
1

SANDIA REPORT
SAND2009-1088
Unlimited Release
Printed March 2009

Final Report for LDRD Project 93633:
New Hash Function for Data Protection

Richard Schroeppel, Mark Torgerson, Tim Draelos, Hilarie Orman, Eric Anderson,
Susan Caskey, Michael Collins, Bill Cordwell, Nathan Dautenhahn, Andy Lanzone, Eric
Lee, Sean Malone, William Neumann, Keith Tolk, Andrea Walker

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

Page 3 of 62

SAND2009-1088
Unlimited Release
Printed March 2009

Final Report for LDRD Project 93633,
New Hash Function for Data Protection

March 2009

Project Manager: TIM MCDONALD
Principal Investigator: RICHARD SCHROEPPEL

Team Members: Mark Torgerson, Tim Draelos,
Eric Anderson, Susan Caskey, Michael Collins, Bill Cordwell, Nathan
Dautenhahn, Andy Lanzone, Eric Lee, Sean Malone, William Neumann,

Keith Tolk, Andrea Walker.
Hilarie Orman, of PurpleStreak Inc., assisted in preparing the

SANDstorm writeup.

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy's

National Nuclear Security Administration under Contract DE-AC04-
94AL85000.

Abstract:
The security of the widely-used cryptographic hash function SHA1 has
been impugned. We have developed two replacement hash functions. The

first, SHA1X, is a drop-in replacement for SHA1. The second,
SANDstorm, has been submitted as a candidate to the NIST-sponsored

SHA3 Hash Function competition.

Page 4 of 62

1. Introduction

Project Purpose

Cryptographic Hash Functions (CHFs) are necessary for digital
signatures and for data authentication. SHA1 (Secure Hash Algorithm 1)
and SHA2 presently serve as CHFs, but SHA1 is nearly broken, and SHA2
follows similar design principles. The purpose of this project is to
create a new, more secure, CHF to replace SHA1, and to backstop the rest
of the SHA series. Ideally, the new function(s) would also be more
versatile than SHA, which is unsuited to parallel computation.

We created SHA1X as a drop-in replacement for SHA1. SHA1X accepts
the same inputs as SHA1, and produces a hash output of the same size
as SHA1. SHA1X addresses the problems discovered in SHA1, and should
be more secure. The extra security comes at a cost-- SHA1X is about
2.5 times as slow as SHA1. SHA1X was developed as a repair of SHA1,
and shares a lot of code with SHA1.

We also developed SANDstorm, a completely new Cryptographic Hash
Function that can serve as a replacement for the SHA2 series of hash
functions. (It can also serve as a SHA1 replacement.) SANDstorm is
comparable in speed to SHA2, and, unlike the SHA series, can be
efficiently computed with parallel architectures. NIST is sponsoring
a competition for a new CHF, to be called SHA3, that will be a backup
for SHA2. SANDstorm has been entered in the NIST competition.

Section 2 explains what a hash function is, and why we need new ones.
Section 3 describes SHA1X, our secure SHA1 drop-in replacement function.
Section 4 describes SANDstorm, our entry in the NIST competition.
Section 5 summarizes our achievements.
Appendix A is the program for the SHA1X hash function.
Appendix B is the detailed specification for SANDstorm.

General information about cryptographic hash functions can be found at
[Sch,EH,HFZ,B,Wiki]. Information about particular hash functions is
at [MD5,SHA,DBP96]. Attacks on hash functions are at [WFLY,BC04,
WYY05,R04,HPR04]. The SHA3 competition is at [SHA3,Z3]. Digital
signatures are explained in [DSA,MOV].

2. What is a Hash Function?

History

Hash functions originated in the 1950s as a fast way to do table
lookup. The original problem being solved was to turn table keys into
small numbers suitable for indexing into a table. The index into a
table is ultimately reducible to some relatively small positive
number. Computer applications needed to work with larger sets of
keys, such as customer names, or part numbers. Hash functions
provided a way to convert these free-text data into the required small
positive numbers. The principal requirements were that the algorithm
give reproducible results, and give reasonably uniform results
distributed over the space of small positive numbers. Typical
hash-tables were packed fairly full, usually with more than 50% of the
slots occupied. Various methods were developed for efficiently
handling the inevitable collisions, where two inputs would map to the
same table index.

In the 1960s, with the advent of time-sharing, passwords were

Page 5 of 62

introduced for accessing computer systems. At first the passwords
were simply kept by the computer operating system in a list on the
disk, supposedly inaccessible to non-administrative users. The
expected battle to conceal the passwords took place, and led to the
insight that the actual user passwords should not be stored, but
instead some quantity derived from the password. Hash functions were
a natural choice for the mapping function. The user would enter his
password into the system, which would apply the hash algorithm, and
see if the result matched the system's "should be" list. The original
design even had the hashed passwords available in a publicly readable
file, so that user programs as well as the operating system were
allowed to do password checks. (This was gradually discovered to be a
bad idea.)

The new application needed a better hash function. Since the results
were available on disk, the hash function had to be non-invertible: an
attacker need not guess Jill's password to impersonate her, if he
could find another password with the same hash value. A second
requirement was that every bit of the input password should influence
every bit of the output hash value in a complex way. This would
prevent an attacker from using a hill-climbing algorithm to improve a
partial match into a full match by experimentally making small
modifications to a trial password. A third requirement was that the
hash function be deliberately slow, to hinder an attacker who was
hashing a dictionary of likely passwords. (The third requirement has
been dropped in subsequent CHF applications.)

This application led naturally to a stronger set of requirements, that
eventually came to be called a cryptographic hash function. (Every
hash function we describe in this paper is a cryptographic hash
function, so we're dropping the redundant adjective.) The idea was to
have a checksum function that would apply to any bit string, from
passwords, to disk files, including emails, long articles, pictures,
etc. The checksum should be practically unique, so that any digital
object could be identified by its checksum. There should be no
practical way to go backwards from a checksum to (any) object with
that checksum, nor to produce a forgery of an object by creating
another object with the same checksum.

Informal Definition of a Cryptographic Hash Function

A Cryptographic Hash Function H accepts any bit string S, and produces
a fixed-size value H(S), of length N bits. The intuition is that H
looks like a random map, without any discernible regularities or
non-random statistical properties. (There are more formal
mathematical definitions for a CHF, but they are not helpful to a
non-specialist.)

The three main properties of a Cryptographic Hash Function are

Preimage: Given a hash value V, it should be extremely difficult to
 find a bit string S for which H(S) = V.

Second Preimage (Forgery): Given a bit string S, is should be extremely
 difficult to find another bit string S' for which H(S) = H(S').

Collision: It should be extremely difficult to find any two bit
 strings S and S' for which H(S) = H(S').

"Extremely Difficult" is vague, but is interpreted to mean that around
2^N evaluations of H are required to find either a Preimage or a
Second Preimage; and that around 2^(N/2) evaluations are required to

Page 6 of 62

find a Collision. This is the effort required for a random search,
where an attacker just guesses trial bit strings and evaluates the
hash function to see if they work. The work to find a collision is
smaller because the attacker can keep a record of his guesses & results,
and expect ot find a result match after roughly 2^(N/2) tries. For
preimages, he must exactly match the required N-bit hash value.

Since we want every digital object to have a different hash value, we
must choose N large enough that collisions are unlikely. This means
that 2^(N/2) is bigger than the total number of digital objects. MD5
was the first widely used CHF (in the late 1980s); it was felt N=128
was adequate. SHA0 was released in 1991, and updated to SHA1 in 1994.
They produced hashes of N=160 bits. The present iteration is the SHA2
series, producing hashes of length 224, 256, 384, and 512 bits. These
lengths are twice the security level of the widely used block ciphers
3DES (112 bits), and AES, with three key sizes, 128, 192, and 256 bits.

Two examples:
MD5("abc") = (hex) 900150983cd24fb0d6963f7d28e17f72
SHA1("abc") = (hex) a9993e364706816aba3e25717850c26c9cd0d89d

Compared to a simple checksum of 16 or 32 bits, these sizes seem
inconveniently large. But consider: If you want to be sure that
nature hasn't messed with your file, then 16 or 32 bits is adequate
assurance. This isn't enough extra information to repair a damaged
file, but it will at least tip you off that there's been some damage.
The chance of random damage leaving the checksum unchanged is 1 in
2^16 (65536) or 2^32 (4 billion). On the other hand, if you are
anticipating an intelligent opponent intent on slipping something by
you, these sizes are inadequate: the opponent can simply use his
computer to try 2^16 or 2^32 changes to your file, and expect to find
one that produces the same checksum. Moreover, these sizes are
inadequate to use the checksum as an identifier of the original file:
collisions in a 16 bit space are likely when 2^8 files exist; and 2^16
files are likely to have a 32-bit collision, just by chance.

Another property of CHFs is of critical practical importance for
digital signatures: Abbreviation. Even very large files have a
modestly sized hash value. This is important because the public key
methods for computing digital signatures can only sign a relatively
small object. So, rather than sign a whole file, we sign the hash.
We must depend on the security of the hash function to prevent an
opponent from attaching our signature to a forged messsage with the
same hash as our authentic message.

The most widely used digital signature methods are RSA and DSA. RSA
was the first efficient digital signature scheme. It was usually used
together with the hash function MD5. NIST released DSA, another
public key digital signature algorithm, in 1991. SHA0 was used as the
associated hashing method. SHA1, a small modification of SHA0, was
introduced in 1994, and SHA0 has been phased out.

SHA0 is considerably slower than MD5, and SHA1 is a little slower than
SHA0. The SHA2 group are in turn considerably slower than SHA1. As
each new function has been introduced, it has necessarily been made
slower in order to increase security. In general, the time to compute
the hash of a message is proportional to the length of the message.
Every bit of the message must influence the final hash value, or else
an opponent would be free to alter those message bits with no influence.
For short messages, the time to compute the hash is completely swamped
by the time to compute the digital signature.

Why We Need New Hash Functions

Page 7 of 62

After many years of effort, and building on contributions from many
researchers, X. Wang made a breakthrough in 2004. She presented a
collision for MD5 at the August 2004 Crypto conference. Since that
break, many improvements have been made in the collision-finding
method. Collisions for MD5 are now easily computed in a few seconds.
Assisted by some of the ideas used for MD5, a collision for SHA0 was
found in 2005. SHA0 is not widely used, since it was replaced with
SHA1 in 1994. However, when SHA0 was broken, it was predicted that
SHA1 would be breakable with about 2^63 work. This figure has since
been improved slightly. At the time of this writing, there's an
ongoing internet search for a collision, but none has been found as
of February 2009.

Only minor progress has been made against the SHA2 hash functions.
[HPR04] However, the SHA2 design is evolved from SHA1 (which was a
modification of SHA0, which was recognizably descended from MD5, which
was an extension of MD4.) There's a feeling that it's prudent to
have a backup hash function in place, rather than racing to patch
something up on short notice. The backup function should not be a
direct descendant of SHA2, so that a break of SHA2 is unlikely to
also threaten the backup function.

Since a brand new function is being developed, it's appropriate to ask
"What other features would be nice?" One important new feature on the
wish list is parallelism: The existing hash functions are inherently
serial in nature, requiring that processing be completed on one block
of data (to compute the chaining value) before processing can start on
the next block of data. Existing hash functions can be shoehorned
into a tree arrangement, but the fit is uncomfortable. SANDstorm
tackles this wish head on, being designed for parallelism from the
start.

3. Our Work: SHA1X Replaces SHA1

Our first order of business was to develop a secure replacement for
SHA1. The approach we adopted was to fix the problems that had become
apparent, and to add some additional security margin as insurance
against future cryptanalytic advances. To this end, we improved the
internal bit mixing in the SHA1 round function. We also borrowed an
idea from the hash function RIPEMD [DBP96], combining two copies of
the SHA1 hash function. The final function, SHA1X, is about 2.5 times as
slow as SHA1.

The Structure of Hash Functions

A hash function is usually built around a compression function. The
compression function maps a fixed-size block into a smaller fixed-size
block. There's often a startup parameter called the Initial Value
(IV), equal to the size of the output block. The MD5 compression
function has a 128-bit IV, a 512-bit input, and a 128-bit output. An
arbitrary bit stream is handled by splitting it into a series of input
blocks. These are fed to the compression function one at a time, and
the output of the compression function is cycled back to become the
startup parameter for the next input block. It's a good idea to
include the length of the input bit string somewhere. This is handled by
padding the input with a trailing 1 bit, followed by some 0 bits,
followed by the length of the (original, unpadded) bit string as a
64-bit number. The variable-sized 0-bit section is adjusted to make
the padded string an exact multiple of the compression function input

Page 8 of 62

size (usually called the block size). SHA1 is similar to MD5, but
uses a 160-bit IV and output size.

The compression function has an internal state, which starts as the
initial value. The state is processed through a number of Rounds,
whose job it is to mix up the bits in the state in a complex way,
making it hard to trace the effect of individual bits or groups of
bits. The message is mixed in with the state, a little bit at a time.
Several copies of the message are used, 4 copies in MD5; in SHA1, the
message is itself mixed up using an error-correcting code polynomial,
and 5 effective copies are used. This processed version of the
message block is called the Message Schedule.

Some Details of SHA1

SHA1 and MD5 both use several 32-bit internal variables. SHA1 has five,
which we call A,B,C,D,E. They are initialized from the 160-bit IV.
SHA1 has 80 rounds.

The SHA1 round function is

 New = (A<<<5) + Logic(B,C,D) + E + Msg[rnd] + K[rnd].

 followed by shifting the variables cyclicly,

 E <- D <- C <- B<<<2, B <- A <- New.

(<<< means a rotation of a 32-bit value).
The old value of E is discarded, but its ghost survives in New.

Msg[rnd] is either a word of the original message (for the first 16
rounds), or an error-correcting-code value based on the message (for
the last 64 rounds). K[rnd] is an apparently random constant that
depends on the round; four different values are used, each for 20
rounds. Logic(B,C,D) is a bit-wise boolean function of the three
inputs. For rounds 0-19, it is Choose(B,C,D), where each bit from B
chooses either a bit from C or a bit from D. For rounds 20-39 and
60-79, Logic is just the xor B^C^D. For rounds 40-59, Logic is
Majority(B,C,D), where the three bits vote.

After 80 rounds, the original state ABCDE is added into the processed
state. The makes the function hard to invert.

The SHA1X Hash Function

Our fixups for SHA1 are designed to be a drop-in replacement, with the
modifications needed to beef up the security. We've added some
additional strengthening, as security margin.

Our two changes are (a) to improve the bit mixing within the round
function, and (b) to use a double-chain construction (borrowed from
RIPEMD). It is likely that either of these changes would be enough to
make the resulting function secure, but we opted for safety over
speed.

The identified weakness in SHA1 is that the mixing of the information
bits is insufficient. We strengthened the bit mixing in the round
function:

The SHA1X round function adds the steps

 E += B<<7, D ^= B<<7, C -= E>>4, B ^= E>>4

Page 9 of 62

after the E,D,C,B,A value cycling. This triples the amount
of bit mixing done in one round, while adding only about 40% to the
execution time.

For additional security margin, we also borrowed an idea from RIPEMD.
It involves a structural modification surrounding the basic hash function.
This idea adds considerable security.

The idea is to maintain two parallel runs of the hash function. The
parallel runs start from different IVs (internal states), but each
processes the entire message separately (including chaining through
all the message blocks) At the end of the hashing process, the two
internal states are combined, usually with xor. This costs somewhat
less than a factor of two in speed: the round mixing activity is
doubled, but the message schedule computation can be shared by both
compression chain computations. The amount of internal state storage is also
doubled; but the message schedule state is not increased.

Appendix A contains C code for the new hash function SHA1X, which
replaces the regular SHA1 compression function. The changes relative
to SHA1 are marked with #ifdef statements. For comparison purposes,
the program can be compiled as SHA0 or SHA1 or SHA1X by changing the
compilation flags.

4. SANDstorm

The NIST requirements are for 4 hash functions, which produce outputs
of 224, 256, 384, and 512 bits. This matches the properties of the
SHA2 series. NIST did not ask for a replacement 160 bit hash function
for SHA1. Instead, they have recommended that SHA1, and implicitly
other short-output hash functions, be expeditiously phased out. Even
if a 160-bit hash function is as secure as theoretically possible, it
will still have collisions with effort 2^80. This is not big enough
for long term security. We built SHA1X because some applications are
stuck with a 160 bit hash, and it should be as secure as possible.

Design Approach

We examined many alternatives for the pieces that go into a strong
hash function. We selected the best combination of pieces, ultimately
making a compromise between features that are good for severely
constrained computing environments, such as the minimum dynamic memory
of smart cards, and features that are good for supercomputers, such as
parallelism.

Our design has several innovative aspects:

(1) SANDstorm makes good use of the multiplication operation for
cryptographic mixing. Multiplication has been an under-appreciated
primitive, but it has a very high benefit/cost ratio of mixing quality
versus instruction cost.

(2) SANDstorm has an innovative arrangement for processing the input
data, that allows pipelining of the computation. This arrangement
also makes the hashing of successive blocks of data very tightly
coupled, contributing to cryptographic strength. This is an
improvement over the conventional Merkle-Damgard method of simply
chaining the output of the compression function into the
initialization for processing the next block.

Page 10 of 62

(3) SANDstorm has an innovative Mode, a method of combining
independently computed intermediate results so that the result is
secure. This allows SANDstorm to be computed either serially or in
parallel.

(4) SANDstorm divides the work of hashing into two roughly equal parts
called the Message Schedule and the Compression Function. Earlier
hash functions tended to slight the message schedule, which has
often contributed to cryptographic weakness.

(5) As a final practical feature, SANDstorm can share static memory
with the SHA functions. This reduces the hardware cost for systems
which must implement both old and new CHFs.

Multiplication as a Bit Mixing Operation

In today's computers, the multiplication operation is far and away the
best way to mix bits, offering superior bang for the buck. Consider
various mixing operations, usually combining two input words to
produce an output word. We say that a bit -depends- on another bit
when flipping the input bit has at least a 20% chance of flipping the
output bit.

Xor -- Each output bit depends linearly on (only) two input bits.

And,Or -- Each bit depends non-linearly on two input bits.

Add -- Each bit depends linearly on two input bits, and non-linearly
 on two input bits.

Shift/Rotate -- Each bit is a copy of an input bit.

Multiply 32x32 -- Each bit depends non-linearly on an average of 32
 input bits.

The typical cost of a multiplication is only about three times the
cost of an addition or a logic operation. This is because the
processor is spending a lot of effort to collect the operands, and to
store the result. This overhead for bringing operands together is
unavoidable, so it makes sense to do as much payload work as possible
(in our case, cryptographic mixing of bits) each time we must incur the
overhead.

We chose to devote the extra mixing bonus from multiplication to
making SANDstorm more secure, rather than making it faster, say by
reducing the number of rounds. This is a philosophical decision,
guided by the practical recognition that the cryptographic designs in
MD5 and SHA have been skating too close to the edge. This fact has
only been recognized after the hash functions have been widely
deployed, and replacement is expensive and difficult.

One annoyance with multiplication is that it's impossible to express
the double-length result of a multiply instruction efficiently in the
C language. To get the most efficient implementation, the inner loops
of SANDstorm must be coded in assembly language. This is not a
serious drawback, since the amount of code is small, and anyone
needing an efficient implementation will either code in assembly
language anyway, or use an existing fast implementation.

A Heavy Duty Message Schedule

Page 11 of 62

One trend in the progression from MD5 to SHA2 has been in the message
schedule. Each step has invested more effort in the message schedule.
Each improvement has contributed to making the successive functions
harder to break. We've made a great leap forward along this trend
line: The SANDstorm message schedule is much more complex than even
SHA2, and is about 60% of the total work of the hash function.
The bit dependency is strongly non-linear. Each bit of the message
schedule, after a few steps, influences all subsequent bits. This is
much bettter than SHA2, where the diffusion of influence is slower.

Another feature is the interaction between the message schedule and
the round function: One weakness of MD5 and the SHA series is that the
message schedule is dribbled into the compression state one word at a
time. This facilitates making single-bit changes in the scheduled
message, and thence in the state of the compression rounds,
that can be conveniently erased when the single bit change in
the compression state has been cycled back into place after a few
rounds. This is a design mistake. The right thing to do is to use as
much of the message schedule as possible, in chunks, rather than
dribbling it into the compression state. Even a single-bit change in
the schedule, making a one bit change in the compression state, will
be thoroughly mixed into the compression state before the next chunk of
message schedule is mixed in.

The SANDstorm Mode

The Mode is the way that the results of the compression function are
linked together. SANDstorm has two major differences from typical
hash designs.

First, the compression function produces four results, one after each
of rounds 2-5, which are fed into the next use of the compression
function. This linkage is much tighter than Merkle-Damgard chaining,
and makes a complete collision of the compression function impossible.

Second, for long messages, the compression results are organized into
a three-level tree. The linkage between tree levels uses a
double-sized state, making collisions extremely expensive to find.
The result of compressing the first message block (level 0) is directly
involved
in all subsequent compressions. This is especially important when the
first block of the message is used to make a keyed hash function. But
it is also part of our defense-in-depth design philosophy: Even if
someone somehow discovers a collision for the compression function, it
is very hard to find a message, and a place within the message, where
the collision can be inserted to make a forgery.

For efficiency on short messages, the first, second, and third levels of the
tree are skipped over when there's not enough data at that level. The
final result of the last compression is input into a finishing step (level 4),
one additional compression, to prevent length-extension attacks.

A Serious Committment to Parallelism

We chose, from the beginning of the project, to design
SANDstorm for parallelism.
We've been used to computers getting faster every year,
but the annual increase in clock speeds has stalled. Instead, the
chip makers have been increasing performance by adding more processors
(cores) to their chips. These must work in parallel to realize the
promise of faster computation.

Page 12 of 62

Most hash functions come with a tepid "well, if you really want
parallelism, here's a tree-based variation on the basic hash function".
We feel that a standard with options is not a standard, and have restricted
our option selection to the minimum NIST requirements (four output sizes,
and one tunable security parameter).

The theoretical maximum parallelism for SANDstorm is over 5000.
Because the parallelism comes in several varieties, an application
designer has great flexibility to select the best choice for his
resources.

The SANDstorm mode allows a parallelism of up to 1100 on long messages.
Groups of 10 data blocks can be processed independently in level one.
The results are forwarded to level two, which can process groups of
100 blocks independently.

The message schedule computation can proceed independently of the
round function.

The five SANDstorm rounds can be pipelined. This is an easy way to
speed up a hardware implementation.

The within-round calculations, including the multiplications, can be
processed simultaneously. Similarly, the calculations within the
message schedule steps can proceed in parallel. This would be
appropriate for either a hardware implementation, or on a processor
that can issue several instructions at once, and has more than one
multiplier.

In hardware, there is a wide selection of available multiply circuits,
offering an almost infinite tradeoff between gate-count and processing
time.

Finally, when a user wishes to hash a bunch of messages that are
mostly the same, such as a movie with a small variable wrapper, he can
arrange to reuse most of the work of hashing the movie, so that only
the wrapper and its boundary blocks need
to be hashed for individual messages.

Block Numbers

Block numbers are used throughout SANDstorm, being mixed into the
starting state information for the compression function. This
prevents trying for a collision by rearranging parts of a message.

SANDstorm Features

Here's a summary of the SANDstorm features.
The detailed SANDstorm specification is in Appendix B.

64-bit design (128-bit for SS-384/512)
512-bit blocksize (1024-bit for SS-384/512)
5 round compression function, 256-bit state (512 for SS-384/512)
Unbalanced Feistel cycle within round
Each round achieves full mixing
Multiplication used for efficient mixing
Reuses SHA2 round constants; minor use of AES sbox
Interleave arithmetic & bit mixing operations
Don't dribble in the message: bring it in as chunks
60% of the work is done in the ultra-nonlinear message schedule
Message schedule can be precomputed

Page 13 of 62

Serious commitment to parallelism: no separate serial mode
Parallelism available at many design points
Tree mode, up to three levels, each level used only as needed
Small, bounded latency even for long messages
A small message (< 64 bytes) uses only two compression calls
A minimum of options: One tunable security parameter
Ultra-wide pipe: 4x the output size - more intimate block chaining
Forwarding to higher level uses 2x the output size
Ubiquitous block numbers
Extra compression step for final output
If the first blocked is fixed, a message can be assembled from fixed and
 variable pieces; most of the hash of the fixed part can be precomputed

Some Unused Design Ideas

Our design approach was like Chairman Mao's: We let 100 flowers bloom,
and ruthlessly cut most of them down. We had two particularly
intersting ideas that we explored but ultimately discarded.

Floating Point Operations with a Chaotic Map

One idea is to use operations on floating point numbers for the
compression function. Today's fastest microprocessors are largely
driven by the game market, and have a lot of chip area devoted to very
fast floating point operations. This includes multiplication. Often,
the floating point multiplication operation is faster than the integer
multiplication operation.

There are many well-known examples of chaotic maps on the real
numbers. One such map is the logistic function, f(x) = K x (1-x),
where K has a value between 3 and 4, and x is between 0 and 1. This
map is chaotic, in the sense that a small change in x is (on average)
amplified by f. After about fifty applications of f, even a tiny
change in x leads to completely unpredictable results. Adjacent
floating point values differing by 10^-16 are mapped to apparently
unrelated values.

The hash compression function works by taking a 512-bit message block,
and packing the bits into a set of floating point numbers,
representing a point in a 10-dimensional space. We apply a chaotic
10-dimensional map to the point, a few dozen times, getting a "random"
result point that is related in an unpredictable way to the starting
point. We select the required number of output bits from the
coordinates of the result point, and repack them into 32-bit words.

The problem with this approach is that it requires that the floating
point operations always work the same on every computer, including
correct rounding 100% of the time. The IEEE floating point standard
defines the exact required result for floating point products, even
when the exact answer is precisely midway between two consecutive
representable floating point numbers. Of course most numerical
algorithms are supposed to be stable, and tiny rounding errors in the
results of floating point multiplication shouldn't affect final answers
much, not enough to be noticed. Given the history of subtle processor
problems, and the fact that our hash function would probably be by far
the most stringent test of the hardware, we did not feel confident
that the hardware would always do the right thing.

Using Associative Combinations for Parallelism

Another idea that we explored involves the Mode of the hash function.
Our final choice for SANDstorm uses a depth-limited tree construction,

Page 14 of 62

but we originally examined using a much simpler idea. The individual
data blocks would be independently input to the compression function,
along with the block number. The resulting compressed hash values are
converted into a particular mathematical system that has an
associative, and non-commutative, multiplication operation. Examples
of such systems are quaternions and matrices. These are multiplied
together, and the final product is given to the compression function
as a finishing step. This Mode (method of using the compression
function) is perfectly parallel: Each block can be hashed on a
separate processor, and the multiplications can be organized in many
different ways, so long as the linear sequence of the factors is
respected. We liked this mode a lot, for its simplicity.
Unfortunately, it turned out to have security problems, and we had to
put it aside.

5. Summary

We have developed two new cryptographic hash functions, SHA1X and
SANDstorm. SHA1X is a secure drop-in replacement for SHA, and it
requires relatively small changes to existing implementations.

SANDstorm uses several innovative design ideas to make a secure backup or
replacement for the SHA2 series. SANDstorm is more secure than the
SHA2 functions, and achieves comparable single-processor speeds, and
is also highly parallelizable.

With SANDstorm, we have achieved a remarkable advance in the state of
the art for CHFs, providing both security and computational
flexibility at an attractive cost.

SANDstorm is available for authenticating messages and data, and for
computing digital signatures. This will be useful in many government
(and non-government) applications. SANDstorm repairs a hole in the
security of our digital communications. This will assist the
monitoring and data analysis work of the International Atomic Energy
Agency, supporting nonproliferation objectives.

Concrete Achievements

Creation of the SHA1X hash function to replace SHA1.

The SANDstorm hash function has been submitted to the NIST competition
for a new Cryptographic Hash Function. October 2008. NIST,
Washington DC.

The SANDstorm Hash Function - a talk presented at the Dagstuhl
Symmetric Cryptography Workshop, Germany; January 15, 2009.
(Web proceedings are in preparation.)

Intellectual Property
(2008) Technical Advance (TA) Filed SD-11231 The SANDstorm Hash Algorithm
Note: It is a condition of the NIST competition that the winning
submission be freely available without licensing.

References

Page 15 of 62

[Sch] Bruce Schneier, Applied Cryptography, Wiley, 1996. This has a good
overview
of the uses of hash functions, accessible to a newcomer. Also explains
digital signatures.

[MOV] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied
Cryptography, CRC press, 1997.

[Wiki] Wikipedia has good articles about MD5 and the SHA series.
http://en.wikipedia.org/wiki/Md5
http://en.wikipedia.org/wiki/SHA_hash_functions

[DSA] The NIST digital signature standard, FIPS 186.
http://www.itl.nist.gov/fipspubs/fip186.htm

These pages contain general information and pointers to many
hash functions that have been developed.
[EH] http://ehash.iaik.tugraz.at/wiki/The_eHash_Main_Page
[HFZ] http://ehash.iaik.tugraz.at/wiki/The_Hash_Function_Zoo
[B] http://www.larc.usp.br/~pbarreto/hflounge.html

[MD5] R. Rivest, "The MD5 Message-Digest Algorithm", April 1992.
http://tools.ietf.org/html/rfc1321

[SHA] This describes SHA1 and the SHA2 group of hash functions.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

[DBP96] Describes the RIPEMD family of hash functions.
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
H. Dobbertin, A. Bosselaers, B. Preneel, "RIPEMD-160, a strengthened
 version of RIPEMD". This article contains a description of
 both RIPEMD-160 and RIPEMD-128. It is an updated and corrected version
 of the article published in Fast Software Encryption, LNCS 1039,
 D. Gollmann, Ed., Springer-Verlag, 1996, pp. 71-82.
http://www.esat.kuleuven.ac.be/~cosicart/pdf/AB-9601/AB-9601.pdf

[SHA3] The NIST web site for the SHA-3 new hash function competition.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

This is an independent effort to keep track of the submissions to the
NIST Hash Function competition.
[Z3] http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

[WFLY] X. Wang, D. Feng, X. Lai, H. Yu,
"Collisions for Hash Functions MD4, MD5, HAVAL-128, and RIPEMD",
revised 17 August 2004.
http://eprint.iacr.org/2004/199

[BC04] E. Biham, R. Chen, "Near-Collisions of SHA-0", Advances in
 Cryptology -- Crypto'2004, LNCS 3152, Springer (2004), pp. 290--305.
 Updated version.
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2004/CS/
 CS-2004-09.ps.gz

[WYY05] X. Wang, Y. L. Yin, H. Yu, "Collision Search Attacks on SHA1",
 research summary, 2005.
http://theory.csail.mit.edu/~yiqun/shanote.pdf

[R04] V. Rijmen, "Update on SHA-1", Topics in Cryptography --
 CT-RSA'2005, LNCS 3376, Springer (2005), pp. 58--71.

Page 16 of 62

[HPR04] P. Hawkes, M. Paddon, G. G. Rose, "On Corrective Patterns for
 the SHA-2 Family", Cryptology ePrint Archive, Report 2004/207.
http://eprint.iacr.org/2004/207

Appendix A -- The program for SHA1X

/* sha1x: filename start count
 * computes the SHA0/SHA1/SHA1X hash function on a file or portion
 *
 * SHA: NIST Secure Hash Algorithm -- 160 bits out
 * Rich Schroeppel
 * original SHA0, 1994
 * SHA1, August 1994, added ROTL 1 to algorithm, per July94 NIST change.
 * -DSHA1, default ON.
 * 2003 August [rcs] compiled for Microsoft-Borland C
 * added wrapper to process a file
 * -DMICROSOFT flag
 * 2006 Nov-Dec [rcs] added fixup code for SHA, under -SHA1X switch
 * added extra mixing to the round function,
 * doubled the state to 320 bits, with two sha_block calls
 * finishing step xors final state down to 160 bits.
 */

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

#define SHA1 /* include NIST summer'94 revision to algorithm */
#define SHA1X /* rcs fixups for SHA1, you must also #define SHA1 */
/* #define TEST */ /* print test values */
/* #define DEBUG */ /* print internal debugging values */

#ifdef DEBUG
#define Dprinth sha_print(s);
#define Dprintabcde printf("%08x %08x %08x %08x %08x\n", a,b,c,d,e);
#define Dprintw { int k; for(k=0;k<80;k+=8) \
 printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", \
 w[k],w[k+1],w[k+2],w[k+3],w[k+4],w[k+5],w[k+6],w[k+7]); }
#else
#define Dprinth
#define Dprintabcde
#define Dprintw
#endif

/* data structure for NIST Secure Hash Algorithm */

typedef struct {
 unsigned long hi_bit_count, lo_bit_count;
 unsigned long h0,h1,h2,h3,h4;
#ifdef SHA1X
 unsigned long h5,h6,h7,h8,h9;
#endif
 unsigned long data[80]; } SHA_state;

Page 17 of 62

#define LROT32(count,value) ((value<<count) + (value>>(32-count)))

void sha_print(s) SHA_state *s;
{ printf("%08x %08x %08x %08x %08x\n", s->h0, s->h1, s->h2, s->h3, s->h4);
#ifdef SHA1X
 printf("%08x %08x %08x %08x %08x\n", s->h5, s->h6, s->h7, s->h8, s->h9);
#endif
 }

void sha_print5(s) SHA_state *s;
{ printf("%08x %08x %08x %08x %08x\n", s->h0, s->h1, s->h2, s->h3, s->h4); }

void sha_setup(s) SHA_state *s;
{ int k;
 s->hi_bit_count = s->lo_bit_count = 0;
 s->h0 = 0x67452301; s->h1 = 0xefcdab89; s->h2 = 0x98badcfe;
 s->h3 = 0x10325476; s->h4 = 0xc3d2e1f0;
#ifdef SHA1X
 s->h5 = 0x31415926; s->h6 = 0x53589793; s->h7 = 0x23846264;
 s->h8 = 0x33832795; s->h9 = 0x02884197;
#endif
 for (k=0;k<16;k++) s->data[k]=0; }

void sha_block(s) SHA_state *s;
{ unsigned long temp,a,b,c,d,e,*w; int i;

 w = s->data;
 for (i=16;i<80;i++)
#ifdef SHA1
 (temp = w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16], w[i] = LROT32(1,temp));
#else
 w[i] = w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16];
#endif
 Dprintw;

 Dprinth; a = s->h0; b = s->h1; c = s->h2; d = s->h3; e = s->h4; Dprintabcde;

 for (i=0;i<20;i++)
 { temp = LROT32(5,a) + ((b & c)|(~b & d)) + e + w[i] + 0x5a827999;
 e=d; d=c; c=LROT32(30,b); b=a; a=temp;
#ifdef SHA1X
 temp = b<<7; e+=temp; d^=temp; temp = e>>4; c-=temp; b^=temp;
#endif
 Dprintabcde; }
 for (;i<40;i++)
 { temp = LROT32(5,a) + (b^c^d) + e + w[i] + 0x6ed9eba1;
 e=d; d=c; c=LROT32(30,b); b=a; a=temp;
#ifdef SHA1X
 temp = b<<7; e+=temp; d^=temp; temp = e>>4; c-=temp; b^=temp;
#endif
 Dprintabcde; }
 for (;i<60;i++)
 { temp = LROT32(5,a) + ((b & c)|((b|c) & d)) + e + w[i] + 0x8f1bbcdc;
 e=d; d=c; c=LROT32(30,b); b=a; a=temp;
#ifdef SHA1X
 temp = b<<7; e+=temp; d^=temp; temp = e>>4; c-=temp; b^=temp;
#endif
 Dprintabcde; }
 for (;i<80;i++)
 { temp = LROT32(5,a) + (b^c^d) + e + w[i] + 0xca62c1d6;
 e=d; d=c; c=LROT32(30,b); b=a; a=temp;
#ifdef SHA1X

Page 18 of 62

 temp = b<<7; e+=temp; d^=temp; temp = e>>4; c-=temp; b^=temp;
#endif
 Dprintabcde; }

 s->h0 += a; s->h1 += b; s->h2 += c; s->h3 += d; s->h4 += e; Dprinth;

#ifdef SHA1X
 a = s->h5; b = s->h6; c = s->h7; d = s->h8; e = s->h9; Dprintabcde;
 for (i=0;i<20;i++)
 { temp = LROT32(5,a) + ((b & c)|(~b & d)) + e + w[i] + 0x5a827999;
 e=d; d=c; c=LROT32(30,b); b=a; a=temp;
 temp = b<<7; e+=temp; d^=temp; temp = e>>4; c-=temp; b^=temp;
 Dprintabcde; }
 for (;i<40;i++)
 { temp = LROT32(5,a) + (b^c^d) + e + w[i] + 0x6ed9eba1;
 e=d; d=c; c=LROT32(30,b); b=a; a=temp;
 temp = b<<7; e+=temp; d^=temp; temp = e>>4; c-=temp; b^=temp;
 Dprintabcde; }
 for (;i<60;i++)
 { temp = LROT32(5,a) + ((b & c)|((b|c) & d)) + e + w[i] + 0x8f1bbcdc;
 e=d; d=c; c=LROT32(30,b); b=a; a=temp;
 temp = b<<7; e+=temp; d^=temp; temp = e>>4; c-=temp; b^=temp;
 Dprintabcde; }
 for (;i<80;i++)
 { temp = LROT32(5,a) + (b^c^d) + e + w[i] + 0xca62c1d6;
 e=d; d=c; c=LROT32(30,b); b=a; a=temp;
 temp = b<<7; e+=temp; d^=temp; temp = e>>4; c-=temp; b^=temp;
 Dprintabcde; }
 s->h5 += a; s->h6 += b; s->h7 += c; s->h8 += d; s->h9 += e; Dprinth;
#endif
 }

/* assumes count < 2^29; assumes all input is 8bit bytes. */
void sha_store(s,str,count) SHA_state *s; unsigned char *str; int count;
{ int i = (s->lo_bit_count>>3) & 0x3f, c=0; unsigned long oldlbc;
/* for (i=0;i<16;i++) w[i]=0; */
 for (c=0;c<count;c++,str++)
 { s->data[i>>2] |= (*str)<<(24-((i&3)<<3));
 if (++i==64) { sha_block(s); for (i=0;i<16;i++) s->data[i]=0; i=0; }; };
 oldlbc = s->lo_bit_count; s->lo_bit_count += (count<<3);
 if (oldlbc > s->lo_bit_count) s->hi_bit_count++; }

void sha_finish(s) SHA_state *s;
{ int i = s->lo_bit_count & 0x1ff;
 s->data[i>>5] |= (1<<(31-(i&31)));
 if (i>=448) { sha_block(s); for (i=0;i<14;i++) s->data[i]=0; };
 s->data[14] = s->hi_bit_count; s->data[15] = s->lo_bit_count;
 sha_block(s);
#ifdef SHA1X
 s->h0 ^= s->h5; s->h1 ^= s->h6; s->h2 ^= s->h7; s->h3 ^= s->h8;
 s->h4 ^= s->h9;
#endif
 }

#ifdef TEST

void sha_test1(s) SHA_state *s;
{ sha_setup(s); sha_store(s,"abc",3); sha_finish(s); sha_print5(s);
#ifndef SHA1
 printf("should be\n0164b8a9 14cd2a5e 74c4f7ff 082c4d97 f1edf880\n");
#else

Page 19 of 62

#ifndef SHA1X
 printf("should be\na9993e36 4706816a ba3e2571 7850c26c 9cd0d89d\n");
#else
 printf("should be\n71edd596 585e935a 9b5185c5 be6bccd1 ea6448bf\n");
#endif
#endif
 }

void sha_test2(s) SHA_state *s;
{ sha_setup(s);
 sha_store(s,"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",56);
 sha_finish(s); sha_print5(s);
#ifndef SHA1
 printf("should be\nd2516ee1 acfa5baf 33dfc1c4 71e43844 9ef134c8\n");
#else
#ifndef SHA1X
 printf("should be\n84983e44 1c3bd26e baae4aa1 f95129e5 e54670f1\n");
#else
 printf("should be\n98d95cd4 62e85905 34ac706c 82e6e2a8 07d8cc0e\n");
#endif
#endif
 }

void sha_test3(s) SHA_state *s;
{ long i;
 sha_setup(s);
 for (i=0;i<40000;i++) sha_store(s,"aaaaaaaaaaaaaaaaaaaaaaaaa",25);
 sha_finish(s); sha_print5(s);
#ifndef SHA1
 printf("should be\n3232affa 48628a26 653b5aaa 44541fd9 0d690603\n");
#else
#ifndef SHA1X
 printf("should be\n34aa973c d4c4daa4 f61eeb2b dbad2731 6534016f\n");
#else
 printf("should be\nbd0452eb a59b7435 113495f7 1e13a8a1 034cf06c\n");
#endif
#endif
 }

main()
{ SHA_state ss, *s; s=&ss; sha_test1(s); sha_test2(s); sha_test3(s); }

#endif /* TEST */

#ifndef TEST

unsigned char buf[1025];
SHA_state shastax; SHA_state *shasta=&shastax;

main(argc,argv,env) int argc; char **argv, **env;
{ long fileptr, seekv, start, len, posn, addr, i, readv, shalen;
 char* filename;

 fileptr = 0; posn = 0; len = -1; filename = "(stdin)";
 if (argc>1) filename = argv[1];
 if (argc>1 && strcmp(argv[1],"-"))
 { fileptr = open(argv[1],O_RDONLY
#ifdef MICROSOFT
 |O_BINARY
#endif
 ,0);
 if (fileptr<0) {printf("error %d opening file %s\n",fileptr,argv[1]);

Page 20 of 62

 exit(1); } }
 if (argc>2)
 { start = strtol(argv[2], (char **)0, 0);
 if (start)
 { seekv = lseek(fileptr,start,0);
 if (seekv<0) {printf("error %d seeking to position %d\n",seekv,start);
 exit(2); }
 posn = seekv; } }
 if (argc>3) len = strtol(argv[3], (char **)0, 0);
 /* printf("hashing file %s starting at position %d:", filename, posn); */
 addr = posn;
 sha_setup(shasta);

 loop:
 readv = read(fileptr,buf,1024);
 if (readv<0) { printf("read error %d\n",readv); exit(3); }
 if (readv==0) { /* printf("\neof at address %d", addr); exit(0); */
 goto finish; }
 shalen = readv;
 if (len>=0 && shalen+addr>posn+len) shalen = posn+len-addr;
 sha_store(shasta,buf,shalen);
 addr += shalen;
 if (len<0 || addr<posn+len) goto loop;

 finish:
 sha_finish(shasta);
 printf("SHA"
#ifndef SHA1
 "0"
#else
#ifndef SHA1X
 "1"
#else
 "1X"
#endif
#endif
 " (%s %d-%d) = ",filename,posn,addr-1);
 printf("%08x%08x%08x%08x%08x\n",
 shasta->h0, shasta->h1, shasta->h2, shasta->h3, shasta->h4);
 exit(0); }

#endif /* ifndef TEST */

Page 21 of 62

Appendix B: The SANDstorm Specification

The SANDstorm Hash

Mark Torgerson and Richard Schroeppel
 Tim Draelos, Nathan Dautenhahn, Sean Malone, Andrea Walker,

Michael Collins, Hilarie Orman*

Cryptography and Information Systems Surety Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-0785

*Purple Streak, Inc.

Page 22 of 62

500 S. Maple Dr.
Woodland Hills, UT 84653

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Page 23 of 62

Table of Contents

1. Introduction ... 24

Design Overview .. 25
Notation and Conventions... 25

2. The SANDstorm Padding and Message Length ... 27
3. The SANDstorm Mode ... 27

SANDstorm Mode Description ... 28
SANDstorm Mode Performance ... 30
Choice of Superblock Size .. 31

4. The SANDstorm Chaining .. 32
SANDstorm Compression Description ... 32
Initialization Constants ... 36
Parameters and Performance ... 39

5. The SANDstorm Compression Function .. 39
SANDstorm-256 and -224 Compression Function Description 39
SANDstorm-512 and -384 Compression Function Description 42
SANDstorm Compression Function Performance .. 44

6. Cutdown and Extension Alternatives.. 45
7. Design Choices ... 46
8. Security Discussions ... 47

General Observations .. 48
Specific Observations ... 50

9. Application USE, HMAC, etc. ... 51
10. Computational Efficiency ... 51
11. Memory Usage .. 56
Appendix A Sample Test Vectors... 59

List of Figures

Figure 1: SANDstorm Mode. The red arrow always denotes the output of Level 0. The
rectangles with solid outlines represent functions. ... 28
Figure 2: Level 0 ... 33
Figure 3: Two Block Superblock .. 34
Figure 4: Level 4 ... 36
Figure 5: Initialization Values .. 37
Figure 6: Round Function ... 41
Figure 7: Timings in clock cycles of a single compression operation. 52
Figure 8: Operation Counts for a Single Compression Step ... 54
Figure 9: Memory Usage in bits ... 57

Page 24 of 62

1. Introduction
The SANDstorm hash family is designed for maximal cryptographic strength and high
speed on most common architectures. Other design features are:
 Speed improvements strongly correlated with the number of processing elements in

parallel and/or pipelined architectures.
 Compression function with a novel structure that avoids known weaknesses in older

hashes.
 Prevention of length extension attacks.
 Large internal state. This increases the resistance to several kinds of attacks

involving large messages or multi-collisions.
 Friendliness to multi-algorithm usage. SANDstorm uses the SHA family constants so

that implementations that must support both the SANDstorm family and the SHA
family need store only one set of algorithm-specific constants.

 Reuse of the SHA strategy for obtaining 224 bit hashes. The SANDstorm-224
function is the same as for SANDstorm-256 except that different initialization
variables are used. The same strategy is used for SANDstorm-384 and SANDstorm-
512.

 Compatibility with the NIST standard for HMAC and randomized hashing schemes.
This will allow “plug and play” with many of the data formatting mechanisms and
program wrappers currently in use.

The SANDstorm family achieves a great deal of mixing while performing on par with the
SHA family of algorithms on the 32 bit architectures that we tested. Significant speed
gains are realized on 64 bit architectures. For either architecture, a few lines of assembly
code realize further gains.

Parallel implementations of two separate parts of SANDstorm account for its high speed
potential. The compression function is up to 10 times faster on parallel architectures.
Similarly, the tree-based mode operation can be up to 1000 times faster.

The SANDstorm family is API-compatible with the SHA family. This makes
SANDstorm suitable for the applications specified by the following publications:

 FIPS 186-2, Digital Signature Standard;
 FIPS 198, The Keyed-Hash Message Authentication Code (HMAC);
 SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using

Discrete Logarithm Cryptography; and
 SP 800-90, Recommendation for Random Number Generation Using

Deterministic Random Bit Generators (DRBGs).

SANDstorm has a design that foils collision attacks, preimage attacks, and second
preimage attacks. We know of no design weaknesses that would render it less secure
than the theoretic bounds for the output sizes.

Page 25 of 62

Design Overview
SANDstorm has 4 hashes in its family:

 SANDstorm-256 and -224 Hash operates on 512 bit blocks, and the algorithm

definition is based on operations using 64 bit words.
 SANDstorm-512 and -384 Hash operates on 1024 bit blocks, and the algorithm is

based on operations using 128 bit words.

There are four main components in the design

 Padding
 Mode
 Chaining
 Compression

Each of these will be explained in subsequent sections.

All the hashes use a mode that is a modified and truncated tree with a finalization step.
Within the mode, the Merkle-Damgard chaining has a novel structure that is notably
different from the MD5 and SHA chaining. The compression function is particularly
efficient.

Notation and Conventions
Because the SANDstorm family has four hashes and two block sizes, we will use a
shorthand notation in discussion of the algorithms. For example, “a 512(1024) bit block”
means “a 512 bit block for SANDstorm-224 and SANDstorm-256 (or a 1024-bit block
for SANDstorm-384 and SANDstorm-512)”. A similar interpretation applies to “a
64(128) bit word”. Section 4 below discusses other notations that apply to the two hash
sets.

The following section on notation and conventions was taken almost verbatim from
various portions of FIPS PUB 180-3 dated October 2008; it can be found at:
http://csrc.nist.gov/publications/PubsFIPS.html

We have used the same notational conventions as in the FIPS documents. There are a few
rearrangements and deletions of the FIPS text and also a few additions.

Symbols
The following symbols are used in the SANDstorm algorithm specifications, and each
operates on w-bit words:

& Bitwise AND operation
 Bitwise XOR (“exclusive-OR”) operation
¬ Bitwise complement operation
+ Addition modulo 2w
* Multiplication modulo 2w
| Concatenation Operation

Page 26 of 62

<< Left-shift operation, where x << n is obtained by discarding the left-most n bits of
the word x and then padding the result with n zeroes on the right.

>> Right-shift operation, where x >> n is obtained by discarding the rightmost
n bits of the word x and then padding the result with n zeroes on the left.

ROTLn(x)
The rotate left (circular left shift) operation where x is a w-bit word and n is an
integer with 0 ≤ n < w, is defined by ROTLn(x) = (x << n)  (x >> w - n). Thus,
ROTLn(x) is equivalent to a circular shift (rotation) of x by n positions to the left.

Bit Strings and Integers
The following terminology related to bit strings and integers will be used.
1. A hex digit is an element of the set {0, 1,…, 9, a,…, f}. A hex digit is the
representation of a 4-bit string. For example, the hex digit “7” represents the 4-bit string
“0111”, and the hex digit “a” represents the 4-bit string “1010”.

2. A word is a w-bit string that may be represented as a sequence of hex digits. To
convert a word to hex digits, each 4-bit string is converted to its hex digit equivalent, as
described in (1) above. For example, the 32-bit string

1010 0001 0000 0011 1111 1110 0010 0011

can be expressed as “a103fe23”, and the 64-bit string

1010 0001 0000 0011 1111 1110 0010 0011
0011 0010 1110 1111 0011 0000 0001 1010

can be expressed as “a103fe2332ef301a”.

3. An integer between 0 and 232-1 inclusive may be represented as a 32-bit word. The
least significant four bits of the integer are represented by the right-most hex digit of the
word representation. For example, the integer 291 = 28 + 25 + 21 + 20 = 256+32+2+1 is
represented by the hex word 00000123.

The same holds true for an integer between 0 and 264-1 inclusive, which may be
represented as a 64-bit word. Similarly for other sized integers as well.

A SANDstorm implementation usually operates on 64(128) bit words, but occasionally
the words are broken into half-size pieces. For example, for a 64 bit word, if Z is an
integer, 0 ≤ Z < 264, then Z = 232X + Y, where 0 ≤ X < 232 and 0 ≤ Y < 232.

4. For the SANDstorm family of hash algorithms, the size of the message block depends
on the algorithm.
a) For SANDstorm-224 and SANDstorm-256, each message block has 512 bits, which
are represented as a sequence of eight 64-bit words. Thus, a 512 bit data block D may be
represented as D = (d0, d1, d2, d3, d4, d5, d6, d7) where the di are 64 bit words. In the

Page 27 of 62

description below, 256 bit quantities are passed from one functional block to another and
are represented as four 64 bit words, e.g. E = (e0, e1, e2, e3).
b) For SANDstorm-384 and SANDstorm-512, each message block has 1024 bits, which
are represented as a sequence of eight 128 bit words. Similarly, a 1024 bit data block can
be represented as D = (d0, d1, d2, d3, d4, d5, d6, d7) where the di are 128 bits in length.

2. The SANDstorm Padding and Message Length
The message padding for SANDstorm is simple. A message is padded by appending a 1-
bit and then appending 0-bits until the result length is a multiple of the block length.

Let B be the block length and  be the length in bits (before padding) of the message to
be hashed. If  is a multiple of B, then a block consisting of a 1-bit followed by B-1 0-
bits will be appended to the message.

The message length  must be passed into the mode for use in the finishing step.

All members of the SANDstorm hash family support message lengths of 0 ≤  < 2128.

3. The SANDstorm Mode
Many hash functions, such as SHA, use a mode based on the Merkle-Damgard chaining
construction. The chaining is deliberately sequential, and it does not benefit from parallel
or pipelined implementations. Tree-based block combining is highly parallelizable, but its
drawback is that the message size determines the depth of the tree and the amount of
storage. This variability makes the implementation of tree based hashing challenging.
Also, latency issues may arise with a full tree-based approach.

The SANDstorm mode is a truncated tree with bounded depth and storage. It permits
efficient parallel implementations. The amount of intermediate storage is at most 10
blocks. For very long messages the algorithm could take advantage of up to 1000
processing elements with near linear speed-up.

Each level of the tree uses the SANDstorm chaining (described below) to build the tree.
The mode also provides for a finishing step as well as an “early-out” option to speed-up
small message processing.

Page 28 of 62

Figure 1: SANDstorm Mode. The red arrow always denotes the output of Level 0. The rectangles with
solid outlines represent functions.

SANDstorm Mode Description
In the following discussion, the reader should assume that the input message has been
padded and parsed into an integral number of 512(1024)-bit blocks.

The SANDstorm mode has five different levels; the number of levels actually used varies
with the message length. A level is a function that takes one or more blocks (or
superblocks, defined below) as input and produces a list of blocks as output.

 Level 0 and Level 4 are completed no matter the length of the input message, and

each takes a single block as input. The output from Level 0 is used in Levels 1, 2,
and 3.

 Use of Levels 1, 2, and 3 depends on the length of the message. The following
conditions define the “early out” mechanism:

o If the input message after padding has only one block, skip Levels 1, 2, and 3
o If the output of Level 1 has only block, skip Levels 2 and 3
o If the output of Level 2 has only one block, skip Level 3

NB, if an application can guarantee that its messages will always be less than 12
blocks in length, its implementation of SANDstorm need not include code for Level 2
or Level 3. Similarly, Level 3 can be eliminated if all messages are less than 1002
blocks in length.

 Level 4 is a finishing step.

Superblocks. Levels 1, 2 and 3 logically operate on block lists of length 10, 100, or
unlimited, respectively. We call these “superblocks”. If the input to a chaining

Level 0

Level 1

1 Block Initialization Step

10 Blocks 10 Blocks 10 Blocks 10 Blocks

Level 2 100 Blocks 100 Blocks

Level 3 Number of blocks/1000

Level 4 1 Block Finishing Step

Hash Output

… … …

… ……

Page 29 of 62

function is a quantity N consisting of n ordered blocks N1, …, Nn, and if the superblock
size parameter for that level is k, then we define the superblock Ti as a list

 Ti = { Nk(i-1)+j } 1  i  n/k, 1  j < k

For all blocks except possibly the last, the superblock consists of exactly k of the Ni
blocks. For the last superblock, if n is not a multiple of k, then j runs from 1 to (n mod k).

Within a superblock, the chaining function operates on the input blocks. The chaining
function computes 4 state variables for each block and carries these values forward for
the next block. After the last block is processed, the state variables are used to compute
the output value for the superblock.

Chaining Function. Within the chaining function, there are 4 internal state variables
that are the intermediate values of the generalized Merkle-Damgard chain. For each block
position i within a super block and for 1  j  4 we have chain(j, i) as the chaining value.
Below we define initialization constants and for 1  j  4 we define cj = chain(j, 0).
Finally if the superblock is k long we have the output of the superblock processing is the
four chaining values chain(j, k) for each 1  j  4. This notation assumes that the
superblock in question is known. In reality each superblock is a function of level and
position. To more fully show the superblock input we set, for a given superblock, Ti, we
set, for 1  j  4, chn(j, Ti) to be the output of the superblock. Finally, the output of the
superblock is processed to be fed into the next level of the tree.

Chn(Ti, IV)  (chn (1, Ti)  chn (3, Ti) | chn (2, Ti)  chn (4, Ti))

IV are the initialization constants cj mentioned above. The IV is a function of level and
the input message block M0. The level initialization values are described in the
“Initialization Constants” section and Figure 5. The level transition function Chn converts
4 256(512) bit values into a single data block 512(1024) bits in length.

Levels. Up to five levels of processing are used, depending on the length of the
message. Longer messages use more levels. Levels 1, 2, and 3 can begin their
processing as soon as data for that level is available.

Let M = M0, M1,…, Mm be the m+1 blocks of the input message after padding and
parsing. Each Mi is 512(1024) bits.

 If m = 0, then the flow of control uses only two levels. Level 0 processes M0 and
passes the output to the finishing step, Level 4. This bypass of Levels 1, 2, and 3 is the
most efficient case of “early out”.
 If m > 0, then Level 0 and Level 1 together partially compress M, creating an n-block
quantity N = { Ni=1,n } where the Ni are 512(1024) bits in length. The superblock size for
level 1 is 10; the superblocks for Level 1 are derived from M. If m is not an integer
multiple of 10, then Nn is produced by SANDstorm chaining the last (m modulo 10)
blocks of M.

Page 30 of 62

Each Ni is the result of applying SANDstorm chaining (“Chn”) to superblock Ti .
The output of Chn is a block formed by the concatenation of two bitstrings:

Ni = (chn (1, Ti)  chn (3, Ti) | chn (2, Ti)  chn (4, Ti))

 If n = 1, then N1 is fed directly into the finishing step of Level 4.

 If n>1, then the blocklist N is partially compressed in Level 2 to produce P = { Pi=1,p }
where again the Pi are 512(1024) bits in length. The superblock size parameter for level
2 is 100. Thus, 100 blocks of N are used to produce one superblock of P. If n is not an
integer multiple of 100, then Pp is produced by SANDstorm chaining the last
(n modulo 100) blocks of N. Here the superblocks are composed of the elements of N.

Pi = (chn (1, Ti)  chn (3, Ti) | chn (2, Ti)  chn (4, Ti))

 If p = 1, then P1 is fed into the finishing step of Level 4. Otherwise, the message P is
fed into Level 3. This level does not use superblock grouping. It uses the chaining
function on each ordinary input block in turn. The output of the level is the single block
formed by the operation of Chn as above. That output is the input to the Level 4 finishing
step.

Message Digest. For SANDstorm hash-224, the final message digest is the XOR of all
four 256 bit string outputs of Level 4, with the leftmost 224 bits retained.

For SANDstorm hash-256, the final message digest is the XOR of all four 256 bit string
outputs of Level 4.

For SANDstorm hash-384, the final message digest is the XOR of all four 512 bit string
outputs of Level 4, with the leftmost 384 bits retained.

For SANDstorm hash-512 the final message digest is the XOR of all four 512 bit string
outputs of the Level 4.

SANDstorm Mode Performance
Levels 1 and 2 can benefit from parallel processing architectures. The levels have
Merkle-Damgard chaining within the superblocks of size 10 and 100, respectively, but
the superblocks themselves can be processed independently. For large messages, this
allows a speed up to a factor of 1000 through mode parallelization. Level 3 is processed
sequentially, but accounts for 1/1000 of the total work.

There is a good deal of flexibility in the construction, and larger messages can take
advantage of parallel computation. For example, if a message is larger than 12 blocks,
there is an opportunity to process two Level 1 superblocks of size 10, independently,
which would approximately halve the computation time. For messages greater than

Page 31 of 62

1002 blocks in length, implementers can take advantage of the parallelization in Level 2,
with consequent speed-ups approaching a factor of 1000.

On the other extreme, if one does not have the resources to exploit the parallelizability of
the SANDstorm mode, then one pays a penalty of having to process the second and third
levels of the tree. That then implies a slowdown of a factor of (1+1/10+1/(1000)) over
straight sequential processing of the message blocks. That is less than an 11% slowdown
for long messages.

Because of the “early out” mechanism for short messages, the processing cost of the
levels of the tree, including the impact of the finishing step, is mitigated for shorter
messages. A message of length 0 ≤  < 512(1024) bits will pad out to exactly one block.
After Level 0 processing, the output will pass directly to Level 4. Only two
compressions are needed to process a message of that size. A raw input message that is
between 1≤ k ≤ 11 blocks long would require k+1 compressions including the finishing
step.

The second level of the tree is not invoked unless the padded input message is at least 12
blocks in length, requiring 14 compressions. Similarly, Level 3 is not invoked until the
padded input message is at least 1002 blocks long.

There is some latency associated with the last block to be processed. When the final
message block is received, that block must be processed as it propagates through the
levels of the tree. The latency depends on the length of the input message and ranges
from two to four compression operations. For messages less than twelve blocks in length
the final message block must be run through two compression functions. For messages of
length greater than 1001 blocks, four levels must be traversed.

The SANDstorm mode can benefit from precomputation. A prerequisite for
precomputation is a constant initial raw message block M0. The superblocks, especially in
Level 1, may be computed independently of the other superblocks. This means that in
cases where large messages need to be hashed many times with only small changes
between hashings, then much of the hashing work associated with the unchanged portion
of the message may be computed and stored. Only the change-affected superblocks in
Level 1 and Level 2 need to be recomputed. Of course this may require additional
storage. If the places of change are known and fixed in particular superblocks on Level 1,
then most of the rest of the message may be processed down to Level 3. This would
require the storage of a new message of size roughly m/1000 blocks in length and would
see a speed up of nearly a 1000 over simple serial processing. Further, the Level 3
computation could process up to the changed position, reducing the amount of needed
storage and computation.

Choice of Superblock Size
The design uses architectural choices that are the result of trade-offs between
performance and resources. We want adopters of the hash to see performance benefits
commensurate with the resources they can afford. Our choices reflect a reasonable

Page 32 of 62

compromise between speed on commodity hardware, speed on specialized parallel
hardware, and usability on low-end embedded processors. The design choices are
reflected in:

 Number of levels in the tree. Each level uses intermediate storage; too many levels

will be a burden on machines with limited storage. The latency is directly related to
the number of levels.

 The superblock sizes for Levels 1 and 2. The product of the superblock sizes
determines the maximum advantage obtained with parallel processing. The
individual superblock sizes determine the minimum processing delay for a message.

4. The SANDstorm Chaining
In the usual iterative Merkle-Damgard construction, the chaining variable is a function of
the previous chaining value and the i-th message block, i.e., hi = H(hi-1,Mi). Almost all
implementations use XOR for combining the two inputs to H, such as setting hi = H(hi-1
 Mi). This construction is antithetical to parallelization and/or pipelining and is why we
chose a more general iterative form.

Another of our design goals was to have a larger amount of internal state than is in the
SHA family in order to add resistance to various types of attacks that exploit the size of
the internal state, such as, long messages, multi-collisions, and herding, etc,. However
there is a direct correlation between performance and the amount of state that is operated
on during the course of the compression function.

Our construction uses an iteration on 5 variables that allows us parallelize within the
compression of the superblocks and to carry forward more internal state while retaining
efficiency.

SANDstorm Compression Description
Suppose that M = M0,M1,…,Mm is the message to be hashed. Then M is operated on in
the SANDstorm truncated tree mode in levels to produce successively more compressed
data. The data will be operated on in superblocks of a given size as explained in the
section describing the SANDstorm mode. Here we describe the data flows at the
superblock level and show how to pass data from one level of the tree to the next.

Level 0
The input to Level 0 is the first 512(1024) bits of the padded and parsed message.

The compression function H has 5 rounds Ri, i=0,1,2,3,4. Each of those rounds takes
input from a bank of pre-defined constants Ar,i (defined in the compression function
definitions below),and from the message schedule. The input constants C0, C1, C2, C3,
and C4 for each hash in the SANDstorm family are defined below.

Page 33 of 62

The output of Level 0 is the four 256(512)-bit strings S1, S2, S3, and S4. These four values
are subsequently used as inputs for each superblock compression on levels 1, 2, and 3.

If the input message is one block long, S1, S2, S3, and S4, are combined into an input
block for Level 4:

Level 4 Input = (S1  S3 | S2  S4)

R0

R1

R2

R3

R4

C1

C2

C0

C3

C4

S4

S3

S2

S1

MS(4, M0)

MS(3, M0)

MS(2, M0)

MS(1, M0)

MS(0,M0)

R0

R1

R2

R3

R4

C1

C2

C0

C3

C4

S4

S3

S2

S1

MS(4, M0)MS(4, M0)

MS(3, M0)MS(3, M0)

MS(2, M0)MS(2, M0)

MS(1, M0)MS(1, M0)

MS(0,M0)MS(0,M0)

Figure 2: Level 0

In figure 2,
 Ri=0,1,2,3,4 are the round functions.
 MS(r, M0) is the message schedule with a 256(512) bit output, which is a function of

the round number and data block M0.
R and MS will be explained in detail in the compression function section.

The input into R0 is C0  MS(0,M0)
For 0<i≤4 the input to Ri is Ri-1  Ci  MS(i,M0)

For 1 ≤ i ≤ 3 the output Si = Ri  Ci+1
The output S4 = R4

Page 34 of 62

Note that in the description of Level 0 we have used M0 as an input for the message
schedule. Level 0 always operates only on the first message block M0. No other level
does this. For the other levels, we use D in place of M because the blocks may be derived
from computations on input message blocks.

Levels 1, 2, and 3
Levels 1, 2, and 3 chain multiple blocks of data together. These blocks are the sub-
blocks of a superblock. Given a sequence of j 512(1024) bit data blocks D1,D2, …,Dj we
process these j blocks sequentially. Each data block is processed as in Level 0 except that
the four 256(512)-bit output strings act as the input values ci for the next block. For
instance, the output of round three in the compression function for block i will be part of
the input for round three in block i+1.

The following graphic illustrates the state transition from one block to another.

R0

R1

R2

R3

R4

c1

c2

c0

c3

c4

MS(4, D1)

MS(3, D1)

MS(2, D1)

MS(1,D1)

M(0,1)

R0

R1

R2

R3

R4

s4

s3

s2

s1

MS(4, D2)

MS(3, D2)

MS(2, D2)

MS(1,D2)

MS(0, D2)

c0

R0

R1

R2

R3

R4

c1

c2

c0

c3

c4

MS(4, D1)MS(4, D1)

MS(3, D1)MS(3, D1)

MS(2, D1)MS(2, D1)

MS(1,D1)MS(1,D1)

M(0,1)M(0,1)

R0

R1

R2

R3

R4

s4

s3

s2

s1

MS(4, D2)MS(4, D2)

MS(3, D2)MS(3, D2)

MS(2, D2)MS(2, D2)

MS(1,D2)MS(1,D2)

MS(0, D2)MS(0, D2)

c0

Figure 3: Two Block Superblock

The illustration uses a superblock of size 2. Each arrow represents 256(512) bits. When
an arrow joins another, the combiner operation is XOR.

Page 35 of 62

To extend this method to larger superblocks, let R(i,k) denote the output of round i at
block position k. Then,

 For 1≤ i ≤ 4 and 1 ≤ k ≤ j the input into round i at block position k is:
R(i-1,k)  chain(i,k-1)  MS(i,Dk)

 We also have for 1 ≤ i ≤ 3 and 1 ≤ k ≤ j chain(i,k) = R(i-1,k)  chain(i+1,k-1)
For 1 ≤ k ≤ j chain(4,k) = R(4,k).

This arrangement has two interesting facets. (1) It’s pipeline friendly. (2) The output of
round 4 affects the input of round 4 for the next block, and the input of round 3 for the
following blocks, and the input of rounds 2 and 1 of later blocks.

Note that superblocks of many sizes are possible. In Level 1, the size is bounded by 10.
In Level 2 the size is bounded by 100, and in Level 3 by roughly m/1000.

Levels 1 and 2 have initialization values c0, c1, c2, c3, and c4. Each of these values is a
function of the Level 0 input constant Ci, the Level 0 output string Si , the level, and the
superblock number i. Level 3 is similar, but the initialization does not depend on the
superblock number. The formulas for the ci are given below.

At the end of the superblock compression the four 256(512)-bit output values of rounds 1
through 4 (s1, s2, s3, and s4) are combined to produce the 512(1024) bit input value for
the next level of the tree: (s1 s3 | s2 s4)

Level 4
The finishing step, Level 4, is similar to Level 0. It operates on a single block of data of
length 512(1024) bits.

Page 36 of 62

Figure 4: Level 4

The input values are defined below, and they are functions of the prepadded message bit
length, . The input message for Level 4 is the single block output D = (s5,s6) from one of
the previous 4 levels, depending on the message length as explained in the SANDstorm
mode section. The final message digest of the message M is the XOR of the outputs from
rounds 1 through 4:

SANDstormHash(M) = out1  out2  out3  out4

Initialization Constants
For each level of the SANDstorm mode, the values c0, c1, …, c4 are a function of C0, C1,
…, C4 and S1, S2, S3, and S4. For Level 1 and Level 2 the constants are also a function of
the block position. Since there is only one superblock on Level 3, that level does not
include a superblock number.

In the following, we assume the input is a padded and parsed message
 M = M0,M1,…,Mm.

For SANDstorm-256 and -224, Level 1 processes 10 blocks at a time. For superblock i,
represent the index as i as a 128 bit number, and i= (i,i) is 256 bits in length. For Level
1, let k be the smallest integer greater than m/10, then the counter has values 1 ≤ i ≤ k.

R0

R1

R2

R3

R4

c1

c2

c0

c3

c4

out4

out3

out2

out1

MS(4,D)

MS(3,D)

MS(2,D)

MS(1,D)

MS(0 D)

Page 37 of 62

SANDstorm-512 and -384 also have a message length bounded by 2128. The 128 bit
counter i is viewed as a 256 bit integer so that i = (i,i) is 512 bits in length.

Level 2 processes the outputs of Level 1 in superblocks of size 100. Each data block in
Level 2 is the result of SANDstorm chaining of 10 input messages blocks. So each
superblock in Level 2 is a function of message blocks M(i-1)*1000 +1, M(i-1)*1000 +2,…, and
Mi*1000. Set i = (i, i). For Level 2, let k be the smallest integer greater than m/1000, then
the counter is in the range 1 ≤ i ≤ k.

As above, for SANDstorm-512 and -384 we have that i = (i,i) is 512 bits in length.

For SANDstorm-256 and -224 let c and d be defined as the first 64 bits of the fractional
part of the fifth root of 5 and 7 respectively. Represented in hexadecimal notation:
c = 6135f68d4c0cbb6f
d = 79cc45195cf5b7a4
Let  = (0, 0, 0, c) and  = (0, 0, 0, d) be two 256 bit strings.

For SANDstorm-512 and -384 let c and d be defined as the first 128 bits of the fractional
part of the fifth root of 5 and 7 respectively. Represented in hexadecimal notation:
c = 6135f68d4c0cbb6fb43b47a245778989
d = 79cc45195cf5b7a4aec4e7496801dbb9
Let  = (0, 0, 0, c) and  = (0, 0, 0, d) be two 512 bit strings.

The message length, before padding, , in bits, is included in Level 4. Let  = (¬,),
which is viewed as a 256(512) bit string.

 Level 0 Level 1 Level 2 Level 3 Level 4

c0 C0 C0  S4
 i

C0  S4  
 i

C0  S4   C0  


c1 C1 C1  S1
 i

C1  S1 
 i

C1  S1   C1  


c2 C2 C2  S2
 i

C2  S2  
 i

C2  S2   C2  


c3 C3 C3  S3
 i

C3  S3  
 i

C3  S3   C3  


c4 C4 C4  S4
 i

C4  S4  
 i

C4  S4   C4  


Figure 5: Initialization Values

C0, C1, …, C4 each are 256(512) bit words comprised of the SHA initialization constants.
We denote those constants as H0, H1, H2, H3, H4, H5, H6, H7.

C0 = (H0, H1, H2, H3, H4, H5, H6, H7)
C1 = (H1, H2, H3, H4, H5, H6, H7, H0)
C2 = (H2, H3, H4, H5, H6, H7, H0, H1)

Page 38 of 62

C3 = (H3, H4, H5, H6, H7, H0, H1, H2)
C4 = (H4, H5, H6, H7, H0, H1, H2, H3)

The following are the initial values for SHA-224, which are given in hexadecimal. These
are used to create the Ci for SANDstorm-224. These are the low 32 bits of the constants
for SHA-384 (see below).

H0 = c1059ed8
H1 = 367cd507
H2 = 3070dd17
H3 = f70e5939
H4 = ffc00b31
H5 = 68581511
H6 = 64f98fa7
H7 = befa4fa4

The following are the initial values for SHA256, which are given in hexadecimal, and
which are obtained by taking the first 32 bits of the fractional part of the square root of
the first eight prime numbers. These are used to create the Ci for SANDstorm-256.

H0 = 6a09e667
H1 = bb67ae85
H2 = 3c6ef372
H3 = a54ff53a
H4 = 510e527f
H5 = 9b05688c
H6 = 1f83d9ab
H7 = 5be0cd19

The following are the initial values for SHA-384, which are given in hexadecimal. These
words were obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the ninth through sixteenth prime numbers. These are used to create the Ci for
SANDstorm-384.

H0 = cbbb9d5dc1059ed8
H1 = 629a292a367cd507
H2 = 9159015a3070dd17
H3 = 152fecd8f70e5939
H4 = 67332667ffc00b31
H5 = 8eb44a8768581511
H6 = db0c2e0d64f98fa7
H7 = 47b5481dbefa4fa4

Page 39 of 62

The following are the initial values for SHA-512, which are given in hexadecimal. These
words were obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the first eight prime numbers. These are used to create the Ci for SANDstorm-
512

H0 = 6a09e667f3bcc908
H1 = bb67ae8584caa73b
H2 = 3c6ef372fe94f82b
H3 = a54ff53a5f1d36f1
H4 = 510e527fade682d1
H5 = 9b05688c2b3e6c1f
H6 = 1f83d9abfb41bd6b
H7 = 5be0cd19137e2179

Parameters and Performance
In the SANDstorm chaining, if each message or data block is processed sequentially, as
may happen in software, then the throughput associated with SANDstorm chaining in the
superblocks is comparable to a standard Merkle-Damgard hash. However, if one has
sufficient resources available, and can take advantage of the connections between rounds,
pipelining can speed-up the computation. For example, each round might be a separate
stage of the pipeline. That pipeline will emit a result as often as the slowest round
completes.

For the SANDstorm compression function, about 60% of the work is done in the message
schedule, which can be parallelized and pipelined, so if the resources are available, a
factor of 7 increase in speed over sequential processing is possible. These speed ups are
due to parallelization and do not include benefits that may come from clever
implementations.

5. The SANDstorm Compression Function
The SANDstorm compression function H has two main components: the round function
and the message schedule.

 The SANDstorm round function R is a one-to-one function of 256(512) bits

organized as four 64(128) bit words. R has two different sections, one more algebraic
and the other more logical in nature.

 The SANDstorm message schedule operates on eight 64(128) bit words in a one-to-

one fashion.

SANDstorm-256 and -224 Compression Function Description

Page 40 of 62

General Functions
Let Z=X*232+Y be a 64 bit word, where Y and Z are 32 bits each.
Define functions:
 ROTLn(Z) is a left rotation of Z by n positions
 F(Z) = X2+Y2 modulo 264
 G(Z) = X2+Y2+ROTL32((X+a)(Y+b)) modulo 264

The additions X+a and Y+b are taken modulo 232 before the product (X+a)(Y+b)
is computed. The product is viewed as a 64 bit quantity and so the rotation is a
swap of the high and low order halves. The constants a and b are defined below.

 Ch(A,B,C) = (A&B)(¬A&C)
 SB(Z) = Z except that low order byte, z, of Z is replaced with the AES sbox(z)

The constants a and b are defined as the first 32 bits of the fractional part of the fifth root
of 2 and 3 respectively, with the high and low bits forced to one. Represented in
hexadecimal notation, they are:
a = a611186b
b = bee8390d

BitMix Function
The BitMix function operates at the bit level on four 64 bit state words to produce four 64
bit state words. There are four 64 bit constants that select separate bit positions of a 64 bit
word. Given in hexadecimal, these are:
J8 = 8888888888888888
J4 = 4444444444444444
J2 = 2222222222222222
J1 = 1111111111111111

If A, B, C, D are all 64 bits in length, then (A’, B’, C’, D’) = BitMix(A, B, C, D), where
A’ = (J8 & A)  (J4 & B)  (J2 & C)  (J1 & D)
B’ = (J8 & B)  (J4 & C)  (J2 & D)  (J1 & A)
C’ = (J8 & C)  (J4 & D)  (J2 & A)  (J1 & B)
D’ = (J8 & D)  (J4 & A)  (J2 & B)  (J1 & C)

The BitMix function can be viewed as a permutation of the bits in each column of the 64-
by-4 (128-by-4) bit matrix formed by A, B, C, D.

Round Function
The round function R consists of two parts. The first is a mixing of the four state words
with, primarily an integer multiplication. The second is a bit mixing that helps destroy the
algebraic properties associated with the multiplication.

Page 41 of 62

Figure 6: Round Function

Round Function
The SANDstorm-224 and -256 round function is a one-to-one function operating on four
64 bit words and producing four 64 bit words.

For SANDstorm-224 and SANDstorm-256, for each round do the following:
For i from 0 to 3

Set Wi = ROTL25(SB ([Wi + F(Wi-1) + Ch(Wi-1,Wi-2,Wi-3) + A(r,i)] modulo 264))
Set (W0, W1, W2, W3) = BitMix(W0, W1, W2, W3)

The A(r,i) are round constants defined below, where r is the round number and i is the
word position number. In the For loop, the subscripts are taken modulo 4, and the
computations of Wi are assumed to be iterative, so that as each value is updated the new
value is used to update subsequent values. As mentioned earlier, the BitMix function can
operate on the words in parallel.

Message Schedule
The message schedule receives a 512 bit block of data viewed as eight 64 bit words.
Given input data block D = (d0, d1, …, d7) the eight words are expanded to a total of 33
64 bit words.

For i from 8 to 32

Set di = ROTL27 (SB([di-8 + G(di-1)+Ch(di-1,di-2,di-3) + di-4 + Bi] modulo 264))

In the SANDstorm chaining description we used the notation MS(r,D) to denote the
contribution from the message schedule for round r as operated on data block D.
MS(0,D) =

BitMix(ROTL19 (d0)  d4, ROTL19 (d1)  d5, ROTL19 (d2)  d6, ROTL19 (d3)  d7)
MS(1,D) = (d14, d15, d16, d17)
MS(2,D) = (d19, d20, d21, d22)
MS(3,D) = (d24, d25, d26, d27)
MS(4,D) = (d29, d30, d31, d32)

Round Function

W0 W1 W2 W3

W0 W1 W2 W3

Page 42 of 62

Constants
SHA-224 and SHA-256 use the same sequence of sixty-four constant 32-bit words. These
words represent the first thirty-two bits of the fractional parts of the cube roots of the first
sixty-four prime numbers. SANDstorm uses the first 50 of the SHA constants, K0, K1, …,
K49. In hexadecimal, these 50 constant words are (from left to right)

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174
e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da
983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85
a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08

The constants Bi in the message schedule are 64 bits in length and are formed by
concatenating the SHA-256 constants, that is:
For i from 8 to 32

Set j = i-8
Set Bi = K2j*232

 + K2*j+1

There are 20 constants A(r,i). They are equal to the Bi but are in reverse order, that is:
For 0 ≤ r ≤ 4 and 0 ≤ i ≤ 3

Set A(r,i) = B32-(4*r+i)

SANDstorm-512 and -384 Compression Function Description
The SANDstorm-512 and -384 round function is a one-to-one function operating on four
128 bit words and producing four 128 bit words.

General Functions
Let Z = X*264+Y be a 128 bit word, where Y and Z are 64 bits each.
Define functions:
 ROTLn(Z) is a left rotation of Z by n positions
 F(Z) = X2+Y2 modulo 2128
 G(Z) = [X2+Y2+ROTL64((X+a)(Y+b))] modulo 2128

o The additions Y+a and Z+b are taken modulo 264 before the product
(X+a)(Y+b) is computed. The product is viewed as a 128 bit quantity and so
the rotation is a swap of the high and low order halves. The constants a and b
are defined below.

 Ch(A,B,C) = (A&B)(¬A&C)
 SB(Z) = Z except that low order byte, z, of Z is replaced with the AES sbox(z)

The constants a and b are defined as the first 64 bits of the fractional part of the fifth root
of 2 and 3 respectively, with the high and low bits forced to one. Represented in
hexadecimal they are:

a = a611186bae67496b

Page 43 of 62

b = bee8390d43955aed

BitMix Function
The bit mix function operates at the bit level on four 128 bit state words to produce four
128 bit state words. There are four 128 bit constants that select separate bit positions of a
128 bit word. Given in hexadecimal, these are:
J8 = 88888888888888888888888888888888
J4 = 44444444444444444444444444444444
J2 = 22222222222222222222222222222222
J1 = 11111111111111111111111111111111

If A, B, C, D are all 128 bits in length, then (A’, B’, C’, D’)=BitMix(A, B, C, D), where
A’ = (J8 & A)  (J4 & B)  (J2 & C)  (J1 & D)
B’ = (J8 & B)  (J4 & C)  (J2 & D)  (J1 & A)
C’ = (J8 & C)  (J4 & D)  (J2 & A)  (J1 & B)
D’ = (J8 & D)  (J4 & A)  (J2 & B)  (J1 & C)

Round Function
For each round do the following:
For i from 0 to 3

Set Wi = ROTL57(SB ([Wi + F(Wi-1) + Ch(Wi-1,Wi-2,Wi-3) + A(r,i)] modulo 2128))
Set (W0, W1, W2, W3) = BitMix(W0, W1, W2, W3)

The A(r,i) are round constants defined below, where r is the round number and i is the
word position number. In the For loop the subscripts are taken modulo 4 and the
computations of Wi are assumed to be iterative, so that as each value is updated the new
value is used to update subsequent values. As mentioned earlier, the BitMix function
operates on the words in parallel.

The effect of the tunable security parameter is to repeat Round 4 a specified number of
extra times. The default is to execute Round 4 exactly once with no extra repetitions.
The repetitions re-execute the round function formula above with the round variable fixed
at r=4, followed by the BitMix.

Message Schedule
The message schedule receives a 1024 bit block of data viewed as eight 128 bit words.
Given input data block D = (d0, d1, …, d7) the eight words are expanded to a total of 33
128 bit words.

For i from 8 to 32

Set di = ROTL59 (SB([di-8 + G(di-1)+Ch(di-1,di-2,di-3) + di-4 +Bi] modulo 2128))

In the SANDstorm chaining description we used the notation MS(r,D) to denote the
contribution from the message schedule for round r as operated on data block D.
MS(0,D) =

Page 44 of 62

BitMix(ROTL37 (d0)  d4, ROTL37 (d1)  d5, ROTL37 (d2)  d6, ROTL37 (d3)  d7)
MS(1,D) = (d14, d15, d16, d17)
MS(2,D) = (d19, d20, d21, d22)
MS(3,D) = (d24, d25, d27, d27)
MS(4,D) = (d29, d30, d31, d32)

Constants
SHA-384 and SHA-512 use the same sequence of eighty constant 64-bit words. These
words represent the first sixty-four bits of the fractional parts of the cube roots of the first
eighty prime numbers. SANDstorm-512 and -384 will use 50 of those constants, K0, K1,
…, K49. In hexadecimal, these constant words are (from left to right)

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc
3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118
d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2
72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694
e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65
2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5
983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4
c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70
27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df
650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b
a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30
d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8
19a4c116b8d2d0c8 1e376c085141ab53

The constants Bi in the message schedule are 128 bits in length and are formed by
concatenating 50 of the the SHA-512 constants, that is:

For i from 8 to 32

Set j = i-8
Set Bi = K2j*264

 + K2*j+1

There are 20 constants A(r,i). They are equal to the Bi but are in reverse order, that is:
For 0 ≤ r ≤ 4 and 0 ≤ i ≤ 4

Set A(r,i) = B32-(4*r+i)

SANDstorm Compression Function Performance
SANDstorm relies on multiplication as a primary mixing agent. On most modern
computers this operation is efficient. Since multiplication inherently does a very good job
of mixing, we don’t need a great number of rounds to accomplish our design goals. Thus
we have a small number of rounds that heavily mix the data. The smaller number of
rounds and relative speed of the individual operations allows for an efficient design.

Page 45 of 62

As mentioned above, the message schedule performs much of the mixing, and it does not
depend on the state variables. That means a large fraction of the work in the compression
function may be accomplished in parallel and/or pipelined processing elements.

By having one round output feed forward as input in the same round of the next block,
the latency associated with the typical Merkle-Damgard construction is reduced to
something more manageable. One must account for the latency of a single round.

There are implementations where one could expand the SHA initialization constants to
create the SANDstorm initialization constants each time a new superblock is created.
This would take a tiny fraction of the time required to compress one block of data.
However, the more reasonable approach in most software applications is to expand the
initialization values and fix them as part of the source code. In this case, there is no time
required before Level 0 processing on the first block can commence.

NIST has asked that submissions demonstrate that the algorithm uses all table values.
The construction of SANDstorm ensures that every block will exercise every value in
every table, with the exception of the sbox.

The sbox table is used 45 times during one block compression (including computation of
the message schedule). A hash of 50 blocks will do 2250 sbox look-ups, averaging 8.8
touches per table entry. The expected number of untouched entries is about 256*e-8.8 =
0.03. It is probable that every table entry is touched at least once.

6. Cutdown and Extension Alternatives
NIST has asked submitters to provide appropriate cutdown functions for analysis and to
provide a method to extend the algorithm to have more strength if deemed necessary.

The simplest cutdown method would be to chop off some number of rounds starting with
round 4. Round 0 is different than the rest and does not make for a good chopping point.
The smallest reasonable place to cut to is right after Round 1. By chopping to Round 1
there would still be a chaining value from previous blocks.

Of course, if the algorithm is cut down to Round 1, the output size is only 256 bits. This
small amount of chaining state necessarily would lose the resistance to multicollisions,
herding, etc.

Chopping other rounds, provided the appropriate chain forward values are kept, would
keep in the spirit of the algorithm. We also assume that if rounds are cut out of one
portion of the algorithm (Level in the mode) that all other compressions, no matter what
level in the mode, will be cut in a similar fashion.

We don’t feel that there is a security risk in changing the predefined superblock sizes.
However, we do not recommend using variable block sizes

Page 46 of 62

We don’t believe it is necessary to increase the strength of the algorithm, but since NIST
requested it, we provide a couple of possibilities.

Option 1:
We may post process the chaining values as they are produced. The amount of state being
carried from one block position to the next is significant, so additional processing of one
or more of the chaining values may give the desired enhancement. In particular, the
information as output from Round 4 is at least the size of the final message digest.
Therefore processing that information further may be a simple and straightforward way to
implement and provide whatever security enhancement is needed.

For instance, Round 4 may be repeated a specified number of times. That is, we take the
output of Round 4 and run it through the round function again. This does not include
additional stepping of the message schedule, it just requires repetition of the For loop and
the BitMix. Since all outputs are combined and eventually fed into Level 4, the finishing
step provides additional strength. We have implemented this option as a #define in the
reference implementation. The parameter should be an even number between 0 and 20;
the default value is 0.

Option 2:
Increase the number of rounds. Extend the message schedule, computing five steps per
round and using four. The round functions can be added on, with the chaining values
linking the last four rounds in the pattern above. There are a number of unused SHA
constants. The Bi and the A(r,i) can be defined appropriately.

This option makes most sense if changes are completed before widespread
implementation. The issue is that the connections between rounds would have to be
changed and the constants reworked to line up with the right rounds. This option may not
be attractive if implemented after the fact.

7. Design Choices
In this section we discuss and elaborate on several design features of the SANDstorm
family.

 The method of padding for the SANDstorm family differs from that of the SHA

family by not appending the length. The SANDstorm family uses a 128 bit length
counter. Appending the length counter would often add an extra block to the
message. Our mode includes superblock numbers in each superblock, and the
finishing step includes the bit length. The finishing step prevents length extension
attacks, and so SANDstorm’s padding is suitable and only rarely requires an extra
block.

 The SANDstorm constants were chosen to be those either used by SHA-256 or
derived in the same fashion. This saves memory space in situations where both SHA
and SANDstorm might be simultaneously implemented. We also favor the SHA
constants because and they are public and the generation method is well-known.

Page 47 of 62

 The constants a and b in the message schedule have high and low bits set to 1. This
ensures a broader set of values as output of the multiplication.

 Squaring and multiplication operations are the workhorses for effecting the bit mixing
in the F and G functions. We use a function that was inspired by 1’s complement
squaring but turns out to be better for mixing. The function
Z2 mod 264-1 has the property that each bit of output is a function of each bit of input,
and thus this is a fairly good mixing agent. The downside to it is that low Hamming
weight words stay low Hamming weight. In particular, a one bit change in a low
weight input has limited effect on the output. The cross term in the function G(Z)=
X2+Y2+ROTL32((X+a)(Y+b)) is designed to force a small change in low weight
inputs to be noticeable. The ROTL32 is just an efficient approximation of what
happens to the cross terms of the square mod 264-1.

 The function F(Z) = X2+Y2 in the round function is an efficient version of G(Z). It
doesn’t mix as well, but we wanted to make sure there was sufficient difference
between the message schedule operations and the round function operations.

 There is an application of the AES sbox in the low order byte of certain words during
the round function and the message schedule. The AES sbox is highly non-linear and
provides excellent mixing for the bits that it acts on. The choice to apply the sbox on
the low order byte was for efficiency’s sake. Our sbox has at position x the value
x  sboxAES(x)
so that we can, with a single xor, replace x with sbox(x). Indexing by any other byte
position would require more operations.
Further, the application of the sbox is not our primary mixing operation; it is there to
defeat differentials in the low order byte position. To propagate small changes an
attack would have to repeatedly avoid the low order byte.
There are 45 applications of the sbox. Each is accompanied by a rotation; there are
two different rotation constants.

 The BitMix function was chosen as a method to break up any algebraic dependencies
that might appear in the round function and cause further separation between the
words in the message schedule.

 The BitMix function depends on each state word within the round. After the BitMix,
each data nibble contains information from each word of the round state. Mixing
operations in the next round will destroy any correlations that may have existed in the
inputs to BitMix.

 The mode was designed specifically so that parallelization of superblock operations
would be possible.

 The structure of the chaining values between rounds has two benefits: careful
management admits some parallelization and pipelining within the round function;
long message attacks are mitigated.

8. Security Discussions
We believe that the SANDstorm family satisfies all of the usual security requirements for
a cryptographic hash. That is, for a w = 224, 256, 384, 512 bit message digest sizes the
work required for function inversion (preimage) is on the order of 2w compressions.

Page 48 of 62

Similarly, the work to find collisions is on the order of 2w/2. In addition, the SANDstorm
mode and chaining structures increase the work required for long message attacks to
equal that of inversions. Removal of long message attacks adds significant resistance to
second preimage attacks. Further, SANDstorm carries 4w bits of state from block to
block. This means other attacks that randomly exploit the internal state and chaining
values will be foiled. Thus, multicollision and herding type attacks will be infeasible.

General Observations
Collisions in the Chaining Values with changes in the message
It is a straightforward exercise to show that if, for any i = 1 to 3, we have that
MS(i,D) = MS(i,D’) and MS(i+1,D) = MS(i+1,D’), then D = D’. The function in the
message schedule was designed to fill the gap in the values pulled out of the schedule.

This means that if the message input (excluding the contribution to round zero) taken in
adjacent pairs is the same, i.e. a collision on the message contribution, then the input
messages have to be the same. This means that if D ≠ D’ there must be a difference in at
least two non-adjacent contributions from the message schedule.

From this we can show that, given a two strings of data blocks that are identical up to one
point, the chaining values cannot collide at the point of difference. In a given superblock,
suppose D and D’ are at block position j and suppose that the two data strings are equal
up to that position. The chaining values coming into position j must be the same.

Now suppose that the chaining values moving into position j+1 are equal. Starting with
the last couple of rounds we have, by assumption, that chain(4,j) = chain’(4,j) and that
chain(3,j) = chain’(3,j). For the first equality to hold, the inputs to Round 4 must be the
same. The inputs are a sum of the chaining variables and the message schedule. For
Round 4 we have that chain(3,j)  MS(4, D) = chain’(3,j)  MS(4,D’), and so MS(4,D)
= MS(4,D’). Similarly by equating chain(2,j) and chain’(2,j) we determine MS(3,D) =
MS(3,D’). From above, this means that D = D’. This means that a change in one data
block will be guaranteed to propagate at least into the next block position.

If the changed block happens to be at the end of a superblock, although the chaining
values will be different, we would like to know that the resulting data feeding into the
next level will be different. We do not have a proof of this.

Message Schedule Security
Given an input data block D = d0, …, d7 the message schedule is a powerful mixing
operation. From d8 through d32, each word is progressively less correlated with the
message input words. The last word with noticeable correlation is d12. Our analysis of
the correlation follows.

Each bit of word d12 depends on each bit of d0, …, d7 except d3. The word d3 enters d11 as
a simple sum of the other words, the low byte mapped with the sbox, and rotated. Deltas

Page 49 of 62

in d3 are passed directly into G(Z) in the computation of d12. Empirically, there are a
couple of weak bits, namely those d3 bits that rotate into bit positions 60-63. We ran a
series of tests comparing one bit deltas in each of the 512 input bits of the d0, …, d7. Bit
position 36 of d3 yields noticeable non-uniform statistics in many bit positions of d12. To
a much lesser degree, so do positions 35, 34, and 33 of d3.

The rotation value of 27 was chosen so that d3 deltas in the low order byte are first
operated on by the sbox and then rotated into bit positions 28-31. Other rotation amounts
where the delta is not operated on by the sbox, but rotates into positions 28-31, will also
give non-uniform results for d12. The rotation value of 27 was chosen to make sure that
the sbox output sits in the top of the low order half of d12.

Even though there a couple of weak bit positions in d3 as viewed from d12, the rest of the
bit positions of d0, …, d7 have a fairly uniform affect on d12 and there are no weak bits
when viewed from d13. As a rough gauge of the mixing ability of the messages schedule,
we have that each bit of di+13, di+14, di+15, is a strong function of each bit of di, …, di+7.
The message schedule steps 25 times and so there are effectively three passes through
input data. Each pass results in an excellent mixing of the previous eight words. Single
bit differentials of random data do not propagate more than a few steps. Once the delta is
operated on by G(X) an avalanche effect occurs.

The SANDstorm message schedule skips the first six values and then outputs four. Each
bit of MS(1,D) = (d14, d15, d16, d17) is a strong function of each bit of D. Similarly, each
bit of MS(2,D) = (d19, d20, d21, d22) is a strong function of each bit of (d6, …, d13)
MS(3,D) = (d24, d25, d27, d27) is a strong function of each bit of (d11, …, d18)
MS(4,D) = (d29, d30, d31, d32) is a strong function of each bit of (d16, …, d23)

Round Function
The round function is not quite as complex as the message schedule and so does not mix
quite as well. However, the multiplications are still very effective. There are fewer
mixing steps in the round functions than in the message schedule. However, the BitMix
function removes the algebraic structures that may arise in the first part of the round
function. Let (W0, W1, W2, W3) be the inputs to the round function, let (W’0, W’1, W’2,
W’3) be what is produced by the For loop in the round function, and let (W”0, W”1, W”2,
W”3) = BitMix(W’0, W’1, W’2, W’3). AlthoughW’0 is not a strong function of all of the
Wi , the strength increases with For loop iterations, and at the end, each bit of W’3 is a
strong function of each bit of the input words, Wi. After the BitMix operation, each byte
of each of the W”i has two bits from each of the W’i , and so we may say that each byte of
W”i is a strong function of each input bit of the Wi. The output of the For loop in the next
round turns each bit of its output into a strong function of each input bit of the previous
round. This means that the output of Round 4 has seen more than two full mixes of
Round 0 inputs and two mixes of Round 1 inputs. Each of the chaining values is a full
mix of the data two rounds previous.

Page 50 of 62

Specific Observations
Second Preimage attacks
One method of generating second preimages with very long messages in a typical
Merkle-Damgard construction is to create a second message that varies from the original
toward the beginning of the message but keeps the rest of the message the same. Past the
changed blocks, the message is the same, so if there is ever a collision in the chaining
values, the collision will persist and the two messages will collide to create a second
preimage.

For a really long message, Level 3 acts like a typical Merkle-Damgard construction so it
will be susceptible to the ills of that construction. That is, long message attacks,
multicollisions and herding are all possible. However these methods of attack require one
to get collisions in the chaining values. SANDstorm’s chaining values carry forward at
least four times as much state as is in the final hashing value. These state bits are not
completely independent, but we will show evidence that our constructions are strong
enough to completely foil certain attacks.

When applying the second preimage attack described above to SANDstorm, we suppose
that for some very large t two data strings D = D1, …, Dt and D’ = D’1, …, D’t that the
strings differ at the beginning of the message and agree after position K. Assume that
holds for K < j-2. Since the message schedule inputs are the same at position j-1 and j, we
have that if we assume that chain(3,j-1) = chain’(3,j-1), then this implies that we
necessarily have that chain(4, j-1) = chain’(4, j-1). If we assume further that chain(1, j) =
chain’(1, j), it is an easy exercise to show that this forces chain(2, j) = chain’(2,j),
chain(3, j) = chain’(3, j), and chain(4, j) = chain’(4, j) to also hold. So we have shown
that if we assume that the two conditions

chain(3,j-1) = chain’(3,j-1) AND chain(1, j) = chain’(1, j)

simultaneously hold, then the chaining values collide in the j-th position and the
messages D and D’ collide.

Now suppose that chain(3,j-1) = chain’(3,j-1) but chain(1, j) ≠ chain’(1, j). Then
chain(4,j-1) = chain’(4,j-1) and chain(2, j) ≠ chain’(2, j). Together these imply
chain(3, j) ≠ chain’(3, j).

Similarly, suppose that chain(1, j) = chain’(1, j) but chain(3,j-1) ≠ chain’(3,j-1). Then
chain(2, j) ≠ chain’(2, j). Both chain(1, j) and chain’(1, j) become inputs for position j+1.
Since they are equal and the other inputs are equal too, then the outputs of Round 1 in
position j+1 must be equal. However, chain(2, j) ≠ chain’(2, j), and both combine with
the outputs of Round 1 to create chain(1, j+1) and chain’(1, j+1) which forces them to be
unequal, thus breaking the linking of the Round 1 chaining variables.

These two cases show that if one pair of chaining values are equal but the other pair are
unequal, then the pair equality is guaranteed to be destroyed. That in turn means that if
chain(3,j-1) = chain’(3,j-1) and chain(1, j) = chain’(1, j), which is enough to force a

Page 51 of 62

collision in the chaining values, those two conditions had to be met simultaneously. So
with digest size w, the resistance is on the order of 2w-k bits for a message of size 2k bits.
When k=w the success rate is on par with finding a single preimage, which requires work
on the order of 2w operations.

Collisions
The previous section indicates that there is little advantage in using long messages to
create collisions. This means that an attack might as well be based on short messages, or
on somehow exploiting the level structure.

The size of data being passed from one level to the next is 2w bits, in other words, twice
that of the final message digest size. Any randomly generated attack to generate
collisions in the superblock output will require work on the order of 2w operations.

Multicollisions may be constructed by choosing messages that differ by a block but
collide, then extending the message with two new blocks to collide starting with the
collided chaining variable. In SANDstorm one may attempt this, but one must either
force the chaining variables to collide or else force a collision in the level data. Both take
work on the order of 2w. This effectively removes the possibility of success. Herding type
attacks are similar and have the same work bounds.

Our expectation is that collisions stemming from manipulation of the mode and chaining
constructs will require on the order of 2w operations. This clearly requires more work
than just finishing the hash and finding collisions, at random, in the message digest
directly.

Length Extension Attacks
The final message digest is related to the chaining values in a complicated way. The
finishing step, the padding and the length field in the finishing step of Level 4 effectively
remove the possibility of doing length extensions.

9. Application USE, HMAC, etc.
In all ways, the SANDstorm family is designed to be a drop-in replacement for the SHA
family, and for each digest size the SANDstorm family will be have strength equal to or
greater than the corresponding member of the SHA family, no matter what the
application, including any existing application of HMAC, Pseudo Random Functions,
and Randomized Hashing.

10. Computational Efficiency
Our computational efficiency estimates are based on the reference platform indicated in
the NIST documentation. Our tests were run on

Page 52 of 62

 NIST Reference Platform: Wintel personal computer, with an Intel Core 2 Duo
Processor, 2.4GHz clock speed, 2GB RAM, running Windows Vista Ultimate 32-bit
(x86) and 64-bit (x64) Edition.

 Compiler (Note that the selection of this compiler is for use by NIST in Rounds 1 and 2,

and does not constitute a direct or implied endorsement by NIST.): the ANSI C compiler
in the Microsoft Visual Studio 2005 Professional Edition.

Due to the method of construction, the timings for SANDstorm-224 and SANDstorm-256
are virtually identical, similarly for SANDstorm-512 and -384.

An optimized version of SHA-1 and SHA-256 were used as reference points of
comparison. The NIST api seemed to get in the way and cause our timing routines to give
odd results. The timings below bypass the more external functions and focus on the time
to complete a single compression function. These do not count the finishing step, which
may be amortized away with long messages.

According to the call for proposals not much if any priority in Round 1 of the competition
will be given to assembly coded implementations. However, we experience difficulty
with the reference compiler during a multiplication of two 32 bit numbers where the 64
bit output was retained. It had a tendency to convert the 32 bit numbers to 64 bit numbers
and then do the multiplication. This irritating operation slowed down our implementation
to a noticeable degree. To overcome it, we inserted a tiny amount of assembly code in a
secondary implementation. Our assembly code focused only making sure that 32 X 32 bit
multiply did not magically turn into a 64 X 64 bit multiply.

 32-bit Machine 64-bit Machine
 Optimized Assembly Optimized

SANDstorm -224, -256 4600 4000 2340
SHA-1 1200 930
SHA-256 2600 2500

SANDstorm-384, -512 38000 12200

Figure 7: Timings in clock cycles of a single compression operation.

Again, since assembly versions of the algorithm were not to be a priority in the Round 1
of the competition, we did not include an assembly version for SANDstorm-512, nor did
we port the small amount of assembly code to the 64 bit machine. In any event, we feel
further optimizations are available with or without assembly.

Operation Counts
SANDstorm-256
During the operation of SANDstorm, there are several different logical operations that we
will group into a single cost category. These are not always entirely the same, but close

Page 53 of 62

enough for this discussion. Logical operations include: Not, XOR, AND, Shift Left, Shift
Right.

There are two arithmetic operations: addition and multiplication. The additions are either
modulo 264 or 232. On some architectures there may be a significant difference so, since
the majority of the additions are 64 bits, these will be specified as adds, or +. The 32 bit
additions will be called, 32 bit adds. The multiplications * are 32 x 32 to 64 bit
computations.

Similarly the BitMix function as written takes 28 logical operations, but it can be
completed in 16 by doing the following four steps in turn
T = (AC)&6666666666666666; A = AT; C = CT;
T = (BD)&3333333333333333; B = BT; D = DT;
T = (AB)&5555555555555555; A = AT; B = BT;
T = (CD)&5555555555555555; C = CT; D = DT;
where the numeric constants are represented in hexadecimal notation.

 ROTLn(Z) requires a left and right shift and an XOR for three logical operations
 F(Z) = X2+Y2 modulo 264 requires one + and two *.
 G(Z) = X2+Y2+ROTL32((X+a)(Y+b)) modulo 264

o X+a and Y+b are 32 bit additions. Additionally there is one rotate (3 Logical),
three multiplications, and two 64 bit additions.

 Ch(A,B,C) = (A&B)(¬A&C) takes four Logical operations as written, but it can be
written as Ch(A,B,C) = C  (A&(B  C)) which is 3 logical operations

 SB(Z) = Z is an AES sbox look-up and replace. Our implementation requires two

Logical operations and one look-up.

The round function operates on four words in turn and then performs the BitMix
operation. Recall each step in the round function (with the non-essentials for counting
stripped out) is:

ROTL (SB (Wi + F(Wi-1) + Ch(Wi-1,Wi-2,Wi-3) + A(r,i)))

The message schedule repeats the following computation 25 times:

ROTL (SB(di-8 + G(di-1)+Ch(di-1,di-2,di-3) + di-4 +Bi))

The message schedule and the chaining variables are XORed into the state variable,
additionally there are a few extra operations required for the Round 0 input.

The following table lists the operations for a single compression step.

 Logical 64 bit + * Look-up 32 bit +
Round Function
ROTL 12

Page 54 of 62

SB 8 4
Additions 12
F(Z) 4 8
Choose 12
BitMIX 16
Total in one Round 48 16 8 4
Total in five Rounds 240 80 40 20

Message schedule
ROTL 3
SB 2 1
Additions 4
G(Z) 3 2 3 2
Choose 3
Total in one Step 11 6 3 1 2
Total in 25 Steps 275 150 75 25 50

State variables
Round 0 36
Rounds 1-4 32
Total 68

Total for one compression 583 230 115 45 50

Figure 8: Operation Counts for a Single Compression Step

On a 32 bit machine, if the logical operators and the 64 bit additions take twice as long as
a 32 bit addition and if each multiplication takes 3 times as long as the 32 bit additions,
and a table look up counts the same, then we have 2066 32-bit instructions.

On a 64 bit machine, if the 32 bit additions and look up take as long as a 64 bit addition
and the multiplication takes 3 times as long, then we have 1284 instructions.

The operations in Figure 8 are for a single compression and do not account for the mode.
The SANDstorm mode includes up to five levels including a finishing step, which always
occurs. Each time a superblock is begun, an additional 20 or so XORs for initialization
must occur. Depending on the size of the superblock these may be in the computational
noise.

The effect the mode has on the total operation counts depends on the length of the
messages. For very long messages the finishing step may be amortized and the overall
effect of the mode is an 11% increase in counts.

For one block messages the finishing step will double the number of operations. For two
block messages the overhead is 50% reducing rapidly (but not consistently) with message
length down to the 11%.

Page 55 of 62

Cost Estimate of the SANDstorm Hash for an 8-bit Processor

We selected the Z80 architecture for our estimate. The Z80 is a well-known architecture
(see http://en.wikipedia.org/wiki/zilog_Z80), is about 30 years old, and is available in a
variety of implementations and simulations, including as an FPGA. The speed, the
number of clock cycles, and the relative timing for the instructions are all platform
dependent. Our performance cost estimate is simply a count of the number of
instructions executed in a reasonable implementation of SANDstorm on the Z80. The
simplicity of the instruction set makes the instruction count a fairly platform-independent
performance measure.

Our estimate of the number of instructions required to compute the SANDstorm hash on
a Z80 microprocessor is based on the following obervations: For a 224 or 256 bit output,
each use of the compression algorithm takes about 50,000 instructions when processing a
block of 512 bits. For a minimal message of up to 511 bits, two calls to compress are
made, so a minimum hash will take 100,000 instructions for a 224 or 256 bit output.

For a 384 or 512 bit output, each use of the compression algorithm takes about 160,000
instructions, processing a block of 1024 bits. A minimal message of up to 1023 bits will
take 320,000 instructions for a 384 or 512 bit output.

For a long message, there are 1.1 compress calls per block. The cost of a 224 or 256 bit
output hash is about 110 instructions per input bit. The cost of a 384 or 512 bit output
hash is about 350 instructions per input bit.

The details of our estimate are:

Moving a 64 bit quantity: 11 instructions. (3 setup, 8 data moves)
Adding two 64 bit quantities: 26 instructions. (2 setup, 8 sequences of load, add/adc,

store)
XOR of two 64 bit quantities: same as Add.
Rotating a 64 bit quantity, one bit position: 10 instructions.
Multiplying two 32 bit quantities, producing a 64 bit product: 270 instructions

 (average).(Note, this is based on the comb algorithm: The multiplicand is added
into the product register with any of four byte offsets, controlled by bits in four
bytes of the multiplier. The product register is then shifted left one bit, and the
conditional additions are again performed, controlled by another four bits of the
multiplier. Eight cycles of this process develops the complete product.)

In SANDstorm-224/256:
The F function (within the round function): 600 instructions. (Two multiplications, one

64 bit addition.)
The G function (within the message schedule): 950 instructions. (Three multiplications,

two 32 bit additions, two 64 bit additions.)
The Ch function: 40 instructions. (CH(A,B,C) = C (A&(BC).

Load,Xor,And,Xor,Store, 8 times.)

Page 56 of 62

One 64 bit word of the Message Schedule: 1200 instructions.
Bitmix on four 64 bit words: 500 instructions.
The message schedule: 30,500 instructions. (Twenty five result words, one Bitmix.)
One 64 bit word within a round of the compression function: 750 instructions.

(Three 64 bit additions, one call each to F and Ch, one sbox lookup, one 1-place
rotation of a 64 bit quantity.)

One round of the compression function: 3800 instructions. (Four mixing operations, one
Bitmix, two or three xors of 256 bit words.)

Compressing one 512 bit block: 50,000 instructions. (Message schedule, five rounds of
compression.)

For Sandstorm-384/512:
The computation pattern of SANDstorm-384/512 is the same as SANDstorm-224/256,
but the operands are twice as long: 128 bit arithmetic replaces 64 bit arithmetic. For most
operations, this simply doubles the number of Z80 instructions required. However, the
multiplication operation is different: The cost of 64x64 bit multiplication is about 3.5
times the cost of 32x32 bit multiplication when using the Karatsuba algorithm.
In SANDstorm-224/256, 75% of the work is in the multiplications. To estimate the cost
for SANDstorm-384/512, we split the work of SANDstorm-224/256 into multiplication
and non-multiplication parts, (37,500 + 12,500), and scaled by 3.5 or 2 respectively. The
total is about 160000 instructions, to run the compression algorithm for a 1024 bit input
block.

For 8 bit processors, most of the work goes into multiplications. A processor with a
hardware multiplication, such as the old M6809, will be much faster. For the Z80, good
results might be obtained with algorithms such as Quarter-Squares or Difference of
Triangles, which use modest size tables to speed up multiplication.

11. Memory Usage
There are several ways to implement the SANDstorm family; some require more memory
than another. This discussion focuses on a reasonable software implementation.
SANDstorm-256 uses 50 of the 64 32-bit constants used by the SHA family, during the
compression operation. SANDstorm also uses the same eight initialization constants as
the SHA, these constants are expanded into five 256 bit initialization constants per level.
Eight additional fixed constants are used. Two of the additional constants are 32 bits each
and 6 are 64 bits. A reasonable software implementation of SANDstorm would
precompute and store these constants. This is a total of 50*32 +5*5*256+448 = 8448
bits. A more conservative approach needs only the additional 448 constant bits that are
separate from what is needed for an implementation of SHA-256. Of those 448 bits, 4*64
bits are the selector bits in the BitMix function. These have a very simple bit pattern that
may be recreated when needed to reduce the fixed storage.

Both the round function and the message schedule use the AES sbox. There are 256 one
byte entries. From a storage standpoint, an implementation of the SANDstorm algorithm

Page 57 of 62

has a high probability of being combined with AES encryption, so the sbox should be
available for use, thus, possibly, reducing the total memory usage. Total 2048 bits.

The message schedule computes 25 64 bit values after the 512 bit message is input. These
25 values can be unrolled and stored or computed as needed. If completely unrolled and
combined with the input message, there are 33*64 = 2112 bits. On the other hand, the
message schedule may be thought of as a block of eight 64 bit words and processed in an
as-needed fashion. In this case there are only 512 bits to store.

In the compression function, there are five rounds, each with a chaining variable that is
256 bits in length. (One of the chaining variables is actually a constant for a given
superblock). Each of the five levels in the tree requires five chaining values that must be
manipulated during the course of the algorithm. That is 5*5*256 = 6400 bits. However,
Level 0 must be completed before Levels 1, 2, and 3 can begin. The values from Level 0
are used as part of the initialization of the chaining values for those levels. Similarly,
Level 4 is not invoked until all other levels are complete. At any given time at most three
of levels require storage of the chaining values. That is 5*3*256 = 3840 bits.

Data is also passed to from one level of the tree to the next. This requires at most 2 512
bit values in addition to the message blocks being processed in Levels 0 and 1. The data
for Level 4 does not get created until Level 3 is completed. So, a total of 1024 bits must
be passed from level to level.

The round function actively operates on four 64 bit state words at time, thus requiring
256 bits.

 Constant Volatile Active
Constants 8448
AES sbox 2048
Message Schedule 512
Chaining Variables 3840-6400
Level Data 1024
State Words 256
Totals 10496 5376-7936 256 16128-18688

Figure 9: Memory Usage in bits

Depending on the implementation, the total amount of RAM for function variables is
about 2 KB.

Note that short messages need less memory. For one block messages, when Level 0
completes, the output can go directly to Level 4. At any given time only one set of five
chaining values needs to be retained: 4352+512+5*256+256 = 4352+2048 = 6400 bits.

Similarly, shorter messages will not use Level 2 or 3 and so will use fewer resources than
longer messages. One would expect memory requirements to be around 4352 bits for

Page 58 of 62

fixed constants and between 2048 and 8192 additional bits required for processing,
depending on message size and implementation.

SANDstorm-224 storage requirements are the same as SHA-256. The constants are the
same except for an additional eight 32 bit initialization values. SANDstorm-512 and -384
require approximately twice the storage as SHA-256 and -224.

Our reference implementation including .c and .h files including the handling api is on
the order of 60 KB. A Linux executable is on the same order of magnitude in size. No
effort was spent trying to minimize these numbers.

Page 59 of 62

Appendix A Sample Test Vectors

All values in this appendix are represented in hexadecimal notation. A full listing of all
required test vectors is included on the optical media as required.

message = abc
224: fd76ce6091725130 cfe7248a1b1db4eb b498dbb351dfcce6 e681e46a
256: 10c9c33e26f42840 305d5d0a7b437809 777e904d8f9f1a3a 2dd0de51c555f2ef
384: 4f0fddb20f630bad c4929a5744fa645d 01a73a42dbacbd9e 5d19668eeb218270
2d95c810f7d0ca23 c9a620c8ecf58e31
512: b8166d6e33c8954f 9c3daf42b3e35e72 051d577eed8287e3 01e0acdb20cfdffb
8777aec90553cc28 d31be552f941ff80 097beac52d8adc2f 0139ba69e2111008

message = abcdefghijklmnopqrstuvwxyz
224: 307bb0ef1399ec82 7e4dc8099833f1c5 1d2110b9fbf44a73 efd85656
256: 51e5ff14342d4440 2224d832d2d674e8 3241c98ade5408dd 2dfd5e069d4a4b70
384: 18c96b6c274e67c2 dc7a0ffd47f3c242 bddf7a5dd3197cca cf521635f56ae8d5
e3ff63df85eb7bae 6d2fbee6162abcc2
512: 67da9b09e9fbe195 b738897153c9e0ac d85916084c9b9517 28cd08bd53aefb2c
557f7a8088972673 b75a9b069fe2d2e5 669c3c7bf7d16f50 3a8ec4fd6167e99b

message = 100 alphabets
224: 522be4eef140135e 2452e210149dbcbe d71598627565b462 90373784
256: 467390f36e287494 f9c732f9ae9e3499 af83e2d7064a8f2d a9acdf50d3865cf9
384: 9f6cc349a69c930e 7ef407ecde5e0e51 396b5fa682c4511a c7fcbfda166ded48
896d444b4e49e22c 034e7bc2ec3fb8b7
512: 71b416b9ff1ae00a 24c4b2eb5b0cc443 30d5704af2ffcc2d 670daf227ef5c8c2
b4a2911594306c32 50d0add93e3b4c82 2fb1b12b09f6741a c020f86051306f48

message = a, one million times
224: 2adbef88964d53aa 5c050a3c6c1028d1 26a4fd6f64f8335f 8684fe50
256: bb653933aad7cc82 cef83991b4e2db24 5ef608d440eeaf09 90d69d8e27c265da
384: 946514f9d42b3826 cd549b26c2eecc73 c9dc8fd9a1e857d2 4826ee2a14d008a7
ec6fe379f4a931b9 199e7655ec8adadf
512: a3aad31a418ebd58 a93a9a055ecce4d1 81c63f9f4a628b83 87b529a5987ad88d
dccd301286ca647d deb09f80e920f1c0 db3665a4493ef56d 8605a2c9a8c88b09

message is null
224: f351cc5f721dbf13 ca9086630c07112e 71f96c7e13a0bea3 879ccacd
256: 7325f39f1c05fe93 4064afd4513e0ce6 49ffb671f0c80983 6f65921dd36b2399
384: 2a8469e051340868 aca6ff9a9ce7ec9e e9074cfb1ab7c0d7 8b87ca51589897b0
6f33cf8bd40b4204 4b2fecb3ee8bcba2
512: 7bc6848a21a1fbd6 8eeb18a7fcca5734 ba005835406a5b5c ddb199f94b26044f
da7b6121410322f5 b0efcdc31df9a78d 61d25ab949c7066c d6664f4f6b200ce7

Page 60 of 62

message is a single 1 bit
224: 3f0d6973ba848986 62f52ccddd551f02 b36611832114bcf4 c17d0cc0
256: 300ad96fb1a2934f c78497abae9880ed fa76ebf870cc3a9a d75a803bf9b953b7
384: eb02a645ed3e7bfd ccfb59a920bb5fba c442797b260ac66f 0618e3a54d0d2e42
a57833d206648af3 293602cb6b582f6d
512: 5ce44321a52650d5 4f69a4b8521e3a57 4715e768f5f68cb2 1cc9b95668d4ea35
53e35734b50957f3 8d8fb433b4deb12c 2510bb5904748fa4 f3194dbbe5d6b30e

TunableSecurityParameter = 2

message = abc
224: eb7f445967d67c50 4b8d4b2a21ddc126 3ae72ec74f202492 ffa745ac
256: 5128ea92679baa58 9a8299ff5df27584 825f593c1096b917 e7d399dfbfc484f1
384: 037b25d2574dbd50 89a3cfc667609795 8e9cdc64661639ca b75c29581bfc15db
9dd83d4a1ebd51b8 6c4b149472d66142
512: 3d29a8bbb3fedbc1 639b888c10efca94 105618c9ace6613b 2097945f2c4536a7
ef61c50dc7983ca4 1ba54d62c695df8d 5786a095f664b30c fa94e5f743fbbe33

Page 61 of 62

Distribution (all copies electronic)

Diana Blair
Susan Caskey
Michael Collins
Bill Cordwell
Nathan Dautenhahn
Tim Draelos
Eric Lee
Richard Schroeppel
Keith Tolk
Mark Torgerson
Andrea Walker

Eric Anderson
Andy Lanzone
Sean Malone
William Neumann
Hilarie Orman

1 MS 0899 Technical Library
1 MS 0123 D. Chavez, LDRD Office, 1011

Page 62 of 62

