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Abstract

Most far-�eld optical imaging systems rely on a lens and spatially-resolved detection to probe distinct
locations on the object. We describe and demonstrate a novel high-speed wide-�eld approach to imaging

that instead measures the complex spatial Fourier transform of the object by detecting its
spatially-integrated response to dynamic acousto-optically synthesized structured illumination.

Tomographic �ltered backprojection is applied to reconstruct the object in two or three dimensions. This
technique decouples depth-of-�eld and working-distance from resolution, in contrast to conventional
imaging, and can be used to image biological and synthetic structures in �uoresced or scattered light
employing coherent or broadband illumination. We discuss the electronically programmable transfer

function of the optical system and its implications for imaging dynamic processes. Finally, we present for
the �rst time two-dimensional high-resolution image reconstructions demonstrating a

three-orders-of-magnitude improvement in depth-of-�eld over conventional lens-based microscopy.
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1 Preface

This SAND report describes the technical accomplishments that were supported by a Campus Executive
Graduate Fellowship Laboratory Directed Research and Development (LDRD) award to Daniel Feldkuhn at
the University of Colorado at Boulder. The LDRD award funded the development of the Fourier Analysis
and Synthesis Tomography (FAST) microscope during �scal years 2007 and 2008. This report contains the
text of a manuscript prepared by Daniel Feldkuhn describing the theory, construction, and operation of the
FAST microscope.

2 Introduction

Conventionally, �imaging�implies a process wherein a visual likeness of an object is formed by sensing
some of its characteristics, such as color and re�ectivity, at distinct points in space. However, while such
spatial basis decomposition is an intuitive way to represent and measure structure, in many situations other
representations can be advantageous. Holographic systems, for example, capture the three-dimensional
structure of an object indirectly by interferometrically recording the phase and amplitude of a scattered
optical wavefront [1]. Alternatively, measurements of the far-�eld di¤raction patterns created by an object
under coherent illumination can be used not only to characterize its texture, but also to extract its large-scale
and small-scale three-dimensional structure using di¤raction tomography [2] or speckle interferometry [3]
techniques without relying on an imaging lens. On the other hand, the resolution of conventional lens-based
wide-�eld imaging systems can be enhanced beyond the di¤raction limit by illuminating the object with
a sequence of patterns and applying spatial heterodyne algorithms to the resulting images [4, 5]. In
applications where available bandwidth is highly constrained or in wavelength regimes where detector
arrays are expensive or not available, it is possible to optically encode a two-dimensional image into a
compressed data stream by spatially modulating the object wavefront with a series of pseudorandom binary
patterns and detecting the resulting light �ux using a high-speed single-element detector [6]. Spatially
integrating detection is also employed in optical scanning holography in combination with rapidly-moving
structured illumination and heterodyne processing of the time-domain signal, resulting in a laser-based
imaging system characterized by an incoherent point spread function [7]. In this paper, we will describe
a new approach to wide-�eld image formation that shares many common elements with these various
techniques, such as spatial and temporal heterodyne detection, tomographic reconstruction, structured
illumination, single-element sensing, compressive imaging, and an incoherent optical transfer function, yet
provides unique capabilities for measuring two- and three-dimensional structures [8, 9, 10].

Using the Fourier Theorem, a three-dimensional (3D) structure can be decomposed into a linear sum of
sinusoids. If the 3D object is illuminated by plane waves from many directions and we disregard multiple
scattering (according to the �rst Born approximation), each Fourier component acts much like a sinusoidal
volume grating, di¤racting a pair of planar wavefronts, whose orientations, amplitudes, relative phases, and
relative angular separation are determined by the orientation, amplitude, phase, and spatial frequency of
the Bragg-matched volume grating [13, 14, 11]. As illustrated in Figure 1, the fundamental role of lenses
in an imaging system is to capture this emitted angular spectrum of plane waves [15] and recombine it at
the image plane, creating a linear superposition of interference patterns that form the image. However,
because the Numerical Aperture (NA) of the objective lens limits the angular range of captured plane
waves, the lens acts as a low-pass �lter in the Fourier domain, limiting the optical resolution. Note also
that phase errors varying across the lens apertures produce phase and amplitude errors in the image that
depend on spatial frequency. We will refer to the linear e¤ects of the optical system on the spatial frequency
components of the structure being imaged as the Optical Transfer Function (OTF). Furthermore, we can
map the orientation, amplitude, and phase of the plane waves captured by the imaging system to complex
points distributed in a volume of the three-dimensional Fourier space, as illustrated in Figure 2. In this
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Figure 1. Image formation through Fourier decomposition and synthesis by a telecentric lens-based imaging
system represented by an entrance and exit pupil. Colors represent di¤erent spatial Fourier components,
rather than di¤erent wavelengths.

representation, the out-of-plane points are due to di¤raction from tilted Fourier components of the object
structure and limit the depth-of-�eld (DOF) of the optical system, which is found to vary inversely with the
square of the NA. These observations also extend to more complex optical systems, in which the entrance
and exit pupils play the role of lens apertures.

Unlike lens-based imaging systems which simultaneously process a volume of points in Fourier space,
we will describe an imaging technique that rapidly measures individual complex Fourier coe¢ cients of the
object. Such Fourier basis decomposition not only makes it possible to decouple DOF from NA by planar
sampling of Fourier space, but also o¤ers great �exibility in dynamically controlling the OTF. Although
Fourier-domain imaging systems have been proposed in the context of microscopy [16, 17] and remote
target characterization using Fourier Telescopy [18, 19], they have remained largely unexplored in practice
due to limited speed and precision of mechanical scanning systems. More recently, a hybrid �uorescent
imaging technique has been demonstrated combining sparse Fourier basis decomposition without mechanical
scanning with high-speed low-resolution lens-based imaging to enhance the resolution of a conventional
microscope [20, 21, 22, 23]. Building on these bodies of work, we have developed a new approach to
Fourier-domain imaging: Fourier Analysis and Synthesis Tomography (FAST).

3 Fundamentals of FAST

The basic principle of FAST has its roots in a simple observation: the spatially-integrated �ux
scattered, �uoresced, or transmitted by an object that is illuminated by a moving sinusoidal pattern will
oscillate in time, the amplitude and phase of the oscillation corresponding to the strength and o¤set of the
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Figure 2. The three-dimensional OTF support of a spatially-incoherent lens-based imaging system under
the �rst Born approximation, representing the range of spatial frequencies captured by the aperture [11, 12]
(colored circles show the spatial frequencies illustrated in Figure 1). The aperture acts as a low-pass �lter
with a spatial frequency cut-o¤ at �2NA=�. The �nite aperture results in a �missing cone� of spatial
frequencies in the Fourier domain, with the cone angle equal to the NA. The Depth Of Field varies as
�=NA2 and is determined by the extent of the OTF in the fz dimension.

matching Fourier component present in the intensity response of the object. For the 2D case, this can be
seen mathematically by decomposing the intensity response of the structure being measured into its Fourier
components, multiplying by a moving sinusoidal intensity pattern, and spatially integrating:

Id(t) = Ii

ZZ 1

1

� ZZ 1

1
Ir(fx; fy)ej2�(fxx+fyy)dfxdfy

�
�
�
1 +

m

2
ej2�(f0xx��0t) + c:c:

�
dxdy

= Ii

�
Ir(0; 0) +

m

2
Ir(f0x; 0)ej2��0t + c:c:

�
. (1)

Here Ir(fx; fy) represents the complex Fourier transform of the intensity response of the structure
encompassed by the �nite illumination area, Ii and Id are the incident and detected intensities, f0x and �0
are the spatial and temporal frequencies of the illumination, m is the modulation depth, and c:c: represents
the complex conjugate. Thus, by illuminating the object with a sequence of moving sinusoidal fringes
spanning a range of spatial frequencies and orientations, detecting the spatially-integrated response with a
single-element detector, and demodulating the time-domain signal, the intensity image can be recovered by
Fourier synthesis.

Since the number of Fourier samples collected in this manner determines the number of degrees of
freedom in the image, each Fourier sample must be measured in a matter of microseconds or faster to
make this approach a practical alternative to pixel-based or spot-scanning techniques [24]. Figure 3a
illustrates the key elements of FAST that make this possible. Instead of mechanical scanning, FAST
uses an acousto-optic Bragg cell to spatially modulate the illumination wavefront. Here we will consider
bulk acousto-optic spatial modulation of visible light [25], however other high-speed spatial modulator
technologies such as a re�ective SAW device [26] or a grating light valve [27] can be used with FIR, UV, or
potentially even X-ray illumination. In the low-e¢ ciency linear di¤raction regime, a pair of tones driving
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the Bragg cell creates a pair of 1st-order di¤racted wavefronts. By optically projecting the acoustic �eld
propagating in the Bragg cell onto the object, the di¤racted wavefronts are made to interfere, producing
sinusoidal fringes running across the object at the projected acoustic velocity and with a pitch proportional
to the two-tone beat frequency. Thus, by driving the Bragg cell with a double-sided chirp, for example,
the object is probed with a succession of spatial frequencies, thereby measuring a linear slice through
Fourier space, as illustrated in Figure 3b. For a Bragg cell, the maximum number of resolvable Fourier
samples along the slice is limited by the time-bandwidth product (TB), while the minimum sample time is
dictated by the acoustic propagation time (ta). For a high-resolution device with TB �1000 and ta �10 us,
it takes �10 ms to measure 1000 Fourier samples (assuming the detector and the digitizer can keep up).
Additional Fourier slices can be measured by rotating the object or rotating the illumination pattern using
a prism [28, 29] or an arrangement of mirrors. We are also investigating several non-mechanical illumination
rotation designs that are capable of fully rotating the illumination pattern faster than the acoustic access
time, ta, and could increase the imaging speed by several orders of magnitude [30].
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Figure 4. (a) A re�ective implementation of FAST. The acousto-optically di¤racted �rst-order beams are
rotated using a prism or other means and projected as plane waves onto the sample using a large NA and
working-distance optic (coarse phase errors in the optic can be compensated electronically). The sample
can be tilted and/or rotated to access di¤erent Fourier planes for 3D measurements. The modulated light
�uoresced or scattered from the object is collected with high e¢ ciency onto a high-speed detector, whose
signal is tomographically processed to reconstruct the object. (b) Key steps in two and three-dimensional
image synthesis by �ltered backprojection. (c) Tilted-plane sampling of Fourier space makes 3D reconstruc-
tion possible using a three-dimensional extension of the Fourier Slice Theorem. (d) A real-space picture of
�ltered backprojection: A two-dimensional object is decomposed into (time-domain) one-dimensional pro-
jections using structured illumination. Each projection is �ltered with a ramp �lter to compensate for radial
sampling and �smeared�along the projection axis. The smeared backprojections are summed to build up a
two-dimensional image in real time, projection-by-projection.

3.1 Extended Depth of Field

Note that whereas the spatial resolution of the system is limited by the NA of the projection
system, the DOF depends only on the axial extent of the fringe pattern. As a result, FAST can
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resolve wavelength-scale features while maintaining a millimeter-scale DOF (e.g. see illumination �eld
in Figure 3a). This resolution-independent DOF is a manifestation of planar sampling of Fourier space
inherent in two-dimensional imaging with sequential FAST. Furthermore, by tilting the object relative to
the illumination one can measure additional tilted planes in the Fourier domain and thereby reconstruct
three-dimensional structures �without rejecting light as in confocal optical sectioning. As illustrated in
Figure 4a, due to the direct mapping between projection aperture coordinates and Fourier space, it is
also possible to use a large low-precision high-NA re�ector, or even a mosaic of �at mirrors positioned at
a distance from the object to both, project high spatial frequency structured illumination, and collect as
much of the light from the object as possible. As we will show, coarse phase errors in the re�ector can be
compensated electronically via the acoustic waveform or in post-processing. We are currently developing
such a phase-compensated system using a large electroformed metal re�ector with NA of �0.4 and a
working distance of 20 cm.

3.2 Tomographic Image Synthesis

Since for each Fourier slice the temporal frequencies comprising the detector signal correspond to
spatial Fourier coe¢ cients of the object, the time-domain signal can be considered as a one-dimensional
projection of the object structure �ltered by the one-dimensional point-spread-function of the system.
Hence, in analogy to projection tomography techniques [31, 2], the image synthesis task is to reconstruct
multi-dimensional structure from a series of one-dimensional projections. To accomplish this, the well-known
tomographic �ltered backprojection algorithm [2] can be applied in two or three dimensions to the digitized
and �ltered detector signal as illustrated in Figure 4b-d. This algorithm can be used to form the image in
real time, slice by slice, and is less sensitive to registration artifacts than rectilinear direct Fourier transform
methods.

3.3 Frequency-Multiplexed Sampling

Our discussion so far has focused on sequential Fourier sampling, however the throughput of FAST can
be increased further by driving the Bragg cell with many tones simultaneously, creating a superposition of
running fringe patterns with di¤erent spatial frequencies at the object. Due to the acousto-optic Doppler
shift, each spatial frequency maps to a di¤erent carrier frequency in the spectrum of the detector signal.
Hence, the simultaneous Fourier-domain measurements are readily separable and the same Fourier synthesis
methods used with sequential sampling apply. In photon-rich conditions, such frequency-multiplexed (FM)
Fourier sampling allows measurement of an entire Fourier slice during the acoustic propagation time (ta
�10 us). One drawback of FM sampling is that due to the inherent presence of frequency-redundant
tilted interference patterns DOF and NA are no longer decoupled. This disadvantage can be mitigated by
using a hybrid approach that sequentially combines FM measurements spanning narrow frequency �bins�.
Another solution that maintains the speed advantage of FM sampling without sacri�cing DOF (but trades
sensitivity and �exibility in OTF synthesis) is double-sided non-redundant FM sampling. This approach as
well as other sampling strategies are illustrated in Figure 5.

4 Dynamic Optical Transfer Function

More generally, referring to Figure 3a, consider the e¤ect of an arbitrary RF signal, s(t), driving the
Bragg cell on the detector current, id(t), when an object with a �uorescent intensity response, jo(x; y; z)j2,
is illuminated by spatially and temporally coherent light (i.e. CW laser light). It is �rst helpful to make
some reasonable simplifying assumptions: the illumination system projecting the acoustic pattern onto
the object is linear and space-invariant with a magni�cation M�1; the collimated source beam is uniform
and has a Gaussian �eld pro�le a(x; y0) with a beam waist radius of ra = Mro along the Mx and My0
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access time, ta, scaled by velocity of sound vs and magni�cation, M, of illumination optics. (b) Frequency-multiplexed
(FM) sampling. The object is illuminated with multiple spatial frequencies to measure multiple samples along a Fourier slice

simultaneously, thereby speeding up the measurement. However, the DOF is reduced due to coherent contributions from several

redundant tilted interference patterns at each spatial frequency. (c) Non-redundant FM sampling. Since there are no redundant

beats in the RF signal, each detected carrier maps to a distinct Fourier sample, however the samples are not collinear. (d)
Double-sided non-redundant FM sampling. Symmetric RF tone pairs produce non-redundant beats, while signal contributions
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OTF (for one slice) is an autocorrelation of the RF spectrum with ta-limited frequency resolution and spans a �gure-8 pattern

in the fx � fz plane.
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dimensions; the incident �eld is modulated by the Bragg cell only in the y� z plane; the Bragg cell is driven
relatively weakly so that the di¤racted optical power depends linearly on the RF power; and the linear
polarization of the interfering beams is always normal to the plane of beam propagation. We also neglect
device-speci�c polarization dependence of the acousto-optic interaction and acoustic energy walk-o¤ [32].
Furthermore, we make the Fresnel (paraxial) approximation in calculating di¤racted �elds using Fourier
transform techniques. Although this approximation is not accurate for high-NA illumination patterns,
paraxial analysis o¤ers much insight into the fundamental optical properties of FAST.

The RF waveform, s(t), driving the Bragg cell can be written as a complex signal, sm(t), modulating
a carrier oscillating at the angular center frequency, 
c: s(t) = sm(t)e�j
ct + c:c. By treating the Bragg
cell as a tilted moving phase grating and assuming linear di¤raction, it can be shown [15] that the complex
amplitude of the +1st-order acousto-optically di¤racted �eld, U+1(x; y; t) can be written approximately
as:

U+1(x; y; t) / a(x; y)sa
�
t+

y

vo

�
e�j!+t + c:c: , (2)

where

sa

�
t+

y

vo

�
� ha(t)~ sm(t)~ �

�
t� ta

2
+
My

va

�
. (3)

Here ~ stands for temporal convolution, va is the acoustic velocity in the Bragg crystal, vo = va=M
is the demagni�ed fringe velocity, !+ = ! + 
c is the Doppler up-shifted optical frequency, and
Ui(x; y; t) = a(x; y)e�j!t is the complex amplitude of the incident optical �eld. The term ha(t) is the
acousto-optic impulse response. It represents the Fourier transform of the electro-acousto-optic bandshape
(downshifted to baseband) and incorporates e¤ects such as frequency-dependent di¤raction e¢ ciency and
the electronic frequency response of the Bragg cell [32]. The acoustic beat signal, sa(t + y=vo), represents
the scaled and carrier-demodulated traveling index of refraction perturbation within the Bragg cell. A delay
of one half of the acousto-optic access time, ta, is included since the coordinate system origin is centered in
the middle of the beam [25]. The linear phase factor, ejk0y�B , due to the Bragg angle, �B , is not explicitly
written since it is canceled by the tilt between the y and y0 axes.

The three-dimensional �eld, Uo(x; y; z; t), illuminating the object, can be found by convolving the
di¤racted �eld with the 2D point spread function, pi(x; y), of the illumination optical system, and
propagating the resulting two-dimensional �eld in z using the free space propagator, h0(x; y; z):

Uo(x; y; z; t) = U+1(x; y; t)��pi(x; y)��h0(x; y; z), (4)

where �� stands for 2D spatial convolution. It is also helpful to write the k-space representation of the
illumination �eld by taking a 2D Fourier transform (parameterized by z and t):

Fxy fUog /
�
A(kx; ky) � Sa(kyvo)ejkyvot

�
� Pi(kx; ky)H0(kx; ky; z)e�j!+t + c:c:

= e�j!+t
Z 1

�1
A(kx; ky � �)

�
h
ejk0ze�j(k

2
x+k

2
y)z=2k0

i
� Pi(kx; ky)Sa(�vo)ej�votd�+ c:c: . (5)

Here k0 = 2�=�0 is the free-space optical wave-vector, kx and ky are its planar components, � stands
for 1D spatial convolution, the upper-case letters represent the Fourier transforms of the corresponding
lower-case functions, and the bracketed term is the Fresnel approximation of the free space transfer
function, H0(kx; ky; z) [15]. As illustrated in Figure 3a, the term A(kx; ky � �) corresponds to the Fourier
plane spot due to a di¤racted beam, while the integration variable, � � 
m=vo, represents the o¤set of the
di¤racted spot in the Fourier plane and depends on the respective angular frequency component, 
m, in the
RF modulation signal, sm(t). The term Pi(kx; ky) = jPi(kx; ky)jej��(kx;ky) is the complex pupil function
of the illumination system incorporating phase errors, ��(kx; ky), due to various aberrations in the optical
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system [15], as illustrated by the curve at the Fourier plane in Figure 3a.
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Figure 6. (a) The ideal paraxial angular phase front due to the Fresnel propagator, H0(0; ky; z), can be
linearized in the small neighborhood encompassed by the spot function, A(0; ky � �). (b) Since the pupil
phase error function varies much slower than the angular phase front, it can be similarly linearized (note:
the phase error function is greatly exaggerated relative to the angular phase front). (c) The linearized phase
functions result in a linear combination of tilted and phase-shifted plane waves under a Gaussian envelope
illuminating the object. Note that a slight y-shift of the Gaussian envelope due to the linear term of the
phase error function is negligible compared to the envelope size.

By making several key Fourier-domain approximations according to Figure 6 and transforming back to
real space, the illumination �eld can be written as:

Uo(x; y; z; t) / ej(k0z�j!+t)

�
Z 1

�1
e�j�(y�vot�z�=2k0)a

�
x; y � �z

k0

�
�
h
e
�j���0ky (0;�)Pi(0; �)Sa(�vo)

i
d�+ c:c: . (6)

As illustrated in Figure 6c, in this form the illumination �eld is seen to be a superposition of moving,
tilted, phase-shifted plane waves, where each plane wave has a tilted Gaussian envelope and is modulated
by the product of the complex-valued pupil function and the RF spectrum evaluated at the corresponding
RF modulation angular frequency � � 
m=vo. Thus, it is clear even at this point in the analysis that it is
possible to correct any linear phase error a¤ecting the di¤raction spot in the pupil plane at a given � by
electronically adjusting the spectrum of the RF modulation signal, sm(t).

To �nd the relation between the illumination �eld and the detected signal, we �rst observe that since
the far-�eld radiation due to each �uorophore is nearly isotropic and incoherent with respect to other
�uorophores, the �uoresced light captured by the objective and integrated on the detector is proportional
to the total �uorescent �ux from the object. Thus, ignoring DC bias and optical-frequency terms, the
time-varying portion of the detector signal, ~id(t), can be found by multiplying the time-varying illumination
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intensity by the object�s �uorescent intensity response, jo(x; y; z)j2, and spatially integrating in 3D:

~id(t) /
ZZZ 1

�1
jo(x; y; z)j2

���� Z 1

�1
e�j�(y�z�=2k0)

� a
�
x; y � �z

k0

�
PS(�vo)e

j�votd�

����2dxdydz, (7)

where PS(�vo) represents the modulated pupil function expressed by the bracketed term in Equation 6.
Remembering that a(x; y � �z=k0) represents a tilted Gaussian beam envelope, recognizing the argument
of the magnitude-squared operator as an inverse temporal Fourier transform, and employing the
autocorrelation theorem, the Fourier transform of the time-varying detector signal can be written as:
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dxdydz (8)
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�j��0ky (0;
m=vo)
m=vo

� Pi
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m
vo

�
Sm(
m)Ha(
m)e

�j
mta=2. (9)

Here, we have made the substitution � � 
m=vo, used R
m fg to represent autocorrelation in 
m, and
expanded PS(
m) with the help of Equations 3 and 6 (Ha(
m) represents the acousto-optic transfer
function).

We can simplify and interpret Equation 8 in terms of a 1D OTF when the modulation signal, sm(t),
is either a single tone used for sequential Fourier sampling or a wide-band waveform as in the case of
frequency-multiplexed Fourier sampling.

4.1 The 1D OTF for Sequential Fourier Sampling

The modulated pupil function, PS(
m) due to a complex single-tone signal, sm(t), with a frequency,

0, can be expressed as an impulse pair:

PS(
m; 
0) = PS(
0)�(
m � 
0)
+ PS(�
0)�(
m +
0), (10)

where �() is a Dirac delta function, while PS(
0) and PS(�
0) represent the complex amplitudes of the
positive and negative sidebands. In this case, the autocorrelation term in Equation 8 can be simpli�ed, and
the Fourier transform of the time-varying detector signal can be written as:
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2+y2)=r2o
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0)P

�
S(�
0)�(
m + 2
0)

+ P �S(
0)PS(�
0)�(
m � 2
0)
�
. (11)

The bracketed term corresponds to the autocorrelation of the modulated pupil function without the DC
term (which we have explicitly neglected by considering only the time-varying detector signal). We represent
this DC-�ltered autocorrelation by ~R
mfPS(
m; 
0)g. One may also recognize the inner double-integral
as a y-axis projection operator and the outer integral as a Fourier transform. To interpret this result we
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map temporal to spatial dimensions using t 7! y=vo and 
m 7! kyvo (a key step in processing the digitized
detector signal), obtaining:
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, (12)

such that
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h
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ioo

~R
mfPS(
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0)g, (13)

where Py is a y-axis projection operator. We can see from this expression that before projection onto the
y-axis, the object�s intensity response is windowed by a Gaussian function along each dimension. The 3D
Gaussian window, w(x; y; z;
0), represented by the term in square brackets, corresponds to the intensity
envelope of the interference pattern illuminating the object. The 2D Gaussian envelope in the x� y plane
limits the �eld of view, while the z-dependent Gaussian function limits the depth of �eld.

The autocorrelation in Equation 13 can be interpreted as a transfer function by mapping the
time-domain detector signal to a 1D projection of the intensity image. By utilizing the Fourier Slice
Theorem [33], the 1D OTF, H1D(
m; 
0), relating a slice through the 3D Fourier space of the windowed
object to a Fourier slice of the image for the case of single-tone RF modulation can now be obtained:

Fy f~{d(y=vo)g � Fy
�
Py
�
ji(x; y; z)j2

		
(14)

= SFky
�
jo(x; y; z)j2w(x; y; z;
0)

	
H1D(
m; 
0),

where

H1D(
m; 
0) = ~R
mfPS(
m; 
0)g
= PS(
0)P

�
S(�
0)�(
m + 2
0)

+ P �S(
0)PS(�
0)�(
m � 2
0). (15)

Here PS(
m; 
0) is given by Equations 9 and 10, the operator SFky takes a 1D Fourier slice along the ky
axis of the 3D Fourier transform of the operand, and as before, 
m 7! kyvo.

The 1D OTF expression in Equation 15 applies to measuring a single spatial Fourier component of
the windowed object. It is also possible to formulate a synthetic 1D OTF characterizing the sequential
measurement of an entire Fourier slice by varying the modulation frequency, 
0. However, since the depth
extent of the Gaussian window function, w(x; y; z;
0), in Equation 14 varies with frequency, in order
to describe the measurement using a space-invariant synthetic OTF one must assume that the depth of
the object of interest is substantially smaller than the depth of �eld over the full frequency range of the
measurement and treat the window function as constant in z. Using Equation 13 and scaling between
Bragg cell space and object space using the demagni�cation factor, M , the waist radius of the Gaussian
window in z can be written as:

rz =
ravap
2M2�0�0

, (16)

where �0 = 
0=2� is the RF frequency. We can think of rz as a measure of the depth of �eld of sequential
FAST.

As an example, for a FAST system with M = �20, ra = 10 : , va = 620 : , �0 = 0:5 : ,
(�m)max = 10 : MHz, and NAmax = 0:16, the minimum depth of �eld, (rz)min, is approximately 2 mm. In
this case, for a thin (sub-mm) microscopic object, the window function is approximately constant in z and
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0 and the synthetic 1D-OTF for sequentially measuring N samples along a Fourier slice can be written as:

H1D(
m) �
SFky

�
ji(x; y; z)j2

	
SFky fjo(x; y; z)j2w(x; y)g

=
NX
i=0

~R
mfPS(
m; 
i)g. (17)

We can see from Equations 15 and 17 that by sequential Fourier sampling it is possible to synthesize an
arbitrary 1D OTF function, as long as it exhibits conjugate inversion symmetry. With frequency-multiplexed
sampling, on the other hand, the choice of the 1D OTF is much more constrained.

4.2 The 1D OTF for Frequency-Multiplexed Fourier Sampling

When the RF spectrum of the modulation signal, sm, is broadband it is more challenging to interpret
Equation 8, however we can proceed by noting that within a limited depth range about the focal plane, the
y-dependent exponential term in the autocorrelation is approximately constant. If we assume that the edge
of the �eld of view is located at a distance of ro from the illumination axis, the y-dependent autocorrelation
term can be neglected when:

z � rava
2M2�0�m

. (18)

For the example system parameters from the previous paragraph, the range constraint is found to be
z � 1:55 mm and is applicable to many microscopic objects such as samples on a glass slide. Moreover,
as will become apparent shortly, the depth of �eld of frequency-multiplexed FAST using a broadband
modulation signal is much smaller than this range and the approximation is valid even for thick objects.

Mapping temporal to spatial dimensions using Equation 12 and neglecting the y-dependence of the
autocorrelation, Equation 8 can now be written as:
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The term in square brackets is the Gaussian window function, w(x; y), and the Pyz operator projects
the windowed 3D object intensity structure onto the y � z plane. This expression can be interpreted by
considering the object as a stack of thin 2D depth slices. The detector signal can then be treated as a
superposition of y-axis projections of each 2D slice, each projection �ltered by a di¤erent z-dependent 1D
OTF, H1D(
m; z):
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where
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Here PS(
m) is de�ned in Equation 9, the SFkyz operator takes a 1D slice along the ky axis of the 2D
Fourier transform of the operand for each object depth, z, and 
m 7! kyvo.
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Figure 7. (a) Height and contour maps of the magnitude of the z-dependent 1D OTF of the speci�ed
example FAST system plotted using Equation 21. The modulation signal driving the Bragg cell has a
�at-top RF spectrum spanning 20 MHz. The width of the illustrated sinc pro�les, �z, limits the depth
of �eld at each frequency. The triangular OTF pro�le at z = 0 is the autocorrelation of the rectangular
RF spectrum. Note that �z has a minimum at half of the maximum frequency (the mid-frequency), in
accordance with Figure 2. (b) Halving of the width of the RF spectrum quadruples the depth of �eld
measure, �z. (c) 1D OTF for an arbitrary asymmetric modulated pupil function amplitude pro�le. (d)
The width of the main sinc lobe, �z, at the mid-frequency is plotted as a function of RF spectral width
(assuming a rect spectrum). �z is found to vary quadratically with the inverse of frequency, corresponding
to the quadratic dependence of DOF on the inverse of NA in conventional lens-based imaging systems. (e) A
qualitative plot of the 1D OTF for a single-tone signal. Note that this plot slightly overestimates the depth
of �eld since Equation 21 does not take into account the y-dependence of the OTF several millimeters away
from the focal plane.
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Figure 7 plots jH1D(
m; z)j for the example system parameters presented earlier and a modulation
signal with a �at-top spectrum described by the rect function. Since in FAST there is a direct
correspondence between the RF spectrum and a 1D slice through the pupil function, it is not surprising
that a frequency-multiplexed FAST system with a rectangular RF spectrum shares many of the properties
of a conventional incoherent optical system with a rectangular pupil function [15] (incoherent because
intensity rather than �eld is detected). For example, at z = 0, the 1D OTF has a triangular pass-band,
corresponding to the autocorrelation of the rect function. The width, �z, of the main lobe of the sinc
z-pro�le of the 1D OTF at each frequency, which is a measure of the local depth of �eld, is maximum at the
lowest and highest frequencies and minimum at mid-frequencies, which is consistent with the illustration
in Figure 2. Moreover, by plotting the minimum �z as a function of RF bandwidth, it is clear that depth
of �eld varies quadratically with the inverse of frequency, which is consistent with the inverse quadratic
relationship between DOF and NA in conventional optical systems.

In contrast to traditional lens-based imaging, however, one of the strength of FAST is the ability
to electronically synthesize a variety of 1D OTF phase and amplitude pro�les that can lead to di¤erent
trade-o¤s between DOF, resolution, and other degrees of freedom than in the case of the simple rectangular
pupil function. Equation 21 allows one to calculate the depth-dependent behavior of the 1D-OTF of FAST
near the focal plane for any Bragg cell modulation signal, sm(t). For example, Figure 7c plots the 1D OTF
for an arbitrary asymmetric electronically synthesized pupil function pro�le, while Figure 7e plots the 1D
OTF for a single-tone signal, which as we saw in the previous section leads to a nearly complete decoupling
between depth of �eld and resolution. By comparing Equation 21 with Equation 8, however, it is evident
that in the case of frequency-multiplexed sampling the synthetic 1D OTF is constrained to the form of a
z-dependent autocorrelation function in contrast to the nearly arbitrary z-independent 1D-OTF that can
be synthesized by sequential sampling. Nevertheless, even this constrained ability to electronically program
the pupil function constitutes a powerful tool for controlling image formation. Moreover, it is possible to
leverage both the measurement speed bene�t of frequency-multiplexed sampling as well as the large depth
of �eld and OTF synthesis �exibility of sequential measurements by employing a hybrid sampling approach
where a small number of relatively wide frequency bands is measured sequentially (note from Figure 7c that
a � 1 mm depth of �eld can be attained with a measurement bandwidth of � 2 MHz).

As we have already discussed, the synthetic 1D OTFs for sequential and frequency-multiplexed Fourier
sampling derived thus far may be employed in reconstructing a �ltered 1D projection of the object. We will
now consider the synthesis of 2D and 3D OTFs that can be used to characterize the measurement of the
entire two- or three-dimensional object using FAST.

4.3 Multi-Dimensional OTF Synthesis

Since FAST is capable of independently measuring distinct Fourier slices (and in the case of sequential
sampling, even distinct Fourier coe¢ cients) with low cross-talk by re-orienting the object or the illumination,
the 2D or 3D OTF may be synthesized by combining multiple 1D OTFs over a range of projection angles
and interpolating to account for sparse coverage of Fourier space, as illustrated in Figure 8. The synthetic
2D OTF can be expressed mathematically as:

H2D(kx; ky; z) =W2D(kr)

�X
�=0

H1D(krv0; z; �), (22)

so that Z 1

�1
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�
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dz, (23)
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where we have employed the mapping 
m 7! krvo. Here � = arcsin(ky=kx) is the Fourier slice angle,

kr =
q
k2x + k

2
y is the Fourier-domain radial coordinate, and W2D(kr) is a radially-dependent interpolation

weighting �lter that has the form of a ramp function to account for the linearly-increasing spacing between
the radial slices as a function of frequency [2]. Note that when the thickness of the object is much smaller
than the depth of �eld (as in the case of sequential sampling, for example), integration along the z axis is
unnecessary.

The same concept can be applied to synthesize the 3D OTF, however in the case of frequency-
multiplexed sampling this is possible only if the z-dependence of the 1D OTF can be neglected (e.g. by
employing a hybrid time/frequency multiplexing approach or by ensuring that the beat frequencies are
non-redundant as in Figure 5d). In this case the synthetic 3D OTF can be represented mathematically by

introducing a 3D radial coordinate, k� =
q
k2x + k

2
y + k

2
z , an elevation angle, � = arcsin(kr=kz), and the 3D

weighting factor, W3D(k�), which will vary quadratically with the cross-section of the solid angle in Fourier
space attributed to each slice (assuming equal angular spacing between slices):

H3D(kx; ky; kz) =W3D(k�)

�X
�=0

�X
�=0

H1D(k�v0; �;�), (24)

such that
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�
jo(x; y; z)j2

	
. (25)

Hence, as illustrated in Figure 8, by electronically programming H1D(krhov0) for each orientation of the
illumination with respect to the object, it is possible to dynamically synthesize slice-by-slice 2D or 3D
OTFs with complicated, radially asymmetric shapes that can be tailored for speci�c measurement speed
and sensitivity requirements, sensing tasks, and classes of objects with apriori -known Fourier structure
such as thin cellular membranes or grid-based semiconductor structures, enabling a form of compressive
imaging. Moreover, in conjunction with a feedback system, one can envision dynamic correction of coarse
phase errors in the pupil function (e.g. due to �exing of a large re�ector). The main constraints on the
synthetic OTF are that it must possess inversion symmetry and must be representable as a sum of 1D
autocorrelations. In the case of sequential Fourier sampling, each autocorrelation term corresponds to a
single Fourier sample, rather than a Fourier slice, thereby o¤ering even greater �exibility in de�ning the
multi-dimensional OTF.

4.4 OTF for Scattering Amplitude Objects

Although in the preceding derivation we assumed a �uorescent object, FAST can also be used to
measure re�ective and transmissive amplitude structures (we are also developing an implementation of
FAST for quantitatively measuring phase objects that will be described in a future publication). We can
show, for example, that when substantially all of the scattered light is collected onto the detector, FAST
can be described using the same formalism as in the case of a �uorescent object (the scattering object
can be considered as an intensity mask placed in front of the detector surface). This equivalence is also
approximately valid when a large portion of the scattered light is collected using a typical microscope
objective, for example.

It may at �rst be surprising that although we have assumed coherent illumination in the preceding
derivation and extended it to scattering objects, the OTF has the form of an autocorrelation, which is
characteristic of an incoherent optical system linear in intensity. One interesting consequence is that
speckle noise due the �ne-scale structure of scattering objects is averaged out and does not contribute to
the synthesized image. Furthermore, because the spatial frequency content of the illumination pattern is
invariant with optical wavelength (neglecting wavelength-dependent Bragg di¤raction e¢ ciency), a FAST
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Figure 8. A complex 2D OTF with inversion symmetry can be synthesized by combining multiple rotated
1D OTFs obtained by rotating the illumination with respect to the object. Each 1D OTF may be synthesized
as a continuous autocorrelation function or may be synthesized sequentially from discrete Fourier samples.
An interpolating ramp �lter W (kr) is applied to compensate for radially-increasing inter-sample spacing. As
an example, in this way it is possible to synthesize a 2D OTF that is radially asymmetric and has missing
regions as illustrated.

system using a broadband source such as a femtosecond laser, can be characterized by the same OTF as a
monochromatic system.

5 Experimental System and Initial Results

Figure 9a shows the key elements of a proof-of-concept system built as a testbed for the RF electronics,
optics and algorithms needed to implement FAST. As a retro�t to a conventional microscope, the system
employs an objective lens to project acousto-optically synthesized patterns onto the object and to collect the
�uoresced or scattered light onto a high-speed large-area photodiode. A retro-re�ecting prism on a rotation
stage is used to rotate the illumination pattern and acquire additional Fourier slices. In implementing a
sequential Fourier sampling scheme, a double-sided chirp signal is applied to the Bragg cell for each slice,
producing a modulated detector signal. The magnitude and phase of the Fourier slice is determined by the
envelope and phase of the carrier signal, respectively. In the top inset in Figure 9a the detector signal shows
the fundamental and harmonic frequencies of an amplitude grating target. Figure 9d shows two-dimensional
image reconstructions obtained using the �ltered backprojection algorithm as an Air Force resolution target
is moved axially through a distance of �4 mm. For each image, 500 Fourier slices covering 180� were
acquired with a measurement time of �10 ms per slice (we expect to speed up the measurement by several
orders of magnitude in future systems implementing non-mechanical illumination rotation). Group 7 of the
resolution target containing �2 �m features can be resolved throughout the 4 mm range, demonstrating a
1000-fold improvement compared to the �6 �m DOF of the 0.4 NA objective used to acquire the image.
The experimental system used to obtain these results is further detailed below.

5.1 Generating the Structured Illumination

Figure 9a shows only the salient components of the Proof-of-Concept FAST system. In practice, we use
a spatially-�ltered DPSS CW laser (Compass 315M-100, Coherent Technologies), emitting �25 mW at 532
nm, as the light source. The horizontally-polarized collimated beam is expanded to a 12.5 mm diameter and
focused in one dimension using a 200 mm focal length cylindrical lens. The focal line intercepts only the
main acoustic lobe within the Bragg cell, resulting in a spatially-homogeneous di¤raction. The di¤racted
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Figure 9. (a) Key elements of the Proof-of-Concept (PC) FAST system. A double-sided RF chirp applied to
the Bragg cell sweeps two 1st-order di¤racted beams, which interfere at the sample. A fast detector measures
the sample�s response. A mechanized right-angle prism rotates the illumination (see also Supplemental
Information Animation 1). (b) Swept-frequency sampling of the Fourier plane for 25 illumination rotation
prism orientations as imaged by a CCD camera. (c) A conventional dark-�eld image of an Air Force
resolution target using the PC-FAST objective. (d) Reconstructions of the AF resolution target using
�ltered backprojection as a function of defocus. The entire Group 7 is resolved throughout the 4mm axial
range, illustrating the large depth of �eld attainable with FAST. The circular artifacts in the reconstructions
are due to back-re�ections in the optical system and are expected to be suppressed when all surfaces are
anti-re�ection coated.
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light is retro-re�ected and re-collimated using the same cylindrical lens. A 4f telescope is used to block the
undi¤racted light and to de-magnify (by a factor of 0.6) and relay the di¤racted �eld onto the wavefront
rotator, which is located at a conjugate plane of the Bragg cell. A polarizing beam splitter (PBS) in the
telescope path is used as a passive optical isolator, sending the vertically-polarized 1st order di¤racted light
to the wavefront rotator. The wavefront rotator comprises a retro-re�ecting knife-edge prism (Optosigma
055-0280) mounted on a fast motorized rotation stage (Micos DT-80R) capable of 6.25 revolutions per
second (which translates to 25 complete Fourier slice revolutions per second). We use a retro-re�ecting
prism (instead of a dove prism) due to its minimal optical aberrations and relative ease of alignment [28].
An arrangement of stationary and rotating waveplates placed between the prism and the PBS is used to
change the polarization of retro-re�ected light to horizontal and compensate for polarization rotation [29].
After passing through the PBS, the rotated illumination is routed through a custom-built microscope and
a 20x 0.4 NA objective (Nikon M-PLAN ELWD) onto the object, which is also located approximately in
a conjugate plane of the Bragg cell. The microscope contains additional waveplates and polarizing beam
splitters to maximize light throughput and includes optical paths for a Fourier-plane CCD camera used
for alignment (Figure 9b) and a reference photodiode used to suppress intensity noise. The system also
includes an Acousto-Optic Modulator (AOM) (Crystal Technology 3350-120) placed after the laser, making
it possible to �freeze�the running fringes illuminating the object by strobing the light at the the two-tone
beat frequency [34]. In the end, accounting for the ine¢ ciencies of the AOM, Bragg cell, and the optical
path, about �1 mW or �4% of the light from the laser is delivered to the object, covering a �eld-of-view
�500 �m in diameter. The Bragg cell (NEOS AOBD45050-15-6.5deg) is an acoustically-rotated slow-shear
TeO2 device (vs � 0:66 mm=�s) with a bandwidth of �40 MHz, resulting in a time-bandwidth product of
�800 and a minimum demagni�ed fringe period of �1.25 �m at the target, a measure of the maximum
resolution of the proof-of-concept system.

5.2 Electronic Pattern Synthesis

PC-FAST relies on Direct Digital Synthesis (DDS) electronics to generate RF signals, achieving 32-bit
frequency, 14-bit phase and 10-bit amplitude resolution as well as accuracy and stability that depend only on
the characteristics of the clock source. Although DDS technology is precise, agile and inexpensive, it limits
the RF signals to CW or swept tones. Future implementations of FAST based on frequency-multiplexed
Fourier sampling will require programmable arbitrary waveform synthesis. The swept two-tone drive signal
is synthesized by current-summing two outputs from a computer-controlled 4-channel DDS board (modi�ed
Analog Devices AD9959 evaluation board) and ampli�ed (using a Minicircuits ZHL-2-8 ampli�er) to a level
of �60 mW, well below the power needed to achieve maximum di¤raction e¢ ciency (�800 mW), in order to
maintain a linear acousto-optic response. The third DDS channel is used to automatically reset the sweep
and to trigger the digitizer. For the reconstructions shown in Figure 9d the DDS board was programmed
to sweep the two-tone beat frequency between 10 kHz and 20 MHz with 10 kHz frequency steps over �2
ms for each slice. Custom Labview software is used to control the DDS, the rotation stage, as well data
acquisition and processing, automating the entire measurement.

5.3 Heterodyne Detection

The object�s response to the moving illumination pattern is measured using a custom-built autobalancing
di¤erential detector, in order to suppress relative intensity noise. Based on design considerations described
by P. Hobbs [35, 36], this detector uses transistor �bootstrapping�to achieve a bandwidth of �70 MHz
using two large-area photodiodes (Hamamatsu S1722-01), has a noise-equivalent power of 5 pW=

p
Hz,

and can be tuned to attain �70 dB of noise cancellation at low frequencies. The comparison signal for
di¤erential cancellation is split-o¤ from the illumination via one of the PBS ports in the microscope and
can be intensity-tuned by adjusting a waveplate. The di¤erentially detected signal is mixed using an analog
multiplier (Analog Devices AD835) with a local oscillator signal o¤set by 50 kHz and swept synchronously
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with the two-tone beat frequency using the fourth DDS channel, �ltered by a 50 kHz bandpass �lter, and
digitized at 1 MHz using a USB oscilloscope (Cleverscope CS328A) synchronously with the DDS clock.
This electronic heterodyne detection scheme not only reduces the number of digital samples needed to
measure a Fourier slice from O(N2) to O(N), but also lowers the noise bandwidth by a factor of N , where
N is the number of resolvable frequencies per slice (or equivalently, half the time-bandwidth product of the
Bragg cell).

6 Conclusions

While the initial results shown in Figure 9d prove the basic concepts and algorithms of FAST, they
represent only the �rst steps towards a versatile computational imaging technique. In the near future we
hope not only to improve the image quality, but also to demonstrate some of the other capabilities in
the FAST toolbox, including imaging of �uorescent biological samples, high-NA large-working-distance
imaging without precision optics, dynamic �ltering and aberration compensation, and three-dimensional
Fourier synthesis. We are also investigating a next generation FAST system based on a pulsed laser source
implementing a non-mechanical illumination rotation scheme with the potential to measure as many as
108 Fourier samples per second. Pulsed FAST could also be used for multi-photon imaging and combined
with other time-resolved imaging modalities, such as �uorescence lifetime imaging [37] and time-gated
techniques for imaging in scattering media [38]. The capabilities of FAST are well suited for studying
dynamic processes in the sample volume. High-speed wide-�eld imaging, large DOF, Fourier-selectivity,
and coherence-gating of broadband FAST, could, for example, enable real-time tracking of neuron signals
propagating along multiple volume-distributed dendrites using voltage-sensitive �uorescent dyes [39]. A
re�ective lensless implementation of FAST could be suitable for high-resolution imaging in FIR, UV, and
X-ray regimes, where precision optics and dense detector arrays pose a technological challenge. Other
applications of FAST may include dynamic characterization of Micro Electro Mechanical Systems [40] and
even near-�eld Fourier-domain imaging [41].
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