, one of the major challenges of particle physics has been to gain an in-depth
understanding of the role of quark flavor. In this time frame, measurements and the theoretical
interpretation of their results have advanced tremendously. A much broader understanding of
flavor particles has been achieved, apart from their masses and quantum numbers, there now
exist detailed measurements of the characteristics of their interactions allowing stringent tests
of Standard Model predictions. Among the most interesting phenomena of flavor physics is
the violation of the CP symmetry that has been subtle and difficult to explore. In the past,
observations of CP violation were confined to neutral K mesons, but since the early 1990s, a
large number of CP-violating processes have been studied in detail in neutral B mesons. In
parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays



in large samples of K, D, and B mesons have been greatly improved in accuracy and the results
are being used as probes in the search for deviations from the Standard Model.

In the near future, there will be a transition from the current to a new generation of experi-
ments, thus a review of the status of quark flavor physics is timely. This report is the result of
the work of the physicists attending the 5" CKM workshop, hosted by the University of Rome
”La Sapienza”, September 9-13, 2008. It summarizes the results of the current generation of
experiments that is about to be completed and it confronts these results with the theoretical
understanding of the field which has greatly improved in the past decade.
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1. Introduction

In the past decade, one of the major challenges of particle physics has been to gain
an in-depth understanding of the role of quark flavor. In this time frame, measurements
and the theoretical interpretation of their results have advanced tremendously. A much
broader understanding of flavor particles has been achieved, apart from their masses and
quantum numbers, there now exist detailed measurements of the characteristics of their
interactions allowing stringent tests of Standard Model predictions.

Among the most interesting phenomena of flavor physics is the violation of the CP
symmetry that has been subtle and difficult to explore. In the past, observations of CP
violation were confined to neutral K mesons, but since the early 1990s, a large number
of CP-violating processes have been studied in detail in neutral B mesons. In parallel,
measurements of the couplings of the heavy quarks and the dynamics for their decays in
large samples of K, D, and B mesons have been greatly improved in accuracy and the
results are being used as probes in the search for deviations from the Standard Model.

In the near future, there will be a transition from the current to a new generation of
experiments, thus a review of the status of quark flavor physics is timely. This report
is the result of the work of the physicists attending the 5" CKM workshop, hosted by
the University of Rome ”La Sapienza”, September 9-13, 2008. It summarizes the results
of the current generation of experiments that is about to be completed and it confronts
these results with the theoretical understanding of the field which has greatly improved
in the past decade.

In this section the basic formalism of the study of the quark couplings will be introduced
and the relationship between CKM matrix elements and observables will be discussed.
The last paragraph will then detail the plan of the report and the content of the rest of
the sections.

1.1. CKM matriz and the Unitarity Triangle

The unitary CKM matrix [1,2] connects the weak eigenstates (d',s',b’) and the corre-
sponding mass eigenstates d, s,b (in both basis the up-type mass matrix is diagonal and
the up-type quarks are unaffected by this transformation):

dl Vud Vus Vub d d
s | = | Vea Ves Ven s |=Vexu | s |- (1)
v Via Vis Vi b b

The CKM matrix contains all the flavor-changing and CP-violating couplings of the
Standard Model.

Several parameterizations of the CKM matrix have been proposed in the literature.
This report will use the standard parametrization [3] recommended by the Particle Data
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Group [4]. We also introduce the generalization of the Wolfenstein parametrization [5]
presented in [6] and discuss its connection to the Unitarity Triangle parameters.

1.1.1. Standard parametrization
With ¢;; = cosb;; and s;; = sinf;; (1,7 = 1,2,3), the standard parametrization is
given by:

—id
C12C13 S512€13 S13€

Y _ i6 i8
Vokm = | —s12023 — c12823813€"  c12023 — S12823813€"  Sazciz | (2)
0 0
512823 — C12€23513€ —S823C12 — S12€23513€ C23C13

where 4 is the phase necessary for CP violation. ¢;; and s;; can all be chosen to be positive
and 0 may vary in the range 0 < § < 27. However, measurements of CP violation in
K decays force 0 to be in the range 0 < & < m, as the sign of the relevant hadronic
parameter is fixed.

From phenomenological studies we know that s13 and sa3 are small numbers: O(1073)
and O(1072), respectively. Consequently, to a very good accuracy,

s12 > [Vus|,  s13 > |Vup|,  s23 = [Ves|. (3)

Thus these three parameters can be extracted from tree level decays mediated by the
transitions s — u, b — u and b — ¢, respectively. The remaining parameter, the phase ¢,
is responsible for the violation of the CP symmetry. It can clearly be extracted from CP-
violating transitions but also from CP-conserving ones using three-generation unitarity,
through the construction of the Unitarity Triangle, as discussed below.

1.1.2. Wolfenstein parametrization and its generalization

The absolute values of the elements of the CKM matrix show a hierarchical pattern
with the diagonal elements being close to unity, the elements |V,s| and |V.4| being of
order 0.2, the elements |V,;| and |V;s| of order 4-10~2 whereas |V, and |V;4| are of order
5-1073. The Wolfenstein parametrization [5] exhibits this hierarchy in a transparent
manner. It is an approximate parametrization of the CKM matrix in which each element
is expanded as a power series in the small parameter A ~ |V,5| ~ 0.22,

22
- A AN (o —in)
V= Y 1 - %2 AN? +O(Y, (4)
AN (1 — o —in) —AN? 1
and the set (3) is replaced by
A, A, 0, and 7. (5)

Because of the smallness of A and the fact that for each element the expansion parameter
is actually A2, this is a rapidly converging expansion.

The Wolfenstein parametrization is certainly more transparent than the standard
parametrization. However, if one requires sufficient level of accuracy, the terms of O(\*)
and O(A\%) have to be included in phenomenological applications. This can be done in

8



many ways [6]. The point is that since (4) is only an approximation the ezact definition
of the parameters in (5) is not unique in terms of the neglected order O(A\*). This situa-
tion is familiar from any perturbative expansion, where different definitions of expansion
parameters (coupling constants) are possible. This is also the reason why in different pa-
pers in the literature different O(A?) terms in (4) can be found. They simply correspond
to different definitions of the parameters in (5). Since the physics does not depend on
a particular definition, it is useful to make a choice for which the transparency of the
original Wolfenstein parametrization is not lost.

In this respect a useful definition adopted by most authors in the literature is to go back
to the standard parametrization (2) and to define the parameters (A, A4, o,n) through [6]

A =512, AN? = 593, AN (o —in) = spze” % (6)
to all orders in \. It follows that
0= 13 cos J, n= 13 sin. (7)
512523 512523

The expressions (6) and (7) represent simply the change of variables from (3) to (5). Mak-
ing this change of variables in the standard parametrization (2) we find the CKM matrix
as a function of (X, A, o, n) which satisfies unitarity exactly. Expanding next each element
in powers of A we recover the matrix in (4) and in addition find explicit corrections of
O(X*) and higher order terms. Including O(A\*) and O(A\%) terms we find

1

1
1-— 5)\2 - §A4 A4+ O\ AN (o — i)
V=] -\+ %A2A5[1 —2(o+in)] 1- %/\2 — %)\4(1 +4A4%) AN+ 0(\®) (8)
AN (1 -2 —7) —AN? + %Ax*u —2(o+in)] 1- %A2)\4
where
_ A? 4 _ A2 A
oxo(l- ) +O00N),  T=nl-7)+OK). (9)

An all-order definition of g and 7 will be given in the next section. We emphasize here that
by definition the expression for V,,; remains unchanged relative to the original Wolfenstein
parametrization and the corrections to V,s and V., appear only at O(A\7) and O()\®),
respectively. The advantage of this generalization of the Wolfenstein parametrization is
the absence of relevant corrections to Vs, Viq, Vup and Vg, and an elegant change in
Viq which allows a simple connection to the Unitarity Triangle parameters, as discussed
below.

1.1.3. Unitarity Triangle

The unitarity of the CKM matrix implies various relations between its elements. In
particular, we have

ViaVs + VeaVap + ViaVi, = 0. (10)

Phenomenologically this relation is very interesting as it involves simultaneously the
elements V5, Vi and V4 which are under extensive discussion at present. Other relevant
unitarity relations will be presented as we proceed.

The relation (10) can be represented as a unitarity triangle in the complex plane.
The invariance of (10) under any phase-transformations implies that the corresponding

9



triangle is rotated in the plane under such transformations. Since the angles and the
sides (given by the moduli of the elements of the mixing matrix) in this triangle remain
unchanged, they are phase convention independent and are physical observables. Conse-
quently they can be measured directly in suitable experiments. One can construct five
additional unitarity triangles [7,8] corresponding to other orthogonality relations, like
the one in (10). Some of them should be useful when the data on rare and CP violating
decays improve. The areas (Aa) of all unitarity triangles are equal and related to the
measure of CP violation Jep [9]: | Jep |= 2 - Aa.

The relation (10) can be represented as the triangle in the complex plane as shown in

Fig. 1, where
. p=ard V*Vud
o+if=CA=——uwb < 11
0+ 17 T Vi (11)

and

CB=1. (12)

Fig. 1. Unitarity Triangle.

The parameters o a’nc? 7 are the coordinates in the complex plane ogt}’le only non-trivial
apex of the Unitarity Triangle. Using their definition in Eq. (11), the exact relation to
the parameters ¢ and 7 as given in Eq. (6) can be easily found and reads

_ 1— A2)\4 o+ A2\ 4
prin— S = (14 5 @m0 (13)

Phenomenological analyses of the Unitarity Triangles constrain the values of g and
7. These can be translated to constraints on ¢ and 7 using Eq. (13) and then to the
standard parametrization using Eq. (6). All recent analyses determine the Ve v matrix
elements in this way, using no expansion whatsoever.

Let us collect useful formulae related to the Unitarity Triangle:

— We can express sin(2«;), a; = «a, 3,7, in terms of (g,7) using simple trigonometric
formulae:

2n(m* + 2% — )

sin(2a) = FL (-2 + ) (14)
sin(29) = I (15)
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o+
— The lengths of AC' and AB, denoted by R, and R; respectively, are given by
[V Vad| P— 22 1| Vi
Ry= -2 — = ~(1-—=)= 17
S Vvl VTSR an
Vi Vil —2 2. 1|V
v VTP ER Y, (18)
— The unitarity relation (10) can be rewritten as
Rye” + Re™ =1, (19)
— The angle o can be obtained through the relation
a+B+y=m. (20)

— In the standard parametrization, the angles 5 and v of the unitarity triangle are
approximately related to the complex phases of the CKM matrix elements V;q and Vi,
respectively. In particular,

Via =~ [Viale ™™, Vi = [Viple ™. (21)
1.2. Plan of the report

The goal of the latest generation of flavor experiments has been not only the mea-
surement of the angles and sides of the unitarity triangles, but the measurement of as
many redundant observables sensitive to the parameters of the unitarity triangle. On
one side in fact the consistency of this plethora of measurements is a signal that the CP-
violation mechanism is fully understood, on the other side possible deviations from the
Standard Model would spoil such a consistency. Sensitivity to ” New Physics” is therefore
proportional to the accuracy we are able to achieve on the Unitarity Triangle. Finally,
in case New Physics is observed, the Standard Model Unitarity Triangle will have to be
measured by means of a subset of observables , those that are not influenced by New
Physics itself, namely tree dominated processes.

In this report, we first describe general theoretical (Sec. 2) and experimental (Sec. 3)
tools. Next, the single measurements are described and averaged whenever possible. In
particular Sec. 4 discusses the measurements of the Cabibbo Angle, Sec. 5 the measure-
ment of |V.;| and |Vyp| in semileptonic decays. Rare decays and measurements of |V4|
and |V,p| are detailed in Sec. 6, while Sec. 7 reports on the mixing and lifetime related
measurements, including the time-dependent measurements of the phases of the mixing
diagram, both for B; and B, mesons. All other measurements of angles of the Unitarity
Triangle are described in Sec. 8 and 9: the former shows a large number of measurements
of the v angle in tree dominated processes, while the latter comprises several techniques
to measure «, 8, and y in charmless B decays.

These measurements are interpreted altogether in Sec. 10. First the results of global
fits to all observables under the assumption that there is no deviation from the Standard
Model is presented. This fit returns a very accurate measurement of the position of the
apex of the unitarity triangle. Next, the redundancy of the measurements is exploited to
test the possibility of deviations from the Standard Model both in model independent
frames and under specific New Physics scenarios.
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2. Theory Primers

This section contains the description of theretical tools that are common to different
fields of flavor physics and that will therefore be used as starting point in the subsequent
sections.

2.1. Effective Weak Hamiltonians

Flavor-changing hadron transitions are multi-scale processes conveniently studied using
the operator product expansion (OPE) [10,11]. They involve at least two different energy
scales: the electroweak scale, given for instance by the W boson mass My, relevant for
the flavor-changing weak transition, and the scale of strong interactions Aqgcp, related to
the hadron formation. Using the OPE, these processes can be described by effective weak
Hamiltonians where the W boson and all heavier particles are eliminated as dynamical
degrees of freedom from the theory [12-16]. These Hamiltonians are given by the first
term of an expansion in renormalized local operators of increasing dimensions suppressed
by inverse powers of the heavy scale.

The OPE realizes the scale separation between short-distance (high-energy) and long-
distance (low-energy) physics. The scale p at which the local operators are renormalized
sets the threshold between the two regimes. The effect of particles heavier than My,
enters only through the Wilson coefficients, namely the effective couplings multiplying the
operators of the Hamiltonian. Short-distance strong-interaction effects are also contained
in the Wilson coeflicients and can be computed using renormalization-group improved
perturbation theory. Indeed, Wilson coefficients obey a renormalization group equation
(RGE) allowing to resum large logs of the form ag(u)™ ™™ log(Mw /u)™ to all orders
in n. The leading order (LO) resummation corresponds to m = 0, the next-to-leading
order (NLO) one to m = 1, and so on. Since the Wilson coefficients depend on short
distance physics only, they behave as effective couplings in the Hamiltonians. They can
be calculated once and for all, i.e. for any external state used to compute the Hamiltonian
matrix elements. Indeed, the complete definition of an effective weak Hamiltonian requires
the choice of the operators and the computation of the corresponding Wilson coefficients.

The dependence on external states, as well as long-distance strong-interaction effects,
is included in the hadronic matrix elements of the local operators and must be evaluated
with a non-perturbative technique (lattice QCD, QCD sum rules, QCDF, SCET, etc.).
As non-perturbative methods can typically compute matrix elements of local operators,
this is a major motivation for using the effective weak Hamiltonians.

We now illustrate the procedure to define the effective weak Hamiltonians and to com-
pute the Wilson coefficients discussing the case of AF = 1 transitions, namely processes
where the quark flavor quantum numbers change by one unit.

The starting point is a generic S matrix element given by the T-product of two weak
charged currents computed in the Standard Model (in the following called full theory to
distinguish it from the effective theory defined by the effective weak Hamiltonian)

IS0 = [ atep (o, 3) (FIT (520,55 ) 1) (22
where (F'| and |I) are the generic final and initial states and
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3
JCC = i Z l(z VuZdJﬂlL(I)FY#dJL(I)> + é%(I)FY#V%(I)] ) (23)

where V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2], u® = {u,c}!, d* =
{d,s,b}, ¢ = {e,u, 7}, V' = {Ve,vyu,v-} and the subscript L denotes the left-handed
component of the field.
Given that, using for instance the Feynman gauge,
dq _, —g
D" (z, M) = e =0

(z, Mw) / emt  @—MZ +ie (z) M2,

the two weak currents go at short distances in the large My limit. Thus the S matrix
element can be expanded in terms of local operators and gives

(F|iS|I) —4—20 WF|Qi(u)|I) + ..., (25)

gt

+o, (24)

where G is the Fermi constant Gr/v/2 = ¢g?/8M32,. The dots represent subdominant
terms suppressed by powers of Q?/M3, where @ is the typical energy scale of the process
under study (Aqcp for light hadron decays, m; for B decays, etc.).

The OPE in Eq. (25) is valid for all possible initial and final states. This allows for the
definition of the effective weak Hamiltonian, given by the operator relation

Hp/ = = 4— Zc —18QT () - Cu). (26)
7

The Q;(u) are local, dimension-six operators renormalized at the scale p and the C;(u)
are the corresponding Wilson coefficients. The set of operators Q;(u) forms a complete
basis for the OPE. This set contains all the linearly-independent, dimension-six operators
with the same quantum numbers of the original weak current product, usually reduced
by means of the equations of motion (although off-shell basis can also be considered).
In practice, the operators generated by the expansion of the full amplitude (in the so-
called “matching” procedure described below) must be complemented by the additional
operators generated by the renormalization procedure. Notice that, in the absence of
QCD (and QED) corrections, the effective Hamiltonian in Eq. (26) reduces to the Fermi
theory of weak interactions. For instance, from the leptonic part of the charged currents,
one finds

Gr _ _
7_[Fcrmi = ﬁeqﬂu(l - 75)”81/#7#(1 - 75),“5 (27)

i.e. the Fermi Hamiltonian describing the muon decay.

For quark transitions, gluonic (and photonic) radiative corrections to amplitudes com-
puted in terms of local operators produce ultraviolet divergences which are not present
in the full theory. This implies that the local operators @; need to be renormalized and
depend on the renormalization scale . Therefore pu-dependent Wilson coeflicients must
be introduced to cancel this dependence.

Provided that one choses a large enough renormalization scale p > Aqcp, short-
distance QCD (and QED) corrections to the Wilson coefficients can be calculated using
a renormalization-group-improved perturbation theory, resumming classes of large logs

1 The top quark is not included as we are building an effective theory valid for energies below Myy .
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potentially dangerous for the perturbative expansion. All non-perturbative effects are
confined in the matrix elements of the local operators. Their calculation requires a non-
perturbative technique able to compute matrix elements of operators renormalized at the
scale p. In the case of leptonic and semi-leptonic hadron decays, the hadronic effects are
confined to the matrix elements of a single current which can be conveniently written
using meson decay constants (for matrix elements between one hadron and the vacuum)
or form factors (for matrix elements between two hadron states) as for example

Oldy"ysur|n™(q)) = ifxq"
(@5 di| KO (p)) = () @+ ) + 2P —1), @ =@—p)*. (28)

Appearing in different processes, they can be computed using non-perturbative tech-
niques or measured in one process and used to predict the others. Predictions for non-
leptonic decays, on the other hand, usually require non-perturbative calculations. Data-
driven strategies are possible in cases where many measurements related by flavor sym-
metries are available.

The determination of Wilson coefficients at a given order in perturbation theory re-
quires two steps: (i) the matching between the full theory and the effective Hamiltonian
at a scale M ~ O(Myw ) and () the RGE evolution from the matching scale M down to
the renormalization scale p.

Let’s discuss the second point first. Since HVAVle in Eq. (26) is independent of p, i.e.
1oL HEF= = 0, the Wilson coefficients C(p) = (C1(n), Co(p), ... ) must satisfy the

RGE ] :
N2d—u20(ﬂ) = §ATC(M)= (29)
which can be conveniently written as
0 0 1,
(1505 + Blan) g = 3770 ) €0 =0, (30)
where J
s
/B(OZS) :u’2 d/lz2 (31)
is the QCD g function and
. 5 d .
Yas) =22 1/L2d—ugz (32)

is the operator anomalous dimension matrix. The matrix Z of the renormalization con-
stants is defined by the relation connecting the bare operators QP to the renormalized
ones Q(p)
Qp) = Z7 (1, as)Q" . (33)
The solution of the system of linear differential equations (30) is found by introducing
a suitable evolution matrix U(u, M) and by imposing an appropriate set of initial
conditions, usually called matching conditions. The coefficients C(u) are given by 2

C(p) = Ulp, M)C(M), (34)

2 The problem of the thresholds due to the presence of heavy quarks with a mass My, >> mg > Aqcp
will be discussed below.
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with

R as(ma)
U(my,ms) = T,, exp (/ o B‘EZS>&T(QS)> ) (35)

T,, is the ordered product with increasing couplings from right to left.

The matching conditions are found by imposing that, at u = M ~ O(My ), the matrix
elements of the original T-product of the currents coincide, up to terms suppressed by
inverse powers of My, with the corresponding matrix elements of ’H‘%,F =1, To this end,
we introduce the vector T' defined by the relation

L alQ" B0 T (M i)+ (36)
where (a|Q7|3)¢ are matrix elements of the operators computed at the tree level and the
dots denote power-suppressed terms. The vector T contains the dependence on heavy
masses and has a perturbative expansion in «,? On dimensional basis, T can only
be a function of m;/My and of log(p?/M3,) where p generically denotes the external
momenta.

We also introduce the matrix M (u) such that

Gr
NG

- 4%<a|QT|ﬂ>OMT<u; 0)C(u). (37)

In terms of T and M , the matching condition
i{alS]8) = (aHR =" (B) (38)
fixes the value of the Wilson coefficients at the scale M as
C(M) = [MT(M; o) T (M, my; as) . (39)

As the full and the effective theories share the same infrared behavior, the dependence on
the external states on which the matching conditions are imposed drops in Eq. (39), so
that any matrix element can be used, even off-shell ones (with some caution), provided
the same external states are used for computing matrix elements in both theories. Notice
that the matching can be imposed at any scale M such that large logs do not appear in
the calculation of the Wilson coefficients at that scale, i.e. aslog(M/My ) < 1.

Equation (34) is correct if no threshold corresponding to a quark mass between p and
My is present. Indeed, as ag, 4 and B(«as) depend on the number of “active” flavors, it
is necessary to change the evolution matrix U defined in Eq. (35), when passing quark
thresholds. The general case then corresponds to a sequence of effective theories with a
decreasing number of “active” flavors. By “active” flavor, we mean a dynamical massless
(i > my) quark field. The theory with k& “active” flavors is matched to the one with
k + 1 “active” flavors at the threshold. This procedure changes the solution for the
Wilson coefficients. For instance, if one starts with five “active” flavors at the scale My,
and chooses m. < u < my, the Wilson coefficients become

C(p) = Wn, Myw]C(Myw) = Us(ps, mp) TasUs (my, My )C(Myy) . (40)

i(alS|B) =4

(@ HF=B) = 4==(alQ" (n)|B)C (1)

3 For simplicity, we discuss QCD corrections only. QED corrections can be considered as well and are
included in a similar way.
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Fig. 2. One-loop correction to the AF = 1 effective weak Hamiltonian.

2L 4

The matrix T45 matches the four and five flavor theories so that the Wilson coefficients
are continuous across the threshold. The inclusion of the charm threshold proceeds along
the same lines.

So far we have presented the formal solution of the matching and the RGE for the
Wilson coefficients. In practice, we can calculate the relevant functions (8, ¥, M , T, etc.)
in perturbation theory only. At the LO, one has

2

« [0 ~
[ A:_SA(
Bla) =60 t..., 4

470>+... T=TO+. .., M=1i+..., (41)
I8

so that the LO Wilson coefficients read

T . (42)

as(M) > /200
s (pe)

The explicit solution can be found in the basis where the LO anomalous dimension
matrix 4(?) is diagonal. To go beyond the LO, we have to expand the relevant functions
to higher order in «s. Discussing the details on higher order calculations goes beyond the
purpose of this primer. They can be found in the original literature cited in the following
presentation of the actual effective Hamiltonians for AF =1 and AF = 2 transitions.

Cro(pn) = (

2.1.1. AF =1 effective weak Hamiltionians

Even restricting to processes which change each flavor number by no more than one
unit, namely AF = 1 transitions, several effective Hamiltonians can be introduced. We
start considering the Hamiltonian relevant for transtions with AB =1, AC =0, AS =
—1:
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AP AC=0.AS=1 4G—\/f(,\5(01( QS (1) + Ca (1) Q5 (1)) (43)

AL (CHQY (1) + Cal) Q3 (1) — X7 Zc Qi)

where the A\j = V;;)VqS and the operator basis is given by

q,ba q,ba

LY QL Q?,”Y;LSL

LY qL qL'Y,uSL
Qs = bzy"s] Z R Qu = bEy"s] Z qLvudL
q
Qs = b3y"s? > darudh Qo = b§7"s] Z TR VndR

(44)

q

3- _ 3-
Q7 = —b%fy“s% g eqCJﬁmqﬁ Qs = gb%’Y SL E :equ”y#q%
q

3-
Qo = b Gtst Zeququ Quo = 5D3n"s], Zeqqmm

The sum index ¢ runs over the “active” flavors, a, 8 are color indices and e, is the electric
charge of the quark g. Besides @)1, which come from the matching, the above operators
are generated by gluon and photon exchanges in the Feynman diagrams of fig. 2. In
particular, Q3 is generated by current—current diagrams while Q3-Qg and Q7—Qo are
generated by gluon and photon penguin diagrams respectively. Notice that the choice
of the operator basis in not unique. Different possibilities have been considered in the
literature [17-23].

The operators basis includes the ten independent operators in Eq. (44) in the five-flavor
effective theory. Below the bottom threshold, the following relation holds

Q10— Qo—Q1+Q3=0, (45)

so that the independent operators become nine. The basis is further reduced in the
three-flavor theory, i.e. below the charm threshold, due to the additional relations

Qi-Qs—Qt@=0, Qo 2Qi+3Q5=0. (46)

For b — s transitions with a photon or a lepton pair in the final state, additional
dimension-six operators must be included in the basis, namely

Qry = 16 meb M EwsT

Qsy = 16 = mpbF o G, T ¢
Qov = 55%7”5% iWMZ

1_ _
Q104 = 55%7”5% Iyuyst (47)

where G , (F,,) is the gluon (photon) field strength tensor and 74 are the SU(3)
generators They contribute an additional term to the Hamiltonian in Eq. (44) so that,
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up to doubly Cabibbo-suppressed terms and neglecting the electroweak penguin operators
Q7—Q10, the effective weak Hamiltonian for these processes reads

Hw 4—/\5 (Z Ci()Qi(1) + Cry (1) Qry (1) + Cig (1) Qs (1)

+Cov (1) Qov (1) + CloA(M)QmA(M)) ; (48)

with Q2 = Qf 5 defined in Eq. (44).

At present, the AF = 1 effective weak Hamiltonian in Eq. 44, including electroweak
penguin operators (Q7—Q1o in Eq. (44)), is known at the NNLO in a; [24] and at the
NLO in a, [25,26]. The effective Hamiltonian in Eq. (48) has been fully computed at the
NNLO in the strong coupling constant [27-30].

Effective weak Hamiltonians for other transtions can be obtained by trivial changes
in the quark fields and in the CKM matrix elements entering egs. (44) and (44). In
particular

AB=1,AC=0,A5=0:5s—>d
AB=0,AC=0,A85=1:b—>s,s—d
AB=0,AC=1,A8=0:b—c¢c,s—u,c—s,u—d. (49)

In other cases, for instance AB =1, AC = —1, AS = 0 transitions, the Hamiltonian
has a simpler structure, namely

HAB=1,A0=-1,45=0 4G_\/fvbvud(01( )Q’l(u)+02(u)Q'z(u)) (50)

with

Q=3 updy, Q= DEn"c up ;. (51)
Only current—current operators enter this Hamiltonian. Penguin operators are not gener-
ated as the considered transitions involve four different flavors. Other Hamiltonians share
this feature and can be obtained from eqgs. (50) and (51) with the following replacements

AB=1,AC=1,AS=0:c—>u,u—c
AB=1,AC=-1,AS=-1:d—s
AB=1,AC=1,AS=-1:c—>u,u—>c,d—s
AB=0,AC=-1,AS=1:b—s

AB=0,AC=1,AS=1:b—>s,c—>u,u—c. (52)

Clearly the (omitted) Hermitean-conjugate terms in the Hamiltonians mediate transitions
with opposite AF'.

Notice that physics beyond the SM could change not only the Wilson coefficients
through the matching conditions, but also the operator basis where new spinor and color
structures may appear. Indeed the most general AF = 1 basis contains a large number
of operators making it hardly useful. On the other hand, a possible definition of the class
of new physics models with minimal flavor violation is that these models produce only
real corrections to the SM Wilson coefficients without changing the operator basis of the
effective weak Hamitonian [31].
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2.1.2. AF =2 effective weak Hamiltionians

The AF = 2 effective weak Hamiltionians are simpler than the AF = 1 ones. In the
SM, the operator basis includes one operator only. For example, the AS = 2 effective
Hamiltonian is commonly written as

_ G2 .
S = B MR (A So(ae) + AnaSo(ai) + A So(er, ) ) Qs (53)
where A\, = V V4, the functions Sy of 2, = m2/My, come from the LO matching
conditions, the coefficents 7; account for the RGE running and NLO effects. Starting

from the dimension-six operator
Qs = 5pv,dp 5pyMdy . (54)

Q, is defined as Q, = K (1)Qs(1), where K(u) is the appropriate short-distance factor
which makes Q independent of y [32]. The matrix element of this operator between K°
and K° is parameterised in terms of the RG-invariant bag parameter By (see Sec. 7).

The Hamiltonian in Eq. (53) describes only the short-distance part of the AS = 2
amplitude. Long-distance contributions generated by the exchange of hadronic states are
also present. These contributions break the OPE producing additional terms which are
diffcult to estimate. This is the case of the K°—K° mass difference AMy which therefore
cannot be reliably predicted. On the other hand, the CP-violation parameter €g, related
to Im(K°|H57=2|K°), is short-distance dominated and thus calculable.

Concerning AB = 2 transitions, namely the BY-BY and B%-B? mixing amplitudes,
virtual top exchange gives the dominant contributions in the SM. Therefore these ampli-
tudes are short-distance dominated and described by matrix elements of the Hamiltonian

., G )
137 = SE gt (i) 5)
where = 7
Q! = bryuqrbirtar,  q={d s}, (56)

and Qg is defined similarly to the AS = 2 case in terms of the bag-parameter Qg (see
Sec. 7).

At present, AF = 2 effective Hamiltonians are known at the NLO in the strong
coupling constants [33-35].

It is worth noting that, unlike AF = 1 Hamiltonians, generic new physics contributions
to AF = 2 transitions generate few additional operators allowing for model-independent
studies of AF = 2 processes where the Wilson coefficients at the matching scale are used
as new physics parameters [36].

Finally, we mention that the absorbtive part of AF = 2 amplitudes, related to the
neutral mesons width differences, can also be calculated using an OPE applied to the
rates rather than to the amplitudes. We refer the interested reader to Sec. 7. for details
on this calculation.

2.2. Factorization

In the previous section it was shown how to integrate out physics at the electroweak
scale, resulting in 10 four-fermion operators O1-O1g. In order to measure the decay rates
or CP-asymmetries in non-leptonic decays of a B meson to two light pseudoscalar mesons
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(either 7 or K), one needs information about the matrix elements of these operators
between the initial B meson and the given final state. The nature of the strong interaction
implies that these matrix elements can not be calculated perturbatively, and one either
has to resort to non-perturbative methods to calculate these matrix elements or extract
them from data.

In order to determine the required matrix elements from data and still obtain infor-
mation about the electroweak physics requires to have more experimental input than
unknown matrix elements. It has been known for a long time that in the B — 77 system
there are more measurements than non-perturbative parameters, which allows to mea-
sure some fundamental parameters of the CKM matrix [37]. However, of the 8 possible
measurements, only 6 have been made to this point, one of which still has very large
uncertaities. Thus, in practice, even in the 77 system some additional information is re-
quired in order to have detailed information about the electroweak phases. The situation
is worse once we include Kaons in the final state, and without using additional theoretical
information, there are more unknown parameters than there are measurements.

Factorization utilizes an expansion in Aqcp/my in order to simplify the required matrix
elements, resulting in new relations in the limit Agcp/me — 0. Theoretically, this limit
can be taken using diagrammatic factorization techniques (QCD factorization) [38—40] or,
equivalently, soft-collinear effective theory (SCET) [41-44], together with heavy quark
effective theory (HQET). Before detailing how the factorization theorems arise in the
effective field theory approach, we give a simple physical picture of factorization, known
as color transparency.

As discussed above, the decay B — M M> is described by the matrix elements of local
four-fermion operators, allowing the b quark to decay to three light quarks. Two of these
quarks will form the meson M, while the meson M5 is formed from the third light quark
together with the spectator quark of the B meson. The dominant contribution to a given
decay arises from operators for which the two light quark forming M; are in a color
singlet configuration.These two quarks in a color singlet configuration will only interact
non-perturbatively with the remaining system once their separation is of order 1/Aqcp.
Due to the large energy E ~ my/2 of the light mesons, this separation only occurs when
the two quarks are a distance d ~ E/ A2QCD from the origin of the decay, and therefore
out of the reach d ~ 1/Aqcp of the non-perturbative physics of the B meson. Thus, the
non-perturbative dynamics of one of the two mesons is independent of the rest of the
system. Since the second light meson requires the spectator quark of the B meson, no
such factorization should be expected.

Using effective field theory methods allows to prove this intuitive result rigorously,
while at the same time allowing in principle to go beyond the leading order result in
Aqcp/me. The first step in the factorization proof is to separate the different energy
scales in the system, by constructing the correct effective field theory. In the rest frame
of the B meson, the two light mesons decay back-to-back with energy mp/2, and we
label the directions of the two mesons by four-vectors n and n. To describe these two
energetic mesons we require collinear quark and gluon fields which are labeled by the
direction of flight n or 7 of the meson. We will call the collinear quark fields x,/, and
Ay /n, respectively. In order to describe the heavy B meson, we require soft heavy quark
and soft light quark and gluon fields, which we call hy, gs and A, respectively. Since it
is the two light quarks in the n direction that form the meson M;, we will also write
M, = M7 and My = M.

20



The important property of SCET/HQET that allows to prove the factorization theorem
is that to leading order in Agcp/ms the collinear fields in the different directions do not
interact with one another. Furthermore, all interactions between collinear and soft fields
can be removed from the Lagrangian by redefining the collinear fields to be multiplied by
a soft Wilson line Y,,, which depends on the direction n of the collinear field it belongs
to. Since all interactions between the different sectors disappear at leading order, the
Lagrangian can be written as

Lot = Ly + L7 + Ls + O(Agep/ms) - (57)

The 4-quark operators O; describing the decay of the heavy b quark are matched onto
operators in the effective field theory, which are constructed out of the collinear and soft
fields. This allows to write written as

0; =C; ® 0} = C; ® [l Yaxa] [Xn Y, Ti¥oxn] - (58)

Here C; denotes the Wilson coefficient of the operators and describes the physics occur-
ring at the scale my, and the different operators are distinguished by their Dirac and
color structure I';. The symbol ® denotes a convolution between the Wilson coefficients
and operators, which is due to the fact that the Wilson coefficients can depend on the
large energies of the light quarks. Note that if the two collinear quarks in the n direction
form a color singlet (meaning I'; is color singlet), then we can use the unitarity of Wilson
lines Y,1Y,, = 1 to write

0i = C; @ [hsTiYaxn] [XnLiXn] - (59)

Since the Wilson lines Y,, describe the coupling of the collinear fields x,, to the rest of
the system, their cancellation is the field theoretical realization of the physical picture
given before.

The absence of interactions between the fields in the n direction from the rest of the
system can be used to separate the matrix element of the operators O; as

<MnMﬁ|Oi|Bs> =C; ® <MnMﬁ|O?ﬁ|BS> =0 ® <Mn|)_(nFan|0> <Mﬁ|hsFiYﬁXﬁ|BS>
=C; @ dm, R CBM, - (60)

Here ¢); denotes the light cone distribution function of the meson M, while (gj; denotes
the matrix element describing the B — M transition. Thus, the matrix element of
the required operators factor into a convolution of a perturbatively calculable Wilson
coefficient Cj;, a matrix element describing the B — M, transition, as well as the wave
function of the meson M;. The wave functions of the light pseudoscalar mesons have
been measured in the past and are known relatively well, and some of the B — M
matrix elements can be measured in semileptonic B decays. Thus, much information for
the matrix elements of the operators O; can be measured in other processes, allowing to
use the non-leptonic data on to extract information about the weak scale physics.
There are several different approaches to understanding factorization and they go by
the names QCD Factorization (QCDF) [38-40], perturbative QCD (PQCD) [45-50] and
soft-collinear effective theory (SCET) [51-53] in the literature. All three approaches agree
with everything discussed up to this point, and the main differences arises when trying
to factorize the matrix elements (pps further. This can be achieved by matching onto a
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Table 1
Comparison of the different approaches to Factorization

SCET QCDF PQCD
Expansion in as (1) No Yes Yes
Singular convolutions N/A New parameters|” Unphysical” kr
Charm Loop Non-perturbative| Perturbative Perturbative
Number of paramterers Most Middle Least

second effective theory which integrates out physics at the scale y; ~ \/Aqcpmy, which
allows to write

(Bm = J @ ¢ Q@ dar . (61)

Here J is a matching coeflicient that can be calculated perturbatively in an expansion in
as (7). A naive calculation of this function J unfortunately leads to a singular convolution
with the wave functions ¢); and ¢ g, and it is the resolution of this problem that separates
the different approaches. The SCET approach to factorization simply never performs the
second step of the factorization theorem and uses directly the results in Eq. (60) but
requiring the most experimental information. The PQCD results regulate the singular
convolution with an unphysical transverse momentum of the light meson. These results
are therefore on less solid theoretical footing, but require the least amount of experimental
input. QCDF uses a mixture of both approaches and only uses Eq. (61) in cases where
no singular convolutions are obtained. Note however, that for power corrections included
into QCDF a different logic is used and a new non-perturbative parameter is included to
parameterize singular convolutions.

Besides the differences in the treatment of singular convolutions, there are also dif-
ferences in how matrix elements of operators containing charm quarks are treated. The
theoretical question is whether such contributions can be calculated perturbatively or
if they lead to new non-perturbative effects. The SCET approach does not attempt to
calculate these matrix elements perturbatively, while QCDF and PQCD do use perturba-
tion theory. The differences between the different approaches are summarized in Tab. 1.

2.3. Lattice QCD

The tools explained in the previous two sections are used to separate the physical scales
of flavor physics into the weak scale, the heavy-quark scale, and the nonperturbative QCD
scale. At the short distances of the first two, QCD effects can be treated with perturbation
theory, as part of the evaluation of the Wilson coefficients. At longer distances, where
QCD confines, perturbative QCD breaks down: to obtain the hadronic matrix elements
of the operators, one must tackle nonperturbative QCD.

In some cases general features of field theory—symmetry, analyticity and unitarity,
the renormalization group—are enough. For example, using the fact that QCD preserves
CP one can show that the nonperturbative hadronic amplitude drops out of the CP
asymmetry for a process like B — 1 Kg. Another set of examples entails using one
process to “measure” the hadronic matrix element, and then using this “measurement”
in other, more intriguing, processes.
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In general, however, one would like to compute hadronic matrix elements. The end
objective is to see whether new physics lurks at short distances, so it is essential that
one start with the QCD Lagrangian. Any approach will involve some approximation and
compromise—QCD is too hard otherwise, so it is just as essential that any uncertainties
be systematically reducible and under quantifiable control.

One method that has these aims is based on lattice gauge theory, which provides a
mathematically sound definition of the gauge theory. In QCD, or any quantum field
theory, anything of interest can be related to a correlation function

(O1(21)O2(22) - - Op(z0)) = %/HdAu(fC)Hd(i(fv)dQ(fv) O1(21)O0a(z3) -+ Op(zp) €5,

(62)
where the O;(z) are local, color singlet operators built out of quark fields ¢, antiquark
fields g, and gluon fields A,,, and S is the classical action. The normalization factor Z is
defined so that (1) = 1. For brevity, color, flavor, and (for ¢, §) Dirac indices are implied
but not written out. As it stands, Eq. (62) requires a definition of the products over
the continuous spacetime label x. A mathematically sound way to do so is to start with
a discrete spacetime variable, labeling the sites of a four-dimensional spacetime lattice.
The idea goes back to Heisenberg, but for QCD and other gauge theories, the key came
when Wilson showed how to incorporate local gauge invariance with the lattice [54]. If
the lattice has N2 x Ly sites, the spatial size of the finite volume is L = Nga, where a is
the lattice spacing, and temporal extent Ly = Nja.

The lattice regulates the ultraviolet divergences that appear in quantum field theory
and reduces the mathematical problem to one similar to statistical mechanics. Familiar
perturbation theory can be derived starting with lattice field theory, but many other
theoretical tools from condensed matter theory are available [55]. In the years after
Wilson’s paper there were, for example, many attempts to calculate hadron masses with
strong coupling expansions.

If the lattice has a finite extent, then the system defined by Eq. (62) has a finite, albeit
large, number of degrees of freedom. That means that the integrals can, in principle, be
evaluated on a computer. In the rest of this report all applications of lattice QCD use this
approach. In this section we provide a summary of the methods and a guide to estimate
the inevitable errors that enter when mounting large-scale computing.

To start, let us leave the quarks and antiquarks aside and consider how many gluonic
integration variables are needed. One would like the lattice spacing a to be smaller than
a hadron, and the spatial volume should be large enough to contain at least one hadron.
A desirable target is then Ng = L/a = 32, which is typical by now, and some groups use
even larger lattices. For reasons explained below, the temporal extent N, is often taken
to be 2 or 3 times larger than Ng. Taking the gluon’s 8 colors and the 4-fold Lorentz
index into account, the functional integral has 8 x 4 x 323 x 64 ~ 10% dimensions. This
is practical with Monte Carlo methods, generating an ensemble of random values of the
fields and replacing the right-hand side of Eq. (62) with

(O1(21)O0a(x2) - - - On(zn)) = ézw(A@) O1(21)02(22) -+ On(xn),  (63)

where the weight w for the cth configuration is specified below, and C' is chosen so that
(1) = 1. If the weight e~ in Eq. (62) is real and positive, then the random fields can be
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generated with distribution e, in which case the weights are field independent. This is

called importance sampling, and without it numerical lattice field theory is impractical.

In Minkowski space the weight is actually a phase factor e**™. That means that
the weight fluctuates wildly, leading to enormous cancellations that are impossible to
deal with numerically. For that reason, numerical LQCD calculations are carried out in
FEuclidean space or, equivalently, with imaginary time. With this restriction it remains
straightforward to compute hadron masses and many matrix elements. If, however, the
coordinates x; in the original correlation function must have timelike or lightlike separa-
tion, then the function lies beyond current computational techniques.

Fermions, such as quarks, are special for several reasons. To impose the Pauli exclusion
principle, the quark fields are Grassman numbers, i.e., they anticommute with each other,
¢iq; = —q;9:(1 — d;;). The integration is a formal procedure called Berezin integration.
Fortunately, in cases of practical interest, the integration can be carried out by hand.
The quark part of the action takes the form

Saqq = Z 45 Mjiqi, (64)
ij

where ¢ and j are multi-indices for spacetime, spin, color, and flavor. The matrix M is
some lattice version of the Dirac operator. It is easy to show that

/ 11 dajdgie™ 5 = det M. (65)
ij

Similarly, if quark fields appear in the operators, each instance of g;q; is replaced, using
the Wick contraction, by the quark propagator Migl. The determinant and M ~! both
depend on the gauge field; we simply carry out the quark and antiquark integration by
hand and the gluon integration with the Monte Carlo, now with weight det M e~ Ssause,
The computation of M igl is demanding and the computation of det M is very demanding.

Another peculiar feature of fermions is an obstacle to realizing chiral symmetry on
the lattice [56,57], often called the fermion doubling problem, because a simple nearest-
neighbor version of the Dirac operator leads to a 16-fold duplication of states. As a
consequence, several formulations of lattice fermions are used in numerical lattice QCD.
With staggered fermions [58,59] some of the doubling remains, but a subset of the chi-
ral symmetry is preserved. With Wilson fermions [60] all doubling is removed, but all
of the (softly broken) chiral symmetries are explicitly broken. The Ginsparg-Wilson re-
lation [61], which is derived from the renormalization group, shows how to preserve a
remnant of chiral symmetry. Specific solutions are the fixed-point action [62,63], domain-
wall fermions [64-67], and the overlap [68,69]. In the approaches satisfying the Ginsparg-
Wilson relation, the chiral transformation turns out to depend on the gauge field [70].
From a theoretical perspective these are the most attractive, but from a practical per-
spective the staggered and Wilson formulations are numerically faster.

To obtain a finite problem, numerical lattice QCD uses a finite spacetime volume, so
one must specify boundary conditions. In most cases, one identifies the field with itself,
up to a phase:

q(z + Lye,) = erq(x), (66)
where e, is a unit vector and L, is the total extent, both in the p direction. If 6,, = 0
this is called a periodic boundary condition; if 6, = = this is called an antiperiodic
boundary condition; and otherwise this is called a twisted boundary condition [71,72]
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(although “twisted boundary condition” has other meanings too [73]). In a finite volume,
the spectrum is discrete. The allowed 3-momenta are

6 27
p=7+t7n (67)

where mn is a vector of integers. One should bear in mind the discrete momentum fol-
lows from the finite volume, not the lattice itself. For one-particle states finite-volume
effects are exponentially suppressed in periodic and antiperiodic [74], as well as (par-
tially) twisted [75], boundary conditions. For multi-particle states the boundary effects
are larger and more interesting [76], as discussed for K — 77 in Ref. [77].

To determine the CKM matrix we need the matrix elements of the electroweak Hamil-
tonian derived in Sec. 2.1. In most cases, we are interested in transitions with at most
one hadron in the initial or final state. These quantities are determined from 2- and
3-point correlation functions, as follows. A first step is to determine the mass. Let O be
an operator with the quantum numbers (JT¢, etc.) of the state of interest. For large
temporal extent L4, and temporal separation x4 > 0, the 2-point correlation function

(0(2)0%(0)) = (00(2)0'(0)|0), (68)

where |0) is the QCD vacuum state and the hat indicates an operator in Hilbert space.
Because these calculations are in FEuclidean space, the time dependence of the annihilation
operator is ) )

O(z) = e®H Qe (69)
where H is the Hamiltonian. In deriving Eq. (68) the eigenvalue of H in |0) is set to zero.
Inserting a complete set of eigenstates of H into Eq. (68), one has

(O0(@)0"(0) =Y (00" |n)(n|OT[0) = Y e *+"[(n|OT|0)?, (70)
n n

where E, is the energy of the nth state. If |n) is a single-particle state with zero 3-

momentum, this energy is the mass. Taking x4 large enough the state with the lowest-

lying mass dominates, and this is how masses are computed in lattice QCD: evaluate the

left-hand side of Eq. (70) with Monte Carlo techniques, and fit the right-hand side to a

sum of exponentials.

Now suppose that one would like to consider the case where one is interested in a
simple matrix element, one where an operator from the effective Hamiltonian annihilates
the hadron. One can obtain the matrix element by computing another 2-point correlation
function,

(J(2)07(0)) = (0T (2)0T(0)|0) = Y _ e~ (0].J|n) (n|OT|0). (71)
n
With the energies and overlaps (n|O|0) from the mass calculation, this calculation yields
the transition matrix elements (0|.J|n).

Most of the transitions of interest in flavor physics involve mesons, so it is worth
illustrating how the quark propagators M ~! come in. For the charged Kaon, for example,
we take the operator O = §vy5u, and the 2-point function is computed via

(875u(2)uy55(0)) = —(tr[Gu(®,0)75Gs(0, 2)75]) 4, (72)

where the trace is over color and Dirac indices, the average on the right-hand side is over
gluon fields, and the quark propagator Gs(z,y) is the solution of
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> M(w,2)Gp(x,y) = duy (73)

for flavor f, with color and Dirac indices implied. For the decay of a Kaon to leptons,
the transition operator J = 3y47y5u, and the computation of Eq. (71) simply replaces the
first 5 on both sides of Eq. (72) with v47s.

In neutral meson mixing and in semileptonic and radiative decays one encounters
hadronic matrix elements with one hadron in both the initial and final states. For these
one computes a 3-point correlation function,

(05 (2)J (y)OL(0)) = Y e~ (ramv)BmemvaBin (0|0 | fm)(fmlJ|in) (in| O]|0). (74

mn

The energies Efy,, Ei, and amplitudes (0|0 |fm), (m|(§j|0> are computed from 2-point
functions, so the 3-point function yields (fm|J|in). As before, for mesons (and baryons)
the left-hand side is computed by contracting quark and antiquark fields in favor of quark
propagators.

Hadron masses and decay amplitudes computed with lattice QCD depend on the bare
gauge coupling and the bare quark masses, 1 4+ nys free parameters, if ny flavors are
relevant to the problem at hand. The bare gauge coupling is related to the lattice spacing
via renormalization. Thus, all dimensional quantities are really ratios of the quantity of
interest compared to some fiducial quantity with dimensions of mass. This standard mass
should be one that is either not very sensitive to the quark masses, such as some of the
mass splitting in quarkonium, or whose mass dependence is seen to be under good control,
such as fr. The bare quark masses are fixed through the simplest hadron masses: m2
and m? for the light and strange quarks, and the Dy and B; or 7, and 7" masses for
charmed and bottom quarks.

In computational physics it is important to know how to estimate uncertainties. In
lattice QCD uncertainties arise, in principal, from the nonzero lattice spacing and the
finite volume. In practice, the algorithms for computing det A/ and M ~! slow down as the
quark masses are reduced. Consequently, the calculations cited elsewhere in this report
are based on simulations with light quark masses that are higher than those of the up
and down quarks in nature. Also in practice, one must be careful with heavy quarks,
because the ultraviolet cutoff of currently available lattices, 1/a or 7/a, is not (much)
higher than the b-quark mass.

Fortunately, all these uncertainties may be assessed and quantified with effective field
theories. (For a review of lattice QCD developed from this perspective, see [78].) For
the so-called chiral extrapolation, lattice practitioners use chiral perturbation theory
(xPT) to extend the reach from feasible light quark masses down to the physical up-
and down-quark masses. This is the same yPT discussed in Sec. 2.4, although some
practical considerations differ. Often applications of xPT to lattice QCD incorporate the
leading discretization effects of the lattice. A chiral extrapolation entails a fit to numerical
lattice-QCD data, and the associated uncertainty is estimated from a combination of
quantitative measures, like goodness of fit, and qualitative considerations, such as the
smallness of the quark mass and the effect of higher-order terms. In addition, xyPT
can be used to estimate finite-size effects, because the largest ones typically stem from
processes in which a virtual pion is emitted, traverses the (periodic) boundary, and is
then reabsorbed [74,79,80].
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Discretization effects can be understood and controlled with the Symanzik effective
field theory [81,82]. The central Ansatz here is that lattice gauge theory is described by
a continuum effective field theory. For QCD

Lrar = Lacp + Yy a™F KL, (75)

where the sum runs over operators £; of dimension 5 or higher, and the power of a
follows from dimensional analysis. The coefficient K; subsumes short-distance effects,
analogously to the Wilson coefficients in Sec. 2.1. The right-hand side of Eq. (75) is a tool
to analyze the left-hand side or, more precisely, numerical data generated with the lattice
Lagrangian Lygr. If a is small enough, the higher dimensional operators may be treated
as perturbations, leading to two key insights. The first is to justify an extrapolation in a
to the continuum limit. More powerfully, if one can show for any (expedient) observable
that, say, all the dimension-5 K; vanish, then one knows that they vanish for all processes.
The systematic reduction of the first several K; is known as the Symanzik improvement
program. With chirally symmetric actions, the dimension-5 K; vanish by symmetry, so
these are automatically O(a) improved.

For heavy quarks it is often the case that mga %« 1 and, hence, special care is needed.
It is often said that lattice gauge theory breaks down, but it is more accurate to say that
the most straightforward application of the Symanzik effective theory breaks down. For
most calculations relevant to the CKM unitarity triangle, it is simpler to use HQET as
a theory of cutoff effects [83-85]. This is possible because every (sensible) approach to
heavy quarks on the lattice enjoys the same static limit and heavy-quark symmetries. So
the same set-up as in Sec. 2.2 is possible, just with different short-distance structure—
because the lattice changes short distance. Analogously to Symanzik, one can set up
an improvement program. Now, however, the approach to the continuum limit is not so
simple as O(a) or O(a?). Nevertheless, most serious calculations with heavy-quarks use
this formalism, or something equivalent, to estimate heavy-quark discretization effects.
For further details on techniques for heavy quarks, see [86]. A more recent development
is to map out the mga dependence in finite volume [87,88], where both mga < 1 and
mqa ~ 1 are feasible (cf. Sec. 5).

One uncertainty that is not amenable to effective field theory (and is, therefore, devilish
to quantify) stems from the so-called quenched approximation [89,90]. It corresponds to
replacing the computationally demanding det M in the weight by 1 and attempting to
compensate by shifts in the bare gauge coupling and bare quark masses. Physically this
corresponds to keeping valence quarks but treating sea quarks as a dielectric medium.
This approximation is, by now, a historical artifact. All calculations that aspire to play
a role in flavor physics now have either ny = 2 or 2 4 1 flavors of sea quarks. In both
cases the 2 light quarks are taken as light as possible, as a basis for chiral extrapolation.
For 2+ 1 the third flavor is tuned to have the mass of the strange quark, whereas ny = 2
means that the strange quark is quenched. A comparison of quenched and 2+1 flavor
QCD is shown in Fig. 3, adapted from Ref. [91].

The results shown in Fig. 3, and many quoted in the rest of this report, have been
obtained with staggered sea quarks [92,93], which provide the least computationally de-
manding method for computing det M [94]. A drawback in this method is that staggered
quarks come in four species, and a single quark flavor is simulated with [dety M]"/* [95],
where the subscript emphasizes the number of species in the determinant. There are con-
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Fig. 3. Comparison of quenched and 2+1 flavor lattice QCD, plotting the ratio of calculated results
to laboratory measurements [91]. The quenched results deviate by as much as 10-15%—not bad for a
strongly-coupled field theory, but not good enough for flavor physics. With 241 flavors of sea quarks,
however, the agreement is at the few-percent level.

cerns whether the fourth root really yields QCD in the continuum limit, although all pub-
lished criticisms [96-98] have been refuted [99,100]. The theoretical arguments [101,102]
in favor of this procedure are still being digested, although there is a significant body of
supporting circumstantial evidence [103-105]. Whatever one thinks of the rooted stag-
gered sea, it should be clear that these calculations should be confirmed. Other methods
for sea quarks are accumulating sufficiently high statistics, so one can anticipate compet-
itive results not only with staggered sea quarks [106], but also with Symanzik-improved
Wilson sea quarks [107,108], twisted-mass Wilson sea quarks [109], domain-wall sea
quarks [110], and overlap sea quarks [111].

Calculations with 2 flavors of sea quarks have an uncertainty from quenching the
strange quark. The error incurred may be as large as 3-5%, but is again hard to pin
down. In many cases, for example the {2~ mass, no significant effect is seen. When using
2-flavor results in this report, we take the original authors’ estimates of the error for
quenching the strange quark. If they have omitted this line from the error budget, we
then assign a conservative 5% error.

Numerical lattice QCD has developed over the past thirty years, and much of the
literature has aimed to develop numerical methods. Such work is not limited to algo-
rithm development, but also to demonstrate how a phenomenologically relevant calcula-
tion could or should be carried out. Inevitably, some papers straddle the middle ground
between development and mature results, with the consequence that some interesting
papers have incomplete error budgets. Where such results are used later in the report,
we try to account for omitted uncertainties in a rational way.
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2.4. Chiral Perturbation Theory

Chiral perturbation theory (ChPT) is the effective field theory describing strong and
electroweak interactions of the light pseudo-scalar mesons (mw, K, n) at low energy, in
a regime where standard perturbative methods are inapplicable [112-114]. ChPT relies
on our understanding of the chiral symmetry of QCD in the limit of massless light
quarks (m, = mg = ms = 0), its spontaneous symmetry breaking according to the
pattern SU(3)r x SU(3)r — SU(3)y and its explicit breaking due to non-vanishing
quark masses.

In the massless limit m, = 0, the QCD Lagrangian for light quarks (¢ = (u,d, s))

—i GG +iqy" Duqr + i qrY" Dpgr — qnmq qr — qr mq qr (76)
is invariant under global independent SU(3); x SU(3)g transformations of the left-
and right-handed quarks in flavor space: gr.r — 9, ¢r.rR, 9r.8 € SU(3)r,r. The
absence of SU(3) multiplets of opposite parity in the hadronic spectrum suggests that
the chiral group G = SU(3)r, x SU(3) g is spontaneously broken to the diagonal subgroup
H = SU(3)y, i.e. the symmetry is realized 4 la Nambu-Goldstone [115-117]. According
to Goldstone’s theorem [115] then, the spectrum of QCD should contain an octet of
pseudoscalar massless bosons, in one to one correspondence to the broken symmetry
generators. These are identified with the w, K, and n mesons, which would be massless
in the exact chiral limit of m, 4 = 0, but acquire a finite mass in the real world due
to explicit chiral symmetry breaking induced by m, # 0. Pions, Kaons, and eta remain,
however, the lowest lying hadronic excitations. The existence of a gap separating 7, K, 7
from the rest of the spectrum makes it possible to build an effective theory involving
only Goldstone modes.

The basic building blocks of the effective theory are the Goldstone fields . Intuitively,
the massless Goldstone modes describe excitations of the system along the directions
in field space that connect degenerate vacuum configurations (think about the circle of
minima in a ”Mexican-hat” potential). Mathematically, this means that the Goldstone
fields parametrize the elements u(p) of the coset space SU(3), x SU(3)r/ SU(3)v [118,
119]. The transformation of ¢ under G is determined by the action of G on the elements
u(y) of the coset space

Lgcp =

u(p) = u(@') = gru()h(g, ©) " = hig, e)u(p)gr’ (77)

where g = (91,9r) € G. The explicit form of h(g,¢) € SU(3)y will not be needed here.
An explicit parametrization of u(y) is given by

utp)=exp{ ol (78)
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The structure of the effective Lagrangian Leg is determined by chiral symmetry and
the discrete symmetries of QCD. Leg has to be invariant under chiral transformations,
up to explicit symmetry breaking terms that transform like the quark mass term in the
QCD Lagrangian (76). As a consequence, Lqg is organized as an expansion in powers of
(1) derivatives (momenta) of the Goldstone fields and (ii) light quark masses (mg). Since
the meson masses squared are proportional to the quark masses, the two expansions are
related (mg, ~ O(M3;) ~ O(p?)) and the mesonic effective chiral Lagrangian takes the
form

Lot =Y Lo, Lon ~O(p™) . (79)

n>1

The power counting parameter is given by the ratio p* ~ pZ /A2 of a typical external
momentum (or quark mass) over the intrinsic scale A,, set by the lightest non-Goldstone
states (A, ~ 1 GeV). To each order in the expansion, the effective Lagrangian contains a
number of low-energy constants (LECs) not fixed by symmetry consideration, encoding
underlying QCD dynamics.

The leading order effective Lagrangian reads (in terms of U(p) = u(p)?),

F2
Ly = Tr |0,U0"U +2Bmg (U +U") (80)

where m, = diag(m.,, mq, m,) and the trace is performed over the SU(3) indices. The
dimensionful constants F' and B are related to the pion decay constant and the quark
condensate by F, = F (1 4+ O(m,)) and (0|au|0) = —F? B (1 + O(m,)). L2 contains the
Gell-Mann-Oaks-Renner [120] and Gell-Mann-Okubo [121,122] mass relations and allows
one to calculate physical processes, such as 77 scattering, to O(p?) in terms of just Fj
and M3, (M2 = B(my, +my), ...).

The power of the effective field theory approach is that it allows to systematically
improve the calculations of low-energy processes by considering higher-order terms in
the momentum/light-quark-mass expansion. As shown by Weinberg [112], at any given
order in this expansion only a finite number of couplings in (79) appear. For instance at
O(p*) a given amplitude receives contributions only from: (i) tree-level diagrams with one
insertion from Ly; (ii) one-loop diagrams with all vertices from Ly. The loop diagrams
perturbatively unitarize the theory and introduce physical infrared singularities due to
pseudoscalar meson intermediate states (the chiral logs, ~ m,logm,). However, loops
also introduce ultraviolet divergences. Using a regularization compatible with chiral sym-
metry, the counterterms necessary to absorb the divergences must have the same form
as the terms present in L4: thus, one loop divergences simply renormalize the LECs of
O(p*). This argument generalizes to any order in the low-energy expansion: the effective
theory is renormalizable order by order in the low-energy expansion.

The finite parts of the LECs can be fitted to experiment or extracted by matching to
lattice QCD results (or other, less systematic approximations to non-perturbative QCD
dynamics). The accuracy of a given calculation is bounded by the size of higher order
terms in the low-energy expansion. State of the art calculations in the strong sector go
up to O(p®) [123].

To illustrate the general features discussed above, we report here the expression of the
the pion decay constant to O(p?) [114]
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Fr= F |12, — i + ﬁ(mg(m + (M + ma + ms>Lz<u>)] S B

F2

Here up = M3/(32n%F?)log(M%/u?), M2 = B(my + ma), Mg = B(ms + ), and
m = 1/2(m., +mg). Moreover, u is the renormalization scale and L} 5(u) are two finite
scale-dependent LECs. This expression illustrates the appearance of calculable chiral log-
arithms (with unambiguous coefficients) as well as polynomial terms in the quark masses
multiplied by a priori unknown coefficients. Expressions of this type are used to extrapo-
late lattice QCD results from unphysical quark masses to the physical point. Nowadays,
this is one of the most relevant applications of ChPT in CKM physics. An important
recent development in this area is the use of SU(2) ChPT [110,124], in which Kaons are
treated as external massive fields, to study the extrapolation of Kaon amplitudes in m,, 4
(see Sec. 4.4.4 for discussion and applications)

The framework presented above describes the strong interactions of Goldstone modes.
It has been extended in several directions, highly relevant to CKM physics, to include:
— non-leptonic weak interactions of Goldstone modes (AS = 1,2) [125-128];

— interactions of soft Goldstone modes with heavy particles (heavy mesons [129,130] and
baryons [131,132]);

— interaction of Goldstone modes with external electromagnetic fields and weak gauge
bosons (this is achieved by adding external sources that couple to quark bilinears in
the QCD Lagrangian [113,114]);

— other dynamical fields in the low-energy theory, such as photons [133] and light lep-
tons [134] (the amplitudes are expanded to O(e?p?"), e being the electromagnetic
coupling).

2.5. Beyond the Standard Model

Despite its impressive phenomenological success, the SM should be regarded as a low-
energy effective theory. Viewing the SM as an effective theory poses two main questions:
which is the energy scale and which are the interactions and symmetries properties of the
new degrees of freedom. So far we have no unambiguous answer for both these questions;
however, a strong theoretical prejudice for new degrees of freedom around the TeV scale
follows from a natural stabilization of the mechanism of electroweak symmetry breaking.
In this perspective, low-energy flavor physics provide a powerful tool to address the second
question, and in particular to explore the symmetries properties of the new degrees of
freedom.

In order to describe New Physics (NP) effects in flavor physics we can follow two main
strategies, whose virtues and limitations can be summarised as follows:

— Generic Effective Field Theory (EFT) approaches.

Assuming the new degrees to be heavier than SM fields, we can integrate them out

and describe NP effects by means of a generalization of the Fermi Theory: the SM

Lagrangian becomes the renormalizable part of a more general local Lagrangian which

includes an infinite tower of higher-dimensional operators, constructed in terms of SM

fields and suppressed by inverse powers of an effective scale Anp > Myy.

This general bottom-up approach allows us to analyse all realistic extensions of the SM

in terms of a limited number of parameters (the coefficients of the higher-dimensional
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operators). The drawback of this method is the impossibility to establish correla-
tions of NP effects at low and high energies: the scale Axp defines the cut-off of the
EFT. However, correlations among different low-energy processes can be established
implementing specific symmetry properties on the EFT, such as the Minimal Flavor
Violation hypothesis (see Sec. 2.5.1). The experimental tests of such correlations allow
us to test/establish general features of the new theory which holds independently of
the dynamical details of the model. In particular, B, D and K decays are extremely
useful in determining the flavor-symmetry breaking pattern of the NP model.
— FExplicit Ultraviolet completions.

The generic EFT approach is somehow the opposite of the standard top-down strat-
egy, where a given NP theory —and a specific set of parameters— are employed to
evaluate possible deviations from the SM. The top-down approach usually allows us to
establish several correlations, both at low energies and between low- and high-energy
observables. In the following we will discuss in some detail this approach in the case of
Minimal Supersymmetric extension of the SM (see Sec. 2.5.2). The price to pay of this
strategy is the loss of generality. This is quite a high price given our limited knowledge
about the physics above the electroweak scale.

2.5.1. Model-independent approaches and the MFV hypothesis

The NP contributions should naturally induce large effects in processes which are
severely suppressed in the SM, such as meson-antimeson mixing (AF = 2 amplitudes) or
flavor-changing neutral-current (FCNC) rare decays. Up to now there is no evidence of
deviations from the SM in these processes and this implies severe bounds on the effective
scale of various dimension-six operators in the EFT approach. For instance, the good
agreement between SM expectations and experimental determinations of K%K mixing
leads to bounds above 10* TeV for the effective scale of AS = 2 operators, i.e. well above
the few TeV range suggested by a natural stabilization of the electroweak-symmetry
breaking mechanism.

The apparent contradiction between these two determinations of A is a manifestation
of what in many specific frameworks (supersymmetry, technicolor, etc.) goes under the
name of flavor problem: if we insist on the theoretical prejudice that new physics has to
emerge in the TeV region, we have to conclude that the new theory possesses a highly
non-generic flavor structure. Interestingly enough, this structure has not been clearly
identified yet, mainly because the SM (the low-energy limit of the new theory), doesn’t
possess an exact flavor symmetry. Within a model-independent approach, we should
try to deduce this structure from data, using the experimental information on FCNC
transitions to constrain its form.

2.5.1.1. Generic bounds on loop-mediated amplitudes. In several realistic NP models we
can neglect non-standard effects in all cases where the corresponding effective operator
is generated at the tree-level within the SM. This general assumption implies that the
experimental determination of the CKM matrix via tree-level processes is free from the
contamination of NP contributions. Using this determination we can unambiguously
predict meson-antimeson mixing and FCNC amplitudes within the SM. Comparing these
predictions with data allows to derive general constraints on NP which holds in a wide
class of models.
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The most constrained sector is the one of AF = 2 transitions, where almost all the
interesting amplitudes have been measured with good accuracy. An updated analysis of
the present constraints from these measurements will be presented in Sec. 10.2. The main
conclusions that can be drawn form this analysis can be summarized as follows:

— In all the three accessible short-distance amplitudes (K°-K°, By By, and By B;)
the magnitude of the new-physics amplitude cannot exceed, in size, the SM short-
distance contribution. The latter is suppressed both by the GIM mechanism and by
the hierarchical structure of the CKM matrix. As a result, new-physics models with
TeV-scale flavored degrees of freedom and O(1) flavor-mixing couplings are essentially
ruled out. For instance, considering a generic AF = 2 effective Lagrangian of the form

LAF=2 = N7 S (dyyd;)? (82)
1#]

where d* denotes a generic down-type quark (i = 1,2,3) and ¢;; are dimensionless

couplings, the condition |ALE=2| < |A§E 2| implies

9 x 10° TeV x |ceq|'/?

~ Q4% 10% TeV X |epg|'/? (83)
7 % 10" TeV x |cps| /2

3.4 TeV

N ———
Vi Viil/ ez M/?

— In the case of By By and K% K° mixing, which are both well measured, there is
still room for a new-physics contribution comparable to the SM one. However, this is
possible only if the new-physics contribution is aligned in phase with respect to the SM
amplitude. The situation is quite different in the case of B,—B, mixing, where present
measurements allow a large non-standard CP violating phase.

As we will discuss in the following, a natural mechanism to reconcile the stringent bounds

in Eq. (83) with the expectation A ~ few TeV is obtained with the Minimal Flavor

Violation hypothesis.

2.5.1.2. Minimal Flavor Violation. A very reasonable, although quite pessimistic, so-

lution to the flavor problem is the so-called Minimal Flavor Violation (MFV) hypothesis.
Under this assumption, flavor-violating interactions are linked to the known structure
of Yukawa couplings also beyond the SM. As a result, non-standard contributions in
FCNC transitions turn out to be suppressed to a level consistent with experiments even
for A ~ few TeV. One of the most interesting aspects of the MFV hypothesis is that it
can naturally be implemented within the EFT approach to NP. The effective theories
based on this symmetry principle allow us to establish unambiguous correlations among
NP effects in various rare decays. These falsifiable predictions are the key ingredients to
identify in a model-independent way which are the irreducible sources of flavor symmetry
breaking.

The MFV hypothesis consists of two ingredients [135]: i) a flavor symmetry and ii) a
set of symmetry-breaking terms. The symmetry is defined from the SM Lagrangian in
absence of Yukawa couplings. This is invariant under a large gbobal symmetry of flavor
transformations: G, ® G, ® U(1)°, where

Gy =SU(3)q, @ SUB)u, @ SUB3)py, » G =SU@B3)L, ®SUB)Ey - (84)
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The SU(3) groups refer to a rotation in flavor space (or a flavor mixing) among the
three families of basic SM fields: the quark and lepton doublets, @ and Lp, and the
three singlets Ur, Dr and Eg. Two of the five U(1) groups can be identified with the
total baryon and lepton number (not broken by the SM Yukawa interaction), while an
independent U(1) can be associated to the weak hypercharge. Since hypercharge is gauged
and involves also the Higgs field, it is more convenient not to include it in the flavour
group, which would then be defined as Gsy = Gy @ U(1)* [136].

Within the SM this large global symmetry, and particularly the SU(3) subgroups
controlling flavor-changing transitions, is explicitly broken by the Yukawa interaction

Ly = QLYDDRH + QLYUURHC + ELYEERH + h.c. (85)

The most restrictive hypothesis we can make to protect in a consistent way quark-flavor
mixing beyond the SM is to assume that Yp and Yy are the only sources of G, breaking
also in the NP model. To implement and interpret this hypothesis in a consistent way,
we can assume that G, is a good symmetry, promoting Yy p to be non-dynamical fields
(spurions) with non-trivial transformation properties under this symmetry

Yy ~ (3535 1)gq ) Yp ~ (35 173)gq . (86)

If the breaking of the symmetry occurs at very high energy scales at low-energies we
would only be sensitive to the background values of the Y, i.e. to the ordinary SM
Yukawa couplings. Employing the effective-theory language, we then define that an ef-
fective theory satisfies the criterion of Minimal Flavor Violation in the quark sector if
all higher-dimensional operators, constructed from SM and Y fields, are invariant under
CP and (formally) under the flavor group G, [135].

According to this criterion one should in principle consider operators with arbitrary
powers of the (dimensionless) Yukawa fields. However, a strong simplification arises by
the observation that all the eigenvalues of the Yukawa matrices are small, but for the top
one, and that the off-diagonal elements of the CKM matrix are very suppressed. Y As a
consequence, in the limit where we neglect light quark masses, the leading AF = 2 and
AF =1 FCNC amplitudes get exactly the same CKM suppression as in the SM:

, : - 16m2 M7
A(d' — d)wpy = (ViiVeg) AT [1 + TW] : (87)
_ _ 1672 M}
A(Mij — Mijhrv = (VisVig)2AGE {1 +ag——m— W] . (88)

where the A(S?/I are the SM loop amplitudes and the a; are O(1) real parameters. The a;
depend on the specific operator considered but are flavor independent. This implies the
same relative correction in s — d, b — d, and b — s transitions of the same type.

As pointed out in Ref. [31], within the MFV framework several of the constraints used
to determine the CKM matrix (and in particular the unitarity triangle) are not affected
by NP. In this framework, NP effects are negligible not only in tree-level processes but
also in a few clean observables sensitive to loop effects, such as the time-dependent CPV
asymmetry in By — J/WK, s. Indeed the structure of the basic flavor-changing coupling
in Eq. (88) implies that the weak CPV phase of Bq—By mixing is arg[(V;aV})?], exactly
as in the SM. This construction provides a natural (a posteriori) justification of why no
NP effects have been observed in the quark sector: by construction, most of the clean
observables measured at B factories are insensitive to NP effects in the MFV framework.
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Table 2
Bounds on the scale of new physics for some representative AF = 2 [36] and AF = 1 [137] MFV
operators (assuming effective coupling 1/42).

Operator ‘ A;@95% prob. [TeV]| Observables

HT (DR,\d,\FcaWQL) (eF)| 6.1 B — Xgv, B — X 00~
%( _LYUYJVMQL)z 5.9 ex, Amp,, Amp,
(QLArc1uQL) (ErvuEr) |27 B = X 0T¢=, By — ptp~

In Tab. 2 we report a few representative examples of the bounds on the higher-dimen-
sional operators in the MFV framework. As can be noted, the built-in CKM suppression
leads to bounds on the effective scale of new physics not far from the TeV region. These
bounds are very similar to the bounds on flavor-conserving operators derived by precision
electroweak tests. This observation reinforces the conclusion that a deeper study of rare
decays is definitely needed in order to clarify the flavor problem: the experimental preci-
sion on the clean FCNC observables required to obtain bounds more stringent than those
derived from precision electroweak tests (and possibly discover new physics) is typically
in the 1% — 10% range.

Although the MFV seems to be a natural solution to the flavor problem, it should be
stressed that we are still very far from having proved the validity of this hypothesis from
data.* A proof of the MFV hypothesis can be achieved only with a positive evidence of
physics beyond the SM exhibiting the flavor-universality pattern (same relative correction
ins — d, b — d, and b — s transitions of the same type) predicted by the MFV
assumption.

The idea that the CKM matrix rules the strength of FCNC transitions also beyond the
SM has become a very popular concept in the recent literature and has been implemented
and discussed in several works. It is worth stressing that the CKM matrix represents
only one part of the problem: a key role in determining the structure of FCNCs is
also played by quark masses, or by the Yukawa eigenvalues. In this respect, the MFV
criterion illustrated above provides the maximal protection of FCNCs (or the minimal
violation of flavor symmetry), since the full structure of Yukawa matrices is preserved.
At the same time, this criterion is based on a renormalization-group-invariant symmetry
argument, which can be implemented independently of any specific hypothesis about
the dynamics of the new-physics framework. The only difference between weakly- and
strongly-iteracting theories at the TeV scale is that in the latter case the expansion in
powers of the Yukawa spurions cannot be truncated to the first non-trivial terms [139,140]
(leaving more freedom for non-negligible effects also in up-type FCNC amplitudes [140]).
This model-independent structure does not hold in most of the alternative definitions of
MFV models that can be found in the literature. For instance, the definition of Ref. [141]
(denoted constrained MFV, or CMFV) contains the additional requirement that the
effective FCNC operators playing a significant role within the SM are the only relevant
ones also beyond the SM. This condition is realized only in weakly coupled theories at
the TeV scale with only one light Higgs doublet, such as the MSSM with small tan 5. It
does not hold in several other frameworks, such as Higgsless models, or the MSSM with
large tan (3.

4 In the EFT language we can say that there is still room for sizable new sources of favour symmetry
breaking beside the SM Yukawa couplings [138].
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2.5.1.3. MFV at large tan 3. If the Yukawa Lagrangian contains only one Higgs field,
we can still assume that the Yukawa couplings are the only irreducible breaking sources
of G,, but we can change their overall normalization.

A particularly interesting scenario is the two-Higgs-doublet model where the two Hig-
gses are coupled separately to up- and down-type quarks:

L%/HDM — QLYDDRHD + QLYUURHU + ELYEERHD + h.c. (89)

This Lagrangian is invariant under an extra U(1) symmetry with respect to the one-
Higgs Lagrangian in Eq. (85): a symmetry under which the only charged fields are Dr
and Er (charge +1) and Hp (charge —1). This symmetry, denoted Upq, prevents tree-
level FCNCs and implies that Yy, p are the only sources of G, breaking appearing in
the Yukawa interaction (similar to the one-Higgs-doublet scenario). Coherently with the
MFV hypothesis, we can then assume that Yy, p are the only relevant sources of G,
breaking appearing in all the low-energy effective operators. This is sufficient to ensure
that flavor-mixing is still governed by the CKM matrix, and naturally guarantees a good
agreement with present data in the AF = 2 sector. However, the extra symmetry of the
Yukawa interaction allows us to change the overall normalization of Y, p with interesting
phenomenological consequences in specific rare modes.

The normalization of the Yukawa couplings is controlled by the ratio of the vacuum
expectation values (vev) of the two Higgs fields, or by the parameter tan 3 = (Hy)/(Hp).
For tan 8 >> 1 the smallness of the b quark and 7 lepton masses can be attributed to the
smallness of 1/ tan 8 rather than to the corresponding Yukawa couplings. As a result, for
tan 8 >> 1 we cannot anymore neglect the down-type Yukawa coupling. Moreover, the
U(1)pq symmetry cannot be exact: it has to be broken at least in the scalar potential
in order to avoid the presence of a massless pseudoscalar Higgs. Even if the breaking
of U(l)pq and G, are decoupled, the presence of U(1)pq breaking sources can have
important implications on the structure of the Yukawa interaction, especially if tan § is
large [135,142-144]. We can indeed consider new dimension-four operators such as

€ QLYDDR(HU)C or € QLYUYJYDDR(HU)C ) (90)

where € denotes a generic MFV-invariant U(1)pq-breaking source. Even if € <« 1, the
product e x tan S can be O(1), inducing large corrections to the down-type Yukawa sector:

€ QrYpDr(Hy)® == € QrYpDgr(Hy) = (e x tan 8) QLYpDr(Hp) . (91)

Since the b-quark Yukawa coupling becomes O(1), the large-tan 5 regime is particularly
interesting for helicity-suppressed observables in B physics.

One of the clearest phenomenological consequences is a suppression (typically in the
10 — 50% range) of the B — v decay rate with respect to its SM expectation [145,146].
Potentially measurable effects in the 10 — 30% range are expected also in B — Xy [147,
148] and AMp, [149,150]. The most striking signature could arise from the rare decays
Bg.q — €70~ whose rates could be enhanced over the SM expectations by more than
one order of magnitude [151-153]. An enhancement of both Bs; — £7¢~ and By — (T4~
respecting the MFV relation I'(Bs — £707)/T(By — £47) ~ |Vis/Via|? would be an
unambiguous signature of MFV at large tan 8 [137].
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2.5.2. The Minimal Supersymmetric extension of the SM (MSSM)

The MSSM is one of the most well-motivated and definitely the most studied extension
of the SM at the TeV scale. For a detailed discussion of this model we refer to the
specialised literature (see e.g. Ref. [154]). Here we limit our self to analyse some properties
of this model relevant to flavor physics.

The particle content of the MSSM consist of the SM gauge and fermion fields plus a
scalar partner for each quark and lepton (squarks and sleptons) and a spin-1/2 partner
for each gauge field (gauginos). The Higgs sector has two Higgs doublets with the corre-
sponding spin-1/2 partners (higgsinos) and a Yukawa coupling of the type in Eq. (89).
While gauge and Yukawa interactions of the model are completely specified in terms
of the corresponding SM couplings, the so-called soft-breaking sector® of the theory
contains several new free parameters, most of which are related to flavor-violating ob-
servables. For instance the 6 x 6 mass matrix of the up-type squarks, after the up-type
Higgs field gets a vev (Hy — (Hy)), has the following structure

. mg, Av(Hy)

M[2J: t 9 + O(mZ7mt0p) ) (92)
Ay (Hy) myg

where mg, , My, and Ay are 3 x 3 unknown matrices. Indeed the adjective minimal in
the MSSM acronyms refers to the particle content of the model but does not specify its
flavor structure.

Because of this large number of free parameters, we cannot discuss the implications
of the MSSM in flavor physics without specifying in more detail the flavor structure of
the model. The versions of the MSSM analysed in the literature range from the so-called
Constrained MSSM (CMSSM), where the complete model is specified in terms of only
four free parameters (in addition to the SM couplings), to the MSSSM without R parity
and generic flavor structure, which contains a few hundreds of new free parameters.

Throughout the large amount of work in the past decades it has became clear that
the MSSM with generic flavor structure and squarks in the TeV range is not compatible
with precision tests in flavor physics. This is true even if we impose R parity, the discrete
symmetry which forbids single s-particle production, usually advocated to prevent a too
fast proton decay. In this case we have no tree-level FCNC amplitudes, but the loop-
induced contributions are still too large compared to the SM ones unless the squarks
are highly degenerate or have very small intra-generation mixing angles. This is nothing
but a manifestation in the MSSM context of the general flavor problem illustrated in
Sec. 2.5.1.

The flavor problem of the MSSM is an important clue about the underling mechanism
of supersymmetry breaking. On general grounds, mechanisms of SUSY breaking with
flavor universality (such as gauge mediation) or with heavy squarks (especially in the
case of the first two generations) tends to be favoured. However, several options are still
open. These range from the very restrictive CMSSM case, which is a special case of

5 Supersymmetry must be broken in order to be consistent with obsevations (we do not observe degen-
erate spin partners in nature). The soft breaking terms are the most general supersymmetry-breaking
terms which prserve the nice ultraviolet properties of the model. They can be divided into two main
classes: 1) mass terms which break the mass degeneracy of the spin partenrs (e.g. sfermion or gaugino
mass terms); ii) trilinear couplings among the scalar fields of the theory (e.g. sfermion-sfermion-Higgs
couplings).
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MSSM with MFV, to more general scenarios with new small but non-negligible sources
of flavor symmetry breaking.

2.5.2.1. Flavor Universality, MFV, and RGE in the MSSM. Since the squark fields
have well-defined transformation properties under the SM quark-flavor group G,, the
MFV hypothesis can easily be implemented in the MSSM framework following the general
rules outlined in Sec. 2.5.1.2.
We need to consider all possible interactions compatible with i) softly-broken super-
symmetry; ii) the breaking of G, via the spurion fields Yy, p. This allows to express the
squark mass terms and the trilinear quark-squark-Higgs couplings as follows [135,155]:

ih, =m? (e 1+ bYu Y+ baYpY) + baYo Y YoV + b Yivpy) +...)
i, = (a1 + bV Yo +..) . Au = A(asl+bYpYh+ ) Yo, (93)

and similarly for the down-type terms. The dimensionful parameters /m and A, expected
to be in the range few 100 GeV — 1 TeV, set the overall scale of the soft-breaking terms.
In Eq. (93) we have explicitly shown all independent flavor structures which cannot be
absorbed into a redefinition of the leading terms (up to tiny contributions quadratic in
the Yukawas of the first two families), when tan S is not too large and the bottom Yukawa
coupling is small, the terms quadratic in Yp can be dropped.

In a bottom-up approach, the dimensionless coeflicients a; and b; should be considered
as free parameters of the model. Note that this structure is renormalization-group invari-
ant: the values of a; and b; change according to the Renormalization Group (RG) flow,
but the general structure of Eq. (93) is unchanged. This is not the case if the b; are set to
zero, corresponding to the so-called hypothesis of flavor universality. In several explicit
mechanism of supersymmetry breaking, the condition of flavor universality holds at some
high scale M, such as the scale of Grand Unification in the CMSSM (see below) or the
mass-scale of the messenger particles in gauge mediation (see Ref. [156]). In this case
non-vanishing b; ~ (1/47)?In M?/m? are generated by the RG evolution. As recently
pointed out in Ref. [157,158], the RG flow in the MSSM-MFV framework exhibit quasi
infra-red fixed points: even if we start with all the b, = O(1) at some high scale, the only
non-negligible terms at the TeV scale are those associated to the YUYJ structures.

If we are interested only in low-energy processes we can integrate out the supersym-
metric particles at one loop and project this theory into the general EFT discussed in
the previous sections. In this case the coefficients of the dimension-six effective operators
written in terms of SM and Higgs fields (see Tab. 2) are computable in terms of the
supersymmetric soft-breaking parameters. The typical effective scale suppressing these
operators (assuming an overall coefficient 1/42) is A ~ 47m. Looking at the bounds
in Tab. 2, we then conclude that if MFV holds, the present bounds on FCNCs do not
exclude squarks in the few hundred GeV mass range, i.e. well within the LHC reach.

2.5.2.2. The CMSSM framework. The CMSSM, also known as mSUGRA, is the su-
persymmetric extension of the SM with the minimal particle content and the maximal
number of universality conditions on the soft-breaking terms. At the scale of Grand
Unification (Mgur ~ 1016 GeV) it is assumed that there are only three independent
soft-breaking terms: the universal gaugino mass (1, /3), the universal trilinear term (A),
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and the universal sfermion mass (o). The model has two additional free parameters in
the Higgs sector (the so-called p and B terms), which control the vacuum expectation
values of the two Higgs fields (determined also by the RG running from the unification
scale down to the electroweak scale). Imposing the correct W- and Z-boson masses allow
us to eliminate one of these Higgs-sector parameters, the remaining one is usually chosen
to be tan 8. As a result, the model is fully specified in terms of the three high-energy
parameters {m; /2> M0, A}, and the low-energy parameter tan 3.¢ This constrained ver-
sion of the MSSM is an example of a SUSY model with MFV. Note, however, that the
model is much more constrained than the general MSSM with MFV: in addition to be
flavor universal, the soft-breaking terms at the unification scale obey various additional
constraints (e.g. in Eq. (93) we have a; = ag and b; = 0).

In the MSSM with R parity we can distinguish five main classes of one-loop diagrams
contributing to FCNC and CP violating processes with external down-type quarks. They
are distinguished according to the virtual particles running inside the loops: W and
up-quarks (i.e. the leading SM amplitudes), charged-Higgs and up-quarks, charginos
and up-squarks, neutralinos and down-squarks, gluinos and down-squarks. Within the
CMSSM, the charged-Higgs and chargino exchanges yield the dominant non-standard
contributions.

Given the low number of free parameters, the CMSSM is very predictive and phe-
nomenologically constrained by the precision measurements in flavor physics. The most
powerful low-energy constraint comes from B — X,v. For large values of tan 3, strong
constraints are also obtained from Bs — utp~, AM, and from B(B — 7v). If these
observables are within the present experimental bounds, the constrained nature of the
model implies essentially no observable deviations from the SM in other flavor-changing
processes. Interestingly enough, the CMSSM satisfy at the same time the flavor con-
straints and those from electroweak precision observables for squark masses below 1 TeV
(see e.g. [159,160]).

In principle, within the CMSSM the relative phases of the free parameters leads to
two new observable CP-violating phases (beside the CKM phase). However, these phases
are flavor-blind and turn out to be severely constrained by the experimental bounds on
the electric dipole moments. In particular, the combination of neutron and electron edms
forces these phases to be at most of O(1072) for squark masses masses below 1 TeV.
Once this constraints are satisfied, the effects of these new phases in the B, D and K
systems are negligible.

2.5.2.3. The Mass Insertion Approzimation in the general MSSM. Flavor universality
at the GUT scale is not a general property of the MSSM, even if the model is embedded
in a Grand Unified Theory. If this assumption is relaxed, new interesting phenomena
can occur in flavor physics. The most general one is the appearance of gluino-mediated
one-loop contributons to FCNC amplitudes [161,162].

The main problem when going beyond simplifying assumptions, such as flavor univer-
sality of MFV, is the proliferation in the number of free parameters. A useful model-
independent parameterization to describe the new phenomena occurring in the gen-

6 More precisely, for each choice of {m1/2,M0, A, tan B} there is a discrete ambiguity related to the sign
of the p term.
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Table 3
Upper bounds at 95% C.L. on the dimensionless down-type mass-insertion parameters (see text) for
squark and gluino masses of 350 GeV (from Ref. [167]).

|(6%)Lr,rR| < 1-1072|(6&) LL=rR| < 2-107*|(6&)LR| <5-1074 [(6%)Re| < 5-107%
1(6%5) L, rR| < T7-1072|(6%3) L—rR| < 5-1073 |(63)Lr| < 1-1072 [(6¢3)r| < 1-1072
‘(553)[,[,|<2-1071 ‘(553)RR|<7~1071 ‘(553)[,[,:1212‘ <5'1072|(5g3)LR,RL‘ <5-1073

eral MSSM with R parity conservation is the so-called mass insertion (MI) approxima-
tion [163]. Selecting a flavor basis for fermion and sfermion states where all the couplings
of these particles to neutral gauginos are flavor diagonal, the new flavor-violating effects
are parametrized in terms of the non-diagonal entries of the sfermion mass matrices.
More precisely, denoting by A the off-diagonal terms in the sfermion mass matrices (i.e.
the mass terms relating sfermions of the same electric charge, but different flavor), the
sfermion propagators can be expanded in terms of § = A/m?, where m is the average
sfermion mass. As long as A is significantly smaller than m? (as suggested by the ab-
sence of sizable deviations form the SM), one can truncate the series to the first term
of this expansion and the experimental information concerning FCNC and CP violating
phenomena translates into upper bounds on these §’s [164].

The major advantage of the MI method is that it is not necessary to perform a full
diagonalization of the sfermion mass matrices, obtaining a substantial simplification in
the comparison of flavor-violating effects in different processes. There exist four type of
mass insertions connecting flavors i and j along a sfermion propagator: (A;), ;, (Aij) ggrs
(Aij) g and (Ayj) zy- The indices L and R refer to the helicity of the fermion partners.

In most cases the leading non-standard amplitude is the gluino-exchange one, which
is enhanced by one or two powers of the ratio (astwng / Qeak ) With respect to neutralino-
or chargino-mediated amplitudes. When analysing the bounds, it is customary to con-
sider one non-vanishing MI at a time, barring accidental cancellations. This procedure
is justified a posteriori by observing that the MI bounds have typically a strong hierar-
chy, making the destructive interference among different MIs rather unlikely. The bound
thus obtained from recent measurements in B and K physics” are reported in Tab. 3.8
The bounds mainly depend on the gluino and on the average squark mass, scaling as
the inverse mass (the inverse mass square) for bounds derived from AF = 2 (AF = 1)
observables.

The only clear pattern emerging from these bounds is that there is no room for siz-
able new sources of flavor-symmetry breaking. However, it is too early to draw definite
conclusions since some of the bounds, especially those in the 2-3 sector, are still rather
weak. As suggested by various authors (see e.g. ), the possibility of sizable deviations

7 The bounds on the 1-2 sector are obtained from the measurements of AMp, € and €’/e. In particular
AMp and € bound the real and imaginary part of the product (5?25‘112), while €’/e puts a bound
on Im(6¢,). The bounds on the 1-3 sector are obtained from AMp, (modulus) and the CP violating
asymmetry in B — J/WK (phase). The bounds on the 2 — 3 sector are derived mainly from AMp,,
B — Xsyand B — X410,

8 The leading AF = 1 and AF = 2 gluino-mediated amplitudes in the MI approximation can be
found in Ref. [164]. In the AF = 2 case also the NLO QCD corrections to effective Hamiltonian are
known [165]. A more complete set of supersymmetric amplitudes in the MI approximation, including
chargino-mediated relevant in the large-tan 8 limit, can be found in Ref. [166].
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from the SM in the 2-3 sector could fit well with the large 2-3 mixing of light neutrinos,
in the context of a unification of quark and lepton sectors [168,169].

2.5.3. Non-supersymmetric extensions of the Standard Model

We conclude this chapter outlining two of the general features of flavor physics ap-
pearing in non-supersymmetric extensions of the Standard Model, without entering the
details of specific theories.

In models with generic flavor structure, the most stringent constraints on the new
flavor-violating couplings are tipically derived from Kaon physics (as it also happens for
the bounds in Tab. 3). This is a consequence of the high suppression, within the SM, of
short-distance dominated FCNC amplitudes between the first two families:

As = d)sm =0\,  Ab—=dsm =00,  Ab— s)su =0\ . (94)

As a result, a natural place to look for sizable deviations from the SM are rare decays
K — nvv and K1, — 70014~ (see for instance the expectations for these decays in the
Littlest Higgs model without [170] and with [171-174]) T-parity. These decays allow us
to explore the sector of AF =1 s — d transitions, that so far is only loosely tested.

An interesting alternative to MFV, which naturally emerges in models with Ezxtra
Space-time Dimensions (or models with strongly interacting dynamics at the TeV scale),
is the hypothesis of hierarchical fermion profiles [175-179] (which is equivalent to the
hypothesis of hierarchical kinetic terms [180]). Contrary to MFV, this hypothesis (often
denoted as NMFV or RS-GIM mechanism) is not a symmetry principle but a dynamical
argument: light fermions are weakly coupled to the new TeV dynamics, with a strength
inversely proportional to their Yukawa coupling (or better the square root of their SM
Yukawa coupling). Also in the case the most significant constraints are derived from
Kaon physics. However, in this case the stringent constraints from ex and €/ generically
disfavour visible effects in other observables, although it is still possible to have some
effect, in particular in the phase of the B, mixing amplitude [181,182]. In view of the
little CP problem in the kaon, several modifications of the quark-flavor sector of warped
extra-dimensional models have been proposed. Most of them try to implement the notion
of MFV into the RS framework [183-185] by using flavor symmetries. The downside of
these constructions is that they no longer try to explain the fermion mass hierarchy,
but only accommodate it with the least amount of flavor structure, making this class of
models hard to probe via flavor precision tests.

3. Experimental Primers

This section contains all the relevant information on experiments and experimental
techniques which are needed throughout the report.

3.1. Owverview of experiments

3.1.1. Kaon experiments

In recent years, many experiments have been performed to precisely measure many
Kaon decay parameters. Branching ratios (BR’s) for main, subdominant, and rare decays,
lifetimes, parameters of decay densities, and charge asymmetries have been measured
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with unprecedented accuracy for K, K1, and K*. Different techniques have been used,
often allowing careful checks of the results from experiments with independent sources
of systematic errors.

In the approach of NA48 [186] at the CERN SPS and KTeV [187] at the Fermilab
Tevatron, Kaons were produced by the interactions of intense high-energy proton beams
on beryllium targets (see Tab. 4). Both experiments were designed to measure the direct
CP violation parameter Re(e’/e) via the double ratio of branching fractions for Kg
and K decays to 7t7n~ and 7%7° final states. In order to confirm or disprove the
conflicting results of the former-generation experiments, NA31 [188] and E-731 [189], the
goal was to reach an uncertainty of a few parts in 10%. This not only requires intense K7,
beams, so as to guarantee the observation of at least 108 decays of the rarest of the four
modes, i.e., K; — 7%7%; it also made it necessary to achieve a high level of cancelation
of the systematic uncertainties for Kj and Kg detection, separately for neutral and
charged decay modes, as well as rejection of the order of 108 for the most frequent K7,
backgrounds, Kr — 37° and Ky — mlv.

In both setups, the target producing the K beam is the origin of coordinates. K’s
are transported by a ~ 100-m long beam line, with magnetic filters to remove unwanted
particles and collimators to better define the Kaon-beam direction, to a fiducial decay
volume (FV). The FV is surrounded by veto detectors, for rejecting decay products
emitted at large angles and therefore with relatively low energy; this is particularly
useful for the rejection of K — 37° background. The FV is followed by a tracker to
measure the charge, multiplicity, and momentum of charged decay products, and by a fast
scintillator hodoscope to provide the first-level trigger and determine the event time. The
tracking resolution o, /p is (4®p[GeV]/11) x 1073 for NA48 and (1.7®p[GeV]/14) x 1073
for KTeV. In the downstream (forward) region, both experiments use fine-granularity,
high-efficiency calorimeters to accurately measure multiplicity and energy of photons and
electrons for the identification of K7 — 27°. The KTeV calorimeter is made of pure Csl,
while the NA48 calorimeter is made of liquid krypton. The energy resolution og/F is
3.2%/\/E|GeV] ® 9%/E[GeV] @ 0.42% for NA48 and 2%+/E[GeV] @ 0.4% for KTeV.
Behind the calorimeter, the detectors are completed by calorimeters for muon detection.
Different methods are used for the production of a Kg beam. In NA48, a channeling
crystal bends a small and adjustable fraction of protons that do not interact in the K,
target to a dedicated beam line; these protons are then transported and collimated to
interact with a second target located few meters before the FV, thus producing a Kg/K7,
beam with momentum and direction close to those of the K beam, so that most of Kg
decays are in the FV. Kg decays are identified by tagging protons on the secondary beam
line using time of flight. In KTeV, two K beams are produced at the first target, with
opposite transverse momenta in the horizontal direction, and a thick regenerator is placed
in one of the two beams to produce Kg, again a few meters before the FV. Kg and K,
decays are distinguished by their different transverse position on the detector. In both
setups, one measures decays from a K beam with <~ 1076 contamination from Kg,
and from an enriched-Kg beam contaminated by a K component, which is determined
very precisely during analysis.

The KTeV experiment at Fermilab underwent different phases. The E-799 KTeV phase-
I used the apparatus of the E-731 experiment [189], upgraded to handle increased K7,
fluxes and to study multibody rare K and 7" decays. In phase-II of E-799, a new beam
line and a new detector were used, including a new Csl calorimeter and a new tran-
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Table 4
Typical beam parameters for K production in the NA48, KTeV, ISTRA+, and E787/E949 experiments.

Experiment|proton energy (GeV) K, spill/cycle K momentum Beam type
NA48 450 1.5x 1012, 2.4 s/14.4 s (70-170) GeV Ks-Kr,
NA48/1 400 5x 109, 4.8 5/16.2 s (70-170) GeV Ks
NA48/2 400 7 x 101, 4.8 5/16.8 s 60 GeV K*
KTeV 450-800 3 x 1012, 20 /60 s (40-170) GeV Ks-K;p, Ky,
ISTRA+ 70 3x10%,1.95/9.7 s 25 GeV K~
E787 24 4-7x108, 1.6 /3.6 s |710/730/790 MeV, stopped K+
E949 21.5 3.5x10%, 2.2 s/5.4s 710 MeV, stopped Kt

sition radiation detector, thus allowing a sensitivity of 10~!! on the BR of many K,
decay channels and improving by large factors the accuracy on the ratio of BR’s of all of
the main K, channels. Finally, using the E-832 experimental configuration Re(¢’/¢) was
measured to few parts in 10~* [187]. The NA48 program involved different setups as well.
After operating to simultaneously produce K’s and Kg’s, the beam parameters were
optimized in the NA48/1 phase to produce a high-intensity K¢ beam for the study of
rare Kg decays, reaching the sensitivity of 1071 for some specific channels and especially
improving knowledge on those with little background from the accompanying K, decay
to the same final state. Subsequent beam and detector upgrades, including the inser-
tion of a Cerenkov beam counter (“NA48/2 setup”) allowed production of simultaneous
unseparated charged Kaon beams for the measurement of CP violation from the charge
asymmetry in the Dalitz densities for three-pion decays [190]. The NA48/2 phase allowed
the best present sensitivities for many rare K* decays to be reached, with BR’s as low
as 108 and improved precision for the ratios of BR’s of the main K+ channels. A recent
run made in 2007 by the NA62 collaboration using the NA48/2 setup was dedicated to
a precision measurement of the ratio I'(Kc2)/T'(K,2). A future experiment is foreseen at
the CERN SPS for the measurement of the ultra-rare decay K+ — 7+uv with a 10%
accuracy [191,192].

An unseparated charged Kaon beam was also exploited for study of charged Kaon
decay parameters with the ISTRA+ detector [193] at the U-70 proton synchrotron in
THEP, Protvino, Russia. A beam (see Tab. 4), with ~ 3% K~ abundance is analyzed by
a magnetic spectrometer with four proportional chambers and a particle identification is
provided by three Cerenkov counters. The detector concept is similar to those presented
above, with the tracking of charged decay products provided by drift chambers, drift
tubes, and proportional chambers and with the calorimetry for photon vetoing at large
angle or energy measurement at low angle performed by lead-glass detectors.

A different approach for the study of the ultra-rare K — wvv decay and the search
for lepton-flavor violating transitions was taken by the E787 [194-196] and E949 [197]
experiments at the Alternating Gradient Synchrotron (AGS) of the Brookhaven National
Laboratory. Charged Kaons were produced by 24-GeV protons interacting on a fixed
target. A dedicated beam line transported, purified and momentum selected Kaons. The
beam (see Tab. 4) had adjustable momenta from 670 MeV to 790 MeV and a ratio of
Kaons to pions of ~ 4/1.

The detector design was optimized to reach sensitivities of the order of 10719 on the
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BR’s for decays of K* to charged particles, especially lepton-flavor violating decays, such
as K — mwue: for this purpose, redundant and independent measurements for particle
identification and kinematics were provided, as well as efficient vetoing for photons. The
beam was first analyzed by Cerenkov and wire-chamber detectors, and later slowed down
by a passive BeO degrader and an active lead-glass radiator, the Cerenkov light of which
was used to veto pions and early K decays. Kaons were then stopped inside an active
target made of scintillating fibers. The charged decay products emitted at large angle
were first analyzed in position, trajectory, and momentum by a drift chamber; their range
and kinetic energy was then measured in a Range Stack alternating plastic scintillator
with passive material. The readout of the Range Stack photomultipliers was designed to
record times and shapes of pulses up to 6.4 us after the trigger, thus allowing the entire
chain of 7 — u — e decays to be detected and allowing clean particle identification. The
detector was surrounded by electromagnetic calorimeters for hermetic photon vetoing: a
lead /scintillator barrel and two Csl-crystal endcaps. Two lead/scintillating-fiber collars
allowed vetoing of charged particles emitted at small angles. Using this setup, the best
sensitivity to date was obtained for the BR for K — wvv, reaching the 1071 level.
Precision studies of Kg, K1, and K* main and subdominant decays were performed
with a different setup using the KLOE detector at the DA®NE. DA®NE, the Frascati
¢ factory, is an eTe™ collider working at /s ~ mg ~ 1.02 GeV. ¢ mesons are produced
essentially at rest with a visible cross section of ~ 3.1 ub and decay into KgK and
KT K~ pairs with BR’s of ~ 34% and ~ 49%, respectively. During KLOE data taking,
which started in 2001 and concluded in 2006, the peak luminosity of DA®NE improved
continuously, reaching ~ 2.5 x 102 cm ™2 s7! at the end. The total luminosity integrated
at the ¢ peak is ~ 2.2 fb~1, corresponding to ~ 2.2 (~ 3.3) billion K°K° (K*K~) pairs.
Kaons get a momentum of ~ 100 MeV /¢ which translates into a low speed, Sk ~ 0.2.
Kgs and Ky, can therefore be distinguished by their mean decay lengths: Ag ~ 0.6 cm
and A\, ~ 340 cm. Kt and K~ decay with a mean length of A+ ~ 90 cm and can be
distinguished from their decays in flight to one of the two-body final states uv or mm®.
The Kaon pairs from ¢ decay are produced in a pure JF¢ = 17~ quantum state, so
that observation of a K, (K™) in an event signals, or tags, the presence of a Kg (K )
and vice versa; highly pure and nearly monochromatic Kg, K1, and K* beams can thus
be obtained and exploited to achieve high precision in the measurement of absolute BR's.
The analysis of Kaon decays is performed with the KLOE detector, consisting essen-
tially of a drift chamber, DCH, surrounded by an electromagnetic calorimeter, EMC. A
superconducting coil provides a 0.52 T magnetic field. The DCH [198] is a cylinder of
4 m in diameter and 3.3 m in length, which constitutes a fiducial volume for Ky and K+
decays extending for ~ 0.5Ar and ~ 1Ay. The momentum resolution for tracks at large
polar angle is o, /p < 0.4%. The invariant mass reconstructed from the momenta of the
two pion tracks of a Kg — m 7~ decay peaks around mx with a resolution of ~800 keV,
thus allowing clean K tagging. The c.m. momenta reconstructed from identification of
1-prong K* — pv, 71 decay vertices in the DC peak around the expected values with
a resolution of 1-1.5 MeV, thus allowing clean and efficient KT tagging.
The EMC is a lead/scintillating-fiber sampling calorimeter [199] consisting of a barrel
and two endcaps, with good energy resolution, og/E ~ 5.7%/1/E(GeV), and excellent

time resolution, o = 54 ps/+/E(GeV) & 50 ps. About 50% of the Kp’s produced reach
the EMC, where most interact. A signature of these interactions is the presence of an
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Table 5

Accelerator parameters of the B-Factories. The design parameters are given for PEP-II and KEK-B. The

final running parameters for CESR are given.

CESR KEK-B PEP-II
LER | HER | LER | HER

Energy (GeV) 5.29 3.5 8.0 3.1 9.0
Collision mode 2 mrad 11mrad Head-on
Circumference (m) 768 3018 2199
Bs/By (cm) 100/1.8 | 100/1 | 100/1 (37.5/1.5| 75/3
& /&, 0.03/0.06|  0.05/0.05 0.03/0.03
e%/e; (rrad — nm) 210/1 |19/0.19(19/0.19| 64/2.6 [48.2/1.9
relative energy spread (107%) 6.0 7.7 7.2 9.5 6.1
Total Current (A) 0.34 2.6 1.1 2.14 0.98
number of bunches 45 5120 1658
RF Frequency (M Hz)/ Voltage (MV)|| 500/5 [508/22|508/48|476/9.5(476/17.5
number of cavities 4 28 60 10 20

high-energy cluster not connected to any charged track, with a time corresponding to
a low velocity: the resolution on Sy corresponds to a resolution of ~ 1 MeV on the
K, momentum. This allows clean Kg tagging. The timing capabilities of the EMC are
exploited to precisely reconstruct the position of decay vertices of K and K* to 7%’s
from the cluster times of the emitted photons, thus allowing a precise measurement of
the K, and K¥ lifetimes.

With this setup, KLOE reached the best sensitivity for absolute BR’s of the main
K*, K1, and Kg channels (dominating world data in the latter case) and improved the
knowledge of semileptonic decay rate densities and lifetimes for K+ and K.

3.1.2. B Fuctories

The high statistics required to perform precise flavor physics with B mesons has been
accomplished by B-Factories colliding electrons and positrons at the energy of the 7°(4.5)
resonance (eTe~™ — 1(45)BB): CESR at LEPP (Cornell, USA), PEP-II [200] at SLAC
(Stanford, USA) and KEK-B [201] at KEK (Tsukuba, Japan). Measurements that ex-
ploit the evolution of the observables with the decay time of the mesons also require
asymmetric beams in order to ensure a boost to the produced mesons.

To this aim PEP-II (KEK-B) collide 3.1 (3.5) GeV positrons on 9.0 (8.0) GeV electrons,
thus achieving a boost 8y = 0.56(0.43). The other design parameters of the B-Factories
are listed in Tab: 5. The design instantaneous luminosities were 1033, 3 x 1033, and
1 x 1034 cm=2s~! for CESR, PEP-II and KEK-B, respectively.

The accelerator performances have actually overcome the design: CESR has ceased its
operations as B-Factory in 1999 with a peak luminosity £ = 1.2 x 1033 cm~2s~!, PEP-II
has ended its last run in April 2008 with a peak luminosity of 12 x 1033 cm=2s~! and
KEK-B, which is still operational and awaits an upgrade (Super-KEK-B), has achieved
a luminosity as high as 1.7 x 103 em™2s7!. The total collected luminosities are 15.5,
553 and 895 fb~! for CESR, PEP-II and KEK-B, respectively.
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The detectors installed on these accelerators, CLEO-II/IL.V/IIT? [202-206] at CESR,
BaBar [207] at PEP-IT and Belle [208] at KEK-B, are multipurpose and require exclusive
and hermetic reconstruction of the decay products of all generated particles. To this
aim the following requirements must be met: (1) accurate reconstruction of charged-
particle trajectories; (2) precise measurement of neutral particle energies; and (3) good
identification of photons, electrons, muons, charged Kaons, K2 mesons and K mesons.

The most challenging experimental requirement is the detection of the decay points of
the short-lived B mesons. CLEO, BaBar and Belle use double-sided silicon-strip detectors
allowing full tracking of low-momentum tracks. Four, three and five cylindrical layers are
used at CLEO, Belle and BaBar, respectively. To minimize the contribution of multiple
scattering, these detectors are located at small radii close to the interaction point. For
tracking outside the silicon detector, and the measurement of momentum, all experiments
use conventional drift chambers with a helium-based gas mixture to minimize multiple
scattering and synchrotron radiation backgrounds.

The other difficult requirement for the detectors is the separation of Kaons from pi-
ons. At high momentum, this is needed to distinguish topologically identical final states
such as B® — nt7~ and B® = K7~ from one another. At lower momenta, particle
identification is essential for B flavor tagging.

Three different approaches to high-momentum particle identification have been imple-
mented, all of which exploit Cerenkov radiation. At CLEO a proximity focusing RICH
with CHy/TEA as the photosensitive medium and LiF as the radiator. The system relies
on an expansion gap between the radiator and photon detector to separate the Cherenkov
light without the use of additional focusing elements. The RICH has good K-7 separa-
tion for charged tracks above 700 MeV/¢; below this momenta dE/dz measurements in
the drift chamber are used for particle identification.

At Belle, aerogel is used as a radiator. Blocks of aerogel are read out directly by
fine-mesh phototubes that have high gain and operate reliably in a 1.5-Tesla magnetic
field. Because the threshold momentum for pions in the aerogel is 1.5 GeV/c¢, below this
momentum K /7 separation is carried out using high-precision time-of-flight (TOF) scin-
tillators with a resolution of 95 ps. The aerogel and TOF counter system is complemented
by dE/dx measurements in the central drift chamber. The dE/dz system provides K /7
separation below 0.7 GeV/c and above 2.5 GeV/c in the relativistic rise region.

At BaBar, Cerenkov light is produced in quartz bars and then transmitted by total
internal reflection to the outside of the detector through a water tank to a large array
of phototubes where the ring is imaged. The detector is called DIRC (Detector of In-
ternally Reflected Cerenkov light). It provides particle identification for particles above
700 MeV/e. Additional particle identification is provided by dF/dx measurements in the
drift chamber and the five-layer silicon detector.

To detect photons and electrons, all detectors use large arrays of CsI(Tl) crystals
located inside the coil of the magnet. In BABAR and Belle, another novel feature is the
use of resistive plate chambers (RPC) inserted into the steel return yoke of the magnet.
This detector system is used for both muon and K? detection. At CLEO the iron return
yoke of the solenoid is instrumented with plastic streamer counters to identify muons.

9 The detector went through several major upgrades during its lifetime. In this section only the final
configuration, CLEO-III, is described. The size of the 7(45) data-sets collected were 4.7 fb=1, 9.0 b1,
9.1 fb~! with CLEO-II, CLEO-IL.V and CLEO-III, respectively.
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Table 6
Accelerator parameters of 7-charm factories.

BEPC CESR-c BEPC-II

Max. energy (GeV) 2.2 2.08 2.3
Collision mode Head-on =+3.3 mrad 22 mrad
Circumference (m) 240 768 240
B5/B; (cm) 120/5  94/1.2  100/1.5
gr/es (1074 350/350  420/280 400/400
e3/€;(m rad — nm) 660/28  120/3.5 144/2.2
relative energy spread (10~4) 5.8 8.2 5.2
Total Current (A) 0.04 0.072 0.91
number of bunches 1 24 93

RF Frequency (M Hz)/ Voltage (MV') 200/0.6-1.6 500/5  500/1.5

number of cavities 4 4 2

To read out the detectors, BABAR uses electronics based on digital pipelines and
incurs little or no dead-time. Belle uses charge-to-time (Q-to-T) converters that are then
read out by multihit time-to-digital counters (TDCs). This allows a uniform treatment of
timing and charge signals. Details of the CLEO data-acquisition system can be found in
Ref. [204]; the system can handle trigger rates of 1 kHz well above the normal operating
conditions (100 Hz).

3.1.3. T-charm Factories

Recently there have been two accelerators that have been operating near the 7-charm
threshold: BEPC at IHEP (Beijing, China) and CESR-c [209] at LEPP (Cornell, USA).
The center-of-mass-energy ranges covered are 3.7 — 5.0 GeV and 3.97 — 4.26 GeV by
BEPC and CESR-c, respectively. The peak instantaneous luminosities achieved are 12.6 x
10%° cm™2s7! and 76 x 10%° cm~2s~!. The other parameters of BEPC and CESR-c
are given in Tab. 6.

At CESR-c the CLEO-III detector, described in Sec. 3.1.2, was modified for lower en-
ergy data-taking and renamed CLEO-c [209]. The principal differences were the reduction
of the magnetic field from 1.5 T to 1 T and the replacement of the silicon vertex detector
by a six-layer inner drift chamber. Both these modifications improved the reconstruc-
tion of low momentum tracks. CLEO-c collected 27 million ¢(25) events, 818 pb™~* of
integrated luminosity at the 1(3770) and 602 pb~! of integrated luminosity at a center-
of-mass energy of 4.17 GeV. The latter data set includes a over half a million DD
events.

The most recent detector installed on BEPC is BES-II [210,211]. BES-II collected
samples of 58 million J/i and 14 million 1(25) events. In addition, an energy scan was
performed between center-of-mass energies 3.7 to 5.0 GeV to determine both R and
the resonances parameters of the higher-mass charmonium states. BES-II tracking was
performed by a drift chamber surrounding a straw tube vertex detector.1® A scintillating

10 The vertex detector was originally operated at Mark III.
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time-of-flight detector with 180 ps resolution is used for particle identification along with
dF /dx measurements in the drift chamber. There are sampling electromagnetic-shower
counters in the barrel and endcap made from layers of streamer tubes sandwiched between
lead absorbers. Outside the 0.4 T solenoid the iron flux return is instrumented with
proportional tubes to detect muons.

BEPC and BES-III have recently undergone significant upgrades (see for example
[212]). The BEPC-II accelerator has a design luminosity 100 times greater than BEPC
with a peak of 1033 cm~2s7!. The other parameters of BEPC-II are given in Tab. 6. The
BES-III detector has the following components: a He-based drift-chamber, a time-of-flight
system with ~100 ps resolution, a CsI(Tl) crystal calorimeter, a 1 T superconducting
solenoid and the return yoke is instrumented with RPCs for muon identification. BES-
III began taking data in the summer of 2008 and a ¥(2S) data sample of 10 pb~! has
already been collected. The collection of unprecedented samples of J/, (2S) and D
mesons produced just above open-charm threshold are expected in the coming years.

3.1.4. Hadron Colliders

High energy proton-(anti)proton collisions offer superb opportunities for beauty and
charm physics due to large production cross section and, in contrast to electron-positron
colliders running at the 1°(45), the possibility of studying all species of b-mesons and
baryons. Present generation experiments, CDF and DO operate at the Fermilab Tevatron
providing pp collisions at /s = 1.96 TeV in the Run II started in 2002, while experiments
at the soon to be operated LHC collider at CERN will study proton-proton collisions
at /s = 14TeV. The Tevatron collides pp bunches every 396 ns, corresponding to an
average of 2 inelastic collisions per crossing at a luminosity of £ = 1 x 1032 cm™2s7!,
typical of the data used to produce the physics results discussed here. More recently
Tevatron provided peak luminosities in excess of 3 x 1032 cm™2s~!, and delivered in total
6.5 fb~'as of this writing.

The cross section for centrally produced b-hadrons has been measured with a variety
of techniques at Tevatron and found to be consistent with NLO theoretical calculations:
an early measurement using inclusive J/v down to Pr = 0 in the rapidity range |y| < 0.6
found o(pp — b+X) = 17.6+0.4(.stat.) T35 (sys.) ub [213], while a more recent one using
fully reconstructed BT — J/¢ KT measured o(pp — Bt + X, Pr > 6 GeV/e, |y| <1) =
2.78 + 0.24 ub [214] which gives more of an idea of the usable cross-section for central
detectors like CDFII and DO0. The fragmentation fraction of b-quarks in B, 4 and B,
mesons has been measured to be consistent at Tevatron and at LEP, with roughly 1 B;
meson produced every 4 Bt or B, while the rate of b-baryons has been reported to be
higher at Tevatron with a possible mild Pr dependence [215].

The huge production rate for heavy flavored particles has to be contrasted, however,
with the overwhelming inelastic proton-(anti)proton interaction rate which is typically
three order of magnitudes higher. This poses a fundamental experimental challenge for
detectors ad hadron colliders, which needs to devise trigger strategies in order to be able
to record as pure a signal as possible while discarding uninteresting events.

The Tevatron experiments exploit conceptually similar, multi-purpose central detectors
with a cylindrical symmetry around the beam axis, in contrast the dedicated future
experiment at LHC collider (LHCDb) employs a radically different forward geometry, in
order to exploit the rapidly increasing bb cross section at high rapidity.
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Key elements in the design of detectors for heavy flavor physics at hadron colliders
are: large magnetic spectrometers for charged particle momentum measurements; pre-
cision vertex detectors for proper decay time determination and signal separation, low
energy electron and muon identification for triggering, flavor tagging, and identification
of rare leptonic decays; high rate capability for data acquisition and trigger systems.
Additionally 7-K identification is crucial for flavor tagging and signal separation, and,
thus, a significant part of the design of the dedicated LHCb detector, while in central
muti-purpose detectors limited particle id is available with the exception of CDF-II which
benefits from dE/dx and TOF measurements. In the following we will briefly describe
the CDF [213] and DO [216] detectors relevant for the experimental results discussed in
this report.

CDF and DO detectors

The CDF-II detector spectrometer is built around an axially symmetric Central Outer
Tracker (COT), a open-cell drift chamber that provides charged track identification
and measurement of the momentum transverse to the pp beams (pr) in the central
region(|n| < 1.2) for tracks with pr > 400 MeV/c. The active volume of the COT covers
extends from a radius of 40 to 140 cm, with up to 96 axial and stereo measurement points
inside a superconducting solenoid that provides a 1.4 T axial magnetic field. DO Central
Fiber Tracker fills a significant smaller space inside a 2 T solenoid, 20 to 50 cm, with
16000 channel organized in 8 alternating axial and stereo layers each providing a doublet
of measurement points. The pr resolution is found to be d,,/pr ~ 0.001 - pr( GeV/c)
in the CDF tracker. This results in precise invariant mass reconstruction which provides
excellent signal-to-background ratio for fully reconstructed B and D decay modes.

Tracks found in the central tracker are extrapolated inward and matched to hits in
silicon microvertex detectors in both CDF and D0. The CDF detector (SVX II + ISL)
uses double sided silicon microstrip technology providing tracking information in the r-¢
and r-z planes in the pseudo-rapidity range |n| < 2. The detector has up to 7 layers of
double-sided silicon at radial distances ranging from 2.5 cm to 28 cm from the beamline.

Within the SVX is the innermost single-sided, radiation hard silicon layer (Layer 00),
which is mounted directly onto the beam pipe at a radius of 1.35 to 1.62cm [217]. The
impact parameter resolution of the tracking system with, and without, the inclusion of
Layer 00 is shown in Figure 4. The impact parameter resolution for high pr charged
tracks is ~ 25um taking in to account the 32um contribution from the transverse size of
the interaction region [217].

DO silicon microstrip tracker (SMT) is composed of cylindrical barrels with 4 layers of
double-sided detectors interspersed with disks in the central part, and complemented with
large forward disk at both ends, a design optimized for tracking up to |n| < 3. In addition,
in 2006 a new innermost layer (Layer 0) was installed inside the existing detector. This
has improved the impact parameter resolution and will prevent the expected performance
degradation due to radiation damage of the innermost SMT layer during the rest of the
Tevatron run [218].

The silicon vertex detectors are crucial for precise decay length determination of b de-
cays in time dependent measurement. Moreover the 3D vertex reconstruction allowed by
the combined 7-¢ and r-z measurements provides efficient background rejection against
the large background of prompt events.

Particle identification in CDF is provided by dE/dx in the central drift chamber and a
time-of-flight (TOF) system consisting of 216 scintillator bars located between the COT
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Fig. 4. CDF impact parameter resolution tracking tracks with Layer 00 hits (blue points) and without
Layer 00 hits (red points.) a) and Silicon Vertex Trigger (SVT) impact parameter distribution for a
generic sample of tracks b).

and the solenoid [219]. The TOF, with a resolution of around 110 ps, provides at least
20 K /7 separation for pr < 1.5 GeV/c. For pr > 2.0 GeV/¢, the separation provided by
dFE /dx between pions and Kaons is equivalent to 1.4 ¢ between two Gaussians while the
separation for pions and electrons is 2.50 at pr = 1.5 GeV/ec.

Outside the solenoid are electromagnetic and hadronic calorimeters covering the pseudo-
rapidity region |n| < 3.5 in CDF and up to|n| < 4.0 in DO.

Muon detectors are located behind the hadron calorimeters, The CDF muon systems
are segmented into four components, the Central Muon system (CMU) provides coverage
for |n] < 0.6 and pr > 1.5 GeV/c and sits behind ~ 5.5 interaction lengths () of material
primarily consisting of the iron of the hadronic calorimeter. The Central Muon upgrade
(CMP) sits behind an additional 60 cm, ~ 3\ of steel, providing identification for muons
with pr > 3.0GeV/c in || < 0.6, with higher purity than muons identified only in
the CMU. The Central Muon extension (CMX) consists of eight layers drift chambers
arranged in conic sections and provides coverage for 0.6 < |n| < 1.1 and pr > 2.0 GeV/c,
and is located behind absorber material corresponding to ~ 6 up to ~ 10 interaction
lengths. The DO muon system sits outside of a thick absorber (> 10 \), and consists of
a layer of tracking detectors and scintillation trigger counters inside a 1.8 T iron toroid,
followed by two additional layers outside the toroid. The muon coverage extends to
|n| = 2. Magnet polarities are regularly reversed during data collection, thus providing
an important way to control charge dependent effects in muon reconstruction that might
affect semileptonic asymmetry measurement.

Triggers

Data acquisition and trigger system for experiments at hadron colliders have to sustain
an extremely high collision rate, 7.6(40) MHz at Tevatron(LHC), and reduce it to ap-
proximately 100-1000 Hz of interesting events that can be saved permanently for physics
analysis, thus providing rejection factor > 10* against uninteresting proton-(anti)proton
collisions. The most straightforward way to achieve such a goal is to design electron and
muon based triggers, using single or multi-lepton signatures, that allow to select signif-
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icantly pure samples of heavy flavor decays thanks to the large semileptonic branching
ratios, or by isolating final states containing e.g. J/i). Rate is controlled primarily with
lepton transverse momentum requirement, that has to be kept as low as possible in order
to maximize signal efficiency. Inclusive electron and muon selection with a threshold of
6-8 GeV/c are typical at Tevatron. Much lower thresholds are possible for events with two
leptons, approaching the minimum detectable transverse momentum in each detector (
2 GeV/c at Tevatron).

This strategy has been implemented by all the present and forthcoming experiments
and provided the majority of the result for rare decays and lifetime measurements at
Tevatron in the last decade. A clear limitation of this approach is that it lacks the ability
to select fully hadronic decays of b-hadrons. In the context of CKM-related physics the
latter are important for the study of either 2 body charmless decays, or B — DK decays
involved in the measurement of the angle v in tree processes, and, most importantly,
for selecting large samples of fully reconstructed B, — D7~ and By — Dfatzr 7+

that lead to the first observation of B? — Fg mixing in 2006 [220]. To overcome this
limitation the CDF collaboration pioneered the technique of online reconstruction of
charged tracks originating from decay vertexes far from the collision point due to the
significant boost and lifetime of B-mesons produced at high energy hadron colliders. The
key innovation introduced for Run II in the CDF trigger was in fact the Silicon Vertex
Trigger (SVT) [221] processor. At the second level of the trigger system, information from
the silicon vertex detector is combined with tracks reconstructed at the first level trigger
in the drift chamber. High resolution SVT-tracks are then provided within the latency
of ~ 20 us, and are used to select events characterized by two tracks with high impact
parameter and vertex decay length greater than 200 pm, thus providing a rejection
factor of 100-1000 while maintaining a significant efficiency for B decays. The impact
parameter resolution of the SVT, shown in Figure 4, is approximately 50 ym, which
includes a contribution of 32 ym from the width of the pp interaction region. It has to be
noted, however, that selecting events based upon decay length information, introduces
an important inefficiency at small values of proper decay time. We will describe how this
bias has been incorporated in the analysis in Section 3.2.3.

3.2. Common experimental tools

In the following the most relevant experimental techniques for flavor physics will be
briefly discussed. Time dependent measurements require excellent vertexing and flavor
tagging capabilities, crucial in the latter case is particle identification and 7-K separation.
Finally noise suppression, recoil tagging technique and Dalitz-plot analysis techniques will
be discussed.

3.2.1. Time-dependent measurements

It is possible to measure phases of the CKM matrix elements, and therefore CP vio-
lating quantities, by exploiting the different time evolution of the two mass eigenstates
of the By meson system, By, and Bpy. At B-Factories, where a By meson is produced
coherently with its antiparticle, the probability density function of observing a B decay
into a flavor eigenstate (called By,,) and for whom 1 = —1(+1) if B® (B°) and the other
one, called By.cco, in a given final state f at times that differ by At is
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fn(At) = g e TIA 11 4+ 5 [S sin AmAt — C cos AmAL]}, (95)

where the decay width difference between the two mass eigenstates is neglected, Am is
the mass difference,

_ 2Im\ 11— A2
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S (96)
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Depending on the choice of the final state f, S can be related to different phases of the
CKM matrix elements. In particular if f is a flavor eigenstate then A = 0 and C' = 1 and
S = 0, no phase can be measured but there is sensitivity to Am; likewise if f is a CP
eigenstate, A is a pure phase and this is usually the cleanest configuration to measure
CP violation parameters, although all non-zero values of A allow such measurements.

At hadron colliders the same considerations apply, a part from the fact that At mea-
sures the time between the B meson production and its decay and that n = —1(+1) for
an initially produced B° (B?). The initial B flavor can be measured either by observ-
ing the decay products of the other hadron with a b quark in the event, or by utilizing
information on the jet of particles the B meson is contained into.

There are therefore three key ingredients in these measurements: the identification of
the flavor of the meson produced in association with the one reconstructed in the channel
f (the so-called B-tagging), the measurement of At which requires the reconstruction of
the decay vertex of at least one B meson (both mesons in the case of B-factories), and
the reconstruction of the B meson in the final state f with the least possible background.

The experimental uncertainties on these quantities alter the probability density func-
tion of the measured quantities, function which is used in the likelihood fits implemented
to perform these measurements. Instead of Eq. 95 one can then write

fa(At) = g e TI&truel £1 4+ D[S sin AmAtyy e — C 08 AmAtyrye] JOR(At—Atyrue )+ f]

(98)

where ® indicates the convolution, D = 1—p,, is the tagging dilution (p,, is the probability

of incorrectly tagging a meson), R is the vertexing resolution function, and ffl’kg is the
probability density function for the background.

The next sections describe the techniques adopted for tagging, vertexing reconstruction

and background rejection and the means available to estimate the quantities that enter
into Eq. 98.

3.2.2. B Flavor Tagging

One of the key components in the measurement of neutral B meson flavor oscillations
or time dependent CP asymmetries is identifying the flavor of the B meson (containing a
b antiquark) or B meson (containing a b quark) at production, in the case of incoherent
mixing at hadronic colliders, or at the moment the other b-meson decays in the case of
B°BY from 7 (45). We refer to this method of identifying the B hadron flavor as “B flavor
tagging”. The figure of merit to compare different tagging methods or algorithms is the
so-called effective tagging power eD? = £(1—2 pw)?, where the efficiency ¢ represents the
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Fig. 5. Sketch of typical bb event indicating several B flavor tagging techniques.

fraction of events for which a flavor tag exists and py is the mistag probability indicating
the fraction of events with a wrong flavor tag. The mistag probability is related to the
dilution: D =1 — 2 py. The experimentally observed mixing or CP asymmetries are, in
fact, proportional to the dilution D. A flavor tag which always returns the correct tag
has a dilution of 1, while a random tag yielding the correct flavor 50% of the time has a
dilution of zero.

Several methods to tag the initial b quark flavor have been used both at B-factories and
hadron collider experiments. The flavor tagging methods can be divided into two groups,
those that identify the flavor of the other b-hadron produced in the same event (opposite
side tag - OST), and those that tag the initial flavor of the B candidates itself (same
side tag - SST). The latter, being based on charge correlation between initial b quark
and fragmentation particles is only possible at hadron colliders or Z-pole experiments.

Fig. 5 is a sketch of a bb event showing the B and B mesons originating from the
primary pp interaction vertex and decaying at a secondary vertex indicating possible
flavor tags on the decay vertex side (SST) as well as opposite side tags.

In the following the main aspects of the opposite side taggers used at both Tevatron
and B-Factories and of the SST used for the Bg-ﬁg oscillation observation and in the
first ¢s determination at Tevatron will be briefly discussed.

Opposite Side Tags

Both experiments at hadron colliders and B-Factories exploit three feature of B decays
to estimate the flavour of the opposite B meson.

The “lepton tagging” looks for an electron or muon from the semileptonic decay of the
opposite side B hadron in the event. The charge of this lepton is correlated with the flavor
of the B hadron: an £~ comes from a b — ¢ £~ X transition, while an £¥ originates from
a b quark. Since the semileptonic B branching fraction is small, B(B — (X) ~ 20%,
lepton tags are expected to have low efficiency but high dilution because of the high
purity of lepton identification.

The strangeness of Kaons or A from the subsequent charm decay ¢ — sX is also
correlated with the B flavor, e.g. a K~ results from the decay chain b — ¢ — s while
a K7 signals a b flavor. Searching for a charged Kaon from the opposite side B hadron
decay is referred to as “Kaon tagging”. This method is expected to have high efficiency
but low dilution at hadron colliders since the challenge is to first identify Kaons among
a vast background of pions through particle-id techniques, and then to discriminate the
B decay Kaon candidates from all prompt Kaons produced in the collision by relying
on Kaon impact parameter and reconstruction of secondary vertexes in the opposite
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side [222].

Finally all other information carried by the tracks among the decays of the B mesons
constitutes the third large tagging category. On average in fact the most energetic charged
decay product carries the charge of the original b quark. At Tevatron the “jet charge
tagging” exploits the fact that the sign of the momentum weighted sum of the particle
charges of the opposite side secondary vertex from b (D0 [223]) or b jet (CDF [224]) is
correlated to the charge of the b quark. Jet charge tags can reach very high efficiency
but with low dilution. Furthermore, more than 20% of B decays contain charged D*
mesons which decay 66% of the times into a soft pion with the same charge. Soft pions
can therefore also have a high charge correlation with the original b quark. The Belle
and BaBar experiments input to multivariate tagging algorithms the charge of all tracks,
with special treatment for the softest in the event to take into account this effect.

The algorithms to combine all the information use multivariate technique either ex-
ploiting directly the available output of the various tagging algorithms or starting by
assigning each track candidate of coming from the ”tagging” B meson into one category
between lepton, kaon, soft pion (only for B-Factories) or generic track. Each experiment
then has a different approach to exploit the information.

The BaBar experiment uses one Neural Network (NN) per category with different
quantities in input depending on the category (see Ref. [225] for details): for instance the
”Lepton” category would contain lepton identification quantities and the momentum.
The output of these NNs based on single-particle information are themselves combined
into several event-by-event NNs, that assess the likelihood of the flavor assignment. The
tagging categories are mutually exclusive and for each event only one NN is evaluated.
The algorithm of the Belle experiment is similar but exploits likelihood instead of NNs
and has a single output (called r). In both cases the algorithms are tuned on MC, but
the mistag probability is estimated on data control samples.

The experimental sensitivity is maximized upon using the expected dilution on an event
by event basis, employing parameterizations derived by a combination of simulation and
real data. As an example, the dilution of the lepton tagging is parameterized as a function
of the lepton identification quality and of the pi! of the tagging lepton (CDF [226,227])
or of the lepton jet-charge (DO [223]). The quantity pi! is defined as the magnitude
of the component of the tagging-lepton momentum that is perpendicular to the axis of

the jet associated with the lepton tag. Variation of the dilution as a function of pie! is

shown left side of Fig. 6 for electron tags in CDF. The dilution is lower for low pi!
because fake leptons and leptons from sequential semileptonic decay (b — ¢ — £1) tend
to have relatively low pfﬁl values. Also, to maximize the tagging power the dilution
of the jet charge tags can be calculated separately for different quality of the opposite
side secondary vertex information and parametrized as a linear function in the quantity
|Qjet| - Pun, where Py, expresses a probability for the jet to be a b jet, as displayed
in Fig. 6 for jets containing a well separated secondary vertex in the CDF case. Flavor
misidentification can occur because the jet charge does not reflect perfectly the true
charge of the original b quark, due e.g. to mixing. In addition, the selected tagging jet
may contain only a few or no tracks from the actual opposite side B hadron decay.

At Tevatron, the typical flavor tagging power of a single tagging algorithm is O(1%).
Limitations in opposite side tagging algorithms arise because the second bottom hadron
is inside the detector acceptance in less than 40% of the time or it is possible that the

second B hadron is a neutral B meson that mixed into its antiparticle. For example, the
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Fig. 6. Variation of dilution of the electron tags with p‘&?l(left). Dilution as a function of |Qje¢| - Pun for
”jet-charge” tagging algorithm (right).

low efficiency of an opposite side lepton tag of ~ 20% from the semileptonic B hadron
branching fraction together with a dilution of ~ 30% results in an estimated eD? ~
0.4 x 0.2 x 0.3%2 ~ 0.01. At B-factories, better hermeticity of detectors, enhanced particle
identification capability, and the absence of incoherent mixing as a source of dilution
makes it possible to reach combining all the information together en effective tagging
power €D? ~ 0.30 in both Belle and Babar. As an example of tagging performances for
each experiment considered here, the obtained efficiencies ¢, effective dilutions (D), and
effective tagging powers eD? are shown in Table 7.

In the case of opposite side flavor tags, the dilution is expected to be independent of
the type of B meson (BY,B* B;) under study, hence can be studied on large inclusive
semileptonic samples (CDF) or on B or B* samples (D0) and then applied in B; related
measurement. The final calibration of the opposite side tagging methods come from a
measurement of the B oscillation frequency Amyg in hadronic and semileptonic samples
of B mesons at both B-factories and Tevatron experiments. A perfectly calibrated tagging
method applied to a large sample of B® mesons should result in a precise measurement
of Amg. In turn one can use the well known world average value of Amgy to check and
re-calibrate the predicted dilutions of the opposite side tagging algorithms.

Same Side Flavor Tagging

The initial flavor of a B meson can additionally be tagged by exploiting correlations
of the B flavor with the charge of particles produced in association with it (SST). Such
correlations arise from b quark hadronization and from B** decays. In the case of a B~
or BY mesons, the fragmentation particles are mainly pions while B, meson are primarily
accompanied by fragmentation Kaons. In the B, meson case we thus refer to this method
as “same side Kaon tagging” (SSKT). In the simplest picture, where only pseudo-scalar
mesons are produced directly by the fragmentation process, the following charged stable
mesons are expected: a BY will be produced along with 7=, a B~ will be produced with
ant ora KT, and a B, will be produced with a K~. Corresponding relations are true
for the charge conjugated B mesons. The idea of the same side tagging algorithm is to
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Table 7

Tagging performances of the opposite side tagging algorithms at BaBar [228], Belle [229], D0 [223], and
CDF [230]. Note that the individual tagger performance in the latter case are determined in non-exclusive
sample so their sum is greater than the neural network (NN) based combined opposite side tagging for
CDF. All errors given are statistical.

Category Efficiency € [%] |Effect. dilution (D) [%]|Tagging Power eD? [%)]

BaBar Belle (r €)| BaBar Belle BaBar Belle BaBar Belle

Lepton 0.875-1 8.96+0.07 14.44+0.9/99.4+0.3 97.0+£0.5 |7.98+£0.11 13.5£0.9
Kaon I 0.75-0.875 |10.82+0.07 9.8+0.7 | 89.4£0.3 78.2+0.9 | 8.65+£0.3  6.0£0.5
Kaon IT  |0.625-0.75 |17.19£0.09 10.7+0.8| 71.0+£0.4  68.4£1.0 |8.68+0.17 5.0%+0.5
Kaon-Pion|0.5-0.625 [13.674+0.08 10.8+0.8|53.4+0.4  55.0+1.1 |3.91+0.12 3.3+0.4

Pion 0.25-0.5 |14.184+0.08 14.6£0.9| 35.0+0.4  36.0+0.8 |1.73+£0.09 1.9£0.2
Other 0-0.25 9.544+0.07 39.7£1.5{17.0£ 0.5  7.24+0.7 |0.27 £0.04 0.24+0.1
Total Tagging Power 31.2+£ 0.3 29.9+£1.2
CDF Do CDF Do CDF Do
Muon 55+0.1 6.6+0.1{35.3+1.1 47.3+£2.7 |0.68£0.05 1.48 +0.17
Electron 3.1+0.1 1.8£0.1|130.7£1.1 34.1£5.8 |0.29+0.01 0.21 £ 0.07
Jet Charge 90.5+0.1 2.84+0.1{9.5+0.5 42.44+4.8 (0.80+0.05 0.50 £0.11
Kaon 181401 N/A [11.1£09 N/A  [0.234+0.02 N/A
Total Tagging Power 1.814+ 0.10 2.194 0.22

identify the leading fragmentation track charge and to determine the B initial flavor
accordingly.

Several advantages compared to the opposite side tagging algorithms are worth men-
tioning. The SST shows a high efficiency since the leading fragmentation track is in the
same detector region as the signal B hadron, thus, within the detector acceptance, and
there are also no limitations due to branching ratios. The search region for same side
tagging tracks is limited near the signal B direction. Due to this geometrical restriction,
the SST is robust against background from the underlying event or multiple interac-
tions. Finally neutral meson mixing does not dilute the useful charge correlation. These
advantages are reflected in an higher flavor tagging dilution.

Unlike the opposite side flavor tagging algorithms, the performance of the same side al-
gorithm cannot easily be quantified using data. Since SST is based on information from
the signal B fragmentation process, its performance depends on the signal B species.
Therefore, B* and BY modes can not be used to calibrate the same side tagging per-
formance for B, mesons. Instead, prior to the actual observation of Bg mixing, the
experiments had to rely upon Monte Carlo simulation to quantify the performance of
same side tagging for B, mesons. High statistics BT and B® modes have been used to
verify that specifically tuned Monte Carlo program accurately model the fragmentation
process.

The CDF algorithm [231] starts selecting charged tracks with pr > 450 MeV/e, good
momentum and impact parameter resolution as potential tagging tracks. Fragmentation
tracks originate from the primary vertex, therefore an impact parameter significance
less than 4 is required. To reject background from multiple interactions, the tracks are
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required to be close to the By candidates both along the beam direction and in AR =
VAR + A¢? < 0.7.

About 60% of the tagged events have one and only one tagging track. Of the remaining
events approximately one-third have all tagging tracks with the same charge. Therefore,
the subsequent tagging algorithm makes a choice between multiple, oppositely charged
tracks in about one-fourth of all tagged events. Several variables have been employed.
The most sensitive was found to be the maximum longitudinal component of the tagging
tracks with respect to the B momentum, and after that the largest likelihood to be a Kaon
based on TOF and dE/dx measurements. A neural network is finally used to combine
the available information. Examples of the dependence of the dilution on the variables
discussed above are given in Fig. 7 for the subsample with only one tagging track.
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Fig. 7. (Left panel) Dilution of the maximum p’L'el algorithm as a function of tagging track pr. (Middle

panel) Dilution for the Kaon identification based algorithm as function of Kaon likelihood. (Right panel)
Dilution of the NN algorithm as a function of NN variable. The dots represent Monte Carlo data, the
line is the parametrization, which has been used to determine the event-by-event dilution. Events with
only one tagging track candidate around the Bs meson are displayed.

The performance of the SSKT algorithm has been evaluated for B, B® and B, modes
on several decay channels (see Table 8). The agreement between simulation and data in
B* and BY modes suggests that the simulation can predict the tagger performance across
all B species. The measured differences are used to evaluate a systematic uncertainty on
SSKT for Bs mesons. Since the algorithm rely on the number of Kaons produced in the
fragmentation process leading to the production of B; mesons an additional important
uncertainty is derived by the difference in data and simulation of the number of Kaons
around the B, direction of flight. Smaller systematic uncertainties arise considering b-
quark production mechanism, fragmentation models, B** rate and event pile-up.

Table 8
Performance of the NN based algorithm in data and Monte Carlo. Only statistical uncertainties are
quoted.

(%] B~ — D%~ |BY - D7~ |Bs — D n~

MC ¢ | 559401 | 56.6+0.1 | 52.1 +£0.3
(D)| 26.8£0.2 | 16.1 £0.6 | 20.2 + 0.7
data (1 fb=1)|e | 58.2+0.3 | 57.2+ 0.3 | 49.3 + 1.3
(D)| 26.4+£08 | 152+ 1.7 —
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The tagging dilution evaluated for the B, — DF 7~ sample using the event-by-event
predicted dilution derived from Monte Carlo yields (D) = 24.9 —29.373-3% (for compar-
ison using the maximum pTLEl only gives (D) = 23.7:21:2 %). The overall SSKT tagging
figure of merit is € (D)* = 3.1 —4.3719 including statistical and systematic uncertainties
(the given range reflect the performance of the CDF TOF system in different data taking
periods). This result can be compared to the overall OST £D? = 1.8 4+ 0.1% for oppo-
site side tagging on the same channel (note the significant channel dependence of the
measured £D?, mostly related to the B meson pr spectrum of the reconstructed decays).

Also the DO experiment recently introduced a same side tagger [232]. The track with
pr > 500 MeV/c closest in AR to the By candidate flight direction is selected for tagging.
Dilution is studied as a function of the product of the tagging track charge and AR, as
well as forming a same side jet charge from the transverse momentum weighted sum of all
tracks within a narrow cone around the B, flight direction. The combined eD? from OST
and SST quoted by the DO collaboration is 4.68 +0.54% to be compared to 2.48 +0.22%
from the OST alone.

3.2.3. Vertexing

For time dependent measurements determining the elapsed times (At in Sec. 3.2.1)
is crucial. This is obtained by first measuring a length L and then computing At =
L/(c B 7). The vertexing techniques utilized to measure L are significantly different at B-
Factories and hadron colliders because of the different boost and because time dependent
measurements have two different needs: measure the difference in time between the two B
mesons in an event at the B-Factories and measure the time of flight since the production
of the B meson of insterest at the hadron colliders. The two approaches are therefore
described separatetly in the following.

Vertex reconstruction at B-Factories

y Byec MOMentum
B, daughters
By Vertex ree 9
A
Beam spot .

.
— tei——
-

;o " ‘e
Production point e,

%4, Byyg vertex

G

tag
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L Byag tracks, Vs

Fig. 8. Schematic view of the vertexing algorithm at B-Factories.

The Byeco vertex is reconstructed from charged tracks and photon candidates that
are combined to make up intermediate mesons (e.g., J/1, D, K?) and then treated as
virtual particles. The trajectory of these virtual particles is computed from those of their
decay particles, and, when appropriate, mass constraints are imposed to improve the
knowledge of the kinematics. In the case of charmonium states such as J/¢YKY, Belle
uses only the dileptons from the J/1 decay. In Belle, the vertex of the signal candidate
is constrained to come from the beam-spot in the x-y plane and convolved with the
finite B-meson lifetime. BABAR, uses the beam-spot information only in the tag vertex
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reconstruction. The resulting spatial resolution depends on the final state; it is typically
65 yum in BABAR and 75um in Belle.

BABAR determines the Btag vertex by exploiting the knowledge of the center-of-
mass four-momentum and an estimate of the interaction point or beam-spot position.
This information, along with the measured three-momentum of the fully reconstructed
Breco candidate, its decay vertex, and its error matrix, permits calculation of the Btag
production point and three-momentum, with its associated error matrix (see Fig. 8). All
tracks that are not associated with the Breco reconstruction are considered; K9 and A
candidates are used as input to the fit in place of their daughters, but tracks consistent
with photon conversions are excluded. To reduce the bias from charm decay products,
the track with the largest x? vertex contribution if greater than 6 is removed and the fit
is iterated until no track fails this requirement.

Belle reconstructs the Btag vertex from well-reconstructed tracks that have hits in
the silicon vertex detector and are not assigned to the Breco vertex. Tracks from K0S
candidates and tracks farther than 1.8 mm in z or 500 pm in r from the Breco vertex are
excluded. An iterative fit to these tracks is performed with the constraint that the vertex
position be consistent with the beam spot. If the overall x2 is poor, the track with the
worst x? contribution is removed, unless it is identified as a high-momentum lepton. In
this case, the lepton is retained and the track with the second-largest x?2 is removed.

The resolution on Az is dominated by the Btag vertex reconstruction and therefore is
nearly independent of the reconstructed CP decay mode. Based on Monte Carlo simula-
tion, it is estimated to be 190 pm. The Az measurement is converted to a At measure-
ment, and the corresponding resolution is 1.1 ps in BABAR and 1.43 ps in Belle because
of the different center-of-mass boosts.

Decay Length Measurements at Tevatron In the Tevatron detectors, with a
central geometry, the decay length is best measured in the transverse plane, the proper
time ¢ is computed from the flight distance in the transverse plane, L,,. Thus, the
expression for ¢ and its resolution are:

L mpg ' - mp Opr
By epr ’ Al gt (99)
For fully reconstructed decays, the only significant uncertainty is from the decay dis-
tance measurement. Partially reconstructed decays have an additional term from pp
uncertainty which grows linearly with .

The transverse flight distance of the B-meson, L,,, is given by the transverse distance
between the location of pp interaction, the Primary Vertex (PV), and the Secondary
Vertex (SV), i.e. the decay point of the B-meson. The position of the PV is determined
for each event by fitting the tracks in the underlying event to a common origin, exluding
the tracks belonging to the B candidate.

The secondary vertex is determined by fitting to a common vertex the B dauther
charged tracks, considering tertiary vertex from charm decay, and mass constraints on
intermediate resonances where applicable. The error estimate on L, is obtained by
combining the PV uncertainty with that provided by the SV fit. A gaussian resolution
function is normally a good approximation but the error estimate from the vertex fit needs
to be multiplied by a scale factor for a correct measurement. This rescaling is typically
calculated from the lifetime distribution of prompt background (e.g. from prompt J/i
and underlying event tracks for decays involving J/i, or from prompt charm production
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and fake leptons for semileptonic decays). A peculiar situation arise when data biased in
lifetime, due e.g. to trigger requirements, are used. In this case special samples can be
manufactured combining a prompt charm meson with a randomly selected charged track,
consistent with coming from the PV. The pseudo-decay length of this events is expected
to peak at 0 and can be used to measure the decay length resolution scale factor.

The proper decay time resolution for fully reconstructed By, — Df7n~ and B, —
Dfnta= 7t decays with the CDF detector is shown in Fig. 9 (left). The mean proper
decay time uncertainty corresponds to 86 fs, which has to be compared with the oscillation
period for B, mesons =~ 350 fs, and shows the ability of the current Tevatron experiment
vertex detectors to resolve the fast B, oscillations.
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Fig. 9. The decay time resolution for fully reconstructed Bs decays in CDF (left) and the effective
resolution for different values of missing (unreconstructed) semileptonic mass, as a function of the proper
decay time (right).

For partially reconstructed decays, like semileptonic decays, there is an important addi-
tional uncertainty in the decay time due to the incompletely measured pr of the B meson
(Eq. 99). The distribution F(k) of the fractional missing momentum k = p3P®/pr(B) is
extracted from Monte Carlo simulations and is rather wide with a typical RMS of 10
to 20%. The gaussian resolution function has to be convoluted with the distribution of
this k£ factor in any time dependent measurement involving partially reconstructed or
semi-leptonic decays. In semileptonic decays the missing neutrino momentum is corre-
lated with the visible mass D + ¢, Mpy, hence it is useful to divide the data in bins of
Mp, taking advantage of the narrower width of F'(k) for higher Mp, as shown in Fig. 9
(right).

An important complication in time dependent measurement is introduced by recon-
struction or trigger bias on proper time (see e.g. section 3.1.4). To take in to account this
effect a function £(t), that describes the acceptance as a function of proper decay time
and is derived from simulations, multiply proper time related terms in the likelihood
fits. To derive it CDF assumes that for each accepted event i, the expected ct distribu-
tion without any bias is an exponential smeared by the experimental resolution function,
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Fig. 10. A representative example of the dependence of trigger and selection efficiency on proper decay
time from the displaced track trigger in CDF, vertical scale in arbitrary units (left). Lifetime fit to
Bs — Dfn~ sample from CDF (right)

where the width is the ¢t error (o) of that event. The denominator is the sum of the
N expected distributions without any bias,

reconstructed ct after trigger + selection
fet) =5 , (100)

1 t
> e () o Gt o) 01 F()
1 T CT

where the smearing with the k-factor distribution F(k) has to be included for incom-
pletely reconstructed decays. The shape of the proper decay length efficiency curve is
parametrized using analytically integrable functions and used to multiply proper time
related terms in the likelihood fits. Fig. 10 shows a representative example of the proper
time efficiency from the CDF experiment. The rapid turn-on of the curve is due to
minimum impact parameter and L, significance requirements at the trigger and recon-
struction level, while the turn-off at larger proper decay length is due to upper cut on
impact parameter at the trigger level. Because each B decay mode has its own kine-
matic characteristics and selection requirements, an efficiency curve has to be derived
separately for each channel.

The method has been extensively validated with Tevatron data, measuring B%, BT
and By and Ay lifetime a variety of fully adronic modes. As an example, a recent prelim-
inary determination of the By lifetime in the By — D}7~ channel is shown in Fig. 10
right [233], giving c¢7(Bs) = 455.0 & 12.24 + 8.2, pum, in good agreement with PDG
averages.

3.2.4. Charged Particle Identification
Identification (ID) of charged particles (e, u, m, K, p) plays a crucial role in flavor
physics, in many cases 7/ K separation being both the most important and experimentally
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challenging. Some of the most important PID techniques are sensitive to the particle’s
velocity; working in tandem with tracking, which provides a measurement of the particle’s
momentum, they separate the particles by mass. Other techniques exploit the unique
interaction properties of specific particles.

The purpose of this primer is to describe conceptually the PID techniques employed
in the detector experiments that provided the results included in this report. For a
more general discussion, please see Chapters “Passage of particles through matter” and
“Particle Detectors” in Ref. [4].

At the track momenta relevant to flavor physics, the rate of ionization energy loss,
usually denoted dE/dz, to a good approximation is a constant for e* and a function
only of the particle’s velocity (but not its type) for the others. Measurements of dE/dx
are naturally provided by nearly all types of tracking detectors. The type of information
provided is either the collected charge or time-over-threshold for each of the detector
elements crossed by the track (which typically number from 8-10 to a few dozen). The
truncated-mean algorithm, which discards a fixed fraction (typically ~ 30%) of the sam-
ples with the highest dE'/dx values, is usually used to mitigate the effect of the long tail
of the Landau—Vavilov distribution of the individual dE/dz samples.

As a function of particle’s velocity, the dE'/dx truncated mean reaches a minimum at
By = p/m ~ 3.5-4.5 and rises rapidly as the particle’s velocity decreases (dE/dz o 1/?
for By < 1). For this reason, dE/dz is the most useful for u/7/K/p separation at the
momenta where for at least one of the particle types being separated p/m < 1.4 (e.g., at
p < 0.7 GeV/ce for K/m separation). At 8 2 6, the dE/dx truncated mean experiences
a “relativistic rise”, which is mild in gases, allowing weak (1-2 o) 7/K separation at
p 2 1.4 GeV/e, but nearly non-existent in liquids and solids. Depending on the detec-
tor and the environment, measurements of dE/dx can be affected by a large variety of
sizable systematic effects, including aging, and thus development of a dE'/dx calibration
technique that can reliably predict the dE/dax mean value and resolution for a particle
of a given type anywhere in the detector can be a great challenge, particularly when one
wishes to exploit for PID the dF/dz “relativistic rise” in a gaseous tracking system.

Examples of dE/dz use in PID include the drift chambers in BABAR [207,234], Belle [235],
BESII [211], CDF [236], CLEO-II [203], CLEO-IIT and CLEO-¢ [205], and KLOE [237].
In BABAR and Belle, dE/dx K /7 separation at low momenta is very important to B flavor
tagging, and in CDF the dE/dx “relativistic rise” is critically important to the study
of BY, By, Ay — hth/~ (h = 7, K,p) decays. The BABAR silicon vertex tracker [207],
with its 5 double-sided Si layers, is unique among Si vertex detectors at ete™ machines
in its ability to provide useful dE/dz information, which is particularly valuable for 7/e
separation at p < 0.2 GeV/e (e.g., in charm physics).

Time-of-flight (TOF) PID systems combine knowledge of the particle’s creation time
and trajectory with a high-precision measurement of its arrival time at the TOF detector,
thus proving a measurement of its velocity. Given the time resolution of the currently
deployed TOF detectors (~ 100-200 ps), they are limited in /K separation of at least
20 to p S 1.5 GeV/c. Examples include the TOF systems at Belle [238], BESII [211],
CDF [219], and KLOE [237]. Complementarity of TOF and dE/dz measurements is
evident from the fact that dE/dz separation in gas vanishes for 7/K at 1.1 GeV/c, for
e/m at 0.16 GeV/e, for e/K at 0.63 GeV/e, and for e/p at 1.2 GeV/e.

Detectors that exploit the Cherenkov—Vavilov radiation by charged particles moving
faster than veiy = ¢/n, where n is the refraction coefficient of a solid, liquid or gaseous
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radiator, tend to provide the best velocity-based PID at p 2 1GeV/c. The cheapest
and most simple are Cherenkov threshold detectors, where the refraction index of the
radiator is chosen in such a way that in the kinematic range of interest the lighter of
the two particle types being distinguished would be superluminal while the other one
would not; additional information may be provided by comparing the observed number
of Cherenkov photons with the one expected for each of the particle types. Belle employs
silica aerogel with refraction indices varying from 1.01 to 1.03 [239].

Since Cherenkov radiation is emitted in a cone with an opening angle fc = cos™ n—lﬂ,
the particle’s velocity can be determined by measuring the cone’s opening angle. The most
common, moderately expensive such technology is RICH (Ring-Imaging CHerenkov),
where the cone is produced in a transparent solid, liquid or gaseous radiator (LiF in
CLEO-III and CLEO-¢, [206]) and projected onto a planar photon detector a certain dis-
tance away. Another, more expensive but space-saving ring-imaging technology is DIRC,
used in BABAR [240], where the cone of Cherenkov light is produced and captured within
a bar of synthetic fused silica running the length of the BABAR detector. The 7/ K separa-
tion achieved in B — Xh* decays in BABAR by the DIRC (DCH dE/dx) varies from 130
(1.00) at 1.5 GeV/c to 2.50 (1.90) at 4.5 GeV/c [241]. However, due to the DIRC’s me-
chanical complexity about 18% of reconstructed high-momentum tracks in BABAR miss
the DIRC; similar coverage limitations are usually suffered by RICH and TOF systems
as well.

For dedicated e* ID, the most distinctive and frequently used feature of their in-
teractions with matter is the development of electromagnetic (EM) showers in thick
absorbers. EM calorimeters seek to contain and measure the total shower energy Fa).
For e*, the ratio Fea /p is close to 1, while for the other charged particles the E.,1/p
ratio will be either much smaller than 1 (“minimum-ionizing”), have a broad distribu-
tion mostly below 1 for those that shower hadronically, or have a poorly defined broad
distribution for the antiprotons that annihilate in the calorimeter. Since the shapes of
the EM showers produced by high-energy e* and photons are quite similar, the match-
ing of calorimeter clusters to tracks extrapolated from the tracking system is of critical
importance. The materials used in EM calorimeters the most frequently are blocks of
heavy inorganic scintillators with no longitudinal segmentation. Thallium-doped CslI is
used in BABAR [207], Belle [208,242], CLEO [243], and BESIII. Even in the absence of
longitudinal segmentation, limited information on the longitudinal shower shape (which
is different for e/u/7/K/p) can be obtained for particles of sufficiently low momenta
(which enter the calorimeter at an angle sufficiently different from 90°) by combining
tracking and lateral cluster-shape information with a technique recently introduced in
BABAR [244]. KLOE has a lead-scintillating fiber sampling EM calorimeter [245], which,
thanks to its longitudinal segmentation, also provides good muon-hadron separation.

Unlike the other long-lived charged particles, muons do not shower. Hence, dedicated
muon ID relies on muons’ long path length in absorber thick enough to stop hadronic
showers (5-8 hadronic interaction lengths is common). Instrumentation of the magnet’s
iron flux return with several layers of charged-particle detectors is a good approach since it
allows monitoring of hadron-shower development (which also enables K? ID) and precise
matching of tracks with hits in the muon system. This approach is used in BABAR [207],
Belle [246], BESII [211], and CLEO [203,247].

Response of the detector as a whole, and each of the subdetectors individually, to
the passage of charged particles of a given type can be studied with high-purity, high-
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statistics calibration samples selected on the basis of the physics and kinematics of certain
decays, with PID applied to the other particles in the decay to further enhance purity. In
calibrating the PID response of a given subdetector, PID information from the rest of the
detector can be used as well. Examples of calibration samples used in ete™ B factories
include protons from A — pr~, pions and Kaons from D** — D%+ (D° — K—n7),
pions from K% — 777~ electrons and muons from ete™ — ¢T¢ .

The best PID performance is achieved by combining information from all subdetectors.
The TOF, dF/dx and ring-imaging Cherenkov measurements can be conveniently repre-
sented in the form of probability-distribution functions (PDFs), which makes likelihood-
based hadron ID quite close to optimal. On the other hand, the calorimeter and muon-
system quantities, which are more numerous and can be highly correlated, are either very
difficult or impossible to adequately describe with PDF's. For this reason, the best PID
performance can be achieved by advanced multivariate techniques such as neural nets
and bagged decision trees.

3.2.5. Background suppression

The isolation of signal events in the presence of significant sources of backgrounds is
critical for almost all measurements. This usually is achieved by an optimization of the
event selection process designed to maximize the experimental sensitivity by suppressing
the backgrounds effectively while retaining a sizable fraction of the signal. The choice
of the method depends on both the nature of the signal and background events, and
critically on the signal over background ratio which may vary from more than 100 to
1076 or less.

The separation of signal and background processes relies both on the detector perfor-
mance as well as kinematics of the final state produced. Large acceptance and the high
resolution and efficiencies for the reconstruction of charged and neutral particles and the
identification of leptons and hadrons over a wide range of energies are very important.
A low rate of the misidentification of charged hadrons as leptons is critical, in particular
for rare processes involving leptons.

Though the cross sections for heavy flavor particle production in hadronic interactions
exceed the cross sections at eTe™ colliders by several orders of magnitude, their fraction
of the total interaction rate is small. Furthermore, the multiplicity of the final states
is very large, and thus the combinatorial background to charm and beauty particles is
extremely large for experiments at hadron colliders and for fixed-target experiments in
high momentum hadron beams. Typical event triggers rely on the detection of charged
hadrons and leptons of large transverse momentum and in some cases also on the isolation
of decay vertices that are displaced from the primary interaction point. The analyses often
focus on decays involving two- or three-body decays to intermediate states of narrow
width, for instance J/ip, D or D* mesons. Because of the very large momenta of these
intermediate states, the identification of particles that do not originate form the primary
interaction point is a very powerful tool to suppress backgrounds.

Background conditions for the detection of charm and beauty particles at eTe™ colliders
are markedly different. There are two dominant sources of background, the so-called
continuum background and combinatorial background from other particles in the final
states from decays of resonances under study, for instance J/y, 1(3770), or T(n.S) mesons.
Two types of processes contribute to continuum background, QED processes, eTe™ —
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¢~ () with £ = e, i, or 7, and quark-pair production, ee™ — gg with ¢ = u,d, s, (¢).

Both of these processes are impacted by energy losses due to initial state radiation.

At eTe™ colliders operating near kinematic thresholds for pair production of charm or
beauty particles, for instance the B Factories at 7°(4S) and the Charm Factories at the
¥(3770) or above, the primary particles pairs are produced at very low momenta, leading
to event topologies that are spherical, not jet-like.

Continuum background is characterized by lower multiplicities and higher momenta of
charged and neutral particles. To suppress QED background, selected events are usually
required to have at least three reconstructed charged particles. At sufficiently high c.m.
energies, the fragmentation of the light quarks leads to a two-jet topology. Such events
are characterized by variables that measure the alignment of particles within an event
along a common axis. Among the variables that show sharply peaked distributions for
jet-like events are:

— thrust, the maximum sum of the longitudinal momenta of all particles relative to a
chosen axis; the trust distribution peaks at or just below 1.0 for two-body final states
and two-jet events;

— €08 Ab¢prust, where Abiprqst is the angle between the thrust axis of one or the sum
of all particles associated with the signal candidate and the thrust axis of the rest of
the event; this distribution is flat for signal events and peaked near 1.0 for continuum
background;

— the energy flow in conical shells centered on the thrust axis, typically nine double cones
of 10 degrees; for continuum events most of the energy is contained in the inner cones,
while for the more spherical signal events the energy is shared more uniformly among
all cones;

— normalized Legendre moments can be viewed as continuous generalizations of the en-
ergy cones, typically the first and second of these moments are used, L; = Y, p;| cos 6;
with j = 0 or j = 2, where p; and 6; are the momentum and angle of any particles,
except those related to the signal decay, relative to the thrust axis of the signal decay.
In many cases these moments provide better discrimination of continuum events than
the energy cones.

— Ry = Hy/Hy, the ratio of second to zeroth Fox-Wolfram movements, with Hy =
> [Pillpj| L2(cos 0;5), calculated for all particles in the event, charged and neutral.
The nth Fox-Wolfram moment is the momentum-weighted sum of Legendre polynomial
of the nth order, computed for the cosine of the angles between all pairs of particles;
the ratio Ry peaks close to 1.0 for jet-like continuum events.

In practice the suppression of the continuum background is achieved by imposing restric-

tion on many of these variables, either as sequential individual cuts, or by constructing

a multivariable discriminant, a decision tree, or employing a neural network.

Fig. 11 shows examples of distributions for two of these variables for selected BB
events.

For the isolation of exclusive decays of B or D mesons that are pair-produced at Beauty
or Charm Factories two kinematic variables are commonly used to separate signal from
background events. These variables make optimum use of the measured beam energies
and are largely uncorrelated. The difference of the reconstructed and expected energy
for the decay of a meson M is defined as AE = (ganqo — $/2)/+/s, where /s = 2Ef, is
the total energy of the colliding beams in the c.m. frame, and ¢p; and gg are the Lorentz
vectors representing the momentum of the candidate M and of the eTe™ system, gy =
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Fig. 11. Distribution of variables used to suppress continuum background in selected candidates for
B® — K~ 70 decays [248] a) cos Ab;prust, b) the normalized Legendre moments La. The solid lines
show the expectation for continuum background, the dotted lines represent the background distributions.

Ge- + Qe+ . In the c.m. system,
AE = By = Epeam (101)

where E7}, is the energy of the reconstructed meson M.

The second variable is often referred to as the energy-substituted mass, mgg. In the
laboratory frame, it can be determined from the measured three-momentum, p,;, of the
candidate M, without explicit knowledge of the masses of the decay products, mggs =
V/(8/2 4+ par - po)?/EZ — p3,. In the c.m. frame (py = 0), this variable takes the familiar

form,
mes =\ Byoym — Piis (102)

where pj, is the c.m. momentum of the meson M, derived from the momenta of its decay
products, and its energy is substituted by £}, .

An example of AE and mpgg distributions is given in Fig. 12 for a selected sample
of rare B decays. AFE is centered on zero and the mgg distribution peaks at the B-
meson mass. While resolution in AF is dominated by detector resolution, the resolution
in mpg is determined by the spread in the energy of the colliding beams, typically a
few MeV. The flat background is composed of both continuum and BB events, its size
depends on the decay mode under study and the overall event selection. There is a small
component of peaking background due to backgrounds with kinematics very similar to
the true decays.

For decays that cannot be fully reconstructed because of an undetected neutrino or K9,
the separation of signal and backgrounds is more challenging. The energy and momentum
of the missing particle can be inferred from the measurement of all other particles in the
event and the total energy and momentum of the colliding beams,

(Emiss;pmiss) - (EO,PO) - (Z Ei7 sz) (103)

If the only missing particle in the event is a neutrino or K, the missing mass should be
close to zero or the Kaon mass and the missing momentum should be non-zero. Fig. 13a
shows an example of a missing mass squared distribution, E2,;., — |Pmiss|> for B~ —
D%~ decays, selected in BB events tagged by a hadronic decay of the second B meson
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in the event. There is a narrow peak at zero for events in which the only missing particle
is the neutrino, and a broad enhancement due to B~ — D*9/~7 decays, in which the low
energy pion or photon from the decay D*® — D%2% or D*® — D%y escaped detection.
Since the second B is fully reconstructed, there is very little combinatorial background.
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Fig. 13. Distributions of the a) the missing mass squared for selected B — D{v candidates, in BB
events tagged by a hadronic decay of the second B meson in the event [250], b) cosOpy, for a sample
of B® — D*T¢~ T candidates [251] Her the unshaded histrogram indicates the signal distribution, on
top of background contributions, mostly from other semileptonic B decays.

For semileptonic B or D decays, M — H/{v, a variable first introduced by the CLEO

Collaboration is used to suppress background,

(2EgEy — MI%/[ — M%)
2|I’M||PY|

cosfpy = (104)

For a true semileptonic decay in which the only missing particle is the neutrino, 6py
is the angle between the momentum vectors pps and py = pyg + pe¢, and the condi-
tion | cosfpy| < 1.0 should be fulfilled, while for background events or incompletely
reconstructed semileptonic decays the distribution extends to much larger values, thus
enabling a clear separation from the signal decays (see Fig. 13b).
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3.2.6. Recoil Tagging Technique

At eTe™ colliders charged leptons and heavy flavor particles are produced in pairs, thus
the detection of one member of the pair can be used to tag the presence of the other. In
particular at Charm and B at B-Factories, operating at or near the threshold for charm or
beauty particles tagging techniques not only identify the second member of the pair, they
also can be used to measure their momentum and energy and uniquely determine their
charge and flavor quantum numbers. Furthermore, near threshold, there are no other
particle produced, and therefore the combinatorial background is significantly reduced.
In addition, the kinematics of the final state are constrained such that given a fully
reconstructed tag of one decays, the presence of a missing or undetectable particle like
v or K9 meson can be identified from the missing momentum and missing energy of the
whole event (see for example [252]).

The tagging technique for 1)(3770) — DD events was first developed by the Mark IIT
collaboration [253] at SLAC, and has since been exploited in many analyses based on
data from by CLEO., BES, K LOE, and the B Factories. For ¥(3770) — D°D° events
there are several tag modes, which can be divided into three categories: pure flavor tags
such as D° -+ K~eTv, and D° — 7~ wty,; quasi-flavor tags for neutral mesons, such as
DY - K—7t, D% - K—7tn% and D° — K—ntnt7n—, for which there is a small doubly-
Cabibbo-suppressed contribution, and tags for CP-eigenstates such as D° — K+TK~ and
K%, The quasi-flavor tags can be used to make precision measurements of branching
fractions [254] and partial rates [255]. The three decays listed correspond to 25% of the
total branching fraction. Since the (3770) is a C' = —1 state, the detection of a tag
with definite CP means that the other D meson in the event must be of opposite CP.
Studies combined flavor and CP-tagged samples of K7 events [256] and Kontn~ [257]
have resulted in the determination of the strong-phase parameters in D decay. Using low-
multiplicity decays, such as DT — K~ 77" and DT — K27 has resulted in extremely
clean samples, even for rare signal decays, and thus precise branching fraction and partial
rate measurements.

Single-tag efficiencies and purities vary considerably depending on the number of tracks
and neutrals in the decay. For example, D° — K7t and DT — K27 70 tags have
efficiencies of 65% and 22% and sample purities of ~ 5% and ~ 50%, respectively. For
fully reconstructed hadronic tags the discriminating variable (shown in Fig. 14) is the
beam-constrained mass (see Sec. 3.2.5 and Eq. 102).

The recoil technique has also been used successfully in ete™ — DI D*~ events at
CLEO-c to measure branching fractions ( [258]). Tag decays include D — KTK ™7™,
Dy - KK—, Dy - KTK 7 7% and D; — n"n~ 7~ and correspond to approxi-
mately 20% of the total D branching fraction. The D~ — D;~/n" candidates are
identified with or without the explicit reconstruction of the photon or 7°.

At the 7°(4S5) resonance, the higher mass of the b mesons lead to much smaller individ-
ual branching fractions for individual decays, which means that the achievable tagging
efficiencies are much lower. Nevertheless, both BABAR and Belle have developed and em-
ployed several tagging techniques. The cleanest samples are possible for tree-mediated
hadronic decays of the form B — D® X, where X refers a hadronic state of one or

more hadrons, up to five charged mesons (pions or Kaons), up to two neutral pions or a
K9, and the DY) D+ ()or D;r’(*) mesons are reconstructed in many different decays
modes. The kinematic variables AE and mgg, introduced in Sec. 3.2.5, are used to iso-
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late the true tag decays from combinatorial background and to estimate the purity of
the tag samples. The purity of a given tag mode is used to separate the cleaner samples
from those with high background, the actual choice usually depends on the signal mode
under study. The tag efficiency is typically 0.3% and has a signal-to-noise ratio of 0.5
(see Fig. 14).

Significantly higher tag efficiencies can be obtained for semileptonic B decays, for
instance B — D™ {v (¢ = e,p), with a branching fraction of more than 7% for each
lepton. For D mesons the same decays listed above are used, are reconstructed and for
the D* mesons the decays are D*t — D2+ D* 7% and D*© — D2 D°y. Due to the
very small mass difference of the D* and D mesons, the pions and photons from its
decay are of low energy, and thus the mass difference AM = m(Dn) — m(D) can be
very well measured. The presence of a neutrino in the decay can be checked using the
variable cosfpy defined in Eq. 104. As for hadronic tags, tag selection and its efficiency
and purity are strongly dependent on the signal decay recoiling against the tag. Typical
efficiencies are of order 0.5-1%.
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Fig. 14. Distribution of the energy substituted mass for selected hadronic tag decays a) for D mesons in
¥(3770) events at CLEO, and b) for B mesons in T'(4S) decays at BABAR.

The biggest advantage of the hadronic B tags over the semileptonic B tags is the
better measurement of the reconstructed B momentum. This permits constraints on the
signal decays in the recoil and precise reconstruction of the kinematic variables even in
decays with a neutrino or missing neutral Kaon. Otherwise the two tags have similar
performance. They are completely orthogonal samples and thus can be combined .

3.2.7. Dalitz Plot Analysis

The partial decay rate of a particle into a multi-body final state depends on the square
of a Lorentz invariant matrix element M. Such matrix element can be independent of
the specific kinematic configuration of the final state or otherwise reveal a non-trivial
structure in the dynamics of the decay. In the case, for instance, of a three-body decay
P — 123, invariant masses of pair of particles can be defined as mfj = |p; + p;|* where
p; (j=1,2,3) are the four-momenta of the final states particle. A plot of mfj versus m?,
is commonly referred as Dalitz plot [259].

Dalitz plots distributions have been used since several decades to study the strong
interaction dynamics in particle decays or in scattering experiment. In a three body
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Fig. 15. Dalitz plot distribution of a high purity sample of D® — Kgrtn—, with m? = lPKg + P

_?
and m%r = |pkg + pr+|? from [260]. The most visible features are described by a K*~(892) resonance
(vertical band with two lobes) and a p(770) resonance (diagonal band with two lobes). Interferences
between resonances are distorting the distribution. The contours (solid red line) represent the kinematic
limits of the decay.

decay of a meson, the underlying dynamics can be therefore represented by intermediate
resonances. As an example in Fig.15 a Dalitz plot for the decay D° — Kgnt7n~ is shown:
there are several visible structures due to competing and interfering resonances.

It is therefore a common practice to parameterize the matrix element as a coherent
sum of two-body amplitudes (subscript r) [261],

M = ZaTei¢"Ar(m%3,m§3) (105)

An additional constant "non-resonant” term ange’®™® is sometimes included.

The parameters a, and ¢, are the magnitude and phase of the amplitude for the
component r. In the case of a D° decay the function A, = Fp x F,. x T, x W, is a
Lorentz-invariant expression where Fp (F}) is the Blatt-Weisskopf centrifugal barrier
factor for the D (resonance) decay vertex [262] T, is the resonance propagator, and W,
describes the angular distribution in the decay.

For T, a relativistic Breit-Wigner (BW) parameterization with mass-dependent width
is commonly used (for definitions see review in [261]). BW mass and width values are
usually taken from scattering experiment or world averages provided by Particle Data
Group.
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The angular dependence W, reflects the spin of the resonance and is described using
either Zemach tensors [263-265] where transversality is enforced or the helicity formal-
ism [266,267] when a longitudinal component in the resonance propagator is allowed (see
Ref. [261] for a comprehensive summary).

Alternative parameterizations have been used especially to represent spin zero (S-wave)
resonances. For this component the presence of several broad and overlapping resonances
makes a simple BW model not adequate.For instance, K-matrix formalism with the P-
vector approximation [268,269] was used for 7w S-wave components.

In the context of flavor physics Dalitz model have been used as effective parameteri-
zations to derive strong phase dependence. The knowledge of strong phases is relevant
for analysis where the extraction of weak phases can be obtained through interferences
between different resonances. Moreover, in the case of neutral meson decays the interfer-
ence between flavor mixing and decay leads to time-dependent analyses (either for CP or
flavor mixing measurements). For this reason Dalitz models have been included in such
analyses (that are frequently referred for short as time-dependent Dalitz analyses).

4. Determination of |V,q| and |Vys|.

Unitarity of the bare (unrenormalized) CKM [1,2] 3 x 3 quark mixing matrix V;J,
i =u,c,tj=d,s,bimplies the orthonormal tree level relations

D VTV =D ViV = din (106)

Standard Model quantum loop effects are important and corrected for such that
Eq. (106) continues to hold at the renormalized level [270]. That prescription gener-
ally involves normalization of all charged current semileptonic amplitudes relative to the
Fermi constant

G, = 1.166371(6) x 10~5GeV 2 (107)

obtained from the precisely measured (recently improved) muon lifetime [271]

7, =D ut = eTrer,(y)) = 2.197019(21) x 10~ 5sec (108)

In all processes, Standard Model SU(3)cxSU(2)r xU(1)y radiative corrections are
explicitly accounted for [272].
Of particular interest here is the first row constraint

Vaal? + [Vas * + [V | = 1 (109)

An experimental deviation from that prediction would be evidence for “new physics”
beyond Standard Model expectations in the form of tree or loop level contributions to
muon decay and/or the semileptonic processes from which the V;; are extracted. Of
course, if Eq. (109) is respected at a high level of certainty, it implies useful constraints
on various “new physics” scenarios.
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4.1. Vg from nuclear decays

Nuclear beta decays between 07 states sample only the vector component of the
hadronic weak interaction. This is important because the conserved vector current (CVC)
hypothesis protects the vector coupling constant Gy from renormalization by background
strong interactions. Thus, the Gy that occurs in nuclei should be the same as the one
that operates between free up and down quarks. In that case, one can write Gy = GpVyq4,
which means that a measurement of Gy in nuclei, when combined with a measurement
of the Fermi constant Gz in muon decay, yields the value of the CKM matrix element
Vua- To date, precise measurements of the beta decay between isospin analog states of
spin, J™ = 07, and isospin, T = 1, provide the most precise value of V,4.

A survey of the relevant experimental data has recently been completed by Hardy
and Towner [273]. Compared to the previous survey [274] in 2005 there are 27 new
publications, many with unprecedented precision. In some cases they have improved
the average results by tightening their error assignments and in others by changing their
central values. Penning-trap measurements of decay energies have been especially effective
in this regard.

For each transition, three experimental quantities have to be determined: the decay
energy, Qec; the half-life of the decaying state, t;/5; and the branching ratio, R, for
the particular transition under study. The decay energy is used to calculate the phase
space integral, f, where it enters as the fifth power. Thus, if f is required to have 0.1%
precision then the decay energy must be known to 0.02% — a demand that is currently
being surpassed by Penning-trap devices. The partial half-life is defined as t = t,/5/R
and the product ft is

K
t= ———— 11
"= w (110)
where K/(he)® = 2m3hIn2/(mec?)® = 8120.2787(11) x 1071 GeV~* s. When isospin is
an exact symmetry the initial and final states, being isospin analogs, are identical except
that a proton has switched to a neutron. Since the operator describing the transition is
simply the isospin ladder operator, 74, its matrix element, (7 ), is independent of nuclear
structure and is given by an isospin Clebsch-Gordan coefficient, which for isospin T' = 1
states has the value /2. Hence,
K
2G3LV2)
and according to CVC the ft value is a constant independent of the nucleus under study.
In practice, however, isospin is always a broken symmetry in nuclei, and beta decay
occurs in the presence of radiative corrections, so a ‘corrected’ ft value is defined by

_ K .
2GLV2 (1+AY)’

ft (111)

Ft = ft(140%) (1 - (0c = dns)) (112)
so it is this corrected Ft that is a constant. Here the radiative correction has been
separated into three components: (i) A¥ is a nucleus-independent part that includes
the universal short-distance component Sgy affecting all semi-leptonic decays, defined
later in Eq. (128). Being a constant, AY is placed on the right-hand-side of Eq. (112);
(ii) ¢z is transition dependent, but only in a trivial way, since it just depends on the
nuclear charge, Z, and the electron energy, E.; while dyg is a small nuclear-structure

72



Table 9

Experimental ft values for 07 — 07 superallowed Fermi beta decays, the trivial nucleus-dependent
component of the radiative correction, §”,, the nuclear-structure dependent isospin-symmetry-breaking
and radiative correction taken together, 50 — dns, and the corrected Ft values. The last line gives the
average Ft value and the x2 of the fit.

Parent ft(s) 0% (%) 6c — dns(%) Ft(s)

10C3041.7 4 4.3 1.679 4 0.004 0.520 & 0.039  3076.7 + 4.6
140 3042.3 £ 2.7 1.543 £ 0.008 0.575 + 0.056  3071.5 4 3.3
22Mg 3052.0 £ 7.2 1.466 & 0.017 0.605 £ 0.030  3078.0 & 7.4
26 A1™ 3036.9 £ 0.9 1.478 & 0.020 0.305 £ 0.027  3072.4 + 1.4
34C13049.4 & 1.2 1.443 4 0.032 0.735 £ 0.048  3070.6 + 2.1
34Ar 3052.7 4+ 8.2 1.412 4+ 0.035 0.845 & 0.058  3069.6 £ 8.5
38K™ 3051.9 + 1.0 1.440 = 0.039 0.755 + 0.060  3072.5 & 2.4
4280 3047.6 & 1.4 1.453 + 0.047 0.630 & 0.059  3072.4 £ 2.7
46V 3050.3 & 1.0 1.445 4 0.054 0.655 £ 0.063  3074.1 £ 2.7
50Mn 3048.4 4 1.2 1.444 + 0.062 0.695 & 0.055  3070.9 £ 2.8
54C0 3050.8 & 1.3 1.443 4 0.071 0.805 £ 0.068  3069.9 + 3.3
62Ga3074.1 +£1.51.459 £0.087 1.5240.21 307154 7.2
74Rb3084.94+ 7.8 1.504+0.12 1.71£0.31 3078 £ 13

Average Ft 3072.14 4 0.79
X2 /v 0.31

dependent term that requires a shell-model calculation for its evaluation. (iii) Lastly, ¢
is an isospin-symmetry breaking correction, typically of order 0.5%, that also requires a
shell-model calculation for its evaluation.

In Tab. 9 are listed the experimental ft values from the survey of Hardy and Towner
[273] for 13 transitions, of which 10 have an accuracy at the 0.1% level, and three at
up to the 0.4% level. Also listed are the theoretical corrections, 0% and dc — dng, taken
from Ref. [275], and the corrected Ft values. This data set is sufficient to provide a
very demanding test of the CVC assertion that the Ft values should be constant for
all nuclear superallowed transitions of this type. In Fig. 16 the uncorrected ft values in
the upper panel show considerable scatter, the lowest and highest points differing by 50
parts in 3000. This scatter is completely absent in the corrected Ft values shown in the
lower panel of Fig. 16, an outcome principally due to the nuclear-structure-dependent
corrections, dc — d g, thus validating the theoretical calculations at the level of current
experimental precision. The data in Tab. 9 and Fig. 16 are clearly satisfying the CVC
test. The weighted average of the 13 data is

Ft=3072.14+0.79 s, (113)

with a corresponding chi-square per degree of freedom of x? /v = 0.31. Eq. (113) confirms
the constancy of Gy — the CVC hypothesis — at the level of 1.3 x 1074,

73



Before proceeding to a determination of V.4 it has to be noted that the isospin-
symmetry-breaking correction, d¢, is taken from Towner and Hardy [275] who calculated
proton and neutron radial functions as eigenfunctions of a Saxon-Woods potential. An
alternative procedure used in the past by Ormand and Brown [276-278] takes the radial
functions as eigenfunctions of a Hartree-Fock mean-field potential. The corrections ob-
tained by Ormand and Brown were consistently smaller than the Saxon-Woods values
and this difference was treated as a systematic error in previous surveys. In their most
recent survey, though, Hardy and Towner [273] repeated the Hartree-Fock calculations,
but with a change in the calculational procedure, and obtained results that were closer
to the Saxon-Woods values. Even so, when these Hartree-Fock d¢ values are used in
Eq. (112) the x? of the fit to Ft = constant becomes a factor of three larger. This in
itself might be sufficient reason to reject the Hartree-Fock values, but to be safe an aver-
age of the Hartree-Fock and Saxon-Woods Ft values was adopted and a systematic error
assigned that is half the spread between the two values. This leads to

Tt =3071.83 + 0.79¢at + 0.324y5t
=3071.834+0.85 s. (114)

In the second line the two errors have been combined in quadrature.

Recently, Miller and Schwenk [279] have explored the formally complete approach to
isospin-symmetry breaking, but produced no numerical results. The Towner-Hardy [273]
values quoted here are based on a model whose approximations can be tested for A = 10
by comparing with the large no-core shell-model calculation of Caurier et al [280], which
is as close to an exact calculation as is currently possible. The agreement between the
two suggests that any further systematic error in the isospin-breaking correction is likely
to be small.

The CKM matrix element V.4 is then obtained from

L S
ud T 0G2 (1 + AV)FL
#(1+ AR)Ft

where AY is the nucleus-independent radiative correction taken from Marciano and Sirlin
[281]: wiz.

(115)

AY = (2.631 £ 0.038)%. (116)
With Ft obtained from Eq. (114), the value of V,,4 becomes
Viua = 0.97425 £ 0.00022. (117)

Compared to the Hardy-Towner survey [274] of 2005, which obtained V,,q = 0.97380(40),
the central value has shifted by about one standard deviation primarily as a result of
Penning-trap decay-energy measurements and a reevaluation of the isospin-symmetry
breaking correction in 2007 [275]. The error is dominated by theoretical uncertainties;
experiment only contributes 0.00008 to the error budget. Currently the largest contribu-
tion to the error budget comes from the nucleus-independent radiative correction Ay —
recently reduced by a factor of two by Marciano and Sirlin [281]. Further improvements
here will need some theoretical breakthroughs. Second in order of significance are the
nuclear-structure-dependent corrections d¢c and dys. So long as 07 — 0T nuclear decays
provide the best access to V, 4, these corrections will need to be tested and honed. Here
is where nuclear experiments will continue to play a critical role.
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Fig. 16. In the top panel are plotted the uncorrected experimental ft values as a function of the charge
on the daughter nucleus. In the bottom panel, the corresponding Ft values as defined in Eq. (112) are
given. The horizontal grey band in the bottom panel gives one standard deviation around the average
Ft.

4.2. Vg from neutron decay

Although the result is not yet competitive, to extract V,q from neutron [-decay is
appealing because it does not require the application of corrections for isospin-symmetry
breaking effects, ¢, or nuclear-structure effects, dny g, as defined in the previous section
on nuclear -decay. However, it should be noted that the transition-dependent radiative
correction, §%, and the nucleus-independent radiative correction, A}, must still be ap-
plied to neutron -decay observables; and the latter is, in fact, the largest contributor to
the uncertainty in the nuclear value for V4.

In contrast to nuclear S-decays between 07 states, which sample only the weak vector
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interaction, neutron S-decay proceeds via a mixture of the weak vector and axial-vector
interactions. Consequently, three parameters are required for a description of neutron
B-decay: G, the fundamental weak interaction constant; A = ga/gy, the ratio of the
weak axial-vector and vector coupling constants; and the parameter of interest, V4.
Thus, measurements of at least two observables (treating G as an input parameter) are
required for a determination of V4.

A value for A\ can be extracted from measurements of correlation coefficients in po-
larized neutron (-decay. Assuming time-reversal invariance, the differential decay rate
distribution of the electron and neutrino momenta and the electron energy for polarized
B-decay is of the form [282]

% o peEo(Eo — E)? |1+ a%eEp: + (o) - <A§—Z + BZ—Z)] . (118)
where E. (E,) and p. (p,) denote, respectively, the electron (neutrino) energy and
momentum; Fy (= 782 keV + m,) denotes the S-decay endpoint energy, with m, the
electron mass; and (o) denotes the neutron polarization. Neglecting recoil-order correc-
tions, the correlation coefficients a (the e-U.-asymmetry), A (the S-asymmetry), and B
(the T.-asymmetry) can be expressed in terms of \ as [283,284]

1N N4 AT
T TR T
At present, these correlation parameters have values a = —0.103 +0.004, A = —0.1173 +
0.0013, and B = 0.983 + 0.004 [285]. Although B has been measured to the highest
precision (0.41%), the sensitivity of B to A is a factor ~ 10 less than that of a and A.
Thus, the neutron S-asymmetry A yields the most precise result for .
A second observable is the neutron lifetime, 7,,, which can be written in terms of the
above parameters as [281,286,287]
2,5
L GEme 214 302)£(1 4+ RO), (120)
Tn 273
Here, f = 1.6887 £ 0.00015 is a phase space factor, which includes the Fermi function
contribution [283], and (1 + RC) = 1.03886 £ 0.00039 denotes the total effect of all
electroweak radiative corrections [281,286]. After insertion of the numerical factors in
Eq. (120), a value for V4 can be determined from 7,, and A according to [281,286]

4908.7+1.9 s
Tu(1+3X2)

The current status of a neutron-sector result for V, 4 is summarized in Fig. 17, where |A|
is plotted on the horizontal axis, and V,,4 on the vertical axis. At present, the Particle Data
Group [285] averages the four most recent measurements of the neutron S-asymmetry,
A, performed with beams of polarized cold neutrons [288-291], and one combined mea-
surement of A and B [292], to obtain their recommended value of A = —1.2695 4+ 0.0029
(shown as the vertical error band). It should be noted that the error on the PDG average
for A (0.23%) is greater than that of the most precise individual result (0.15%) [291],
because the error on the average has been increased by a \/x2/(N — 1) scale factor of
2.0 to account for the spread among the individual data points. Constraints between the
values for V4 and A, computed according to Eq. (121) for two different values for the
neutron lifetime, are shown as the angled error bands. The band labeled “PDG 2008”

(119)

|Via|? = (121)
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represents the PDG’s recommended value for 7, = 885.7 4 0.8 s, whereas the other band
relies solely on the most recent result reported for 7, of 878.5 + 0.7 & 0.3 s [293], which
disagrees by 60 with the PDG average. Note that the PDG deliberately chose not to
include this discrepant result in their most recent averaging procedure.
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Fig. 17. Current status of V,,4 from neutron p-decay. The vertical error band indicates the current PDG
error on \. The angled error bands show the constraints between V,,4 and A for two values of the neutron
lifetime: the PDG recommended value, and that from a recent 6o-discrepant result. For comparison,
the horizontal error band denotes the value of V4 from 01 nuclear B-decays discussed in the previous
section.

The intersection of the error band for A with the error band defined by the neutron
lifetime determines the value for V,4. Assuming the PDG value of 7, = 885.7 + 0.8 s
yields [285]

Vua = 0.9746 £ 0.0004,, £ 0.0018, £ 0.0002gc, (122)

where the subscripts denote the error sources. If the discrepant neutron lifetime result of
878.5 £ 0.7 + 0.3 s were employed instead, it would suggest a considerably larger value,
Viud = 0.9786 £ 0.0004,, £ 0.0018 =+ 0.0002rc. For comparison, the value for V,4 from
nuclear §-decay discussed in the previous section is shown as the horizontal band. The
neutron §-decay result derived from the PDG’s recommended values for 7,, and X is seen
to be in excellent agreement with that from nuclear S-decay, albeit with an error bar
that is a factor ~ 7-8 larger.

An ongoing series of precision measurements of neutron S-decay observables aims to
reduce the error on A and resolve the lifetime discrepancy. The goal of two currently
running experiments, the PERKEO III experiment at the Institut Laue-Langevin [287]
(using a beam of cold neutrons) and the UCNA experiment at Los Alamos National
Laboratory [294] (using stored ultracold neutrons), are sub-0.5% measurements of the
neutron [-asymmetry, A. Since these two experiments employ different experimental
approaches, they are sensitive to different systematic uncertainties. The combination of
their results will reduce the A-induced uncertainty for V,,4 by up to a factor of ~ 3.

Finally, although the error on 7, is not the dominant uncertainty, the 6o discrepancy
between the PDG average and the most recent result is clearly unsatisfactory. Indeed,
multiple groups are now attempting to measure 7, to a level of precision ranging between
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1 s and 0.1 s. Hence, the next round of experiments should reach sufficient precision to
definitively discriminate between the PDG average and the recent discrepant result.

4.3. Vua from pionic beta decay

Vua can also be obtained from the pion beta decay, 7™ — 7%t v,[y], which is a pure
vector transition between two spin-zero members of an isospin triplet and is therefore
analogous to the superallowed nuclear decays. Like neutron decay, it has the advantage
that there are no nuclear-structure dependent corrections to be applied. Its major dis-
advantage, however, is that it is a very weak branch, O(107%), in the decay of the pion.
The corresponding decay width can be decomposed as

_ GEMy.

Tes T 64n3

In the above equation Sgy represents the universal short-distance electroweak correction
(Eq. 128), f4(0) is the vector form-factor at zero momentum transfer, IJ™ the phase
space factor, and dgm the long-distance electromagnetic correction. As far as the strong
interaction is concerned, the Ademollo-Gatto theorem [295] requires the deviation of
f+(0) from its value 1 in the isospin limit to be quadratic in the quark mass difference
mg—m,,. This results in a very tiny correction f; (0)—1 = —7x10~% at one-loop [296] and
leads to the expectation that higher order strong interaction corrections will not disturb
this nice picture. The corrections in (123) are therefore dominated by electromagnetic
contributions. The long-distance electromagnetic corrections can be separated into a
shift to the phase space integral 61™™ /IF™ = 1.09 x 1073 as well as a structure dependent
term [296]

Sow |Vaal+ O] 157 (1+ 0 (12)

1 2 1 o ohys 1 m? M2,
5 . 5EM’Str.dcp. = —47TO({§X1 —+ ng Y (u) + 3271-2 (3 + log Mzi =+ 310g ‘u2
=(5.11£0.25) x 1073, (124)

where we have used the recent results of [297] for the electromagnetic coupling constants
X1,6 entering in (124) (with a fractional uncertainty of 100%) to update the numerical
result of Ref. [296]. Higher order corrections are expected to be strongly suppressed by
~ (M, /47 fr)?. Combining the updated theory with the branching fraction BR(nx+ —
m0etve[y]) = (1.04040.004(stat+0.004(syst)) x 108 from the PIBETA experiment [298],
we find:

Viua = 0.9741(2)41(26) exp- (125)

Vi from pion beta decay is in agreement with the more precise result, Eq. (117), from nu-
clear decays. A tenfold improvement on the experimental measurement would be needed
to make this extraction competitive with nuclear decays.

4.4. Determination of |Vys| from Ky and K3

Here we discuss the determination of |V,s| from the combination of leptonic pion and
Kaon decay and from semileptonic Kaon decay. We start with the status of the theoretical
description of leptonic pion and Kaon decays and of semileptonic Kaon decays within
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the SM, and the report on the status of the experimental results, particularly for the
semileptonic decay.

4.4.1. Py (P = m, K ) rates within the SM

Including all known short- and long-distance electroweak corrections, and parame-
terizing the hadronic effects in terms of a few dimensionless coefficients, the inclusive
P — (py(v) decay rate can be written as [299,300)

0 (67 (6% 3 M P
FPZQ(W)—FEDZ)QSEw{l + F(mﬁ/MI%)}{1 - [5 log M_; + P

mi ( (P M3 P P
+ Vi? (cé ) logm—g —i—cé )+ cfl )(mg/Mp))
Mg (py, M
- Mpg ¢y~ log w2 [ (126)
where the decay rate in the absence of radiative corrections is given by
2 2 £2 2\ 2
o _ GrlVel'fp ) m3 B B
FP@Q - A Mpmj - M—I% ) Ve=Vud, Vg =Vus . (127)

The factor Sgw describes the short-distance electromagnetic correction [301,302] which
is universal for all semileptonic processes. To leading order it is given by
Sew =1+ 2—a log & . (128)
T M,

Including also the leading QCD corrections [299], it assumes the numerical value
Sew = 1.0232. The first term in curly brackets is the universal long-distance correc-
tion for a point-like meson. The explicit form of the one-loop function F'(x) can be found
in [299]. The structure dependent coefficients cgp) are independent of the lepton mass
my and start at order e?p? in chiral perturbation theory. The other coefficients appear
only at higher orders in the chiral expansion. The one-loop result (order e?p?) for cgp) is
given by [134],

. 1 Z M? Mj,
M = —4x’E"(M,) — 5t7 (3 +2log 775 + log ng) , (129)
p p
1z M? M?
ch) = —4r*E"(M,) — B + 1 (3 + 2log VIQ{ + log Mg) 5 (130)
p p

where the electromagnetic low-energy coupling Z arising at order e2p® can be expressed
through the pion mass difference by the relation

M2, — M2 =8raZfi+... . (131)

The quantity E"(M,), being a certain linear combination of e2p? low-energy couplings
[134], cancels in the ratio I'c,, ., /T'r,, ., - As suggested by Marciano [303], a determination
of |Vius/Vua| can be obtained by combining the experimental values for the decay rates
with the lattice determination of fx/f, via
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Vaslfic _ ¢ 95872(30) [ 2 | (132)
|Vud|f7r To2(vy)

The small error is an estimate of unknown electromagnetic contributions arising at order
e2pt.

In the standard model, the ratios Ril/gz =T'p_en. (v) /Tp_, up, () are helicity suppressed
as a consequence of the V' — A structure of the charged currents, constituting sensitive
probes of new physics. In a first systematic calculation to order e?p?, the radiative correc-
tions to REI/DBL have been obtained with an unprecedented theoretical accuracy [300,304].
The two-loop effective theory results were complemented with a matching calculation of
an associated counterterm, giving

R} = (1.2352+0.0001) x 10~ RU}) = (2477 +0.001) x 107° . (133)
The central value of R((;/TL agrees with the results of a previous calculations [299, 305],
pushing the theoretical uncertainty below the 0.1 per mille level. The discrepancy with

a previous determination of Rff: can be traced back to inconsistencies in the analysis

of [305].

4.4.2. Ky3 rates within the SM
The photon-inclusive K3 decay rates are conveniently decomposed as [285]

G My

0 2
Pk = o2 CheSow [Vao /™ (0] TheOho) (14086 +087)) + (139)

where C% =1 (1/2) for the neutral (charged) Kaon decays, Sgw is the short distance
electroweak correction, f¥ 77(0) is the K — 7 vector form factor at zero momentum
transfer, and I é(/\JDO) is the phase space integral which depends on the (experimentally
accessible) slopes of the form factors (generically denoted by A4 o). Finally, 654 represent
channel-dependent long distance radiative corrections and 5§U’T(2) is a correction induced

by strong isospin breaking.

Electromagnetic effects in Ky3 decays

The results of the most recent calculation [306] of the four channel-dependent long-
distance electromagnetic corrections 5 are shown in Tab. 10. The values given here
were obtained to leading nontrivial order in chiral effective theory, working with a fully
inclusive prescription of real photon emission. For the electromagnetic low-energy cou-
plings appearing in the structure dependent contributions, the recent determinations
of [297,307] were employed. The errors in Tab. 10 are estimates of (only partially known)

higher order contributions. The associated correlation matrix was found [306]

1.0 0.081 0.685 —0.147
1.0 —0.147 0.764
1.0  0.081

1.0

(135)
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Table 10
Summary of the electromagnetic corrections to the fully-inclusive K3, rate [306].

Sz (%)

K9 | 0.99 £ 0.22

K% | 010 £0.25

KDa | 140 £ 0.22
+

K,3|0.016 £ 0.25

It is also useful to record the uncertainties on the linear combinations of (5}“ that are
relevant for lepton universality and strong isospin-breaking tests [306]:

KO
OpM
+ K
51{3(1\/1 5 F=

0.41+0.17)% 136

=(- (136)
= (0.08+0.17)% (137)
(138)
(139)

K e — 50e = (—0.89 +0.32)% 138
gE 5§M“ = (~1.3840.32)% . 139

The corresponding electromagnetic corrections to the Dalitz plot densities can also be
found in [306]. It is important to notice that the corrections to the Dalitz distributions
can be locally large (up to ~ 10%) with considerable cancellations in the integrated
electromagnetic corrections.

Isospin breaking correction in Ky de%ays
In (134), the same form factor f& ™ (0) (at zero-momentum transfer) is pulled out
for all decay channels, where

KEx0 2
+.0 (0)
Jr

Note that the form factors denote the pure QCD quantities plus the electromagnetic
conitmbutlons to the meson masses and to 7V-1 mixing. The isospin breaking parameter
5SU( 5) is related to the 7%-n mixing angle via [308]

585G =2V3 (=@ 40+ + ) (141)
The dominant lowest-order contribution can be expressed in terms of quark masses [309]:

5(2) \/g mg — My

N My, + My
— ' 142
4 mg—m ’ i 2 (142)
The explicit form of the strong and electromagnetic higher-order corrections in Eq. (141)

can be found in [308]. The required determination of the quark mass ratio

=5 143
e —— (143)
uses the fact that the double ratio
2 ~2 ~
5y mi—m ms/m+ 1
= =R 144
Q= i (144)



can be expressed in terms of pseudoscalar masses and a purely electromagnetic contri-
bution [309]:
Ag=ME (1+ O(m2))

2 _
“ M2[Agog+ + Apiro — (Agog+ + Artro)mm]

. Apg=DMp— M. (145)

Due to Dashen’s theorem [310], the electromagnetic term vanishes to lowest order e?p°.
At next-to-leading order it is given by [133,311]

2 2

1 M M 4
_ 202 K K r
(Agor+ + Aptpo)Em ="M [47T2 (3111 2 —4+2In 2 ) +§(K5+K6) (1)

— 8(Kyo+ K11)" (1) + 16 ZLE(p) | + O(e*M2) . (146)

Based on their estimates for the electromagnetic low-energy couplings entering in (146),
Ananthanarayan and Moussallam [307] found a rather large deviation from Dashen’s
limit, (Agog+ + Agt+r0)EM = —1.5 A+,0 , which corresponds to [312] Q = 20.7 £ 1.2
(the error accounts for the uncertainty due to higher order corrections). Such a small value
for Q (compared to Qpashen = 24.2) is also supported [313-315] by previous studies *!.
Together with [312] ms/m = 24.7 £ 1.1 (see also [317]) one finds R = 33.5 + 4.3 and

finally, together with a determination of aé4) and 5](;13,[, the result [312]

05,3 = 0.058(8) . (147)

4.4.3. K3 form factors
The hadronic K — 7 matrix element of the vector current is described by two form
factors (FFs), f4(t) and f_(t)

(7™ (=) [37"ulK° (pK)) = (P + )" 1 (8) + (PK — Px)" f_(2) (148)

where t = (px — pr)? = (pe + pv)?. The vector form factor fi(t) represents the P-
wave projection of the crossed channel matrix element (0|5y*u|K ) whereas the S-wave
projection is described by the scalar form factor defined as

fo(t):fqt(t)*'ﬁff(t) : (149)

By construction, fy(0) = f1(0).

In order to compute the phase space integrals appearing in Eq. (134) we need exper-
imental or theoretical inputs about the ¢-dependence of fy ¢(t). In principle, chiral per-
turbation theory (ChPT) and lattice QCD are useful tools to set theoretical constraints.
However, in practice the t-dependence of the FFs at present is better determined by
measurements and by combining measurements and dispersion relations. To that aim,
we introduce the normalized FFs

oo f+(@)
=50

fo(?)

) fo(t) =

11 Note however that a recent analysis of n — 37 at the two-loop level [316] favors the value @ = 23.2.
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Whereas f (t) is accessible in the K3 and K3 decays, fo(t) is more difficult to measure
since it is only accessible in K3 decays, being kinematically suppressed in K.3 decays,
and is strongly correlated with f. (t).

Moreover, measuring the scalar form factor is of special interest due to the existence
of the Callan-Treiman (CT) theorem [318] which predicts the value of the scalar form
factor at the so-called CT point, namely t = Ag, = m3. — m2,

_ 7 Jk 1
C = fo(Akx) AR + Acr, (151)
where Acp ~ O(my,q/47F;) is a small correction. ChPT at NLO in the isospin limit [309]
gives
Acr = (—3.5+£8) x 1073 | (152)

where the error is a conservative estimate of the higher order corrections [319]. A complete
two-loop calculation of Acr [320], as well as a computation at O(p?, e?p?, (mgq — my,))
[312], consistent with this estimate, have been recently presented.

The measurement of C' provide a powerful consistency check of the lattice QCD cal-
culations of fx/fr and f(0), as will be discussed in Sec. 4.6.2.

Another motivation to measure the shape of the scalar form factor very accurately is
that knowing the slope and the curvature of the scalar form factor allows one to perform
a matching with the 2-loop ChPT calculations [321] and then determine fundamental
constants of QCD such as f1(0) or the low-energy constants (LECs) Ci2, C34 which
appear in many ChPT calculations.

Parametrization of the form factors and dispersive approach

To determine the FF shapes, different experimental analyses of Ky3 data have been
performed in the last few years, by KTeV, NA48, and KLOE for the neutral mode and
by ISTRA+ for the charged mode.

Among the different parameterizations available, one can distinguish two classes [322].
The class called class II in this reference contains parameterizations based on mathemat-
ical rigorous expansions where the slope, the curvature and all the higher order terms of
the expansion are free parameters of the fit. In this class, one finds the Taylor expansion

t1 t\? 1 t\?
s Tayl _ / " "
fiog ) =1+ A*’OW +5Mo (m—%) + 5\ <m—%> +..., (153)
where )‘;,0 and /\/4/-,0 are the slope and the curvature of the FFs respectively, but also the
so-called z-parametrization [323].

As for parameterizations belonging to class I, they correspond to parameterizations for
which by using physical inputs, specific relations between the slope, the curvature and
all the higher order terms of the Taylor expansion, Eq. (153) are imposed. This allows
to reduce the correlations between the fit parameters since only one parameter is fitted
for each FF. In this class, one finds the pole parametrization

- M2
Pole %)
10 () = 7=, (154)
Mg —t
in which dominance of a single resonance is assumed and its mass My,g is the fit pa-
rameter. Whereas for the vector FF a pole parametrization with the dominance of the
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K*(892) (My ~ 892 MeV) is in good agreement with the data, for the scalar FF there
is no such obvious dominance. One has thus to rely, at least for fo(t), on a dispersive
parametrization. In such a construction, in addition to guarantee the good properties of
analyticity and unitarity of the FFs, physical inputs such as the low energy K7 data
and, in the case of the vector form factor, the dominance of K*(892) resonance are used.
The vector and scalar form factors are analytic functions in the complex t-plane, except
for a cut along the positive real axis, starting at the first physical threshold where they
develop discontinuities. They are real for ¢ < ty, = (mx + m,r)2. Cauchy’s theorem
implies that fy () can be written as a dispersive integral along the physical cut

o0 ~
!/
fro) = % /ds’ (I;lf%o_(ig) + subtractions, (155)
ten

where all the possible on-shell states contribute to its imaginary part Tmf, o(s’). A
number of subtractions is needed to make the integral convergent.

A particularly appealing dispersive parametrization for the scalar form factor is the one
proposed in Ref. [324]. Two subtractions are performed, one at ¢ = 0 where by definition
fo(0) =1, see Eq. (150), and the other one at the CT point. This leads to

20 (1) = exp A; (InC - G()] | (156)
with
o AKTK’(AKTF - t) o é (bO(S)
G = u /(mﬁmﬂ)z s G—Arn)s—t—i0) (157)

assuming that the scalar FF has no zero. In this case the only free parameter to be
determined from a fit to the data is C. ¢o(s) represents the phase of the form factor.
According to Watson’s theorem [325], this phase can be identified in the elastic region
with the S-wave, I = 1/2 K scattering phase. The fact that two subtractions have
been made in writing Eq. (156) allows to minimize the contributions from the unknown
high-energy phase in the dispersive integral. The resulting function G(t), Eq. (157), does
not exceed 20% of the expected value of InC' limiting the theoretical uncertainties which
represent at most 10% of the value of G(t) [324].

A dispersive representation for the vector FF has been built in a similar way [326]. Since
there is no analog of the CT theorem, in this case, the two subtractions are performed
at t = 0. Assuming that the vector FF has no zero, one gets

2 oo
() = exp[L (4 1) () = 2 [ ds_0:(5) ()
m2 T Jimg4my)? 52 (s —t —ie)

with A, = m2df(t)/dt|,—o is the fit parameter and ¢, (s) the phase of the vector form
factor. Here, in the elastic region, ¢, (t) equals the I = 1/2, P-wave K scattering phase
according to Watson’s theorem [325]. Similarly to what happens for G, the two subtrac-
tions minimize the contribution coming from the unknown high energy phase resulting
in a relatively small uncertainty on H(t). Since the dispersive integral H () represents
at most 20% of the expected value of A, the latter can then be determined with a high
precision knowing H(t) much less precisely. For more details on the dispersive repre-
sentations and a detailed discussion of the different sources of theoretical uncertainties
entering the dispersive parametrization via the function G and H, see [324] and [326].
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Using a class II parametrization for the FFs in a fit to Ky3 decay distribution, only two
parameters (X, and N/ for a Taylor expansion, Eq. (153)) can be determined for f. (t)
and only one parameter (A} for a Taylor expansion) for fo(t). Moreover these parameters
are strongly correlated. It has also been shown in Ref. [324] that in order to describe
the FF shapes accurately in the physical region, one has to go at least up to the second
order in the Taylor expansion. Neglecting the curvature in the parametrization of fo(t)
generates a bias in the extraction of A, which is then overestimated [324]. Hence, using
a class II parametrization for fo(t) doesn’t allow it to be extrapolated from the physical
region (m7 <t < to = (mx —my)?) up to the CT point with a reliable precision. To
measure the FF shapes from K3 decays with the precision demanded in the extraction
of |Vys/|, it is preferable to use a parametrization in class I.

4.4.4. Lattice determinations of f+(0) and fx/fr

In this section we summarize the status of results of lattice QCD simulations for the
semileptonic Kaon decay form factor f1(0) and for the ratio of Kaon and pion leptonic
decay constants, fx/fr. For a brief introduction to lattice QCD we refer the reader to
section 2.3.

Theoretical estimates of f1(0)

The vector form factor at zero-momentum transfer, f4(0), is the key hadronic quantity
required for the extraction of the CKM matrix element |V,,s| from semileptonic K3 decays
(cf. equation (134)). Within SU(3) ChPT one can perform a systematic expansion of
f+(0) of the type

f+0) =1+ fot fa+ ..., (159)

where f,, = O[Mp /(47 fz)"] and the first term is equal to unity due to the vector current
conservation in the SU(3) limit. Because of the Ademollo-Gatto (AG) theorem [295], the
first non-trivial term fo does not receive contributions from the local operators of the
effective theory and can be computed unambiguously in terms of the Kaon and pion
masses (Mg and M) and the pion decay constant f,. It takes the value fo = —0.023 at
the physical point [327]. The task is thus reduced to the problem of finding a prediction
for the quantity Af, defined as

Af=fatfoto=Fr(0) = (14 f2) , (160)

which depends on the low-energy constants (LECs) of the effective theory and cannot be
deduced from other processes.

The original estimate made by Leutwyler and Roos [327] was based on the quark
model yielding Af = —0.016(8). More recently other analytical approaches have tried to
determine the next-to-next-to-leading order (NNLO) term f4 by writing it as

fao=La(p) + f1(n) , (161)

where p is the renormalization scale, Ly (p) is the loop contribution computed in Ref. [328]
and fi°°(u) is the O(p®) local contribution. For the latter various models have been
adopted, namely the quark model in Ref. [328], the dispersion relations in Ref. [329] and
the 1/N. expansion in Ref. [330], obtaining Af = 0.001(10), — 0.003(11), 0.007(12),
respectively. These values are compatible with zero within the uncertainties and are
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significantly larger than the LR estimate, leading to smaller SU(3)-breaking effects on

£4(0).

Notice that in principle the next-to-next-to-leading order (NNLO) term f4 may be
obtained from the slope and the curvature of the scalar form factor fo(g?), but present
data from K — wuv, decays are not precise enough for an accurate determination.

A precise evaluation of f4(0), or equivalently Af, requires the use of non-perturbative
methods based on the fundamental theory of the strong interaction, such us lattice
QCD simulations. Such determinations started recently with the quenched simulations of
Ref. [331], where it was shown that fi(0) can be determined at the physical point with
a ~ 1% accuracy. The findings of Ref. [331] triggered various unquenched calculations of
f+(0), namely those of Refs. [332-334] with Ny = 2 with pion masses above ~ 500 MeV
and two very recent ones from Ref. [335] with Ny = 2 + 1 and Ref. [336] with N, = 2.
In the former the simulated pion masses start from 330 MeV, while in the latter, they
start from 260 MeV. In both cases the error associated with the chiral extrapolation was
significantly reduced with respect to previous works thanks to the lighter pion masses.

In Ref. [336] the chiral extrapolation was performed using both SU(3) and SU(2)
ChPT for fo (see Ref. [337]). In the latter case the Kaon field is integrated out and
the effects of the strange quark are absorbed into the LECs of the new effective theory.
The results obtained using SU(2) and SU(3) ChPT are found to be consistent within
the uncertainties, giving support to the applicability of chiral perturbation theory at
this order. We note that since no predictions in chiral perturbation theory for Af as a
function of the quark masses exists in a closed form, the lattice data for Af is currently
extrapolated to the physical point using phenomenologically motivated anséitze.

The results for f(0) and Af are summarized in Tab. 11, together with some relevant
details concerning the various lattice set-ups, and those of f1(0) are shown in Fig. 18. It
can be seen that:

i) all lattice results suggest a negative, sizable value for Af in agreement with the LR
estimate, but at variance with the results of the analytical approaches of Refs. [328—
330], and

ii) the two recent lattice calculations of Refs. [335,336] have reached an encouraging
precision of ~ 0.5% on the determination of fy(0).

Since simulations of lattice QCD are carried out in a finite volume, the momentum
transfer ¢ for the conventionally used periodic fermion boundary conditions takes values
corresponding to the Fourier modes of the Kaon or pion. Using a phenomenological
ansatz for the ¢2-dependence of the form factor one interpolates to ¢> = 0 where f, (0) is
extracted, thereby introducing a major systematic uncertainty. A new method based on
the use of partially twisted boundary conditions (cf. section 2.3) has been developed [338]
which allows this uncertainty to be entirely removed by simulating directly at the desired
kinematic point ¢ = 0.

Although the impact of discretization effects is expected to be small 12 , we emphasize
that all available lattice calculations have been carried out at a single lattice spacing.

A systematic study of the scaling behavior of f;(0), using partially twisted boundary
conditions and the extension of the simulations to lighter pion masses in order to improve

12 The analysis from ETM [336], with fixed simulated quark mass, confirms that discretization effects
are small with respect to present uncertainty.
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Table 11
Summary of model and lattice results for f4(0) and Af. The lattice errors include both statistical and
systematic uncertainties.

HRof.‘ Model/ Lattice H f+(0) ‘ Af HJ\/[7r (MOV)‘J\/I‘"L‘(I (fm)‘ Ny H
[327] LR 0.961 ( 8)|—0.016 ( 8)

[328] CRPT+LR [0.978 (10)|+0.001 (10)
[329]| ChPT + disp. |[0.974 (11)|—0.003 (11)
[330]| ChPT +1/N. |[0.984 (12)|+0.007 (12)

H[331}‘ SPQ.qR Ho.%o ( 9)‘—0.017 ( 9)H > 500 ‘ >5 ‘: 0.07‘ 0 H
332 JLQCD  ||0.967 (6)]—0.010 (6)|| =550 |>5|~0.09 2
333] RBC 0.968 (12){—0.009 (12)|| =490 |>6|~0.12| 2
334]] QCDSF  [|0.965 (7)|-0.012 (?)|| =590 |>6]|~0.08 2
(336] ETMC 0.956 ( 8)|—0.021 ( 8)|| =260 |>4 |~o0.07] 2

) )

H[335}‘RBC+UKQCDHO.964 (5 ‘—0.013 (5 H > 330 ‘54 ‘: 0.11‘2+1H

T T T T T T T | FrT 1T T TT T T T T T T T T T1TT
= p—o—o LR 1984
(o4
4 oA ChPT+LR
% o ChPT+disp.
ChPT+]JNC
N=0 —e—i SPQCDR 2004
—e— JLQCD 2005
@ ——— RBC 2006
£ N =2
= f . QCDSF 2007
—e—f ETMC 2009
N=2+1 —o— RBC+UKQCD 2008
1 I T Y | | 1 I O Y | 1 T O Y Y I
0.9 0.95 1 1.05

1,0
Fig. 18. Results of model (squares) and lattice (dots) calculations of f4(0).

the chiral extrapolation will be the priorities for the upcoming lattice studies of Ky
decays.

Theoretical estimates of fx/fr

As was pointed out in Ref. [303], an alternative to K3 decays for obtaining a precise
determination of |V,| is provided by the Kaon(pion) leptonic decays K (7) — uiz,(7y). In
this case, the key hadronic quantity is the ratio of the Kaon and pion decay constants,

fK/fﬂ'

In contrast to f4(0), the pseudoscalar decay constants are not protected by the AG
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theorem [295] against corrections linear in the SU(3) breaking. Moreover the first non-
trivial term (of order O(p*)) in the chiral expansion of fx/f, depends on the LECs and
therefore it cannot be predicted unambiguously within ChPT. This is the reason why
the most precise determinations of fx/f, come from lattice QCD simulations.

During the recent years various collaborations have provided new results for fx/fr
using unquenched gauge configurations with both 2 and 241 dynamical flavors. They
are summarized in Tab. 12, together with some relevant details concerning the various
lattice set-ups. They are shown graphically in Fig. 19.

Table 12
Summary of lattice results for fx /fx. The errors include both statistical and systematic uncertainties.

H Ref. ‘ Collaboration H fr/fx HJ\/[7r (MOV)‘J\/I‘"L‘G (fm)‘ Ny H

[106,339] MILC 1197 P 0 2240 [ Z4| =0 241
[340] HPQCD ||1.189 (7)|| 2250 |=4| -0 [2+1
[341] BMW 1.185 (15)|| =190 | 25| =0 [24+1
[342] | Aubinetal. |[1.191(23)| =240 |>3.8/ -0 [2+1
[343] ETMC 1.210 (18)|| >260 |>4| =0 | 2
[344] NPLQCD (1218 T30 || 2290 |>4|~013]2+1
[110] |RBC/UKQCD||1.205 (65)| =330 |>4 |~0.11]2+1
[107] | PACS —CS |[1.189 (20)|| =160 |>2 |~0.09]2+1

TTTTTTTTTITTTTITTTTITITITTITITTITTT IIIIIIIII|IIIIIIIII
f—e— MILC
| HPQCD
Nf:2+1
—e—o BMW
a->0
f——e—— AUBIN et al.
N
e ETMC
a—>0
—— NPLQCD
Nf:2+1
} { RBC/UKQCD
a>0
f——— PACS-CS
IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII
11 115 12 125 13 1.35

ff
Fig. 19. Results of lattice calculations of fx /fr.

A few comments are in order:

i) finite size effects are kept under good control by the constraint ML 2 4, which is
adopted by all collaborations except Ref. [107];

ii) the continuum extrapolation, which allows discretization effects to be safely removed,
has been performed by several collaborations;
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iii) the convergence of the SU(3) chiral expansion for fx/fr appears to be questionable,
mainly because large NLO corrections are already required to account for the large
difference between the experimental value of f. and the value of the decay constant in
the massless SU(3) limit;

iv) the convergence of the SU(2) chiral expansion is much better and thanks to the light
pion masses reached in the recent lattice calculations, the uncertainty related to the
chiral extrapolation to the physical point is kept to the percent level [110];

v) little is known about the details of the chiral and continuum extrapolation in Ref. [340]
(HPQCD) which is currently the most precise lattice prediction for fr / fr; in particular
about the priors on many parameters that have been introduced;

vi) It is worth repeating (cf. section 2.3) that there exist conceptional concerns about
the staggered fermion formulation - the results by MILC, HPQCD, Aubin et al. and
NPLQCD use staggered fermions and need to be confirmed by conceptually clean
fermion formulations.

Summary of lattice results

We note that the Flavia Net Lattice Averaging Group (FLAG) has just started to pe-
riodically compile and publish (web and journal) lattice QCD results for SM observables
and parameters. In addition, averages will be computed where feasible and a classifica-
tion of the quality of lattice results by means of a simple color coding will be provided
in order to facilitate understanding of lattice results for non-experts. For a first status
report see [345].

Hence, no average over lattice results will be provided here. We merely identify those
results that have a good control over systematic uncertainties and have been published
in journals and refer the reader to the forthcoming FLAG document for averages.

For f1(0) the 2+1 flavor result by the RBC+UKQCD [335] collaboration is the most
advanced calculation,

£1(0) =0.964(5) Np=2+1. (162)
while for 2 flavors it is the result by ETM [336],

f+(0) =0.956(8) Nj=2. (163)

For fx/f= with Ny = 2 4 1 dynamical quarks, the currently most precise predictions
are by MILC [106]

fre/fr=1197(Y ) Np=2+1, (164)
and HPQCD [340]
fx/fr=1189(7) N;y=2+1, (165)

both using the same set of staggered sea quark configurations.

For illustrative purposes the latter result will be used later in section 4.6. We also
emphasize the currently most precise result with Ny = 2 dynamical quarks by the ETM
collaboration [343]:

fi/fx =1.210(18) (N; =2). (166)
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At the current level of precision the comparison of the Ny = 2 and Ny = 2 + 1 result
indicates a rather small contribution of the strange sea quarks to the ratio of decay
constants.

4.4.5. Data Analysis

We perform fits to world data on the BRs and lifetimes for the K and K+, with the
constraint that BRs add to unity. This is the correct way of using the new measurements.
A detailed description of the fit is given in Ref [346]. The present version of our fits uses
only published measurements.

Ky leading branching ratios and Tr,

Numerous measurements of the principal K; BRs, or of various ratios of these BRs,
have been published recently. For the purposes of evaluating |Vys|f+(0), these data can
be used in a PDG-like fit to the K BRs and lifetime, so all such measurements are
interesting.

KTeV has measured five ratios of the six main K BRs [347]. The six channels in-
volved account for more than 99.9% of the K width and KTeV combines the five mea-
sured ratios to extract the six BRs. We use the five measured ratios in our analysis:
B(K,3)/B(Kc3) = 0.6640(26), B(rTn—n%)/B(K.3) = 0.3078(18), B(rt7~)/B(K.3) =
0.004856(28), B(37°)/B(K.3) = 0.4782(55), and B(27°)/B(37") = 0.004446(25). The
errors on these measurements are correlated; this is taken into account in our fit.

NA48 has measured the ratio of the BR for K3 decays to the sum of BRs for all decays
to two tracks, giving B(K.3)/(1 — B(37°)) = 0.4978(35) [348)].

Using ¢ — K Kg decays in which the Kg decays to 777, providing normalization,
KLOE has directly measured the BRs for the four main K, decay channels [349]. The
errors on the KLOE BR values are dominated by the uncertainty on the Ky, lifetime 71;
since the dependence of the geometrical efficiency on 77, is known, KLOE can solve for 7y,
by imposing )" B(K; — z) = 1 (using previous averages for the minor BRs), thereby
greatly reducing the uncertainties on the BR values obtained. Our fit makes use of the
KLOE BR values before application of this constraint: B(K.3) = 0.4049(21), B(K,3) =
0.2726(16), B(37%) = 0.2018(24), and B(r "7~ 7") = 0.1276(15). The dependence of these
values on 77, and the correlations between the errors are taken into account. KLOE has
also measured 77, directly, by fitting the proper decay time distribution for K; — 37°
events, for which the reconstruction efficiency is high and uniform over a fiducial volume
of ~0.4Ar. They obtain 77, = 50.92(30) ns [350].

There are also two recent measurements of B(nt7~)/B(K,3), in addition to the KTeV
measurement of B(ntn~)/B(K.3) discussed above. The KLOE collaboration obtains
B(rtn™)/B(K,3) = 7.275(68) x 1072 [351], while NA48 obtains B(nt7~)/B(K.3) =
4.826(27) x 1072 [352]. All measurements are fully inclusive of inner bremsstrahlung.
The KLOE measurement is fully inclusive of the direct-emission (DE) component, DE
contributes negligibly to the KTeV measurement, and a residual DE contribution of
0.19% has been subtracted from the NA48 value to obtain the number quoted above.

We fit the 13 recent measurements listed above, together with eight additional ratios of
the BRs for subdominant decays. The complete list of 21 inputs is given in Table 14. As
free parameters, our fit has the seven largest K, BRs (those to K3, K3, 30, 70,
atn~, 70 and ) and the K, lifetime, as well as two additional parameters necessary for
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Table 13
Results of fit to K, BRs and lifetime.

Parameter Value S
B(Ke3) 0.4056(9) [1.3
B(Kyu3) 0.2704(10)  [1.5
B(379) 0.1952(9)  [1.2
B(ntn—70) 0.1254(6)  [1.1
B(rtn™) 1.967(7) x 1073|1.1

B(rtn~) 4.15(9) x 1075 |1.6
B(rt 7~ ) DE| 2.84(8) x 1075 [1.3

B(270) 8.65(4) x 1074 1.4
B(vy) 5.47(4) x 1074 |1.1
L 51.16(21) ns |1.1

the treatment of the direct emission (DE) component in the radiation-inclusive 77~ de-
cay width. Our definition of B(7"7 ™) is now fully inclusive of inner bremsstrahlung (IB),
but exclusive of the DE component. The fit also includes B(rt7~ ) and B(7m" 7~ pE),
the branching ratios for decays to states with a photon with EZ > 20 MeV, and with a
photon from DE with EZ > 20 MeV, respectively. Other parameterizations are possible,
but this one most closely represents the input data set and conforms to recent PDG
usage. With 21 input measurements, 10 free parameters, and the constraint that the sum
of the BRs (except for B(mTm~«), which is entirely included in the sum of B(nt7™)
and B(rt 7 ypg)) equal unity, we have 12 degrees of freedom. The fit gives x? = 19.8
(P=171%).

The evolution of the average values of the BRs for K3 decays and for the important
normalization channels is shown in Fig. 21.

BR(K,,) [%] BR(K,;) [%] BR(310) [%] BR(ITT) [%]
I T T T I T 1 L I LN I I T LI I L ) I T T I T T T I
PDG '04 —— —_— —— —
PDG '08 - - - -
This fit = . - -
L v by v b by M R P B |
38 40 27 275 20 21 2 21

Fig. 20. Evolution of average values for main K, BRs.

K leading branching ratios and Tg

KLOE has measured the ratio BR(Kgs — mev)/BR(Kg — 77w~ ) with 1.3% preci-
sion [353], making possible an independent determination of |V,s| f1(0) to better than
0.7%. In [354], KLOE combines the above measurement with their measurement rmB(Kg —
7tn7)/rmB(Ks — n7%) = 2.2459(54). Using the constraint that the Kg BRs sum to
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Table 14
Input data used for the fit to Kz, BRs and lifetime (all the references refer to PDGO08 [285]).

Parameter Value Source

TK] 50.92(30) ns Ambrosino 05C
TK] 51.54(44) ns Vosburgh 72
BKe3 0.4049(21) Ambrosino 06
BK,3 0.2726(16) Ambrosino 06
BK.3/BKe3 0.6640(26) Alexopoulos 04
B370 0.2018(24) Ambrosino 06
B37°/BK.3 0.4782(55) Alexopoulos 04
Brta—x0 0.1276(15) Ambrosino 06
Brtr—n0/BK.3 0.3078(18) Alexopoulos 04
Brtn~ /BKes 0.004856(29) Alexopoulos 04
Brtn~ /BK.s 0.004826(27) Lai 07

Brtr~ /BK,s3 0.007275(68) Ambrosino 06F
BKe3/B2 tracks 0.4978(35) Lai 04B
Br070/B370 0.004446(25) Alexopoulos 04
BrOn0/Brtn— 0.4391(13) PDG etafit [285]
Bryy/B3r0 0.00279(3) Adinolfi 03
Byvy/B37° 0.00281(2) Lai 03

Brtr= /Brtn=(v) 0.0208(3) Alavi-Harati 01B

Brtr—ypg/Brtr™y 0.689(21) Abouzaid 06A

Brtr~ypg/Brtn~v 0.683(11) Alavi-Harati 01B
)

Brtra~ypp/Brtm~y 0.685(41) Ramberg 93

unity and assuming the universality of lepton couplings, they determine the BRs for

ntr~, m97°%, K.s, and K3 decays.

Our fit is an extension of the analysis in [354]. We perform a fit to the data on the Kg

BRs to 7t7~, 7970, and K,z that uses, in addition to the above two measurements:

— the measurement from NA48, T K¢ — mev/T' K, — mev [355], where the denominator
is obtained from the results of our Ky, fit;

— the measurement of 75 (not assuming C'PT) from NA48 [285], 89.589(70) ps;

— the measurement of 75 (not assuming CPT) from KTeV [285], 89.58(13) ps;

— the result BRK,3/BRK.3 = 0.66100(214), obtained from the assumption of universal
lepton couplings, the values of the quadratic (vector) and linear (scalar) form-factor
parameters from our fit to form-factor data, and the long-distance electromagnetic
corrections discussed in Sec. 4.4.2.

The free parameters are the four BRs listed above plus 7. With six inputs and one

constraint (on the sum of the BRs), the fit has one degree of freedom and gives x? =

0.0038 (P = 95%). The results of the fit are listed in Table 15.
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Table 15
Results of fit to Kg BRs and lifetime

Parameter Value S
Brtn~ 0.6920(5) 1.0
BrOr0 0.3069(5) 1.0

BKe3 7.05(8) x 10=* 1.0
BK,3 4.66(6) x 1074 1.0
TS 4.66(6) x 1074 1.0

K% leading branching ratios and 7+

There are several new results providing information on K éig rates. The NA48/2 collab-
oration has published measurements of the three ratios B(K.3/7n?), B(K,3/77°), and
B(K,3/Ke3) [356]. These measurements are not independent; in our fit, we use the values
B(Kc3/mm%) = 0.2470(10) and B(K,3/77°) = 0.1637(7) and take their correlation into
account.

KLOE has measured the absolute BRs for the K.3 and K3 decays [357]. In ¢ —
K*tK~ events, KT decays into puv or m7° are used to tag a K~ beam, and vice versa.
KLOE performs four separate measurements for each Ky3 BR, corresponding to the
different combinations of Kaon charge and tagging decay. The final averages are B(K.3) =
4.965(53)(38)% and B(K,3) = 3.233(29)(26)%. KLOE has also measured the absolute
branching ratio for the 77° [358] and uv decay [359).

Our fit takes into account the correlation between these values, as well as their de-
pendence on the K lifetime. The world average value for 74 is nominally quite precise.
However, the PDG error is scaled by 2.1; the confidence level for the average is 0.17%.
It is important to confirm the value of 7. The new measurement from KLOE, 7 =
12.347(30) ns, agrees with the PDG average.

Our fit for the six largest K* branching ratios and lifetime uses the measurements in
Table 17, including the six measurements noted above. We have recently carried out a
comprehensive survey of the K+ data set, which led to the elimination of 11 measure-
ments currently in the 2008 PDG fit. Finally, we note that after the elimination of the
1970 measurement of I'(r*7F7F) from Ford et al.( Ford70 in Ref. [285]), the input data
set provides no strong constraint on the 7+7*7F branching ratio, which increases the
uncertainties on the resulting BR values. The fit uses 17 input measurements, seven free
parameters, and one constraint, giving 11 degrees of freedom. We obtain the results in
Table 16. The fit gives x? = 25.8 (P = 0.69%). The comparatively low P-value reflects
some tension between the KLOE and NA48/2 measurements of the K3 branching ratios.

Both the significant evolution of the average values of the K;3 BRs and the effect of
the correlations with B(rn%) are evident in Fig. 21.

Measurement of BR(K¢2)/BR(K ,2)

Experimental knowledge of K.o/K,2 was poor until recently. The current world aver-
age Rx = B(K.2)/B(K,2) = (2.45+£0.11) x 1075 dates back to three experiments of the
1970s [285] and has a precision of about 5%. Two new measurements were reported re-
cently by NA62 and KLOE (see Tab. 18). A preliminary result based on about 14,000 Ko
events, was presented at the 2009 winter conferences by the KLOE collaboration [360].
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Table 16

Results of fit to KT BRs and lifetime.

Parameter Value S
B(K,2) | 63.47(18)% [1.3
B(rn%) 20.61(8)% |1.1
B(rmm) 5.573(16)% (1.2
B(Ke3) 5.078(31)% (1.3
B(K,3) | 3.359(32)% |1.9
B(rr070) | 1.757(24)% |1.0
T+ 12.384(15) ns|1.2
BR(K,,) BR(K,)
PDG'04 —e— PDG'04 —eo—
PDG '06 — PDG '06 —_—
PDG '08 —— PDG '08 —
This fit - This fit ——
L L L L | L L L L
0.045 0.05 0.03 0.035
BR(K,;,) BR(K,)
PDG '04 — PDG '04
PDG '06 —— PDG '06 ——
PDG '08 —— PDG '08 ——
This fit —. This fit -
P S I SR S S P R S R
0.62 0.63 0.64 0.195 0.205 0.215

Fig. 21. Evolution of average values for main K* BRs.

Preliminary result from NA62, based on about 50,000 Ko events from the 2008 data set
was presented in at KAON 2009 [361]. Both the KLOE and the NA62 measurements are
inclusive with respect to final state radiation contribution due to bremsstrahlung. The
small contribution of Kj2, events from direct photon emission from the decay vertex was
subtracted by each of the experiments. Combining these new results with the current
PDG value yields a current world average of

Ry = (2.498 +0.014) x 1075, (167)

in good agreement with the SM expectation [300] and, with a relative error of 0.56%, an
order of magnitude more precise than the previous world average.

Measurements of Kgs slopes

For K.3 decays, recent measurements of the quadratic slope parameters of the vector
form factor (X, ,\), see Eq. 153 are available from KTeV [362], KLOE [363], ISTRA+
[364], and NA48 [365].

We show the results of a fit to the K and K~ data in the first column of Tab. 19,
and to only the K data in the second column. With correlations correctly taken into
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Table 17

Input data used for the fit to K= BRs and lifetime (all the references refer to PDG08 [285]). The two
1995 values of the K¥ lifetime from Koptev et al. are averaged with S = 1.6 before being included in
the fit as a single value.

Parameter Value Source
T+ 12.368(41) ns Koptev 95 (*)
T+ 12.380(16) ns Ott 71
T+ 12.443(38) ns Fitch 65B
T+ 12.347(30) ns Ambrosino 08
BK,2 0.6366(17) Ambrosino 06A
Brr® 0.2066(11) [358]
Brr®/BK 0 0.3329(48) Usher 92
Brr®/BK 2 0.3355(57) Weissenberg 76
Brr®/BK 2 0.3277(65) Auerbach 67
BKe3 0.04965(53) Ambrosino 08A
BK3/Brrn0+ K3 +727° 0.1962(36) Sher 03
BKc3/Brr® 0.2470(10) Batley 07A
BK,3 0.03233(39) Ambrosino 08A
BK,3/Brr0 0.1636(7) Batley 07A
BK,3/BKe3 0.671(11) Horie 01
BrnOm0 0.01763(26) Aloisio 04A
BrrO7l /Brrm 0.303(9) Bisi 65
Table 18
Results and prediction for R = B(Ke2)/B(Kuz2).
Rk [1075]

PDG 2.45£0.11

NA48/2 2.500 £+ 0.016

KLOE 2.493 £0.031

SM prediction 2.477 4+ 0.001

account, both fits give good values of x?/ndf. The significance of the quadratic term is
4.20 from the fit to all data, and 3.5¢ from the fit to K data only.

Including or excluding the K~ slopes has little impact on the values of A, and \’[; in
particular, the values of the phase-space integrals change by just 0.07%. The errors on
the phase-space integrals are significantly smaller when the K~ data are included in the
average.

KLOE, KTeV, and NA48 also quote the values shown in Tab. 20 for My from pole
(see Eq. 154) fits to K, .3 data. The average value of My from all three experiments is
My = 87545 MeV with x?/ndf = 1.8/2. The three values are quite compatible with each
other and reasonably close to the known value of the K**(892) mass (891.66+0.26 MeV).
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Table 19
Average of quadratic fit results for K3 slopes.

Ky, and K~ data K data only
4 measurements 3 measurements
x?/ndf = 5.3/6 (51%) x?/ndf = 4.7/4 (32%)

N x 103 25.2£0.9 249+1.1
M| % 103 1.6 0.4 1.6 0.5
p()\;, A+) —0.94 —0.95
I(KY,) 0.15463(21) 0.15454(29)
I(K;g) 0.15900(22) 0.15890(30)

Table 20
Pole fit results for KSS slopes.

Experiment My (MeV) |(My) = 875+ 5 MeV

KLOE 870+ 6+7 | x2/ndf =1.8/2

KTeV 881.03 £ 7.11|X, x 10% = 25.42(31)
_ 2

NA48 859 4 18 N =2 x N\

I(K9;) = 0.15470(19)

The values for X', and X from expansion of the pole parametrization are qualitatively
in agreement with the average of the quadratic fit results. More importantly, for the
evaluation of the phase-space integrals, using the average of quadratic or pole fit results
gives values of I(KY;) that differ by just 0.03%.

For K3 decays, recent measurements of the slope parameters (A, A}, \o) are available
from KTeV [362], KLOE [366], ISTRA+ [367], and NA48 [368]. We will not use the
ISTRA+ result for the average because systematic errors have not been provided. We
use the K.3 — K3 averages provided by the experiments for KTeV and KLOE. NA48
does not provide such an average, so we calculate it for inclusion in the fit.

We have studied the statistical sensitivity of the form-factor slope measurements using
Monte Carlo techniques. The conclusions of this study are a) that neglecting a quadratic
term in the parametrization of the scalar form factor when fitting results leads to a shift
of the value of the linear term by about 3.5 times the value of the quadratic term; and b)
that because of correlations, it is impossible to measure the quadratic slope parameter
from quadratic fits to the data at any plausible level of statistics. The use of the linear
representation of the scalar form factor is thus inherently unsatisfactory. The effect is
relevant when testing the CT theorem Eq. (151) discussed in section 4.6.2.

The results of the combination are listed in Tab. 21.

The value of x2?/ndf for all measurements is terrible; we quote the results with scaled
errors. This leads to errors on the phase-space integrals that are ~60% larger after
inclusion of the new K ,3 NA48 data.

The evaluations of the phase-space integrals for all four modes are listed in each case.
Correlations are fully accounted for, both in the fits and in the evaluation of the integrals.
The correlation matrices for the integrals are of the form
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Fig. 22. 1-0 contours for X _, )\’7[, Ao determinations from KLOE(blue ellipse), KTeV(red ellipse),
NA48(green ellipse), and world average with(filled yellow ellipse) and without(filled cyan ellipse) the
NA48 K3 result.

Table 21
Averages of quadratic fit results for K.3 and K3 slopes.

x2/ndf 29/8 (3 x 107%)

N x 103 24.5+0.9 (S =1.1)
N x10% 18404 (S=13)
Ao x 103 11.74+1.4 (S =1.9)

PN, N1) —0.94
p(N, X0) 40.44
PN, X0) —0.52
I(KY,) 0.15449(20)
I(KE) 0.15885(21)
I(Kp3) 0.10171(32)
I(K%) 0.10467(33)
p([e3,IM3) +0.53
+14+1 p p
+1+1 p »p
p p +1+1
p p +1+1

where the order of the rows and columns is Kgg, Kejg, Kgg, K,jf?,, and p = p(Ies, [,3) as
listed in the table.
Adding the K3 data to the fit does not cause drastic changes to the values of the
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phase-space integrals for the K3 modes: the values for I(KY%) and I(K eig) in Tab. 21 are
qualitatively in agreement with those in Tab. 19. As in the case of the fits to the K3
data only, the significance of the quadratic term in the vector form factor is strong (3.60
from the fit to all data).

4.5. |Viyus| determination from tau decays

A very precise determination of V5 can be obtained from the semi-inclusive hadronic
decay width of the 7 lepton into final states with strangeness [369,370]. The ratio of the
Cabibbo-suppressed and Cabibbo-allowed 7 decay widths directly measures (Vys/Vua)?,
up to very small SU(3)-breaking corrections which can be theoretically estimated with
the needed accuracy.

The inclusive character of the total 7 hadronic width renders possible an accurate
calculation of the ratio [371-375]

[t~ — v; hadrons (v)]

R, = F[T_ — yTe_ﬂe(V)]

= RT,V + RT,A + RT,Sv (168)

using analyticity constraints and the operator product expansion. One can separately
compute the contributions associated with specific quark currents: R,y and R s corre-
spond to the Cabibbo-allowed decays through the vector and axial-vector currents, while
R, s contains the remaining Cabibbo-suppressed contributions.

To a first approximation the Cabibbo mixing can be directly obtained from experimen-
tal measurements, without any theoretical input. Neglecting the small SU(3)-breaking
corrections from the mg — my quark-mass difference, one gets:

R 1/2
Vas |3V = [Vl < TS > = 0.210 % 0.003. (169)
Rrvia

We have used |Viq| = 0.97425 4+ 0.00022 (cf. Eq. (117)), R, = 3.640 + 0.010 and the
value R, ¢ = 0.1617 £ 0.0040 [370], which results from the recent BaBar [376] and Belle
[377] measurements of Cabibbo-suppressed tau decays [378]. The new branching ratios
measured by BaBar and Belle are all smaller than the previous world averages, which
translates into a smaller value of R, ¢ and |V,s|. For comparison, the previous value
R,.s = 0.1686 + 0.0047 [379] resulted in |V,[SY®) = 0.215 4 0.003.

This rather remarkable determination is only slightly shifted by the small SU(3)-
breaking contributions induced by the strange quark mass. These corrections can be
theoretically estimated through a QCD analysis of the difference [369,370,380-387]

RT,V+A . RT,S
|Vud|2 |Vu5|2 '

Since the strong interactions are flavor blind, this quantity vanishes in the SU(3) limit.
The only non-zero contributions are proportional to the mass-squared difference m? — mg
or to vacuum expectation values of SU(3)-breaking operators such as 604 = (0|m43s —
mqdd|0) = (—1.4 % 0.4) - 1072 GeV* [369,380]. The dimensions of these operators are
compensated by corresponding powers of m?2, which implies a strong suppression of R

[380):

0R; =

(170)

m?2(m?2 60
SR, ~ 24 Spw {% (1—¢€3) Alas) —2n° m; Q(as)} , (171)
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where €5 = mg/ms = 0.053 + 0.002 [317]. The perturbative QCD corrections A(a;) and
Q(as) are known to O(a?) and O(a?), respectively [380,387].

The theoretical analysis of R, involves the two-point vector and axial-vector corre-
lators, which have transverse (J = 1) and longitudinal (J = 0) components. The J = 0
contribution to A(as) shows a rather pathological behavior, with clear signs of being a
non-convergent perturbative series. Fortunately, the corresponding longitudinal contribu-
tion to R, can be estimated phenomenologically with a much better accuracy, 6 R, |* =
0.1544 £+0.0037 [369,388], because it is dominated by far by the well-known 7 — v, 7 and
T — v, K contributions [389]. To estimate the remaining L + T component, one needs
an input value for the strange quark mass. Taking the range m4(m,) = (100 & 10) MeV
[ms(2GeV) = (96 +10) MeV], which includes the most recent determinations of m, from
QCD sum rules and lattice QCD [388], one gets finally R, 1, = 6R.|L + SR |FHT =
0.216 £ 0.016, which implies [370]

1/2
RT,S
Vis| = | 7/——————— = 0.2165 £ 0.0026 ¢xpp = 0.0005 ¢, . (172)

Rrvia
Voal? - 5Rr,th

A larger central value, |V,s| = 0.2212 £ 0.0031, is obtained with the old world average
for Rﬁ,-yg.

Notice that the theoretical input only appears through the quantity dR; ¢, which is
one order of magnitude smaller than the ratio RT,V+A/|Vud|2 = 3.665 & 0.012. Theo-
retical uncertainties are thus very suppressed, although a number of issues deserve fur-
ther investigation. These include (i) an assessment of the uncertainty due to different
prescriptions (Contour Improved Perturbation Theory versus Fixed Order Perturbation
Theory) for the slow-converging D = 2, L+T correlator series, which could shift |V,,s| by
up to ~ 0.0020 [390]; (ii) addressing the stability of the extracted |V,s| by using alter-
nate sum rules that involve different weights, w(s), and/or spectral integral endpoints
so < m;2 [384,391]. With theory errors at the level of Eq. (172), experimental errors
would dominate, in contrast to the situation encountered in Ky3 decays.

The phenomenological determination of 5RT|L contains a hidden dependence on V,
through the input value of the Kaon decay constant fr. Although the numerical impact of
this dependence is negligible, it can be taken explicitly into account. Using the measured
K~ /n~ — p,u~ decay widths and the 7 lifetime [285], one can determine the Kaon and
pion contributions to R, with better accuracy than the direct 7 decay measurements, with
the results R,|” 7*~% = (0.0401440.00021) and R.|” 7™ = (0.6123+0.0025). The

corresponding longitudinal contributions are just given by R.|T ~*~F" = R, |7 v P —
R |7 v = =2(mp/m2)R. T 7P (P =K, ).

Subtracting the longitudinal contributions from Eq. (172), one gets an improved for-
mula to determine V,,5 with the best possible accuracy [370]:

- K-
2 RT,S _ RT,S - RT|I v
Visl' = g = e , (173)
T, _ T V+A—Iir N
Veal? 5R~r,th |‘/ud‘é _ 5R7-,th

where 6R; n = 0R,|* 4+ 0R, |7 = (0.033 4 0.003) + (0.062 + 0.015) = 0.095 + 0.015.
The subtracted longitudinal correction 51:ZT|L is now much smaller because it does not
contain any pion or Kaon contribution. Using the same input values for R, g and R, v 4,
one recovers the V, s determination obtained before in Eq. (172), with an error of £ 0.0030.
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Table 22
Summary of |Vus| X f+(0) determination from all channels.

mode [Vaus| X f+(0)|% err| BR| 7 | A |Int

Ky — mev| 0.2165(5) | 0.26(0.09|0.20{0.11|0.06
Ky — mpv| 0.2175(6) | 0.32]0.15|0.18(0.15(0.16
Kg — mev | 0.2157(13) | 0.61 |0.60(0.03{0.11|0.06
K+ = mev 0.2162(11) | 0.52]0.31{0.09(0.41(0.06
K* - muv| 0.2168(14) | 0.65 0.47]0.080.42(0.16
average 0.2166(5)

Sizable changes on the experimental determination of R, g are to be expected from
the full analysis of the huge BaBar and Belle data samples. In particular, the high-
multiplicity decay modes are not well known at present and their effect has been just
roughly estimated or simply ignored. Thus, the result (172) could easily fluctuate in the
near future. However, it is important to realize that the final error of the Vs determi-
nation from 7 decay is likely to remain dominated by the experimental uncertainties. If
R. s is measured with a 1% precision, the resulting Vs uncertainty will get reduced to
around 0.6%, i.e. £0.0013, making 7 decay the competitive source of information about
Vis-

An accurate measurement of the invariant-mass distribution of the final hadrons in
Cabibbo-suppressed 7 decays could make possible a simultaneous determination of V,
and the strange quark mass, through a correlated analysis of several SU(3)-breaking
observables constructed with weighted moments of the hadronic distribution [369, 380,
381]. However, the extraction of mg suffers from theoretical uncertainties related to the
convergence of the associated perturbative QCD series. A better understanding of these
QCD corrections is needed in order to improve the present determination of mg [369,
380, 384-387].

4.6. Physics Results

In this section we summarize the results for |V,s| discussed in the previous sections and
based on these results we give constraints on physics beyond the SM. Instead of averages
for lattice results for fx/fr we use fx/fr = 1.189(7) by HPQCD [340] for illustrative
purposes (cf. the discussion at the end of section 4.4.4).

4.6.1. Determination of |Vys| X f+(0) and |Vys|/|Vud| X fi/ fx
This section describes the results that are independent of the theoretical parameters

f+(0) and fr/ fx-

Determination of |Vys| x f+(0)

The value of |V,s| x f1(0) has been determined from (134) using the world average
values reported in section 4.4.5 for lifetimes, branching ratios and phase space integrals,
and the radiative and SU(2) breaking corrections discussed in section 4.4.2.

The results are given in Tab. 22, and are shown in Fig. 23 for K, — mev, K — wuv,
Kg — mev, K* — mev, K* — muv, and for the combination. The average,
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Fig. 23. Display of |Vius| X f+(0) for all channels.

[Vius| X f1(0) = 0.2166(5), (174)

has an uncertainty of about of 0.2%. The results from the five modes are in good agree-
ment, the fit probability is 55%. In particular, comparing the values of |V,s| x f4(0)
obtained from Kp; and K €i3 we obtain a value of the SU(2) breaking correction

5§U(2)ezp. - 54(8)%
in agreement with the CHPT calculation reported in Eq. 147: 5§U(2) = 5.8(8)%.

4.6.2. A test of lattice calculation: the Callan-Treiman relation

As described in Sec. 4.4.3 the Callan-Treiman relation fixes the value of scalar form
factor at t = m% —m?2 (the so-called Callan-Treiman point) to the ratio (fx/fx)/f+(0).
The dispersive parametrization for the scalar form factor proposed in [324] and dis-
cussed in Sec. 4.4.3 allows the available measurements of the scalar form factor to be
transformed into a precise information on (fx/fx)/f+(0), completely independent of the
lattice estimates.

Very recently KLOE [392], KTeV [393], ISTRA+ [394], and NA48 [368] have produced
results on the scalar FF behavior using the dispersive parametrization. The results are
given in Tab. 23 for all four experiments.

Fig. 24 shows the values for f(0) determined from the scalar form factor slope mea-
surements obtained using the Callan-Treiman relation and fx/fr = 1.189(7). The value
of f1(0) = 0.964(5) from UKQCD/RBC is also shown. As already noted in Sec. 4.4.5,
the NA48 result is difficult to accommodate. Here one can see that this results is also
inconsistent with the theoretical estimates of f1(0). In particular, it violates the Fubini-
Furlan bound f4+(0) < 1 [395]. For this reason, the NA48 result will be excluded when
using the Callan-Treiman constraint.
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Table 23
Experimental results for log(C).

Experiment| log(C) mode
KTeV 0.195(14) Kius
KLOE 0.217(16)|K 3 and K13
NA48 0.144(14) Kpus
ISTRA+  [0.211(13) K.,

UKQCD/RBC Flavi A

net Kaon WG

KLOE — e

-
——
e

09 08 1 105
f.(0)

Fig. 24. Values for f4(0) determined from the scalar form factor slope using the Callan-Treiman relation
and fx/fr = 1.189(7). The UKQCD/RBC result f4(0) = 0.964(5) is also shown.

We combine the average of the above results, log C' = 0.207 4 0.008, with the lattice
determinations of fx/fr = 1.189(7) and f4(0) = 0.964(5) using the constraint given by
the Callan-Treiman relation. The results of the combination are given in Tab. 24. The fit

Table 24
Results from the form factor fit.

logC | f4+(0) | fx/fx
0.204(6)[0.964(4)|1.187(6)

correlation matrix
1. -0.44 0.52
1. 0.28
1.

probability is 99%, confirming the agreement between experimental measurements and
lattice determinations. The accuracies of fx/fr and f1(0) are also slightly improved,
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Fig. 25. Results of fits to |Viql, |Vus|, and |Vus|/|Vudl-

and this effect can be better seen in the ratio f(0)/(fx/fx), which is directly related
to the Callan-Treiman constraint.

Determination of |Vus|/|Vud| X fx/fr

An independent determination of |V,| is obtained from Kys decays. The most impor-
tant mode is K™ — u™v, which has been measured by KLOE with a relative uncertainty
of about 0.3%. Hadronic uncertainties are minimized by making use of the ratio (KT —
ut )/ T(rt = ptv).

Using the world average values of BR(K* — pu*v) and of 7% given in Sec. 4.4.5 and
the value of I'(r™ — ptv) = 38.408(7) pus~! from [285] we obtain:

[Vius| /| Vaal X fxc/fr = 0.2758 & 0.0007 . (175)

4.6.3. Test of Cabibbo Universality or CKM unitarity

To determine |V,5| and |V,4| we use the value |V, x f+(0) = 0.2166(5) reported in
Tab. 22, the result | Vs |/|Vua| S5/ fr = 0.2758(7) discussed in Sec. 4.6.2, f1(0) = 0.964(5),
and fr/fr = 1.189(7). From the above we find:

Vis| = 0.2246 + 0.0012  [Ky3 only] . (176)
Vs |/ [Vied| = 0.2319 £ 0.0015  [Kes only] . (177)

A slightly less precise determination of |Vis|/|Vial = 0.2304(T3:092%) is obtained using
the value of fx/fr from MILC [106]. These determinations can be used in a fit together
with the the evaluation of |V,4| from 07 — 07 nuclear beta decays quoted in section 4.1:
|Vaud|=0.97425 4 0.00022. The global fit gives

[Vud| = 0.97425(22)  |Vas| = 0.2252(9)  [K2 + 07 —01], (178)
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with x?/ndf = 0.52/1 (47%). This result does not make use of CKM unitarity. If the
unitarity constraint is included, the fit gives

[Vis| = sin 8 = A = 0.2253(6) [with unitarity] (179)

Both results are illustrated in Fig. 25.
Using the (rather negligible) |V,;|? ~ 1.5 x 10~° in conjunction with the above results
leads to

[Vaud|® + Vs | + [Vip|? = 0.9999(4)v,,,(4)v,,. = 0.9999(6) (180)
The outstanding agreement with unitarity provides an impressive confirmation of Stan-
dard Model radiative corrections [281,286](at about the 60 sigma level!). It can be used
to constrain “new physics” effects which, if present, would manifest themselves as a
deviation from 1, i.e. what would appear to be a breakdown of unitarity.
We will give several examples of the utility Eq. (180) provides for constraining “new
physics”. Each case is considered in isolation, i.e. it is assumed that there are no accidental
cancellations.

Ezotic Muon Decays

If the muon can undergo decay modes beyond the Standard Model p* — etv,.7, and
its radiative extensions, those exotic decays will contribute to the muon lifetime. That
would mean that the “real” Fermi constant, G, is actually smaller than the value in
Eq. (107) and we should be finding

[Vial? + |Vus|? + |Vas|? = 1 — BR(exotic muon decays) (181)
A unitarity sum below 1 could be interpreted as possible evidence for such decays.
Alternatively, Eq. (180) provides at (one-sided) 95% CL

BR(exotic muon decays) < 0.001 (182)

That is, of course, not competitive with, for example, the direct bound BR(u+ —
ety) < 1 x 107! [285]. However, for decays such as ™ — e v, (wrong neutrinos),
Eq. (182) is about a factor of 10 better than the direct constraint [285] BR(ut —
e Der,) < 0.012. That constraint is useful for possible future neutrino factories where
the neutrino beams originate from muon decays. If such a decay were to exist, it would
provide a background to neutrino oscillations.

Another way to illustrate the above constraint is to extract the Fermi constant from
nuclear, K and B decays assuming the validity of CKM unitarity without employing
muon decay. Values in Eq. 178 give

GEEM — 1.166279(261) x 1075GeV 2 CKM Unitarity (183)

which is in fact the second best determination of G g, after Eq. (107). The comparison

between G, in Eq. (107) and GEX¥M in Eq. (183) is providing the constraints on “new
physics”, if it affects them differently. So far, they are equal to within errors.

Heavy Quarks and Leptons
As a second example, consider the case of new heavy quarks or leptons that couple to
the ordinary 3 generations of fermions via mixing [270]. For a generic heavy charge —1/3
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D quark from a 4th generation, mirror fermions, SU(2), singlets etc., one finds at the
one-sided 95% CL

[Vup| < 0.03 (184)

Considering that |Vy| ~ 0.004, such an indirect constraint appears not to be very
stringent but it can be useful in some models to rule out large loop induced effects from
mixing. In the case of heavy neutrinos with my > m,,, one finds similarly

Vin| <0.03 |, l=e,p (185)

Four Fermion Operators
If there are induced dim. 6 four fermion operators of the form

2

i i v, (186)

where A is a high effective mass scale due to compositeness, leptoquarks, excited W*
bosons (e.g. extra dimensions) or even heavy loop effects, they will interfere with the

Standard Model beta decay amplitudes and give G&¥M = G, (1 + G\{?XZ ) One finds at
90%CL

A > 30 TeV (187)

Similar constraints apply to new 4 fermion lepton operators that contribute to u™ —
e vev,. Of course, in some cases there can be a cancellation between semileptonic and
purely leptonic effects and no bound results.

The high scale bounds in Eq. (187) apply most directly to compositeness because no
coupling suppression was assumed. For leptoquarks, W* bosons etc. the bounds should
be about an order of magnitude smaller due to weak couplings. A my~ bound of about
4~6 TeV results if we assume it affects leptonic and semileptonic decays very differently;
but that assumption may not be valid and may need to be relaxed (see below). In the
case of new loop effects, those bounds should be further reduced by another order of
magnitude. For example, we next consider the effect of heavy Z’ bosons in loops that
enter muon and charged current semileptonic decays differently where a bound of about
400 GeV is obtained.

Additional Z' Gauge Bosons

As next example, we consider the existence of additional Z’ bosons that influence
unitarity at the loop level by affecting muon and semi-leptonic beta decays differently
[396]. In general, we found that the unitarity sum was predicted to be greater than one
in most scenarios. In fact, one expects

[Vaal?® + Vs | + |Vip|> = 1+ 0.01Mn X /(X — 1)
X =m%, /miy (188)

where X is a model dependent quantity of O(1). It can have either sign, but generally
A > 0.
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In the case of SO(10) grand unification Z' = Z, with A ~ 0.5, one finds at one-sided
90% CL

mz, > 400GeV (189)

That bound is somewhat smaller than tree level bounds on Z’ bosons from atomic
parity violation and polarized Moller scattering [397,398] as well as the direct collider
search bounds [285] mz_ > 720 GeV.

Charged Higgs Bosons

A particularly interesting test is the comparison of the |V, ;| value extracted from the
helicity-suppressed Ko decays with respect to the value extracted from the helicity-
allowed K3 modes. To reduce theoretical uncertainties from fx and electromagnetic
corrections in Ko, we exploit the ratio Br(Ky2)/Br(mm) and we study the quantity

Vus(KZQ) % Vud(0+ — O+)
Vus (KEZS) Vud(TrZQ)

Within the SM, Rj23 = 1, while deviation from 1 can be induced by non-vanishing scalar-
or right-handed currents. Notice that in Rje3 the hadronic uncertainties enter through

Rjo3 =

(190)

(fx/ fx)] [+(0).
Effects of scalar currents due to a charged Higgs give [346]
m2 my tan? 3
Rpps = |1 — B2 (1 — 191
123 ‘ M3, ( ms> 1+eotanf|’ (191)
whereas for right-handed currents we have
Rl23 =1-2 (65 - Ens) . (192)

In the case of scalar densities (MSSM), the unitarity relation between |V, 4| extracted
from 0% — 0T nuclear beta decays and |V,s| extracted from Kj3 remains valid as soon
as form factors are experimentally determined. This constrain together with the experi-
mental information of log C™*5M can be used in the global fit to improve the accuracy
of the determination of R;j23, which in this scenario turns to be

Rios|SP =1.004 + 0.007 . (193)

scalar
Here (fx/fx)/f+(0) has been fixed from lattice. This ratio is the key quantity to be
improved in order to reduce present uncertainty on R;s3.

The measurement of Rje3 above can be used to set bounds on the charged Higgs mass
and tan 8. Fig. 26 shows the excluded region at 95% CL in the My—tan 8 plane (setting
€0 = 0.01). The measurement of BR(B — 7v) [145,146,399] can be also used to set a
similar bound in the My—tan 8 plane. While B — 7v can exclude quite an extensive
region of this plane, there is an uncovered region in the exclusion corresponding to a
destructive interference between the charged-Higgs and the SM amplitude. This region
is fully covered by the K — pv result.

In the case of right-handed currents [324], Rj23 can be obtained from a global fit to
the values of egs. (174) and (175). Here log C**P is free of new physics effects and can be
also used to constrain (fx/fr)/f+(0) together with lattice results (namely the values in
Tab. 24). The result is

Ri2s| pitensr. = 1.004 £ 0.006 . (194)
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Fig. 26. Excluded region in the charged Higgs mass-tan 8 plane. The region excluded by B — 7v is also
indicated.

In addition, interesting unitarity constraints can be placed on supersymmetry [400-402]
where SUSY loops affect muon and semileptonic decays differently. Again, one expects
constraints up to mass scales of O(500 GeV), depending on the degree of cancellation
between squark and slepton effects.

In the future, the unitarity constraint could improve from +0.0006 to +0.0004 if f (0)
and fx /fr errors as well as uncertainties from radiative corrections can be reduced. Such
an improvement will be difficult, but particularly well motivated if an apparent violation
starts to emerge or the LHC makes a relevant “new physics” discovery.

As an added comment, we again mention that eqs. (107) and (183) represent our two
best measurements of the Fermi constant. Their agreement reinforces the validity of using
G, to normalize electroweak charged and neutral current amplitudes in other precision
searches for “new physics”. In fact, either G, or GEZXM could be used without much
loss of sensitivity, since all other experiments are currently less precise than both. For
example, one of the next best determinations of the Fermi constant (which is insensitive
to my) comes from [286]

yes

Go —

= 195
V2my, sin® Ow (mz )3r5(1 — Ar(mz)grg) (199)

where
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o' =137.035999084(51) (196a)
mw = 80.398(25) GeV (196b)
sin® O (mz )57 = 0.23125(16) (196c¢)
Ar(mz)zrs = 0.0696(2) (196d)

One finds
G¥ =1.165629(1100) x 10> GeV 2 (197)

with an uncertainty about 180 times larger than G, and about 4 times larger than
GgKM. The value in Eq. (197) is, nevertheless, very useful for constraining “new physics”
that affects it differently than G, or GEEM. Perhaps the two best examples are the S
parameter [403,404]

1
S~ -—Np (198)

67
which depends on the number of new heavy SU(2); doublets (e.g. Np = 4 in the case
of a 4th generation) and a generic W* Kaluza-Klein excitation associated with extra

dimensions [286] that has the same quark and lepton couplings. Either would contribute
to G,, or G¥EM but not to Gg). Therefore, one has the relation
miy

G, ~ GEM ~ G2 (1 4 0.00855 + O(l)m%w ) (199)

The good agreement among all three Fermi constants then suggests mpy- > 2
~ 3 TeV and S ~ 0.1 £ 0.1 (consistent with zero). Those constraints are similar to
what is obtained from global fits to all electroweak data. Taken at face value they sug-
gest any “new physics” near the TeV scale that we hope to unveil at the LHC is hiding
itself quite well from us in precision low energy data. It will be interesting to see what
the LHC finds.

4.6.4. Tests of Lepton Flavor Universality in Ko decays
The ratio Rx = I'(K,2)/T'(Ke2) can be precisely calculated within the Standard
Model. Neglecting radiative corrections, it is given by

2 2 2\2

me (mK - me) -5
e = Me) _ 9 569 x 1077, (200)
m7, (mi —m3)?

RY =

and reflects the strong helicity suppression of the electron channel. Radiative corrections
have been computed with effective theories [300], yielding the final SM prediction

R?{M :Rgg)(l + 5R§e(xd.corr.)
=2.569 x 1077 x (0.9622 = 0.0004) = (2.477 % 0.001) x 1075 . (201)

Because of the helicity suppression within then SM, the K2 amplitude is a prominent
candidate for possible sizable contributions from physics beyond the SM. Moreover, when
normalizing to the K, rate, we obtain an extremely precise prediction of the K., width
within the SM. In order to be visible in the K.o/K 2 ratio, the new physics must violate
lepton flavor universality.
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Fig. 27. Exclusion limits at 95% CL on tan 8 and the charged Higgs mass M+ from Ry for different
values of Ajs.

Recently it has been pointed out that in a supersymmetric framework sizable violations
of lepton universality can be expected in Kj2 decays [405]. At the tree level, lepton flavor
violating terms are forbidden in the MSSM. However, these appear at the one-loop level,
where an effective Htlv, Yukawa interaction is generated. Following the notation of
Ref. [405], the non-SM contribution to Rx can be written as

RV ~ REM (1 + mie (7 |A13)* tan® 8 (202)
K ~ K M]%[:t mg 13 .

The lepton flavor violating coupling A3, being generated at the loop level, could reach
values of O(1073). For moderately large tan 3 values, this contribution may therefore
enhance Rk by up to a few percent. Since the additional term in Eq. 202 goes with the
fourth power of the meson mass, no similar effect is expected in w2 decays.

The world average result for Rx presented in Sec. 4.4.5 gives strong constraints for
tan 3 and Mpy=, as shown in Fig. 27. For values of A3 =~ 1073 and tan3 > 50 the
charged Higgs masses is pushed above 1000 GeV/c? at 95% CL.

5. Semileptonic B and D decays: |Ve,| and |Vyp|

In this section, we address semileptonic decays that proceed at the tree level of the
weak interaction. We focus on decays of the lightest pseudoscalar mesons, D for charm
and B for bottom, because higher excitations decay hadronically (or, in case of the B*,
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radiatively) to the D and B and thus have negligibly small semileptonic partial widths.
The amplitude for quark flavor change in these processes is proportional to a CKM matrix
element, providing a direct way to “measure” the CKM matrix.

Purely leptonic decays of pseudoscalars are, of course, also directly sensitive to the
CKM matrix, but they require a spin flip. Their rate is, hence, helicity suppressed by
a factor (mg/mp)?, where mp is the pseudoscalar meson mass and m, the mass of the
daughter lepton. This suppression makes purely leptonic decays more sensitive to non-
Standard processes, and therefore less reliable channels for the determination of CKM
matrix elements than semileptonic decays.

As with the determination of |V, in the semileptonic decay K — wfv, discussed in
Sec. 4, one can determine |Vis| from D — K{lv, |Viq4| from D — wlv, |Vyp| from B —
7lv, and |V, from B — D™)fv, by combining measurements of the differential decay
rate with lattice-QCD calculations for the hadronic part of the transition, commonly
described with form factors. This section starts with the three heavy-to-light decays,
and then proceeds to heavy-to-heavy decays for which heavy-quark symmetry plays a
crucial role. |Vgp| and |Vyp| can also be determined from inclusive semileptonic B decays,
because the large energy scale m; and the inclusion of all final-state hadrons makes
these processes amenable to the operator-product expansion (OPE). Within the OPE
the short-distance QCD can be calculated in perturbation theory, and the long-distance
QCD can be measured from kinematic distributions. While this is rather straightforward
for |[Vep| it is more subtle |Vip| so these two topics are treated in separate subsections.

5.1. Exclusive semileptonic B and D decays to light mesons m and K

5.1.1. Theoretical Background

Heavy-to-light semileptonic decays, in which a B or D meson decays into a light
pseudoscalar or vector meson (such as a pion or p meson), are sensitive probes of quark
flavor-changing interactions. The decay rate for H — P/{v semileptonic decay is given by

= Gl 0w B 0 [ (4 2 iy (B} = i) 1))

myg

dg? 2473 q*m?
3L (2 2y [fo<q2>f} (203)

where ¢ = py — pp is the momentum transferred to the lepton pair and |V,q| is the
relevant CKM matrix element. The form factors, fi(¢?) and fo(¢?), parametrize the
hadronic matrix element of the heavy-to-light vector current, V* = igy*Q:

2 2 2 2

m —m m —m
(PIVHIH) = [.(¢) (pz +pfy - M qﬂ> @SR (20

where Ep = (m% + m% — ¢?)/2my is the energy of the light meson in the heavy me-
son’s rest frame. The kinematics of semileptonic decay require that the form factors are
equal at zero momentum-transfer, fy(0) = fo(0). In the limit m, — 0, which is a good
approximation for £ = e, p, the form factor fo(q?) drops out and the expression for the
decay rate simplifies to

d_ GilVel*

3/2
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Using the above expression, a precise experimental measurement of the decay rate, in
combination with a controlled theoretical calculation of the form factor, allows for a clean
determination of the CKM matrix element |V,q].

Analyticity and unitarity

It is well-established that the general properties of analyticity and unitarity largely
constrain the shapes of heavy-to-light semileptonic form factors [406-410]. All form fac-
tors are analytic in ¢? except at physical poles and threshold branch points. Because
analytic functions can always be expressed as convergent power series, this allows the
form factors to be written in a particularly useful manner.

Consider a change of variables that maps ¢ in the semileptonic region onto a unit

circle:
_ V1=a*/ti — /1 —to/ty
VI=@lty+/1T—to/ty
where t4 = (my + mp)2, t_=(myg — mp)2, and t¢g is a constant to be discussed later.
In terms of this new variable, z, the form factors have a simple form:

2(q?,to) (206)

P(¢*)d(a% o) f(a®) = Y an(to)=(a*, to)". (207)
k=0

In order to preserve the analytic structure of f(¢?), the function P(q?) vanishes at poles
below the H-P pair-production threshold that contribute to H-P pair-production as vir-
tual intermediate states. For example, in the case of B — wfv decay, P(q?) incorporates
the location of the B* pole:

PE™ (%) = 2(¢%, mp-). (208)

For the case of D meson semileptonic decays, the mass of the D* meson is above the
D-m production threshold, but the D} is below D-K production threshold. Hence

PPt (g2) =1, (209)

PP g2y = 2(q% mp:). (210)

In the expression for f(q¢?), Eq. (207), ¢(q?,t) is any analytic function. It can be chosen,

however, to make the unitarity constraint on the series coeflicients have a simple form.
The standard choice for ¢4 (¢2,to), which enters the expression for fy(q?), is [410]:

/ 3/2
o1 (¢%,t0) = ﬁ (\/t+ — 2+ /1t —L‘o) (\/t+ — 2+ /1y —t_)
X
-5 _ 2
< (Vi =+ Vi) ﬁ (211)
(0)

where x;’ is a numerical factor that can be calculated using perturbation theory and
the operator product expansion. A similar function can be derived for the irrelevant form
factor fo(q?).

Given the above choices for P(¢?) and ¢(q?, o), unitarity constrains the size of the
series coeflicients:

N
Sast 212)

k=0
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Table 25
Physical region in terms of the variable z for various semileptonic decays given the choice tg = 0.65¢_.

B — wlv —0.34 < 2 < 0.22
D — 7lv —0.17 < 2 < 0.16
D — Klv —0.04 < z < 0.06

where this holds for any value of N. In the case of the B — wfv form factor, the sizes
of the series coefficients (aps) turn out to be much less than 1 [411]. Becher and Hill
recently pointed out that this is due to the fact that the b-quark mass is so large, and
used heavy-quark power-counting to derive a tighter constraint on the as:

ZNjai < (mAQ)S, (213)

where A is a typical hadronic scale [412]. The above expression suggests that the series
coefficients should be larger for D-meson form factors than for B-meson form factors.
This, however, has not been tested.

In order to accelerate the convergence of the power-series in z, the free parameter
to in Eq. (206) can be chosen to make the range of |z| as small as possible. For the
value o = 0.65¢t_ used in Ref. [410], the ranges of |z| for some typical heavy-to-light
semileptonic decays are given in Tab. 25. The tight heavy-quark constraint on the size of
the coefficients in the z-expansion, in conjunction with the small value of |z|, ensures that
only the first few terms in the series are needed to describe heavy-to-light semileptonic
form factors to a high accuracy.

Other model-independent parameterizations of heavy-to-light semileptonic form fac-
tors base on analyticity and unitarity have been proposed and applied to the case of B —
mlv decay by Bourrely, Caprini, and Lellouch [413] and by Flynn and Nieves [414,415].
Bourrely et al. use the series expansion in z described above, but choose simpler outer
function, ¢(q?,tp) = 1. This leads, however, to a more complicated constraint on the
series coefficients, which is no longer diagonal in the series index k. Flynn and Nieves use
multiply-subtracted Omnes dispersion relations to parametrize the form factor shape in
terms of the elastic B-w scattering phase shift and the value of f (¢?) at a few subtraction
points below the B-m production threshold.

Lattice QCD

In lattice-QCD calculations and in heavy-quark effective theory (HQET), it is easier
to work with a different linear combination of the form factors:

(P|V*H) = \2mg [v" f(Ep) + P fL(Ep)], (214)

where v* = p¥;/mpy is the velocity of the heavy meson, p/| = pi — (pp - v)v* is the

component of the light meson momentum perpendicular to v, and Ep = pp -v = (m% +

m% —q?)/(2my) is the energy of the light meson in the heavy meson’s rest frame. In the
heavy meson’s rest frame, the form factors f(Ep) and fi (Ep) are directly proportional

to the hadronic matrix elements of the temporal and spatial vector current:
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(PIV°|H)
2mH
(P|V'|H) 1
V2my ph’

Lattice QCD simulations therefore typically determine f|(Ep) and f1 (Ep), and then cal-
culate the form factors that appear in the heavy-to-light decay width using the following
equations:

fi(Ep) = (215)

fiL(Ep)= (216)

o(a®) = T (s — Bp)(Ep) + (B = ) ()] (217)
() = —= [fi(Bp) + (mu — Ep)f1(Ep)] . (218)

vV 2mH

These expressions automatically satisfy the kinematic constraint f4(0) = fo(0).

The goal is to evaluate the hadronic matrix elements on the right-hand side of Egs.(215)
and (216) via numerical simulations in lattice QCD. Such simulations are carried out with
operators, V , written in terms of the lattice heavy and light quark fields appearing in
the lattice actlons. Hence, an important step in any lattice determination of hadronic
matrix elements is the matching between continuum operators such as V), and their lattice
counterparts. The matching takes the form

(P|Vu|H) = Z2U(PV,F|H). (219)

For heavy-light currents with dynamical (as opposed to static) heavy quarks, the match-
ing factors Z‘?q have been obtained to date either through a combination of perturbative
and nonperturbatwe methods or via straight one-loop perturbation theory. Uncertainties
in Zy; Q7 can be a major source of systematic error in semileptonic form factor calculations
and methods are being developed for complete nonperturbative determinations in order
to reduce such errors in the future.

Another important feature of lattice simulations is that calculations are carried out at
nonzero lattice spacings and with up- and down-quark masses m, that are larger than in
the real world. Results are obtained for several lattice spacings and for a sequence of m,
values and one must then extrapolate to both the continuum and the physical quark mass
limits. These two limits are intimately connected to each other, and it is now standard
to use chiral perturbation theory (xPT) that has been adapted to include discretization
effects [416-421].

The initial pioneering work on B and D meson semileptonic decays on the lattice
were all carried out in the quenched approximation [422-426]. This approximation which
ignores effects of sea quark-antiquark pairs has now been overcome and most recent
lattice calculations include vacuum polarization from Ny = 241 or Ny = 2 dynamical
light quark flavors. Unquenched calculations of B — wfr semileptonic decays have been
carried out by the Fermilab/MILC and the HPQCD collaborations using the MILC
collaboration Ny = 2+ 1 configurations [411,427,428]. Both collaborations use improved
staggered (AsqTad) quarks for light valence and sea quarks. They differ, however, in their
treatment of the heavy b quark. Fermilab/MILC employs the heavy clover action and
HPQCD the nonrelativistic NRQCD action. The dominant errors in both calculations are
due to statistics and the chiral extrapolation. The next most important error stems from
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discretization corrections for the Fermilab/MILC and operator matching for the HPQCD
collaborations, respectively. It is important that simulations based on other light quark
lattice actions be pursued in the future as a cross check.

In the case of D — K and D — 7 semileptonic decays, there exists to-date only one
Ny = 2+ 1 calculation, again based on AsqTad light and clover heavy quarks, by the
Fermilab Lattice and MILC collaborations [427]. Recently two groups have initiated Ny =
2 calculations, and their results are still at a preliminary stage. The ETM collaboration
uses “twisted mass” light and charm quarks at maximal twist [429], whereas Beéirevié,
Haas and Mescia use improved Wilson quarks and configurations created by the QCDSF
collaboration [430,431]. The latter group employs double ratio methods and twisted
boundary conditions to allow more flexibility in picking out many values of ¢2. There has
also been a recent exploratory study with improved Wilson quark action which, although
still quenched, is at a very small lattice spacing of around 0.04 fm [432]. These authors
have considered both B and D decays.

Light-cone QCD Sum Rules

Light-cone sum rules (LCSR) [433-435] combine the idea of the original QCD sum
rules [436,437] with the elements of the theory of hard exclusive processes. LCSR are
used in a wide array of applications (for a review, see [438]), in particular, for calculating
B — m, K,n,p, K* and D — m, K form factors [439-449]. The starting point is a specially
designed correlation function where the product of two currents is sandwiched between
the vacuum and an on-shell state. In the case of B® — 7+ form factor

Fulpg) =i / d*xe" " (n* (p) | T{un,b(x), mybisd(0)} | 0)

_ 2f3f§ﬂ, (q2)m23 + Z 2th f§h’ﬂ'(q2)m2Bh,
mp—(p+a)? 57 mp, —(p+q)?

) Dy + O(Qu) ) (220)

where the factor proportional to p, is transformed into a hadronic sum by inserting a
complete set of hadronic states between the currents. This sum also represents, schemat-
ically, a dispersion integral over the hadronic spectral density. The lowest-lying B-state
contribution contains the desired B — m form factor multiplied by the B decay constant.

At spacelike (p + q)> < m? and at small and intermediate ¢> < m?, the time ordered
product in Eq. (220) may also be expanded near the light-cone 22 ~ 0, thereby resumming
local operators into distribution amplitudes:

oot )= X [ w35 (%) 00+ 0% s i) ) 221)

This generic expression is a convolution (at the factorization scale p) of calculable short-

distance coefficient functions Tét) and universal pion light-cone distribution amplitudes

(DA’s) gogrt )(ui, w) of twist ¢ > 2. The integration goes over the pion momentum fractions
u; = U, Usg,... distributed among quarks and gluons. Importantly, the contributions
to Eq. (221) corresponding to higher twist and/or higher multiplicity pion DA’s are
suppressed by inverse powers of the b-quark virtuality ((p + ¢)* — mZ), allowing one to
retain a few low twist contributions in this expansion. Currently, analyses of Eq. (220)
can include all LO contributions of twist 2,3,4 quark-antiquark and quark-antiquark-
gluon DA’s of the pion and the O(as) NLO corrections to the twist 2 and 3 two-particle
coefficient functions.
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Furthermore, one uses quark-hadron duality to approximate the sum over excited By,
states in Eq. (220) by the result from the perturbative QCD calculation introducing
the effective threshold parameter sf. The final step involves a Borel transformation
(p + q)? — M?, where the scale of the Borel parameter M? reflects the characteristic
virtuality at which the correlation function is calculated. The resulting LCSR for the
B — 7 form factor has the following form

emB/M*

56
fgﬂ(qQ) = / dsTm F(OPE) (s,q2)e_s/M2, (222)

——=
2myfp m m?

where ImF(OFPE) is directly calculated from the double expansion (221). The intrinsic
uncertainty introduced by the quark-hadron duality approximation is minimized by cal-
culating the B meson mass using the derivative of the same sum rule. The main input
parameters, apart from s and b quark mass (taken in the MS scheme), include the non-
perturbative normalization constants and nonasymptotic coefficients for each given twist
component, e.g., for the twist-2 pion DA ¢, these are fr and the Gegenbauer moments
a;. For twist-3,4 the recent analysis can be found in Ref. [450]. For the B-meson decay
constant entering LCSR (222) one usually employs the conventional QCD sum rule for
the two-point correlator of bivsq currents with O(a,) accuracy (the most complete sum
rule in MS-scheme is presented in [451]). More details on the numerical results, sources
of uncertainties and their estimates can be found in the recent update [448]. Further
improvement of the LCSR calculation of heavy-to-light form factors is possible, if one
gets a better understanding of the quark-hadron duality approximation in B channel,
and a more accurate estimation of nonperturbative parameters of pion DA’s.

Despite their intrinsically approximate nature, LCSRs represent a useful analytic
method providing a unique possibility to calculate both hard and soft contributions to
the transition form factors. Different versions of LCSR employing B-meson distribution
amplitudes [452] as well as the framework of SCET [453,454] have also been introduced.

5.1.2. Measurements of D Branching Fractions and q*> Dependence

In the last few years, a new level of precision has been achieved in measurements of
branching fractions and hadronic form factors for exclusive semileptonic D decays by the
Belle, BaBar, and CLEO collaborations. In this section, we focus on semileptonic decays,
D — Plv,, where D represents a D° or DT, P a pseudoscalar meson, charged or neutral,
either m or K, and ¢ a muon or electron. In addition, we also present a BaBar analysis
of DY — KK~ {"vy, which provided first evidence of an S-wave contribution.

The results from the B-Factories (Babar and Belle) are based on very large samples of
D mesons produced via the process ete™ — c¢ recorded at about 10.58 GeV c.m. energy.
CLEO-c experiment relies on a sample of ¢(3770) — DD events, which is smaller, but
allows for very clean tags and excellent g? resolution. Two of the four recent analyses tag
events by reconstructing a hadronic decay of one of the D mesons in the event, in addition
to the semileptonic decay of the other. The total number of tagged events serves as a
measure of the total sample of D mesons and thus provides the absolute normalization for
the determination of the semileptonic branching fractions. Untagged analyses typically
rely on the relative normalization to a sample of D decays with a well measured branching
fraction. The analyses use sophisticated techniques for background suppression (Fisher
discriminants) and resolution enhancement (kinematic fits). The neutrino momentum
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and energy is equated with the reconstructed missing momentum and energy relying
on energy-momentum conservation. The detailed implementation and resolution varies
significantly among the measurements and cannot be presented here in detail.

The BaBar Collaboration reports a study of D° — K~ etv, based on a luminosity of
75 fb~! [455]. They analyze D*t — DOzt decays, with D° — K~etw,. The analysis
exploits the two-jet topology of ete™ — c¢ events. The events are divided by the plane
perpendicular to the event thrust axis into two halves, each equivalent to a jet produced
by ¢- or ¢-quark fragmentation. The energy of each jet is estimated from its measured
mass and the total c.m. energy. To determine the momentum of the D and the energy of
the neutrino a kinematic fit is performed to the total event, constraining the invariant
mass of the K~ etv, candidate to the D° mass. The D direction is approximated by
the direction opposite the vector sum of the momenta of all other particles in the event,
except the Kaon and lepton associated with the signal candidate. The neutrino energy is
estimated as the difference between the total energy of the jet containing the Kaon and
charged lepton and the sum of the particle energies in that jet. To suppress combinatorial
background each D° candidate is combined with a 7 of the same charge as the lepton and
the mass difference is required to be small, §M = M (D7) — M(D°) < 0.160 GeV. The
background-subtracted ¢? distribution is corrected for efficiency and detector resolution
effects.

For BaBar’s analysis [455], the normalization of the form factor at ¢* = 0 is f¥(0) =
0.727 +0.007 £ 0.005 £ 0.007, where the first error is statistical, the second systematic,
and the third due to uncertainties of external input parameters. In addition to the tradi-
tional parametrization of the form factors as a function of ¢? using pole approximations,
BaBar also performed a fit in terms of the expansion in the parameter z. The results are
presented in Fig. 28. A fit to a polynomial shows that data are compatible with a linear
dependence, which is fully consistent with the modified pole ansatz for fy(¢?).

BaBar also reports the branching fraction for DY — K~e*v,.. To obtain the nor-
malization for the signal sample, they perform a largely identical analysis to isolate
a sample of D’ — K~nt decays, and combine it with the world average B(D° —
K~mT) = (3.80 £ 0.07)%. The result, the ratio of branching fractions, Rp = B(D° —
K=etv.)/B(DY — K—71) = 0.927 4 0.007 4 0.012, translates to B(D° — K~etv,) =
(3.522 £ 0.027 £ 0.045 + 0.065)%, where the last error represents the uncertainty of
B(D° — K—nt).

The Belle Collaboration has analyzed a sample of 282 fb™!, recorded at or just below
the 7°(4S) resonance [456]. They search for the process, eTe™ — c¢c — DE:;D;;X, with
D:i;r — DOWSJ;& [456]. Here X represents additional particles from c-quark fragmentation.
The Dy is reconstructed as a D° or D', in decay modes D — K(nm) with n =

1,2,3. In events that contain a D:i‘g, the recoil of the Dt(.:;
of the signal D°-meson energy and momentum vector. Figure 29 shows the invariant
mass spectrum as derived from the Dé:;X 71« system. This distribution determines the
number of D%’s in the candidate sample and provides an absolute normalization. In this
sample a search for semileptonic decays D° — 7~ ¢*v, or D° — K~ {*v, is performed;
here the charged lepton is either an electron or muon. Pairs of a hadron and a lepton of
opposite sign are identified and the neutrino four-momentum is obtained from energy-
momentum conservation. Fig. 30 shows the distribution for the missing mass squared,

M?2, which for signal events is required to be consistent with zero, < 0.05 GeV?/c*.

+ . .
Xm,  provides an estimate
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The resulting branching fractions are B(D° — K ~¢Tv;) = (3.45 4 0.07 4 0.20)% and
B(D® — 7= ¢*v,) = (0.255 + 0.019 £ 0.016)%. The measured form factors as a function
of ¢ are also included in Fig. 33 for both decay modes. The normalization of the form
factors at ¢? = 0 are f(0) = 0.695 & 0.007 + 0.022 and f7(0) = 0.624 = 0.020 + 0.030.

The CLEO Collaboration analyzed data recorded at the mass at the ¥ (3770) resonance,
which decays exclusively to DD pairs. They report measurements of semileptonic decays
of both D® and D*, for both untagged and tagged events. For the untagged analysis [458]
the normalization of DD pairs is based on a separate analysis [254]. Individual hadrons,
7=, w0, K~, or Kg, are paired with an electron and the missing momentum and energy
of the entire event are used to estimate the neutrino four-momentum. The missing mass
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Fig. 28. Babar analysis of D? — K ~eT v, [455]: Measured values for P x ® x fy versus —z, normalized
to 1.0 at z = zmaa. The straight lines represent the expectation from the fit to the modified pole ansatz,
the result in the center, as well as the statistical and total uncertainties on either side.
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squared is required to be consistent with zero. Additionally, the four-momentum of the
signal candidates, i.e., the sum of the hadron, lepton and neutrino energies must be
consistent with the known energy and mass of the D meson. The yield of D mesons
is extracted in five ¢? bins. The CLEO Collaboration reports the branching fractions,
B(D° — K~ et v,) = (3.56+£0.03+0.09)%, B(D® — 7~ et v,) = (0.2994:0.01140.09)%,
B(D* — K%t v,) = (8.53 £0.134+0.23)%, and B(DT — et v,) = (0.373 +0.022 +
0.013)%. Figure 33 includes the CLEO-c untagged results for f (¢?) versus ¢>.

Recent results of the CLEO-c tagged analysis [255] were reported for the first time at
this workshop. This analysis is based on a luminosity of 281 pb~'. To tag events, all events
are required to have a hadronic D decay, fully reconstructed in one of eight channels for
DY and one of six channels for D*. Since the DD system is produced nearly at rest, the
D candidate should have an energy consistent with the beam energy. The beam-energy
substituted mass, mgg, is required to be consistent with the known D mass. For this
sample of events, an electron is paired with a hadron, 7=, 7, K~ or Ks. In DD events
with a signal semileptonic decay, the only unidentified particle is the neutrino. Its energy
and momentum are derived from the missing energy and momentum. The measured
difference of these two quantities, U = FE,, — P,, is used to discriminate signal from
background. Fig. 31 shows the U distribution for the four semileptonic decay modes.
The requirement of a hadronic tag results in extremely pure samples. For the decay
DY — K~ et v, the signal-to-noise ratio is about 300. Based on these selected samples
CLEO-c reports the branching fractions, B(D? — K~ et v,) = (3.61 + 0.05 4 0.05)%,
B(D° — 7~ et v,) = (0.314+0.0134+0.004)%, B(D* — K'et v,) = (8.90+0.17+0.21)%,
and B(D* — 7%e* v,) = (0.384 £ 0.027 4 0.023)%. Figure 33 shows the CLEO-c results
for f1(q?) versus ¢°.

The CLEO Collaboration has computed the average of the untagged and tagged re-
sults, taking into account all correlations. The results for the branching fractions are
shown in Tab. 26. The untagged analysis contains about 2.5 times more events but has
larger backgrounds and different systematic uncertainties. The product of the form fac-
tor f1(0) and the CKM matrix element is extracted from the combined measurements,
ff(O)|VCS| = 0.744 £ 0.007 £ 0.005 and f7(0)|V.q| = 0.143 + 0.005 % 0.002.

Since the time that the above results were reported at CKM2008, CLEO collabora-
tion has completed a new tagged analysis which is based on the entire 818 pb™' of
data recorded at the 1(3770) resonance [459]. The results for the most recent branch-
ing fraction measurements are, B(DY — K~ et v,.) = (3.50 & 0.03 4+ 0.04)%, B(D° —
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Fig. 30. Belle experiment [456, 457]: Missing mass squared distribution for Dgig candidates. Left:

DO — 7w~ ¢t uy; right: D — K~ ¢*w,. The D° — K~ ¢Tv, and fake D° backgrounds are derived from
data and are shown in magenta and yellow respectively. The cyan histogram shows the contribution from
DY — K*/ptT v, as determined from simulation.
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Table 26
CLEO-c: Absolute branching fractions for tagged, untagged and averaged results.

Tagged Untagged Average

7~ etve 0.308 4 0.013 4- 0.004 0.299 & 0.011 + 0.008 0.304 4 0.011 4 0.005
7%t ve 0.379 4 0.027 4 0.002 0.373 & 0.022 £ 0.013 0.378 4 0.020 4 0.012
K~etve 3.6040.05+0.05 3.56 £ 0.03 £ 0.09 3.60 £ 0.03 £ 0.06
KO%tv. 8.8740.17+0.21 8.53+£0.13£0.23 8.69 £0.12+£0.19

7 et v,) = (0.288 4+ 0.008 4 0.003)%, B(DT — KeT v,) = (8.83 +0.10 & 0.20)%, and
B(Dt — 7%et v,) = (0.405 4 0.016 4 0.009)%. The measured form factors as a function
of ¢? for this analysis are shown at the bottom of Fig. 33. The product of the form fac-
tor f4(0) and the CKM matrix element is extracted from an isospin-combined fit which
yields f££(0)|Ves| = 0.719£0.006£0.005 and f7(0)|Vea| = 0.15040.004+0.001. The new
CLEO-c results are consistent with the previous CLEO-c¢ measurements and supersede
those measurements.

At this conference BaBar reported a measurement of DI — KT K~ ¢*v, decays [460].
Events with a K™K~ mass in the range 1.01 — 1.03 GeV/c? are selected, corresponding to
¢ — KTK~ decays, except for a small S-wave contribution which is observed for the first
time. Since the final state meson is a vector, the decay rate depends on five variables, the
mass squared of the K™K~ pair, ¢° and three decay angles, and on three form factors,
Ay, Ay and V, for which the ¢? dependence is assumed to be dominated by a single pole,

V(0) A1,2(0)
V4 2y A 2y )

(q ) 1_q2/m%/7 1,2(‘] ) 1_q2/m?47
with a total of five parameters, the normalizations V(0), A1 (0), A2(0) and the pole masses
my and m4. In a data sample of 214 fb~!, the BaBar Collaboration selects about 25,000
signal decays, about 50 times more than the earlier analysis by FOCUS [461]. The signal
yield and the form factor ratios are extracted from a binned maximum likelihood fit to the
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Fig. 31. CLEO-c tagged analysis [255]: Signal distributions (U = E, — P,)) for the four semileptonic D
decay channels.
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four-dimensional decay distribution, 7o = A5(0)/A1(0) = 0.763+0.071 +0.065 and ry =
V(0)/A1(0) = 1.84940.0604-0.095, as well as the pole mass ma = 2.28792340.18 GeV/c2.
The sensitivity to my is weak and therefore this parameter is fixed to 2.1 GeV/c?. The
result of the fit is shown in Fig. 32. The small S-wave contribution, which can be asso-
ciated with fo — K+ K~ decays, corresponds to (0.2270:02 4+ 0.03)% of the KT K e,
decay rate. The D} — K+tK~eTv, branching fraction is measured relative to the de-
cay DI — KTK~nT, resulting in B(Df — KtK~eTv,)/B(DFf - KTK—7t) =
0.558+0.007+0.016, from which the absolute total branching fraction B(D} — ¢etv,) =
(2.61+£0.03 £0.08 £0.15)% is obtained. By comparing this quantity with the predicted
decay rate, using the fitted parameters for the form factors, the absolute normalization
A1(0) =0.607 £ 0.011 4 0.019 4= 0.018 was determined for the first time. The third error
stated here refers to the combined uncertainties from various external inputs, namely
branching fractions for D, and ¢, the DY lifetime and |V,s|. Lattice QCD calculations
for this decay have been performed only in the quenched approximation. They agree with
the experimental results for A;(0), ro and m4, but are lower than the measured value
of ry. It would be interesting to see if unquenched calculations are in better agreement
with experimental results.

In summary, BaBar, Belle and CLEO-c have measured D meson semileptonic branch-
ing fractions and hadronic form factors in a variety of decay modes, using complementary
experimental approaches. The results from the experiments are highly consistent. With
lattice QCD prediction for the form factors, these results will allow a precise determina-
tion of Vs and V.4. Fig. 33 shows a compilation of all form factor measurements, fy (¢?)
versus ¢2. All analyses presented here have performed studies of the ¢? parameterizations
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Fig. 32. BaBar [460]: Projected distributions of the four kinematic variables. The data (points with
statistical errors) are compared to the sum of four contributions: the fitted signal (hatched histograms)
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Table 27

Summary of the form factors parameters obtained by the different experiments for D — K semileptonic
decays. The first column gives the simple pole mass, the second the parameter « used in the modified
pole model, and the third the normalization.

Myore| GeV/c?] a f+(0)
Belle [456] 1.82 £0.04 £0.03 0.52+£0.08 £0.06 0.695 £ 0.007 £ 0.022
BaBar [455] 1.884 £0.012 £ 0.015 0.38 £ 0.02+0.03 0.727 £ 0.007 £ 0.005 £ 0.007
CLEO-c [459] 1.93 £0.02 £0.01 0.30 £0.03 £0.01 0.739 £ 0.007 £ 0.005
LQCD [463] 0.50 £0.04 £0.07 0.73 £0.03 £0.07

and extractions of the associated parameters. A summary of these measurements is given
in Tabs. 27 and 28, as well as the values obtained by lattice QCD computation [463].
The reader is referred to the references for more details.

Measurements of D — wfv, and D — V /v, will benefit from the increased data sam-
ples expected in the near future. Of particular interest is the anticipated 1(3770) running
of BES-III. The BES-III Collaboration began data accumulation in July of 2008. The
experiment is comparable to CLEO-c in detector design but has superior muon identifi-
cation performance, but worse performance for hadron identification, and is expected to
ol
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Table 28

Summary of the form factors parameters obtained by the different experiments for D — 7 semileptonic
decays. The first column gives the simple pole mass, the second the parameter « used in the modified
pole model, and the third the normalization.

Myore| GeV/c?] o f+(0)
Belle [456] 1.97 £0.08£0.04 0.10£0.21£0.10 0.624 & 0.020 £ 0.030
CLEO-c [459] 1.91+0.02£0.01 0.2140.074+0.02 0.666 £ 0.019 £ 0.004 £ 0.003
LQCD [463] 0.44 +£0.04 £0.07 0.64 £0.03 £0.06

accumulate at least an order of magnitude more data. The muon identification will allow
access to all the semileptonic modes covered in this section from a single experiment.

5.1.3. Measurements of B branching fractions and ¢* dependence

Exclusive semileptonic decays B — X, fv, where X, denotes a charmless hadronic
final state, have been reported by the CLEO, BaBar, and Belle collaborations [464—
473]. The specification of the final state provides good kinematic constraints and an
effective background rejection, but results in lower signal yields compared with inclusive
measurements. Three experimental techniques that differ in the way the second B meson
in the BB event is treated have been employed in these measurements. The second B
meson is either fully reconstructed in a hadronic decay mode (“hadronic tags”), partially
reconstructed in a semileptonic decay mode (“semileptonic tags”) or not reconstructed
at all (“untagged”). The tagged and untagged methods differ greatly in terms of signal
efficiency and purity.

B — wlv

The B — mwlv decay is the most promising decay mode for a precise determination of
[Vaus|, both for experiment and for theory. A number of measurements with different tag-
ging techniques exist, but at present the untagged analyses, which were first performed
by the CLEO collaboration [465], still provide the most precise results. In untagged anal-
yses, the momentum of the neutrino is inferred from the missing energy and momentum
in the whole event. The neutrino is combined with a charged lepton and a pion to form
a B — mlv candidate. The biggest experimental challenge is the suppression of the
B — X fv background. Additional background sources are eTe™ — ¢q (¢ = u,d, s, c)
continuum events, which dominate at low ¢?, and feed-down from other B — X, lv
decays, which dominate at high ¢2.

The BaBar experiment has measured the B — 7fv branching fraction and ¢? spec-
trum with a good accuracy [466]. In this analysis, the signal yields are extracted from a
maximum-likelihood fit to the two-dimensional AE vs. mgg distribution of the signal B
meson in twelve bins of ¢* (see Fig. 34). This fit allows for an extraction of the ¢*> depen-
dence of the form factor f1(q?). The shape of the measured spectrum is compatible with
the ones predicted from LQCD [427,428] and LCSR, [444] calculations, but incompatible
with the ISGW2 quark model [474]. A fit to the ¢? spectrum using the Becirevic-Kaidalov
(BK) parametrization yields a shape parameter o = 0.52 £+ 0.05 £ 0.03 with a goodness-
of-fit of P(x?) = 0.65. Other parameterizations, e.g. the z-expansion, have been used
in a simultaneous fit of the BaBar data and LQCD calculations [411]. The measured
partial branching fractions are extrapolated to the full decay rate and, in combination
with recent form-factor calculations, used to determine |V,
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The leading experimental systematic uncertainties are associated with the reconstruc-
tion of charged and neutral particles, which impact the modeling of the missing momen-
tum reconstruction, and with backgrounds from continuum events at low ¢? and from
B — X, lv decays at high ¢2. Due to the feed-down from B — pfv decays, the uncer-
tainties on the branching fraction and form factors for this decay mode contribute to the
systematic uncertainty. A simultaneous measurement of B — wfr and B — pflv decays
can reduce this uncertainty.

Recently several tagged measurements have appeared [467,468,471,472]. They have
led to a simpler and more precise reconstruction of the neutrino momentum and have low
backgrounds and a uniform acceptance in ¢2. This is achieved, however, at the expense of
much smaller signal samples which limit the statistical precision of the form-factor mea-
surement. Semileptonic-tag measurements have a signal-to-background ratio of around
1-2 and yield ~ 0.5 signal decays per fb~'. The signal is extracted from the distribution
of events in cos? ¢ 5, where ¢ is the angle between the direction of either B meson and
the plane containing the momentum vectors of the tag-side D*¢ system and the signal-
side 7¢ system [467]. Hadronic-tag measurements reach signal-to-background ratios of up
to ~ 10 and yield ~ 0.1 signal decays per fb~'. Here the signal is extracted from the
missing-mass squared distribution (see Fig. 35).

Tab. 29 summarizes all B — wfv branching-fraction measurements; shown are the
total branching fraction as well as the partial branching fractions for ¢> < 16 GeV? and
¢ > 16 GeV? with statistical and systematic uncertainties. The measurements agree well
among each other. A combination of all measurements results in an average branching
fraction of 1.34 x 10~ with a precision of 6% (4% statistical and 4% systematic).

B — n/n'/p/wlv

In addition to B — 7wfv, the experiments have measured other semileptonic final states
with a pseudoscalar meson, n [465,467,469,475] or 7’ [464,467,475], or a vector meson,
p [464,465,470-472] or w [469,473]. They are important ingredients to the determination
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Fig. 34. Untagged B — wfv measurement from BaBar [466]. Left: AFE and mgs projections for
¢®> < 16 GeV? and ¢® > 16 GeV2. Right: Measured g2 spectrum compared with a fit of the BK
parametrization and with theory predictions from LQCD [427,428], LCSR [444] and the ISGW2 quark
model [474].
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Table 29
Total and partial branching fractions for B — 7~ ¢*v with statistical and systematic uncertainties.
Measurements of B(BT — 7%/ v) have been multiplied by a factor 2750 /T5+ -

L(fb™ 1) B x 10* AB(g? < 16) x 10* AB(¢? > 16) x 10*

BaBar no tag (7)) [466] 206 1.45+0.07+0.11 1.08 +0.06 = 0.09 0.38 4+ 0.04 + 0.05
CLEO no tag (7~ ,n0) [464] 16 1.38+0.154+0.11 0.97 +0.13 +£0.09 0.41 4+ 0.08 + 0.04
BaBar sl. tag (77 [467] 348 1.39+0.21+0.08 0.92+0.16 +0.05 0.46 + 0.13 +0.03
Belle sl. tag (77) [471] 253 1.38+0.194+0.15 1.024+0.16 £ 0.11 0.36 +0.10 + 0.04
BaBar sl. tag (70) [467) 348 1.80£0.28 +£0.15 1.38 £0.23 £ 0.11 0.45+ 0.17 = 0.06
Belle sl. tag (7°) [471] 253 1.43+0.26 +0.15 1.05+0.23 £0.12 0.37 +0.15 + 0.04
BaBar had. tag (7w —) [468] 211  1.07+£0.27+£0.19 0.42 +0.18 £0.06 0.65 4 0.20 £ 0.13
Belle had. tag (7~ ) [472] 605 1.12+0.18 +0.05 0.85+ 0.16 +0.04 0.26 + 0.08 4 0.01
BaBar had. tag (7°) [468] 211  1.54+0.41 +0.30 1.05+0.36 = 0.19 0.49 +0.23 + 0.12
Belle had. tag (79) [472] 605 1.24£0.23+0.05 0.85+0.16 =0.04 0.41 +0.11 = 0.02
Average 1.36 + 0.05 +0.05 0.94 +0.05 4+ 0.04 0.37 4+ 0.03 £ 0.02
Table 30

Total branching fractions for exclusive B — X, fv decays with X, = n, 7/, p,or w. TThe BaBar collabo-
ration reports an upper limit of B(BT — n/¢*v) < 0.47 at 90% CL [467].

Decay mode B x 10* ogtqr x 10* Osyst X 104
Bt — nttv (BaBar average) [469] 0.37 0.06 0.07
Bt — 5/£+y (CLEO no tag) [464]T  2.66 0.80 0.56
B — p~¢tv (average) 2.80 0.18 0.16
BT — wlTv (BaBar no tag) [469]  1.14 0.16 0.08

of the composition of the inclusive B — X, fv rate. They may also help to further
constrain theoretical form-factor calculations and provide valuable cross-checks for the
determination of |V,;| from B — wfv. The LQCD calculations for these final states are
challenging. For the flavor-neutral final-state mesons, 7,  and w, the matrix element
contains contributions from quark-disconnected diagrams. For the p final state, the large
width of the p resonance complicates the calculations.

The 1 and 7" modes have been measured by the CLEO and BaBar collaboration.
The limit on B(B — 7/¢v) published by BaBar [467] agrees only marginally with the
CLEO result [464] (at the 2.60 level). Further measurements are needed to resolve this
discrepancy. In the future, a measurement of the ratio R,/,, = B(B — n'tv)/B(B — nlv)
would be interesting to constrain the gluonic singlet contribution to the B — (") form
factor, as proposed in [447].

The B — plv decay has a larger rate than charmless semileptonic decays into pseu-
doscalar mesons, but one must deal with the non-resonant w7 contribution, which leads
to a sizable systematic uncertainty. The kinematics of decays with vector mesons are
described by three form factors. The statistical precision in current analyses is still too
low to measure these form factors. As an example, Fig. 35 shows the missing-mass and
q? spectra of B — plv and B — wlv decays measured by the Belle collaboration in
a hadronic-tag analysis [472]. Tab. 30 summarizes the most precise branching fraction
results for semileptonic B decays to low-mass charmless hadrons heavier than the pion.

Prospects for exclusive charmless decays

The outlook for further improvements in these measurements for the full B-factory
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datasets and for a Super B factory is good. It can be expected that for B — wfv
the untagged measurements will remain the most precise up to integrated luminosities
of several ab™!. To reduce the systematic uncertainties of untagged measurements, a
better knowledge of inclusive B — X, /v decays is important, since they are the biggest
limitation in the high-¢? region where LQCD calculations exist. In addition, a significant
fraction of the BB background comes from events, where the signal B meson has been
wrongly reconstructed by assigning one or more particles from the decay of the other B
meson to the signal decay. To reduce this uncertainty, much effort is needed to improve
the simulation of generic B-meson decays. With the full B-factory dataset, a precision
of about 4-5% should be achievable for the total B — mfv branching fraction.

The tagged measurements in particular will improve with larger data samples. The
systematic uncertainties in these measurements have a significant statistical component
and thus the total experimental error is expected to fall as 1/ V/N. For the higher-mass
states, the tagged measurements should soon give the most precise branching-fraction
results. However, the larger data samples from untagged analyses will be needed to
extract information on the three form factors involved in decays with a vector meson.
For an integrated luminosity of 1-2 ab™ ', several thousand B — plv and B — wlv
decays can be expected. These signal samples will allow us to obtain some information
on the form factors or ratios of form-factors through a simultaneous fit of the ¢? spectrum
and decay-angle distributions, similar to the study of B — D*{v decays. A measurement
of all three form factors will most likely not be feasible with the current B-factory data
samples.

5.1.4. Determination of |Ves|, |Vedl, |Vus|

Once both the form factor |f1(¢?)|? and the experimental decay width T'(gumin) are
known, the CKM matrix element |V,q| can be determined in several ways. We briefly
describe the two most common methods below.

Until recently the standard procedure used to extract CKM matrix elements from
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Fig. 35. Belle hadronic-tag measurements [472]: Missing-mass squared distributions and ¢2 spectra for
B — plv and B — wlv decays.
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exclusive semileptonic decays has been to integrate the theoretically determined form
factor over a region of ¢ and then combine it with the experimentally measured decay
rate in this region:

2
I'(gmin) G3 e 3/2
|VQ|2 = 1927T§m3 dq2 [(m%{ + m% - q2)2 - 4m%{m%] |f+ (q2)|2' (224)
q H

2
9min

The integration requires a continuous parametrization of the form factor between ¢ ;.
and g2, that is typically obtained by fitting the theoretical form factor result to a model
function such as the Beéirevié-Kaidalov (BK) [476] or Ball-Zwicky (BZ) parametriza-
tion [444]. The three-parameter BK Ansatz,

2 f+(0)

O = Ty U —agmg) (225)
£.(0)

(1—¢?/Bm%.)’

incorporates many essential features of the form factor shape such as the kinematic
constraint at ¢ = 0, heavy-quark scaling, and the location of the B* pole. The four-
parameter BZ Ansatz extends the BK expression for fy(¢?) by including an additional
pole to capture the effects of multiparticle states.

In general, the use of a model function to parametrize the form factor introduces
assumptions that make it difficult to quantify the agreement between theory and exper-
iment and gives rise to a systematic uncertainty in the CKM matrix element |Vg| that
is hard to estimate. It is likely that this error can be safely neglected when interpolating
between data points. Thus the choice of fit function should have only a slight impact on
the exclusive determinations of |V | and |V.4| because lattice-QCD calculations and ex-
perimental measurements possess a large region of overlap in ¢2. It is less clear, however,
how well the BK and BZ Ansétze can be trusted to extrapolate the form factor shape
beyond the reach of the numerical lattice-QCD data or the experimental data. Thus one
should be cautious in using them for the exclusive determination of |V,;| via Eq. (224),
since an extrapolation in ¢? is necessary both for lattice QCD, which is most accurate
at high ¢2, and for experimental measurements, which are most precise at low values of
¢%. In particular, comparisons of lattice and experimental determinations of BK or BZ
fit parameters are potentially misleading, because apparent inconsistencies could simply
be due to the inadequacy of the parametrization.

Recently, several groups have begun to use model-independent parameterizations for
the exclusive determination of |V,| [410-415,477]. This avo