SLAC-PUB-14117

AdS/CFT and large-N volume independence

Erich Poppitz! and Mithat Unsal?

! Department of Physics, University of Toronto, Toronto, ON M4Y 8B6, Canada
2SLAC and Physics Department, Stanford University, Stanford, CA 94025/94305, USA

We study the Eguchi-Kawai reduction in the strong-coupling domain of gauge theories via the
gravity dual of N'=4 super-Yang-Mills on R® x S!. We show that D-branes geometrize volume
independence in the center-symmetric vacuum and give supergravity predictions for the range of
validity of reduced large-N models at strong coupling.

I. INTRODUCTION

Gauge-gravity duality is a powerful method to study
strongly-coupled gauge dynamics. It relates a weakly-
coupled theory of gravity to a lower dimensional large-
N gauge theory at strong coupling [1-3]. The best-
understood example is the AdS;/CFTy-correspondence
between N'=4 supersymmetric Yang-Mills (SYM) the-
ory on R* and weakly coupled type-IIB supergravity on
AdS; x S5, where all available evidence suggests that the
correspondence is exact, at least to leading order in 1/N.

Another method to study gauge dynamics in lattice
and continuum formulations is the large-N volume in-
dependence [4-9]. While much less appreciated than
the AdS/CFT correspondence, large-N volume indepen-
dence is one of the few exact results in gauge theo-
ries. The statement of the volume independence theo-
rem is that large-N non-abelian quantum gauge theories
toroidally compactified on four-manifolds, M;=R*~* x
(SY)*, have properties that are independent of the (S')*
compactification radii. More precisely, expectation val-
ues and connected correlators of single-trace operators
are the same in the reduced and infinite-volume theories,
to leading order in 1/N—if the operators are neutral un-
der the (Zx)F center symmetry and carry momenta in the
compact directions quantized in units of the inverse com-
pactification radii. Volume independence holds provided
two basic quantum mechanical conditions are satisfied:
1.) translation symmetry is not spontaneously broken and
i.) (Zn)* center-symmetry is not spontaneously broken.

In lattice-regularized gauge theories, where the lattice
is reduced to a single site, this equivalence is known as
“large-N reduction” or “Eguchi-Kawai (EK)-reduction”
[4]. The necessary and sufficient conditions for the va-
lidity of volume independence have been known since
the early 80’s. However, the first examples of gauge
theories which satisfy them to arbitrarily small volumes
were found only recently [8, 9]. Because of this, there
has been a recent resurgence of interest in this subject,
particularly in the lattice community—not only because
small volume large- N simulations are more cost effective,
but also for other reasons, such as lattice supersymmetry
[10-15]. Furthermore, any gauge theory which satisfies
volume independence admits a complementary volume-
dependent domain, obtained by first fixing N and taking
the radii small, where subtle non-perturbative aspects,
such as the existence of a mass gap, can be analyzed by

semi-classical methods, see e.g., [9, 16, 17]. The exis-
tence of a semi-classical domain is the main advantage
of studying the compactified theory, instead of the the-
ory on R%. For some center-symmetric theories, there is
evidence suggesting that the small radius domain is the
analytic continuation of the large or infinite radius [9)
(also see [18, 19]), and the size of the circle times N may
be used as an analytic expansion parameter.

Volume independence holds for arbitrary values of
the coupling, including the strong-coupling limit of the
gauge-gravity correspondence. It is thus interesting to
examine the consistency of the two correspondences; at
the very least, this provides a consistency check on their
exactness. In this paper, we exhibit the simplest set-
up where volume independence and AdS/CFT should
hold simultaneously (see the concluding section for com-
ments on related earlier work [20]). We consider the grav-
ity dual of strongly-coupled N'=4 SYM compactified on
R3 x S! and study how volume independence arises. We
show that in the center-symmetric vacuum D-branes “ge-
ometrize” volume independence, ensuring that the expec-
tation value of, e.g., a Wilson loop in the uncompactified
(R3) directions is independent of the S' compactification
radius, for arbitrary interquark separation and in accor-
dance with the volume independence theorem.

II. CENTER-SYMMETRY BROKEN VACUUM:
VOLUME DEPENDENCE

The type-IIB background dual to A’'=4 SYM compact-
ified on R? x S! of radius Ry is:

u?

ds® = —
R3

2
R2
(—dt2+zdx$+Rgd92)+u—§du2+R§dQ§. (1)
=1

This is compactified AdS®xS® of radius Rs~A1, in lo-
cal Poincare coordinates, expressed in terms of the en-
ergy variable u = r/I2. We use string units [;=1 and
denote the 't Hooft coupling of the dual SYM theory
by A=g%,,;N. Compactification of a worldvolume direc-
tion of AdSs leads to a conical singularity: as seen from
(1), the proper radius of S!, equal to uRy/R3, becomes
of order the string scale at uRy ~ A1, The masses of
Kaluza-Klein excitations and string winding modes be-
come comparable, invalidating the supergravity approx-
imation. Thus, for energy scales uRy < A7 the non-
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singular gravity description is given by the T-dual (along
the 3 = Rgf direction) type-ITA background of N D2
branes located on a dual circle of size 1/Ry.

The positions of the D2 branes on the dual circle
correspond to the eigenvalues of the Wilson loop Q =
exp [z fsl A] of the gauge field around the compact di-
rection. Thus, a vacuum where all N D2 branes are
located at the same point on the dual circle breaks the
center symmetry, as trQ) = N. The type-ITA gravity
background corresponding to the center-broken vacuum
is easy to determine by the method of images and knowl-
edge of the background of N D2-branes in R"?:

2
ds® = Hy(F) "2 (—dt* + Y da?) + Ho(7)? (di? + F2d3).

i=1

(2)
Here Hs(7) = 672gsN/7° is a harmonic function in the
seven dimensions transverse to the stack of D2 branes
and g, is the type-ITA string coupling. Instead of pre-
senting detailed formulae (given in, e.g., [21]), for our
purposes it suffices to only picture the brane arrange-
ment. Taking x3 as the compact direction, the metric of
the center-broken BPS-brane configuration is determined
by a harmonic function equal to the sum of the harmonic
functions due to each stack of N D2 branes separated a
distance 1/Ry along x3, as shown on Fig. 1a. Each stack
of branes creates an 1/7# “potential,” where 7% = 2% +12
and r (= u) denotes the radial direction transverse to
both the D2 branes and the compact direction. It is
clear from the picture (and intuition from electrostatics)
that when u > 1/Ry, the xs-translational invariance of
the background is recovered and that at u = r > 1/Ry
the harmonic function becomes ~ 1/r%, identical to that
of the corresponding stack of D3 branes (recall that the
type IIA coupling is gs = g%,,/Ro). Thus the type ITA
metric in the center-broken vacuum reads, for uRy > 1:

u? 2 : 2 Rg 2 R% 2 | H2302
R—g(fdt +dei)+R3u2d0 + 3 du® + R340
i=1

3)
up to exponentially small corrections. The metric (3) is
the T-dual metric of (1) (in the sense of [22]) as evidenced
by the fact that only the df? terms are different (we do
not show the relation between the type-1IA and type-11B
dilatons, which is trivial to obtain). It is also clear that in
the center-broken vacuum the type-IIA metric will differ
from (3) once uRy becomes of order unity or smaller.

We conclude that in the center-broken vacuum, the
backgrounds (3) and (1) are equivalent for uRy > 1,
where the z3 isometry is restored. Thus, for example,
a calculation of the expectation value of a Wilson loop
of size R x T, positioned in the x;—t plane of the non-
compact R? can be made via (3) so long as R < Rp—so
that the string worldsheet only probes the bulk geometry
in the uRy > 1 region, close to the “UV-brane” (recall
the “energy-distance” relation, u. R~1, for the minimum
value u, of u probed by a Wilson loop of size R [23]).
Thus, Wilson loops of interquark separation R < Ry are

ds® =

A r[U (Energy)]

b) Equi—potential surfaces of center-symmetric D2-branes

A r[U (Energy)]
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a) Equi—potential surfaces of center-broken D2-branes

FIG. 1: Center-symmetric and center-broken D2-branes on
the dual S of radius 1/Ro.

unaffected by the compactification, as one would naively
expect. However, the worldsheet relevant for Wilson
loops with R > Ry probes the bulk geometry further
away from the UV, as now u,Ry < 1, a region, where
(3) receives corrections due to the compactification.

Hence, in the center-symmetry breaking vacuum, the
Wilson loop (and other correlators) exhibit volume de-
pendence. This is consistent with expectations from com-
pactified field theory that the Wilson loop with inter-
quark separation R > Ry should be sensitive to the
R3 x S! compactification. In fact, a dual gravity analysis
[24] of the Wilson loop in the compactified N’ =4 SYM
theory shows that the behavior of the quark-antiquark
potential changes from 1/R, at short distances R < Ry,
to 1/R% in an intermediate D2-brane region, and back to
1/R in the far-infrared M2-brane region (the latter de-
scribes the three dimensional 16 supercharge CFT that
N =4 SYM flows to upon a center-symmetry breaking
compactification [25]).

III. CENTER-SYMMETRIC VACUUM:
VOLUME INDEPENDENCE

Consider now the center-symmetric vacuum of the
N =4 SYM theory on R? x S'. According to EK reduc-
tion, appropriate observables should now exhibit S'-size
independence.

In the type-IIA picture, a center-symmetric vacuum
corresponds to a configuration of N D2 branes dis-
tributed equidistantly on the dual circle—since their po-
sitions on the dual S correspond to the eigenvalues of 2,
now clearly trQF = 0, for all £ # 0(mod)N. The metric
dual to the center-symmetric D2-brane configuration can



similarly be computed using the method of images. The
difference is that now single D2-branes are spaced a dis-
tance 1/(NRy) apart along the compact x5 direction, as
shown on Fig. 1b. The harmonic function determining
the background is, again, the sum of the 1 /7 “poten—
tials” of the 1nd1v1dua1 D2-branes (with 72 = 22 + r2,
as before), resulting in the D2-brane harmonic function
which determines the metric, as in (2):

N

-y >

n=—oo k=1

6795

_
|12+ (s — gk — 327

Sym
H"™ (r, x3)

By Poisson resummation, (4) takes the form:

L3

oo
il R Z (muN Rg)? Ko(muN Rg) cos(mxsN Ry)

m=1

) (5)

where K5 is the modified Bessel function.

The crucial difference with respect to the center-broken
vacuum discussed in [21] is the appearance of a factor of
N in the correction term in (5). Hence, the x3-isometry
is now recovered for much smaller values of r (= u,
the energy scale). It is clear (from (5) or from elec-
trostatics) that now the condition for isometry restora-
tion is uN Ry > 1, instead of uRg > 1 in the center-
broken vacuum. Thus the background dual to the center-
symmetric vacuum is also given by (3), but is now valid
for uNRg > 1. We note that while near each individ-
ual D2-brane the supergravity approximation is not to be
trusted (because large curvatures occur and physics is de-
scribed by an IR free abelian theory), no large curvatures
appear in the background (3), (5) at u > 1/(NRy), i.e
at any finite distance away from the D2-branes (similar
backgrounds are also considered in [26]).

The fact that the center-symmetric vacuum is de-
scribed by (3) for any v > 1/(NRy) immediately implies
that a Wilson loop of any size (strictly speaking of size
R <« NRy) will be insensitive to the compactification.
Thus, the potential between two static quarks exhibits
the behavior characteristic of the four dimensional A = 4
CFT, V(R) ~ Az /R, at all scales, despite the fact that
one dimension is compactified and conformal symmetry
of the background is explicitly broken.

In the language of non-perturbative orbifold equiva-
lences [8], the neutral sector observables in the compact-
ified “daughter” theory enjoy the conformal symmetry of
its “parent” theory on R?*, at leading order in N. How-
ever, it should also be noted that the daughter theory also
possesses a non-neutral sector aware of the compactifica-
tion radius. The main point is that for neutral-sector ob-
servables, the space may be viewed as having an effective
size Ref = RoN and thus N = oo is a decompactification
limit.

It is clear that other quantities will also exhibit vol-
ume independence—for example, correlation functions
of single-trace operators that only carry momentum in
the noncompact directions will also be insensitive to the

r [U (Energy)]
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FIG. 2: Center-symmetric M2-branes.

compactification, as required by EK reduction. EK re-
duction also requires that expectation values of Wilson
loops extending also in S!, but not winding around the
compact direction (i.e., center-symmetry neutral ones),
exhibit volume independence; however, explicitly verify-
ing their volume independence in the gravity dual ap-
pears more challenging to us than for the observables we
consider.

Finally, we briefly note a possible slight refinement of
the condition for volume independence inferred from the
gravity dual. In our discussion above, we did not consider
the behavior of the type-IIA dilaton. In fact, examining
its behavior shows that the effectlve string couphng be-
comes large when ulNRy ~ )wk—thus the region of va-
lidity of volume independence that can be inferred from
the type-IIA dual of the center-symmetric vacuum would
be uNRy > /\4 instead of simply ulNRg > 1. How-
ever, the type- IIA description can be uplifted to eleven
dimensional supergravity (M-theory) [24]. The size of
the eleventh direction, parameterized by z11, is related
to the type-II couplings as Ry; = gs = A/(NRy) and
the center-symmetric D2 brane configuration is replaced
by a similar configuration of M2-branes located a dis-
tance 1/(NR0) apart along z3, as shown on Fig. 2. For
u> Ry = NR > 1/(NRp) the M2-brane background
can be written in a form:

672¢/3dS%0 + 64¢/3d1‘%1 ,

(6)

d811 =

where ds?, is the type-IIA metric (3) and ® is the type-
ITA dilaton. As this background is dual to (3), it appears
that the regime of volume independence is u/N Ro > A,
improving on the type-IIA bound uNRy > Ai. At
asymptotically low energies uNRy < 1, eleven dimen-
sional supergravity breaks down for center-symmetric
M2-branes, consistent with the free abelian long-distance
dynamics, unlike the coincident M2-branes case where
the IR-physics is non-abelian and superconformal. A field
theoretic examination of the AV = 4 SYM theory in the
volume-independence context appears in [27].



IV. CONCLUSIONS

We considered the simplest case where EK reduction of
a four-dimensional gauge theory is valid simultaneously
with gauge-gravity duality. Our considerations indicate
that A = 4 SYM compactified on R3 x S' indeed exhibits
volume independence in the center-symmetry preserving
vacuum. The gravity dual of four dimensional NV = 4
SYM gives the first explicitly solvable realization of vol-
ume independence above two dimensions (where EK re-
duction is manifest in the large-IV limit of the exactly
solvable pure YM lattice theory [28]). Our findings can
also be viewed as providing a check on the weakest form
of the AdS/CFT correspondence.

It would be interesting to consider how EK reduction
works when more than one dimension is compactified, es-
pecially with regard of how center-symmetry preservation
is reflected in the brane and gravity set-ups. The R3 x S*
case is special in this respect, as one is free to choose
a classical center-symmetric vacuum state, not washed
away by quantum fluctuations which become strong as
more dimensions are compactified. We note that ref. [20]
previously considered large-N reductions in the holo-
graphic picture with all dimensions compactified, but the
matching of observables and the question of fluctuations
raised above were not studied.

It may also be interesting to study volume indepen-
dence for confining gauge theories with known gravity

duals, as well as by exploiting the analogy between the
1/N and genus expansion in gauge and string theories.
For example, [29] showed that free energy of YM the-
ory receives contributions only from Riemann surfaces of
genus > 1 in the confined phase [O(N?)], but it receives
a contribution from genus zero in the deconfined phase
[O(N?)]. This is nothing but the temperature indepen-
dence of confined phase and temperature dependence of
the deconfined phase, to leading order in N. In this con-
text, for example, the double-trace deformation stabiliz-
ing the theory to the confined phase [9, 17] may have a
stringy interpretation in terms of analytic continuation
of the winding-number unbroken phase of [30] to small
radii.
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