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Abstract

We describe a simple and efficient algorithm for two-
view triangulation of 3D points from approximate 2D
matches based on minimizing the L2 reprojection error.
Our iterative algorithm improves on the one by Kanatani
et al. [5] by ensuring that in each iteration the epipolar
constraint is satisfied. In the case where the two cameras
are pointed in the same direction, the method provably con-
verges to an optimal solution in exactly two iterations. For
more general camera poses, two iterations are sufficient to
achieve convergence to machine precision, which we exploit
to devise a fast, non-iterative method. The resulting algo-
rithm amounts to little more than solving a quadratic equa-
tion, and involves a fixed, small number of simple matrix-
vector operations and no conditional branches. We demon-
strate that the method computes solutions that agree to very
high precision with those of Hartley and Sturm’s original
polynomial method [2], though achieves higher numerical
stability and 1–4 orders of magnitude greater speed.

1. Introduction
Triangulation is one of the most fundamental problems

in computer vision. The problem can be stated as follows:
Given a 3D point X projected to xi = PiX in two or more
cameras, recover the 3D position of X from its 2D projec-
tions. When X is consistent with the matched points xi,
this is a trivial linear problem. In practice, however, the
measured and reprojected points do not exactly coincide,
which causes the rays from the camera centers through the
imaged points not to intersect in 3D. This may be due to un-
certainties in relative camera poses or intrinsics (i.e. errors
in Pi), or to the inherent difficulties in designing automated
methods that perfectly match points to within subpixel ac-
curacy across images (i.e. errors in xi). In the presence of
noise, the triangulation problem becomes one of finding the
3D point that best describes the observed image points.

Several criteria and error functionals for triangulation
have been proposed in the literature [1, 3, 9, 10]. Under the
assumption that the imaged points are perturbed by Gaus-

sian noise, the optimal, maximum likelihood solution [2]
minimizes the L2 reprojection error

d(x, x̂)2 + d(x′, x̂′)2 (1)

where d is the Euclidean image-plane distance, x and x′ are
the observed points, and x̂ and x̂′ are corrected points that
satisfy the epipolar constraint [7]

x̂TFx̂′ = 0 (2)

Here F denotes the rank-2 fundamental matrix defined for a
pair of cameras. When satisfied, the epipolar constraint im-
plies that the corresponding rays intersect at a point in 3D.
A globally optimal solution to this non-convex constrained
optimization problem is due to Hartley and Sturm [2] (of-
ten referred to as optimal triangulation or the polynomial
method), and amounts to finding all roots of a degree-six
polynomial. Though theoretically optimal, the task of re-
liably finding polynomial roots using finite precision arith-
metic is nontrivial. Moreover, the relative difficulty of im-
plementing this method and its computational cost can be
considerable. Henceforth we will refer to this method as
hs.

Iterative schemes are possible alternatives to Hartley
and Sturm’s “direct” method. The bundle adjustment ap-
proach [12] optimizes the position of the 3D point explicitly
(and possibly the camera parameters as well), and thus en-
sures that the epipolar constraint is satisfied. Its main draw-
back is a reliance on a good initial guess of the 3D posi-
tion of the point, and even with reasonable estimates such a
method often fails [8]. On the other hand, iteration over the
positions of the 2D points 〈x̂, x̂′〉 has the benefit of a good
initializer 〈x, x′〉, and here the main concern becomes one
of ensuring that the epipolar constraint is met upon conver-
gence. Kanazawa and Kanatani [6] proposed such a method
that converges quickly but generally to a solution that does
not satisfy Eq. (2). Kanatani et al. [5] more recently pre-
sented an improved higher-order method that does satisfy
the epipolar constraint, and which converges to a local ex-
tremum of the reprojection error. Like [6], Kanatani et al.’s
method, which we will refer to as ksn, solves in each it-
eration a linear equation, but improves on [6] by incorpo-
rating information from the previous iteration. Aside from
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no guarantees on global optimality, the chief drawback of
this method is the number of iterations required—especially
in unstable camera configurations—and the need to test for
convergence. Moreover, early termination of this iterative
scheme is not possible as the epipolar constraint is gener-
ally not satisfied until convergence.

In this paper we propose a new image-space iterative
method for two-view triangulation that takes optimal steps
〈∆xk,∆x′k〉 in each iteration k by solving a quadratic rather
than linear equation. In particular, each intermediate iterate
〈xk, x′k〉 is guaranteed to satisfy the epipolar constraint, and
hence forms a valid (though possibly suboptimal) solution,
allowing for early termination. We show that as Kanatani
et al.’s higher-order method converges, its steps approach
those computed by our method. We further prove that when
the two cameras’ principal axes are parallel (i.e. the cam-
eras face in the same direction), the method converges in
exactly two iterations. This is an important use case that
occurs, for instance, in (zero toe in) stereo photography and
structure from motion from a single forward-facing camera.
In practice, convergence to very high precision (more than
10 digits) is achieved in at most two iterations for more gen-
eral camera poses as well; a result that we use to simplify
the second iteration for a fully non-iterative method. In ad-
dition to being very simple and efficient, we show using
extensive experiments that the solutions delivered by our
method are in excellent agreement with those of Hartley
and Sturm’s, but at only a tiny fraction of computational
cost. In fact, due to the polynomial method’s susceptibil-
ity to ill-conditioning, our method often yields lower repro-
jection errors in practice. Thus, although not theoretically
optimal, our method is a practical and sometimes preferred
alternative to the polynomial method.

We begin by presenting an iterative version of our algo-
rithm and discuss its similarities with the one by Kanatani
et al. We later prove that when the cameras point in the
same direction two iterations suffice, and that the solution
is indeed an extremum of the reprojection error. We then
rewrite parts of the algorithm to make it more efficient, and
also discuss how to make it numerically robust. We con-
clude with experimental results and a discussion of future
work.

2. Preliminaries
For simplicity of presentation, we will assume that the

cameras are calibrated and that the point matches 〈x, x′〉
are normalized, i.e. they have been premultiplied by the in-
verse camera calibration matrix K−1. This allows us to
work with essential matrices E = [t]×R, where R and t are
the relative orientation and translation of the two cameras,
and where [·]× represents the cross product operator (see
also [3]). The uncalibrated case can be treated similarly,
with F replacing E, as long as pixels are square; a prereq-

uisite for the Euclidean reprojection error to be meaningful.
We represent points in the image plane using homogeneous
coordinates, e.g. x =

(
x1 x2 1

)T
. Using this notation,

the epipolar constraint becomes

xTEx′ = 0 (3)

Vectors in the image plane have only two components, and
to combine 2-component vectors and homogeneous points
we define the matrix

S =
(

1 0 0
0 1 0

)
(4)

Thus ST∆x are the 3D coordinates of the 2D displacement
∆x. We will make frequent use of

Ẽ = SEST (5)

which is the upper left 2× 2 submatrix of E.
The epipoles e = t and e′ = RTt are the projections of

the camera centers c and c′, and are the left and right null
vectors of E, respectively. The line through e′ and an image
point x′ in the second camera projects to an epipolar line
` = Ex′ in the first camera. Thus a point x on ` satisfies
`Tx = 0. Similarly, `′ = ETx. We use 〈x, x′〉 to denote
the measured points, and 〈x̂, x̂′〉 the corrected points.

3. Optimality conditions
Optimal triangulation, as formulated by Hartley and

Sturm [2], can be expressed as the following minimization
problem:

minimize ∆xT∆x + ∆x′
T
∆x′

subject to (x− ST∆x)TE(x′ − ST∆x′) = 0
(6)

with ∆x = S(x − x̂), ∆x′ = S(x′ − x̂′). Equation (6)
is a quadratically constrained quadratic optimization prob-
lem. We introduce a Lagrange multiplier−2λ for the scalar
constraint, resulting in the Lagrangian

f(∆x,∆x′, λ) = ∆xT∆x + ∆x′
T
∆x′

− 2λ(x− ST∆x)TE(x′ − ST∆x′) (7)

Setting the gradient of f to zero, we obtain the following
quadratic equations:

x̂TEx̂′ = (x − ST∆x)TE(x′ − ST∆x′) = 0 (8)

∆x = λSE(x′ − ST∆x′) = λSEx̂′ = λn (9)

∆x′ = λSET(x − ST∆x) = λSETx̂ = λn′ (10)

These are one scalar and two vector equations for a total of
five constraints involving five unknowns (∆x, ∆x′, and λ).



Equation (8) implies that x̂ and x̂′ must lie on correspond-
ing epipolar lines ` = Ex̂′ and `′ = ETx̂. Equations (9)
and (10), on the other hand, constrain x̂ and x̂′ to lie on
lines orthogonal to ` and `′ that pass through x and x′, re-
spectively (see Fig. 1). In other words, ∆x and ∆x′ are
parallel to the normal vectors n and n′ of the epipolar lines.

The geometric consequences of these line intersection
constraints are well known: ∠xx̂e must be a right angle,
and hence the optimum in the first camera must lie some-
where on the smallest circle in the image plane that contains
x and the epipole e (and similarly for the second camera).
The approach taken by Hartley and Sturm is to parameterize
this circle in the first camera via a stereographic projection
from the epipole e onto the line

(
0 0 1

)T × (e− x) (the
vertical line through x = x0 in Fig. 1). Each point on this
line can then be expressed using a single parameter t, and
can later be mapped back to the corresponding point on the
circle.

In addition to the directional constraints of Eqs. (9)
and (10), these equations impose a magnitude constraint on
an optimal solution, i.e. that the Lagrange multiplier λ take
on the same value in both equations. We can thus express
Eqs. (8) to (10) intuitively as a set of conditions that any
optimal solution 〈x̂, x̂′〉 must satisfy:

(i) x̂ and x̂′ lie on corresponding epipolar lines.

(ii) x̂ and x̂′ are the projections of x and x′ onto these
epipolar lines.

(iii) The corrections ∆x and ∆x′ are linearly related by a
single parameter λ.

Note that these three requirements are necessary for a pair
〈x̂, x̂′〉 to satisfy the epipolar constraint and be an extremum
of the reprojection functional f . They are, in general, not
sufficient for global optimality. As Hartley and Sturm point
out, as many as three minima and three maxima may ex-
ist. (Since f is parameterized over a circle, it is periodic,
and hence there are as many minima as there are max-
ima.) In practice, however, f has with very high probability
(> 99.6% in our experiments) a single minimum, and hence
our primary goal is to satisfy the three constraints above.

4. Iterative algorithm
Our iterative approach to satisfying the optimality con-

straints is to linearize Eqs. (9) and (10) by replacing on the
right hand side the optimal 〈x̂, x̂′〉 points with the current
best estimate 〈xk, x′k〉. The measured points x = x0 and
x′ = x′0 serve as initial estimates. Substituting the cur-
rent estimates ∆xk and ∆x′k into Eq. (8) results in a single
quadratic equation in the unknown λk:

λ2
knT

k Ẽn′k − λk(nT
1 nk + n′1

T
n′k) + xT

0 Ex′0 = 0 (11)

t

ex0

x1

x2

n1

n2

∆x1
= x0
− x1

∆
x 2

=
x 0
−

x 2

2̀ = Ex ′
1

`
1 =

E
x ′0

Figure 1: Iterative refinement of x. The optimum, x2, is
the orthogonal projection of the measured point x0 onto the
epipolar line e = Ex′1 = Ex′2, and lies on the smallest
circle through x0 and the epipole e.

with nk = SEx′k, n′k = SETxk. Of the two possible roots,
we choose the smaller one (in magnitude) as λ governs how
far to step from the measured points. Given this value of λ
we update the displacements ∆x and ∆x′ using Eqs. (9)
and (10), and consequently the positions 〈x, x′〉, and con-
tinue with the next iteration. The resulting algorithm is pre-
sented in Listing 2. The issue of convergence is not ad-
dressed here, and will be discussed in more detail below.

Note that by solving Eq. (8), we explicitly enforce the
epipolar constraint in each iteration. Moreover, the dis-
placements ∆x and ∆x′ are based on a single step size, λ,
and hence two of the three optimality conditions are met.
This is in contrast to the method by Kanatani et al. [5],
which enforces the epipolar constraint only upon conver-
gence. In fact, the only difference between our iterative
method and Kanatani’s is the step size λ. The two meth-
ods employ the same step directions nk and n′k (as does the
original method [6]), i.e. from the measured points 〈x0, x

′
0〉

in a direction orthogonal to the current epipolar lines asso-
ciated with 〈xk, x′k〉. These directions are in some sense
the best possible choice, as upon convergence they point to
the optimum. By also satisfying the epipolar constraint, we
additionally take the best possible length step.

Whereas our step size λk is the root of a quadratic equa-
tion, one can show that the λk computed by Kanatani’s
method is a solution to

λ2
knT

k Ẽn′k − λk(nT
1 nk + n′1

T
n′k) + xT

0 Ex′0 =

(∆xk −∆xk−1)TẼ(∆x′k −∆x′k−1) (12)

Since ∆xk = λknk and ∆x′k = λkn′k, the quadratic term
λ2

k cancels, resulting in a linear equation in λk (see List-
ing 1). As Kanatani’s method converges, the right-hand-
side of Eq. (12) approaches zero, and hence the λk com-



ksn (x0, x
′
0, E)

1. ∆x0 ← 0
2. ∆x′0 ← 0
3. for k = 1, . . .
4. nk ← SEx′k−1

5. n′k ← SETxk−1

6. λk ←
xT
0Ex′0−∆xT

k−1Ẽ∆x′k−1

nT
knk+n′k

Tn′k

7. ∆xk ← λknk

8. ∆x′k ← λkn′k
9. xk ← x0 − ST∆xk

10. x′k ← x′0 − ST∆x′k

Listing 1: The higher-order method by Kanatani et al. [5].
Differences with respect to Listing 2 are highlighted.

puted by Kanatani’s method approaches the quadratic solu-
tion obtained directly by our method (c.f . Eq. (11)).

We remark that our implementation uses a careful choice
in the computation of λ. Since we are interested only in the
smaller of the two roots, we compute λ = c

b+sgn(b)d instead

of the equivalent λ = b−sgn(b)d
a to guarantee effective ad-

dition instead of subtraction. This avoids the potential for
catastrophic cancellation (c.f . [11, §5.6]).

When the error functional has only one minimum, as we
found to be the case in more than 99.6% of our experiments,
our iterative method quickly converges to that minimum.
Choosing the larger of the two roots for λ in each iteration
takes us instead to the single maximum.

Once the corrected points 〈x̂, x̂′〉 have been computed,
any method can be used to infer the 3D point X , as the two
rays must intersect. When pose and intrinsics are known,
the method outlined in [6] may be used:

z = x̂×Rx̂′ X =
zTEx̂′

zTz
x̂ (13)

4.1. Convergence criterion

To assess convergence, it is important to ask what we
wish to converge to. A “small enough” change in 〈xk, x′k〉,
though normally an indicator of convergence, does not im-
ply that the optimality conditions are met. Since in our
method and as well [5, 6] condition (iii)—single λ—is guar-
anteed, only the remaining two need examination. That
is, the solution 〈x̂, x̂′〉 must lie at the intersection of corre-
sponding epipolar lines and on the orthogonal lines through
〈x, x′〉. In other words, 〈x̂, x̂′〉 must be the projection of
〈x, x′〉 onto the epipolar lines defined by 〈x̂, x̂′〉. As a
general convergence criterion, we measure the distance of
〈x̂, x̂′〉 to this intersection, which accounts for both epipo-
lar constraint violation (by methods like ksn, for instance)
and optimality along the epipolar lines.

iter (x0, x
′
0, E)

1. for k = 1, . . .
2. nk ← SEx′k−1

3. n′k ← SETxk−1

4. ak ← nT
k Ẽn′k

5. bk ← 1
2 (nT

1 nk + n′1
T
n′k)

6. ck ← xT
0 Ex′0

7. dk ←
√

b2
k − akck

8. λk ← ck

bk+sgn(bk)dk

9. ∆xk ← λknk

10. ∆x′k ← λkn′k
11. xk ← x0 − ST∆xk

12. x′k ← x′0 − ST∆x′k

Listing 2: Our iterative method.

5. Non-iterative algorithm
The advantage of our method over Kanatani’s, aside

from faster convergence, is that any intermediate iterate
satisfies the epipolar constraint and therefore constitutes a
valid (albeit possibly suboptimal) solution, thus allowing
for execution of only a small, fixed number of iterations.
In fact, a remarkable result is that our iterative algorithm
can be shown to attain a minimum in exactly two itera-
tions when the cameras face in the same direction, regard-
less of translation and the remaining rotational degree of
freedom (see Appendix A). In this case the first iteration
finds the correct epipolar lines, and the second iteration sim-
ply moves the points along these lines to the projections
of 〈x, x′〉. For more general camera poses, we observed
that our method, with extremely high likelihood, converges
in two iterations to 12 digits of precision or more. This
suggests the possibility of running only the first iteration to
identify the epipolar lines, followed by a projection step.

In the general setting, this projection step may violate
condition (iii), since then the resulting step sizes in the two
views may require different values ∆xT

1n2

nT
2n2

and ∆x′1
Tn′2

n′2
Tn′2

for
λ. An alternative solution is to fix λ by computing

λ2 =
∆xT

1 n2 + ∆x′1
T
n′2

nT
2 n2 + n′2

Tn′2
= λ1

2d1

nT
2 n2 + n′2

Tn′2
(14)

This is equivalent to applying one step of iter followed by
one step of ksn. In the general case this linearization of λ2

comes at the expense of violating the epipolar constraint (i).
As we shall see, the discrepancy is usually on the order of
10−15, and is for all practical intents inconsequential.

Our non-iterative algorithm, implemented both ways, is
presented in Listing 3. A C++ implementation of the faster
niter2 version compiles to 36 additions/subtractions,
49 multiplications, 2 divisions, and 1 square root, for a total
of 88 floating-point scalar arithmetic operations.



niter1 (x, x′, E)
1. n ← SEx′

2. n′ ← SETx

3. a← nTẼn′

4. b← 1
2 (nTn + n′

T
n′)

5. c← xTEx′

6. d←
√

b2 − ac
7. λ ← c

b+d

8. ∆x ← λn
9. ∆x′ ← λn′

10. n ← n − Ẽ∆x′

11. n′ ← n′ − ẼT∆x

12. ∆x ← ∆xTn
nTn

n

13. ∆x′ ← ∆x′Tn′

n′Tn′
n′

14. x ← x − ST∆x
15. x′ ← x′ − ST∆x′

niter2 (x, x′, E)
1. n ← SEx′

2. n′ ← SETx

3. a← nTẼn′

4. b← 1
2 (nTn + n′

T
n′)

5. c← xTEx′

6. d←
√

b2 − ac
7. λ ← c

b+d

8. ∆x ← λn
9. ∆x′ ← λn′

10. n ← n − Ẽ∆x′

11. n′ ← n′ − ẼT∆x

12. λ ← λ 2d
nTn+n′Tn′

13. ∆x ← λn
14. ∆x′ ← λn′

15. x ← x − ST∆x
16. x′ ← x′ − ST∆x′

Listing 3: Our two non-iterative methods with differences
highlighted. niter1 guarantees conditions (i) and (ii),
whereas niter2 guarantees condition (iii).

6. Results
We evaluated our method on both synthetic and real

data and made comparisons with our C++ implementations
of Hartley and Sturm’s method [2] (hs) and the one by
Kanatani et al. [5] (ksn). Our data sets exhibit a wide va-
riety of more than 100,000 relative camera poses. Statistics
on these data sets are reported in Table 1.

6.1. Synthetic data

We begin by examining how our method performs on
the synthetic data. Each of these data sets is comprised
of 10 × 10 random point clouds of 10,000 points each,
projected onto images of size 1, 0242 pixels, with a focal
length of 512 pixels. These point clouds have a Gaussian
radial distribution with a standard deviation of 1

4 relative
to the baseline. Each member of this 10 × 10 ensemble
corresponds to a certain image-space Gaussian noise level
σ = 2n in pixels, with n = −5,−4, . . . ,+4, and distance
from center of baseline δ = 2d for d = −1, 0, . . . ,+8.
In “orbital” the cameras point at the point cloud centroid;
in “lateral” the cameras point in the same direction and
are translated laterally (a stable configuration simulating a
stereo camera); while in “forward” the cameras also point in
the same direction but one is translated directly forward (an
unstable configuration simulating a forward-facing camera
attached to a vehicle or robot).

Table 1 lists the number of real polynomial roots found
by hs. For root finding we first implemented the popu-
lar eigenvalue method [11]. In spite of the polynomial be-

Orbital Lateral Forward Corridor Dinosaur Notre Dame
Cameras 20 2 2 11 36 715
Poses 10 1 1 55 322 118,467
Points 106 106 106 737 4,983 127,431
Matches 106 106 106 12,003 25,841 4,579,786
1 root 106

2 roots 106 106 12,003 25,841 4,553,033
4 roots 26,753
Agreement 8 16 8 6 7 3

Table 1: Data sets used. “Poses” denotes the number of
camera pairs in which at least one point is visible. A point
may partake in multiple pairwise “matches.” “Roots” refers
to the number found in the C++ implementation of hs.
“Agreement” is the minimum number of digits to which the
hs and niter1 reprojection errors agree.

ing of low degree, we found this method unreliable due to
poor conditioning. With relative coefficient magnitudes of-
ten spanning more than the 16 digits of precision available
in a double, we observed catastrophic loss of precision in
the eigensolver. Instead we used Bond’s implementation of
the well-known Jenkins-Traub root finding method [4] from
http://www.crbond.com/download/misc/rpoly.cpp. In
addition to complexity of implementation, the need for a so-
phisticated root finding technique in hs are two arguments
in favor of our much simpler method.

Returning to Table 1, with the epipoles at infinity in the
“lateral” case the polynomial is reduced to linear, and hence
only one root exists. The other two synthetic data sets result
in exactly two roots in all two million cases. This table also
lists the degree of precision at which the resulting reprojec-
tion error agreed between hs and our non-iterative method
niter1. This agreement is always at least three digits, and
in over 99.99% of all cases six digits or more. For each of
these three data sets, our non-iterative method converged to
at least twelve digits of precision in two iterations or less.

Histograms of relative reprojection errors between hs
and our iterative and non-iterative methods are shown in
Fig. 3. We compute the relative error as ∆E = E−E′

min{E,E′} ,
where E and E′ are the reprojection errors found by one
of our methods and hs, respectively. Thus ∆E = ±10−15

means that our method agreed with hs to 15 digits of preci-
sion. The histogram bins span ±[10i, 10i+1); blue columns
show cases where our method found a better solution, green
indicates the range (−10−17,+10−17) around machine ep-
silon, while red columns indicate that hs did better.

Evidently our method compares well with hs in
practice—in spite of hs being globally optimal in theory—
with relative errors more or less exhibiting a normal distri-
bution around zero, and with our three methods producing
qualitatively similar histograms. In the worst case, niter1
exceeded the reprojection error reported by hs by one part
in 108, while ensuring that the epipolar constraint was met.

http://www.crbond.com/download/misc/rpoly.cpp


6.2. Real data

We also evaluated our method on the multi-view data sets
“dinosaur” and “corridor” from http://www.robots.ox.

ac.uk/∼vgg/data/data-mview.html, and “Notre Dame”
from http://phototour.cs.washington.edu/datasets/.
Exactly two roots were found for all point matches in the
first two data sets, while hs sometimes reported four roots
for the third. Indeed, this is the only data set for which we
found more than two roots (but not more than four). We sep-
arated out these cases to test whether our method would get
stuck in a local minimum. The dark columns in the bottom
row of Fig. 3 suggest no particular problems for any of our
methods in these situations. We also measured the square
distance of the niter2 solutions to the epipolar lines, and
found on both the synthetic and real data this distance to be
at most 10−9 (in normalized coordinates); in 99.999% of all
cases this discrepancy was less than 10−15.

6.3. Convergence

To demonstrate the superiority in convergence of our
method over ksn, we counted the number of iterations re-
quired to converge to 12 digits of precision for the “for-
ward” unstable camera pose, where the imaged points are
close to the epipoles. Our method is guaranteed to converge
in (at most) two iterations regardless of noise and scene dis-
tance, as was also verified experimentally. Fig. 2 plots the
average number of iterations required by ksn for different
levels of noise and distance. As expected, the number of it-
erations increases both with noise level and distance. In the
worst case, ksn required 11 iterations to converge.

6.4. Timings

Using the synthetic data we evaluated the speed of our
niter2 method relative to hs and ksn on a dual 3.2 GHz
Intel Xeon PC. In Table 2 we also include the results of
two simple methods that do not minimize reprojection error:
the midpoint (mid) and linear homogeneous method (dlt);
see [3]. We note that the timings for both of these meth-
ods, which compute 3D points directly, include the time to
project the solutions back to 2D. Nevertheless, even when
measuring 3D extraction, our method is more than twice
as fast as mid, which might be considered the simplest tri-
angulation method known. We also note that on the “or-
bital” and “forward” data sets our method is 50 times faster
than Hartley and Sturm’s, and about 20 times faster than
Kanatani’s own publically available C++ implementation of
ksn. In case of the “lateral” data set, the Jenkins-Traub root
finder used by hs spent considerably more time isolating
the single root, and here our method was 8,000 times faster.
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Figure 2: Average number of iterations required by ksn to
converge as a function of scene distance and noise level σ.

hs dlt ksn mid niter2
Points/sec 130 K 140 K 1.7 M 1.7 M 6.5 M
Speedup 1.0 1.1 13 13 50

Table 2: Speed of computing optimal image points 〈x̂, x̂′〉.

7. Conclusions
We presented a fast iterative method for uncalibrated

two-view triangulation that takes optimal step sizes so as to
enforce the epipolar constraint in each iteration. In practice,
the optimal epipolar lines are found in the first iteration, al-
lowing the second iteration to be cast as a simple projection
step that renders the method non-iterative. The problem
case of unstable camera configurations—where triangula-
tion methods exhibit their greatest variation in quality and
speed—is chiefly where our method excels over the one by
Kanatani et al. [5]. Our simple method is furthermore non-
iterative and several times faster than theirs. In spite of no
theoretical optimality guarantees in the general setting, we
showed our method to generally be more reliable and ac-
curate in practice than Hartley and Sturm’s, in addition to
being fifty times faster.

Future work will investigate the convergence properties
of our new method in order to gain an understanding of
whether it may fail, and why the method converges to such
great precision in only two iterations. The problem treated
here is limited to two views. We envision possible exten-
sions to three-view triangulation, which likely will involve
the solution of cubic equations.
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Figure 3: Histograms of reprojection error relative to Hartley and Sturm’s method for our iterative and two non-iterative
methods. Due to numerical issues, our method often finds better solutions (blue columns). Note that the vertical axis for
Notre Dame is logarithmic to highlight (using darker columns) the cases where hs found four roots and where multiple
minima may exist.



A. Proof of optimality
We here prove that our method is optimal when the two

cameras point in the same direction (that is, when their prin-
cipal axes are parallel). Let R and t be the relative orien-
tation and translation of the two cameras, and let E be the
associated essential matrix, with

R =
(

Q 0
0 1

)
(15)

t =
(
x y z

)T
(16)

Ẽ = SEST =
(

0 −z
z 0

)
Q (17)

for any orthogonal 2 × 2 matrix Q and unit vector t. Thus,
the cameras both point in the direction

(
0 0 1

)T
. One

may easily verify that

ẼTẼ = ẼẼT = z2I (18)

ESTSETSTSE = z2E (19)

We have in the first iteration

a1 = nT
1 Ẽn′1 = x′0

T
ETSTSESTSETx0

= xT
0 ESTSETSTSEx′0 = z2xT

0 Ex′0

= z2c1

(20)

a1λ1 = 2b1 −
c1

λ1
= 2b1 − (b1 + d1) = b1 − d1 (21)

In the second iteration, c2 = c1 and

a2 = nT
2 Ẽn′2 = (n1 − λ1Ẽn′1)

TẼ(n′1 − λ1Ẽ
Tn1)

= nT
1 Ẽn′1 − λ1n

T
1 ẼẼTn1 − λ1n

′
1
T
ẼTẼn′1

+ λ2
1n

′
1
T
ẼTẼẼTn1

= a1 − 2z2b1λ1 + z2a1λ
2
1

= a1 + z2(a1λ
2
1 − 2b1λ1) = a1 − z2c1

= 0

(22)

b2 = 1
2 (nT

1 n2 + n′1
T
n′2)

= 1
2 (nT

1 (n1 − λ1Ẽn′1) + n′1
T(n′1 − λ1Ẽ

Tn1))

= 1
2 (nT

1 n1 − a1λ1 + n′1
T
n′1 − a1λ1)

= b1 − a1λ1 = b1 − (b1 − d1)
= d1

(23)

From Listing 2 and a2 = 0, we obtain a linear expression

λ2 =
c2

2b2
=

c1

2d1
(24)

For the method to converge in the second iteration, we need
∆x2 to be the projection of ∆x1 onto n2 (see Fig. 1), and
similarly in the second camera. In other words, we need to
show that

λ2 =
∆xT

1 n2

nT
2 n2

=
∆x′1

T
n′2

n′2
Tn′2

=
∆xT

1 n2 + ∆x′1
T
n′2

nT
2 n2 + n′2

Tn′2
(25)

We limit the proof to the first camera, as the same holds in
the second camera due to symmetry:

∆xT
1 n2

nT
2 n2

= λ1
nT

1 n2

nT
2 n2

=
λ1(nT

1 n1 − a1λ1)

nT
1 n1 − 2a1λ1 + z2λ2

1n
′
1
Tn′1

=
λ1(nT

1 n1 − b1 + d1)

nT
1 n1 − 2(b1 − d1) + b1−d1

b1+d1
n′1

Tn′

= λ1(b1+d1)(n
T
1n1−b1+d1)

(b1+d1)(nT
1n1−2(b1−d1))+(b1−d1)(2b1−nT

1n1)

=
c1(nT

1 n1 − b1 + d1)
2d1nT

1 n1 − 2b1d1 + 2d2
1

=
c1(nT

1 n1 − b1 + d1)
2d1(nT

1 n1 − b1 + d1)

=
c1

2d1
=

c2

2b2
= λ2 (26)
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