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ABSTRACT

The successful operation (with β≤60%, classical ions and electrons with Te=250 eV) of

the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP)

in Novosibirsk, Russia, extrapolates to a 2 MW/m2 Dynamic Trap Neutron Source

(DTNS), which burns only ~100 g of tritium per full power year. The DTNS has no

serious physics, engineering, or technology obstacles; the extension of neutral beam lines

to steady state can use demonstrated engineering; and it supports near-term tokamaks and

volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER

and satisfies the missions specified by the materials community to test fusion materials

(listed as one of the top grand challenges for engineering in the 21st century by the U.S.

National Academy of Engineering) and subcomponents (including tritium-breeding

blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear

Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for

licensing subsequent FSNFs.



I.  INTRODUCTION

The gas dynamic trap DT Neutron Source (DTNS) concept is being developed at the

Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia1-7. The DTNS may be

described as a line source of neutrons, in contrast to a spallation or a D-Lithium source

with neutrons beaming from a point, or a tokamak volume source.  The DTNS is a neutral

beam driven linear plasma system with magnetic mirrors to confine the energetic

deuterium and tritium beam injected ions, which produce the 14 MeV neutrons. The hot

ions are imbedded in warm-background plasma, which traps the neutral atoms and

provides both MHD and micro stability to the plasma. The 14 MeV neutron flux ranges

typically at the level of 1 to 4 MW/m2.

The DTNS concept has similarities to magnetic mirror plasma concepts investigated

previously but has several stark differences:

1. The magnetic mirror geometry is created with circular coils only so the magnetic field

topology is axisymmetric, rather than minimum-B.  This simplifies construction and

maintenance of the DTNS devices.  Since the magnetic field topology is

axisymmetric there is no resonant particle transport or neoclassical radial transport

that is associated with minimum-B mirror systems and toroidal systems.

2. Thermal Barriers are not needed in the DTNS concept as in some previous mirror

reactor systems. Also no tandem mirror end plugs are employed in the version

considered here.  The absence of these elements reduces the number of auxiliary

systems needed and also simplifies the physics.

3.  The DTNS concept operates with relatively low electron temperature (~1% of the

beam injection energy compared to higher ratios (~10%) in previous mirror reactor



designs.  While the lower electron temperatures result in faster electron drag cooling

of the energetic ions, the plasma potential is lower so the warm-ion energy-

distribution is nearly Maxwellian and thereby suppresses the drive for Drift Cyclotron

Loss Cone (DCLC) micro-instabilities that would be present with higher plasma

potentials.

4. The DTNS magnetic field can be tuned to vary the intensity and uniformity of the

neutron flux as desired.

5. The tritium requirement is modest (~0.1 kg per full power year), because the test area

(~2 m2) and test volume (~100 liters) are modest. This allows the tritium to be

purchased, rather than requiring a tritium-breeding blanket (which must work on

larger devices to provide the fueling required for operation).

6. The neutral beams and gas or pellet fueling operate on a mix of deuterium and tritium

(DT), removing the need for an expensive and complex tritium system to separate

tritium from deuterium.

Extensive engineering concept and design work has been completed by the BINP in

Novosibirsk in collaboration with the Efremov Institute in St. Petersburg, KFA in

Karlsruhe, Germany;  FDR in Dresden, Germany; ITP Snezhinsk, Russia; EURATOM.

Fracati, Italy; etc. [e.g. Ref. 3].  An earlier design was based on superconducting coils

augmented at the mirrors with a copper insert coil.  A later design employed all

superconducting coils in order to reduce the electrical power requirements.  Our

workshop was largely based on publications from these designs.

While the DTNS concept is not new, the recent achievement of 60% central beta in

the GDT linear axisymmetric magnet configuration and electron temperatures exceeding



200 eV provide key verification of the concept5-7.  The recent results provide the basis to

extrapolate to a higher energy hydrogen prototype and then to a complete DT neutron

source.

The key conclusions of the workshop are:

1. The DTNS design satisfies the missions specified by the materials community to test

fusion materials (listed as one of the top grand challenges for engineering in the 21st

century by the U.S. National Academy of Engineering) and subcomponents needed to

construct DEMO.

2.  There are no serious Technology or Engineering obstacles to construct DTNS,

although:

a. Neutral beam lines must be extended to steady state, as is also needed for

tokamak systems. The technologies to do this are developed, as will be discussed.

b. Recent developments in magnet technology could allow somewhat higher mirror

fields to improve DTNS efficiency.

c. Optimization of warm plasma scenarios would reduce tritium, and other gas

processing, system requirements.

3. The DTNS supports the magnetic-fusion energy science program and enables the

increased materials and engineering science needed for an energy program.

a. It could function as the first Fusion Nuclear Science Facility (FNSF) and

could develop the materials, and components (including tritium-breeding

blanket modules) database necessary for building and licensing subsequent

FNSFs.



b. It could develop the steady-state neutral beam injectors, beam dumps, and

pumping also needed on tokamak-based neutron sources, such as FDF and

CTF as well as current experiments such as EAST, KSTAR, and JT-60SA.

Radiation damage and activation are reduced by injecting into a lower neutron

producing volume, so injectors should last longer on the DTNS. If radiation

damage proves to be an issue, the DTNS will be an effective test bed for

developing longer lasting injectors for the subsequent tokamak neutron

sources.

c. Provides facilities for both materials development and subcomponent

development and testing, with neutron spectrum similar to ITER to get

activation right as well as H and He generation ratios and blistering. Provides

the data necessary for licensing a Fusion Nuclear Science Facility.

d. Provides a superior facility for developing tritium-breeding blankets, as they

can fail to breed without compromising the DTNS mission.

 

In the following Section II we describe the mechanisms by which radiation damages

materials, present criteria for selection of materials and the design window, discuss the

current choices of reduced-activation materials, and discuss the requirements of a neutron

source for evaluation and qualification of materials for fusion systems.  Section III

contains a description of component testing that is needed and could be carried out in

DTNS.  Section IV describes past mirror-based neutron source designs.  Section V

describes the DTNS engineering concept that satisfies the materials and component

testing requirements, as well as the technical readiness of key systems: steady-state



neutral beams, magnets, and tritium processing. Section VI discusses where we go from

here. Section VII lists the references, and the Appendix gives additional bibliography

primarily on the Gas Dynamic Trap.

II. STRUCTURAL MATERIALS TESTING FOR THE FUSION

ENVIRONMENTb

II.A. Mechanisms for material damage

Fusion power plant first wall and blanket systems arguably represent the single

greatest structural materials challenge of all time.  Even moderate performance goals will

place totally unprecedented and unexplored demands on materials and structures. The

materials-structures demands for fusion energy far exceed any experienced by current

technology, including light water reactors, which have themselves suffered many

materials degradation problems8,9. Indeed, the United States National Academy of

Engineering has recently ranked the quest for fusion as one of the top grand challenges

for engineering in the 21st Century10.

Exposure to high-energy radiation severely damages the microstructure of materials

by violently displacing atoms from their lattice sites many times and creating damaging

concentrations of helium and hydrogen.  The resulting microstructural and damage

evolutions cause profound macroscopic property changes that severely degrade the

performance and lifetime limits of first wall components11-15. As reviewed recently by

Zinkle14, the observed property changes of irradiated materials depend on the irradiation



temperature and other environmental variables and have been called the ‘scourges of

irradiation’, and include irradiation hardening and embrittlement, phase and dimensional

instability and He embrittlement.

The effect of irradiation on materials microstructure and properties is a classic example

of an inherently multiscale phenomenon. Pertinent processes range from the atomic

nucleus to structural component length scales, spanning in excess of 10 orders of

magnitude, while time scales bridge more than 22 orders of magnitude16. Further, a wide

range of variables controls the mix of nano/microstructural features formed and the

corresponding degradation of physical and mechanical properties. The most important

variables include the initial material microstructure, the thermal mechanical loads and

irradiation history. Yet, radiation damage is the overarching concern for first wall and

breeding blanket structures11-15.

At the smallest scales, radiation damage is continually initiated with the formation of

energetic primary knock-on atoms through collisions between high-energy neutrons and

lattice atoms. Concurrently, high concentrations of insoluble helium and hydrogen gas

are generated in (n,α) and (n,p) neutron capture reactions, which have threshold energies

above several MeV, hence are not normally produced in high quantities in fission neutron

irradiations11-15. The primary knock-on atoms, as well as recoiling transmutant nuclei

quickly lose kinetic energy through a chain of atomic collision displacements, generating

a displacement cascade of vacancy and self-interstitial defects, in addition to electronic

excitations. High-energy displacement cascades evolve over very short times, 100

picoseconds or less, and small volumes, with characteristic length scales of 50 nm or less,

and are directly amenable to molecular dynamics (MD) simulations16-20. The physics of



primary damage production in high-energy displacement cascades has been extensively

studied with MD simulations and described in a number of excellent review articles18-20.

The key conclusions from cascade studies are that i) intra-cascade recombination of

vacancies and self-interstitial atoms (SIAs) results in ~30% of the defect production

expected from simple primary displacement theory, ii) many-body collision effects

produce a spatial correlation (separation) of the vacancy and SIA defects, iii) substantial

clustering of the SIAs and to a lesser extent, the vacancies occurs within the cascade

volume, and iv) high-energy displacement cascades tend to break up into lobes, or sub-

cascades which may also enhance recombination19,20.

Nevertheless, it is the diffusional transport and evolution of the defects produced in

displacement cascades, in addition to solutes and transmutant impurities, that ultimately

dictates radiation damage accumulation and changes in materials microstructure at

nanometer/micrometer length scales. The evolution of local chemistry and structure at

these scales is responsible for changes in physical and mechanical properties16,21-24.

Spatial and temporal correlations associated with the displacement cascades continue to

play an important role over much larger scales, as do processes including defect

recombination, clustering, migration and gas and solute diffusion and trapping. Over such

length and time scales, it is the time and temperature kinetics of diffusive and reactive

processes, both within (cascade aging) and outside (long range migration) that govern

micro/nanostructural evolution, albeit strongly influenced by the underlying sink

structure of the microstructure and the continual production of new radiation damage.

While many of the controlling radiation damage processes and kinetics are known,

quantitative details regarding the interactions amongst evolving species and indeed, even



the transport, trapping/de-trapping and annihilation mechanisms of small defect-impurity

clusters remain to be established. Fortunately, recent innovations in computational

modeling, coupled with increasingly powerful high-performance computing and

improved experimental tools, provide a basis to develop validated multiscale models of

fusion materials performance. However, it is important to note that the complexity of

modern engineering materials and multiple degradation processes occurring in the severe

fusion environment makes this a tremendous long-term challenge, certainly on par with

simulating a burning fusion plasma24. Furthermore, the challenge is made more difficult

by the lack of available materials irradiation testing environments that can provide both

representative displacement damage rates and representative rates of producing

transmutations, most notably He and H. This lack of an intense neutron source for

materials testing emphasizes the need for a coordinated scientific effort combining

experiment, modeling and theory to develop a fundamental understanding of radiation

effects14. This approach is currently being followed within the U.S. Fusion Materials

Program.

The next subsection briefly describes the factors that involve structural materials

selection criteria, the observed property changes in irradiated materials, along with an

illustration of the material properties that define the design, or operating, window for

fusion materials. The remainder of Section II describes the current status of reduced-

activation materials for fusion and the unique requirements for an intense neutron source

to test and ultimately qualify structural materials for the fusion energy environment,

followed by a brief summary.



II.B. Fusion materials selection and design window

The selection of structural materials for components in either nuclear fission or future

fusion applications involves a compromise between strength and ductility, as described

by Zinkle14. High strength materials generally have low ductility, and vice versa.

Furthermore, it is desirable that structural materials have the ability for significant plastic

deformation prior to failure, including the ability to work harden, or become stronger

when plastically deformed at stress levels above the yield stress up to elongations above

several percent. Such work hardening ability provides robustness to component

performance in the event of unanticipated service stresses, such as could be experienced

in a plasma disruption event14. Very high strength materials generally provide little work

hardening when plastically deformed, and usually experience less than a few percent of

elongation before undergoing failure in uniaxial tensile tests. Of even greater concern,

especially for body centered cubic metal alloys like ferritic or martensitic steels, is the

tendency to exhibit brittle failure at low temperatures.

Under irradiation, there are several major degradation phenomena that can impact

structural materials performance14. At low temperatures, defined as below about 35% of

the melting temperature, radiation hardening and embrittlement is a primary concern for

radiation doses above about 0.1 displacement per atom (dpa). In intermediate temperature

regimes from about 30 to 60% of the melting temperature, instabilities in the

microstructure of the material due to phase instabilities driven by radiation induced

segregation and radiation enhanced diffusion and precipitation along with dimensional

instabilities driven by volumetric swelling are the key concerns. These intermediate



temperature phase and dimensional instabilities typically occur beginning with radiation

exposures on the order of 10 dpa. At higher temperatures, defined as greater than about

40% of the melting temperature, thermal and irradiation creep, which involves the

permanent plastic deformation of the material at stress levels below the yield stress, can

cause significant strains in the material ultimately leading to rupture. Finally, at higher

temperatures above about 60% of the melting temperature and high levels of transmutant

helium production above about 100 atomic parts per million, helium embrittlement of

grain boundaries can cause fast intergranular fracture, even at low stresses. The relatively

high He production rates anticipated in fusion reactors can also alter many of the

irradiation-induced microstructural evolution processes that cause these property

degradations.

Figure 1 provides a schematic illustration of the materials design window for the fusion

energy environment as a function of temperature. At low temperatures, materials

lifetimes are limited by irradiation-hardening and fast-fracture, or so-called irradiation

embrittlement. Dimensional instability or swelling, in addition to phase instabilities and

microstructural evolution, limits performance at intermediate temperature. The high

temperature performance is limited by thermal creep, and in some circumstances by

irradiation creep that can limit performance at even lower temperature, in addition to

schematic illustration is based on our present knowledge which is limited to relatively

low levels of transmutant He production around 1000 parts per million. It is quite

possible that higher He levels up to the design targets of 2000 parts per million may

significantly reduce, or even close, the available materials design window.



II.C. Current reduced activation fusion materials

Fusion materials research in the 1980’s was focused on the evaluation of the

microstructural stability of austenitic stainless steels at fusion relevant helium production

and dpa production rates, and led to the selection of these steels for the first wall

structures in ITER14,25. However, austenitic stainless steels exhibit relatively high levels

of long-lived radioactivity as a result of high Ni concentrations. Furthermore, this class of

steels has lower thermomechanical properties when compared to ferritic/martensitic

steels and thus, austenitic stainless steels are no longer considered a candidate material

for future fusion energy demonstration reactors.

Based on consideration of long-term radioactivity, short-term radionuclide safety and

considerations of practical development of structural materials, three classes of high

performance materials have emerged for fusion applications14,26. Namely,

ferritic/martensitic steels containing 8-9%Cr, 1-2% W, V and Ta; vanadium alloys

containing 4-10% Cr and Ti; and silicon carbide based ceramic composites12-14.

Interestingly, none of these materials existed in their current form 15 years ago. These

low activation materials exhibit excellent thermal and mechanical properties and are also

under consideration for application in a range of advanced fission-energy reactor

concepts.

Of these alloys, the ferritic/martensitic steels are the most advanced and are believed

to provide acceptable properties and performance within a fusion energy environment up

to about 30 dpa and 300 appm (atomic parts per million) He27. However, these steels are

likely limited to an upper operating temperature of 500 to 550°C. Current and future



efforts involve the development of advanced, nanostructured ferritic alloys which contain

an ultra-high number density of nanoscale Y-Ti-O precipitate clusters in a ferritic Fe-12-

15%Cr alloy with promising corrosion resistance, creep strength and potential for

radiation resistance8.

II.D. Neutron source requirements

Fusion power systems will require structural materials with lifetimes approaching 200

dpa and 2000 appm He in order to be economically viable.  As previously mentioned,

recent fusion materials research and development efforts have produced reduced-

activation ferritic/martensitic structural materials with good radiation resistance to doses

of about 30 dpa, but their performance in a high-dose fusion-relevant environment with

accompanying high He and H generation from nuclear transmutations is unknown27.

Because high levels of insoluble He can substantially impact microstructural evolution

under irradiation, and correspondingly the materials bulk properties and performance, it

is essential to carefully quantify the effect of He and displacement damage in order to

develop a safe and reliable fusion power system. Therefore, a fusion-like neutron source

is needed to generate a materials irradiation database for design, construction, licensing,

and safe operation of next-step fusion nuclear devices and a fusion power system.

Several options exist for creating fusion-relevant neutron irradiation conditions,

including the proposed International Fusion Materials Irradiation Facility28, the Materials

Test Station29, and the Dynamic Trap Neutron Source30.  Another possibility is to include



provision for materials irradiation capability as part of a new large-scale nuclear facility

such as the proposed Fusion Nuclear Science Facility27, but it should be emphasized that

bulk material property data from a dedicated neutron source will likely be needed to

enable the design, construction and licensing of such a facility.

In order to explore the simultaneous effects of displacement damage and He

production on a wide range of materials various high-level international assessments have

concluded that a suitable neutron source must reproduce the key attributes of the fusion

spectrum, particularly in terms of the He-to-dpa ratio27-28.  In addition, the neutron source

must have flux and fluence capabilities that are sufficient to allow accelerated testing to

end-of-lifetime doses in a reasonable time frame.

Thus, the basic requirements for an appropriate fusion materials irradiation facility are

provided in Table I and include: ≥0.5 liter volume with ≥2 MW/m2 equivalent 14 MeV

neutron flux to enable accelerated testing up to at least 10 MWy/m2 (with larger volumes

at lower neutron fluences for testing larger components), availability ≥70%, and flux

gradients ≤20%/cm.

II.E. Materials summary

The development of advanced structural materials is a key feasibility issue for the

future of fusion power. The effects of irradiation on materials property and performance

degradation include irradiation hardening and embrittlement at low temperatures and

creep and helium embrittlement at high temperatures. However, the full effects of high

levels of helium on reducing, or even closing, the fusion materials design window have



not been fully established. The current U.S. fusion materials program is based on a

scientific approach that combines advanced modeling and simulation with theory and

experimentation, and has led to high-performance, reduced-activation materials with a

design window on the order of 30 dpa and 300 appm He for temperatures less than about

550°C. However, fusion materials development is substantially hindered by a lack of a

representative fusion neutron materials testing environment. The key requirements for an

intense fusion neutron source that is capable of providing an energy-dependent neutron

flux effectively equivalent to the first wall of a deuterium-tritium fusion power reactor

include:

•  Greater than 0.5 liter volume with greater than 2 MW/m2 equivalent 14 MeV

neutron flux;

• Greater than 70% availability to enable testing to exposures greater than 10 MW-

y/m2; and

•  Flux gradients less than or equal to 20%/cm.

III. MATERIAL AND BLANKET SUBCOMPONENT TESTS

Breeding blanket systems have many possible designs, materials, and configurations.

The primary blanket options currently considered worldwide as candidates for DEMO

can be classified into:  a) solid breeders, b) separately cooled liquid metal breeders, and

c) dual-cooled liquid metal breeders, as presented in Table II. Material and blanket

technology development up to DEMO requires qualification and testing to resolve the

many known issues as well as those presently unknown. The term “test” is used here in a



generic sense to describe a process of obtaining information through physical

experiments and measurements. The types of tests are distinguished by the relevant test

article sizes and by the level of integration of the test.  For each breeding blanket material

system, there is a set of tests ranging from property measurements to component

verification.  The test categories adopted in previous studies31,32 and illustrated in Figure 2

are:  basic, single effect, multiple effect/multiple interaction, partially integrated,

integrated, and component tests. Specimens, elements, and submodules can be used to

address basic, single effect, and multiple effect/multiple interaction issues.  A very

important conclusion from previous studies is that integrated and component tests can be

performed only in fusion devices.  However, it is essential to have in hand an adequate

understanding of individual phenomena so that integrated testing will provide data, which

can be interpreted and compared with design codes. Thus, a test article simulating a

portion of the blanket to examine a particular group of multiple effects for testing in the

fusion environment would provide data for model improvement and simulation

benchmarking. It also helps screen material combinations and design concepts.

 Nuclear reactions in fusion blankets lead to several important phenomena that impact

material and blanket performance. Neutrons and secondary gamma rays are absorbed,

leading to the generation of volumetric nuclear heating that varies in magnitude and

profile, depending on the blanket design. The fusion energy is not deposited uniformly in

the blanket, but will have strong spatial variations, which fall off strongly with distance

from the first wall. Since neutrons are the only practical source of nuclear heating in a

large volume and they are also necessary to simulate radiation effects, a test facility that

generates neutrons resembling those from fusion nuclear reactions with an adequate



neutron wall load, surface area, and test volume is valuable for material and blanket

subcomponent tests. The nuclear environment from a GDT neutron source (DTNS)

device is such an example, and is suitable for performing single and multiple effect tests

that are needed to establish the proof-of-principle for certain designs. It can potentially

provide an engineering database for specific issues or elements of the designs using

submodule test vehicles. These issues include (i) tritium transport and permeation, (ii)

thermomechanical responses of blanket elements, (iii) material compatibility, and (iv)

weld behavior and failure modes. Examples include tests of a unit cell of solid breeder

blankets used to investigate tritium release behavior as well as some aspects of

breeder/structure interactions. In the following section, example test vehicles are

described to provide guidance on how the DTNS can be utilized as a fusion

blanket/material test facility to cover blanket submodule multiple-interaction tests, in

addition to the material tests as already discussed in Section II and Ref 3.

The available test volume inside the irradiation rig of a DTNS appears adequate to

conduct tritium recovery and permeation quantification experiments up to the expected

lifetime for candidate breeder and structural materials. The release of tritium from

ceramic breeders, the solubility of tritium in liquid breeders, and the permeation of

tritium through reduced activation ferritic steel (RAFS) structures are all strongly

dependent on the temperature of the materials, chemical compositions, and surface

conditions.  Using the tests information together with predictions and measurements of

tritium production, a picture of tritium transport and permeation can be constructed and

compared against coupled system simulations.  Post irradiation examination (PIE) of

breeder and structural materials following exposure can help quantify tritium inventories



in various materials and components following long operation. The test may also be

conducted in the region where the magnetic field is expected to alter the liquid metal

velocity profile to study its effect on tritium permeation.

The temperatures and temperature gradients of the blanket materials strongly

influence the blanket’s behavior. The stress generated from the temperature gradient as

well as the thermal expansion mismatch between joints or between the breeder and

structural clad materials makes the study and understanding of thermo-mechanical effects

on blanket performance particularly challenging. There is a need to verify the ceramic

breeder ‘pebble beds’ mechanical stability on withstanding the combined temperature

gradients and mechanical constraints on a larger scale as in the HEXCALIBER33 mock-

ups.  As shown in Fig. 3, the mock-up consists of a first wall and welded cells made in

DEMO structural ferritic-martensitic steel. The breeder cell designed to reproduce the

reference pebble temperature magnitudes, consists of two lithium orthosilicate (OSi)

pebble beds and two Be pebble beds, each of them heated by two flat electrical heaters.

There appears to be space available in the DTNS facility to accommodate the mock-up

dimensions of 540 mm in width, 250 mm in depth, and 254 mm in height. In addition, the

DTNS fusion-testing environment directly provides a fusion reactor relevant thermal

loading condition, without the use of electrical heaters, as in the mock-up to simulate

nuclear heating. Electrical heaters disadvantageously disturb blanket pebble bed

configurations while giving non-prototypical temperature profiles.

The EXOTIC34 irradiation experiments for ceramic breeder and the LIBRETTO35

experiments for Pb-17Li alloys in the High Flux Reactor (HFR) at Petten were designed

to investigate tritium release forms, properties, and residence time. Similar tests can be



performed in DTNS not only for reproduction of fission reactor experiments, but more

importantly for the extrapolation of these results to fusion conditions. The maximum

allowable operating temperature at high fluence/high constraint for candidate ceramic

breeder materials is yet to be defined, while tests can also be designed using DTNS for

exploring mechanical stability of the fabricated ceramic pebbles at different levels (up to

DEMO levels) of Li burn-up as well as its performance at high temperatures under a

prototypical ratio of dpa/6Li burn-up as attempted in the HICU36 (high fluence irradiation

of ceramic breeder pebble beds) irradiation experiments. The drums used in HICU to

hold the pebbles are shown in Figure 4.

Radiation damage affects structural materials, breeding and neutron multiplying

media, permeation barriers, and insulator materials such as flow-channel inserts (FCI)

through degradation processes that include hardening, embrittlement, phase instabilities,

segregation, precipitation, irradiation creep, volumetric swelling, helium embrittlement,

and radiation-induced changes in thermal and electrical properties.  Similar to the IFMIF,

structural material specimen irradiation tests can be conducted in the DTNS facility3. At

the same time structural elements such as tubes, welds, etc. should be tested in parallel to

help interpret the results. Specifically, the mechanical properties of materials (yield

strength, ductility, fracture toughness, creep strength, fatigue resistance, etc.) are strongly

influenced by operating temperature and temperature variations, the microstructure

produced during initial fabrication and subsequent heat treatments, adsorption of

impurities from coolants or as a result of transmutation due to nuclear reactions, effects

of radiation damage, etc.   All these factors should be considered simultaneously to better

understand irradiation effect on lifetime performance or blanket material system failure



modes. In this regard, very little work has been done to date to identify failure modes

associated with blanket material systems. Some of the possible structural element failure

modes that should be of concern are: (1) cracking and de-lamination around a

discontinuity/weld, (2) environmentally assisted cracking, and (3) structure swelling and

creep leading to excessive deformation or failure. Deformations (strains) can be measured

under different fluid, mechanical, and thermal operating conditions; providing important

information for validating structural mechanics simulations for improved future blanket

designs. An example of this can be the joint and/or weld specimen, of which the

performance degradation/failure may be affected by the environmental conditions in

addition to radiation damage. A submodule as shown in Figure 5 involving weld and pipe

joint samples under prototypical thermomechanical constraints and fluid operating

conditions can be tested in DTNS facility to screen joining/welding processes.

Corrosion mass transport and redeposition are expected to be a blanket safety and

maintenance concern due to the movement of radioactive or hazardous transmutation

corrosion products into the support systems outside of the fusion blanket.  Measurement

of chemistry and radioactivity inside and outside of the fusion environment gives good

qualitative information concerning mass transport in blanket systems.  A Pb-17Li

corrosion test loop using the RAFS test pipes with SiC FCI inserts can be constructed in

the DTNS irradiation zone with an ancillary loop located outside the irradiation area to

shed more light on Pb-17Li mass transport behavior through identification of points of

preferential corrosion, erosion or redeposition sites.

Satisfactory testing of the material and blanket in any fusion environment imposes

important requirements on the design of the testing facility in at least two areas:  1) major



parameters, and 2) engineering design.  The major parameters of concern are those that

have major impact on both the usefulness of the tests such as the machine’s plasma duty

cycle, burn duration, availability, and the cost of the device.  The requirements on the

engineering design include providing capabilities for fast insertion and removal of test

modules, access to many coolants, tritium processing and instrumentation lines, and

suitably located space and facilities for ancillary equipment to support the test program.

The major auxiliary systems for conducting material and blanket submodule tests in

DTNS include coolant systems, the instrumentation and control systems for temperature

control, active type experimental systems, and test disassembly and reconstitution

systems.



IV. PREVIOUS MIRROR NEUTRON SOURCES

IV.A. TASKA, TDF, and TASKA-M

Responding to the need for a D-T fusion neutron source, researchers designed three

conceptual fusion neutron test facilities based on the magnetic mirror configuration in the

early 1980s: TASKA38, TDF39, and TASKA-M40.  Motivated by the accessibility and

maintainability of cylindrical geometry, these designs share with the GDT-based DTNS a

relatively simple central cell.  The TASKA-M design, like DTNS, included the injection

of neutral beams into the central cell to create a “sloshing ion” distribution that gives

density peaks near the materials test modules. In TASKA and TDF, the end-cell designs

were minimum-B end cells containing thermal barriers: regions of low electrostatic

potential that reduce electron flow and thermal conductivity between the central cell and

end cells.  Thermal barriers allow better plasma performance, but they require more

complicated input power systems and their physics basis is established in only a small

range of parameters41.  For TASKA-M, in order to assess the capabilities of a more

conservative design, minimum-B end cells were included to provide

magnetohydrodynamic (MHD) stability; thermal barriers and an end-plug potential to

contain ions were absent.  Fig. 6 illustrates key features of TASKA, TASKA-M, and

TDF.

Selected parameters for TASKA, TDF, and TASKA-M are given in Table III. The

conceptual design team for TASKA was the University of Wisconsin (UW),

Kernforschungszentrum Karlsruhe (KfK), Interatom, Grumman Aerospace, Babcock and



Wilcox (B&W), General Atomic (GA), Hanford Engineering Development Laboratory

(HEDL), and Lawrence Livermore National Laboratory (LLNL).  The TDF team was

LLNL, the Oak Ridge National Laboratory Fusion Engineering Design Center (ORNL

FEDC), TRW, General Dynamics (GD), UW, Bechtel, Science Applications Incorporated

(SAIC), Los Alamos National Laboratory (LANL), University of California-Los Angeles

(UCLA), and Massachusetts Institute of Technology (MIT).  The TASKA-M team was

UW, KfK, LLNL, HEDL, University of Karlsruhe, and University of Krakow.  In Table 1

the acronyms are NB – neutral beam, ICRF – ion cyclotron range of frequencies, and

ECRF – electron cyclotron range of frequencies. The tandem mirror concept42,43 contains

a potential peak in the end cells to reduce central cell ion losses.  The thermal barrier

concept44 invokes a potential dip between the central cell and end cell to reduce electron

thermal contact, allowing a warmer end cell electron temperature and resulting in a

higher ion-confining potential for less input power.

The axial profiles of magnetic field and electrostatic potential for TASKA, TDF, and

TASKA-M appear in Figure 7 and illustrate some key design choices.  The earliest

design, TASKA, chose to separate the electrostatic thermal barrier from the ion plugging

electrostatic potential in the end plug, which embodied the recently invented thermal-

barrier tandem mirror concept as it was then envisioned. The TASKA neutral beams that

pumped impurities and alpha-particle ash from the thermal barrier totally fueled and

partially heated the central cell, and ICRF heating generated the remaining input power

required for plasma power balance.  The plug regions required a total of 15 MW of ECRF

power and 5.4 MW of neutral beam power injected at an energy of 250 keV.  The TDF

design significantly shortened the device’s length by combining the thermal barrier and



end plug into a single cell as in the TMX-U experiment41, which had recently also

demonstrated the sloshing-ion concept45. This approach reduced the length and input

power substantially compared to TASKA for nearly the same neutron wall loading.  It

also allowed the use of 51 MW of 80 kV neutral beam injection at an angle into the

central cell to make most of the ions there be mirror-trapped.  This reduced the

requirements on the end-plug potential to only 17 kV from 125 kV.  For TASKA-M, the

design aimed for small size by using sufficient power in neutral beams injected at an

angle into the central cell to create a sloshing-ion population and by placing the main

materials test modules near those peaks.  A key TASKA-M decision was to create a

relatively conservative design that did not invoke thermal barriers or ion end plugging

and required minimum-B end cells only for MHD stabilization, leading to a short central

cell.

IV.B. Beam Plasma Neutron Source (BPNS)

The Beam-Plasma Neutron Source (BPNS), shown in Fig. 8 produces a neutron flux

similar in magnitude to that from the IFMIF over a volume exceeding that of FMIT46 (an

earlier U.S.A. version of IFMIF) by factors of ~247-49, as shown in Fig. 9. Like other

fusion-based neutron sources, such as discussed in Section IV.A., it has additional

advantages: it produces 14 MeV DT-fusion neutrons with no higher energy neutrons,

which IFMIF will generate; neutrons above 14 MeV can produce activation that would

not occur in a fusion power plant. The BPNS neutron energy distribution, unlike the



IFMIF, is independent of axial or azimuthal position. Neutral-beam injection can

maintain low impurity levels so that impurity radiation is not an issue50.

The Beam-Plasma Neutron Source (BPNS) is based on the 2XIIB minimum-B neutral-

beam sustained magnetic mirror that confined ITER-grade ions in 1976 (ne ~1-2×1020 m-3,

Ei = 10 keV) with stable operation at beta near or exceeding unity; however, Te was only

about 1% of the ion energy51. MHD stability was guaranteed by the good-curvature of the

minimum-B magnetic field lines at high-β (β=plasma pressure/ vacuum magnetic-field-

pressure). The electron temperature, Te, was lowered by adding a dense, warm,

unconfined plasma, This warm plasma can then stabilize modes driven by pressure

anisotropy or an empty loss cone; when unstable, these modes oscillate at ion-cyclotron

range of frequencies, scattering ions into the loss cone more rapidly than the classical

processes of electron drag cooling of hot ions coupled with ion-ion scattering that moves

them into the loss cone.

Compared with the DTNS, the electron temperature was lower, 200 eV rather than

700 eV. This is because the BPNS had a much denser warm flowing plasma that limited

Te by thermal conduction to the end walls, whereas the DTNS has a lower density warm

plasma and a larger magnetic field expansion to the ends that decouples Te from end-wall

electron emission. The lower Te in the BPNS limited the fusion gain to Q ~ 0.01, rather

than the Q~0.07 predicted for the BPNS.

The neutral beams were injected nearly normal to the magnetic field in the BPNS,

which had one advantage over the DTNS, the hot plasma density was higher in the

smaller volume yielding a higher neutron flux, but with two negative consequences:

approximately half of the circumference around the hot plasma was occupied by neutral



beam injector or dump ducts rather than by samples to be irradiated, and the neutral

beams were exposed to the peak neutron flux.

The base case for the BPNS used minimum-B coils around the hot plasma for MHD

stability. The coil design limited the magnetic field strength, the access for neutral beams

and test samples, and produced elliptical plasma cross-sections off the midplane that

increased the average radius (hence lower neutron flux) at which samples could be

placed. Alternate BPNS designs assumed axisymmetry, which was found to allow higher

neutron flux for a given neutral beam power, but at that time, we did not know whether

MHD stability could be provided at high beta, a issue that subsequent experiments on the

GDT have removed by demonstrating axisymmetric stability at beta up to 0.6.

V.  The Dynamic Trap DT Neutron Source (DTNS)

V.A. Overview

The DTNS nominal design is aimed to produce 2 MW/m2 of neutron flux1-3,52.  Figure

10 shows that the output flux depends on electron temperature, because electron drag

cools the deuterium and tritium ions.  So to obtain the design neutron flux it is necessary

to operate with an electron temperature of ~600 eV. For reference, the GDT experiment

achieves 200 eV temperatures with 8 times less heating power.

The DTNS achieves MHD stability in an axisymmetric geometry, which requires

only circular magnets coils. It provides an even larger neutron irradiation volume with

several other advantages over either the BPNS or IFMIF: (1) Higher Te allows a larger

irradiated volume with lower neutral beam power3. (2) The neutral beams inject near the



midplane where neutron production is a factor of 10 lower than the peaks at either end,

this extends the lifetime of the neutral beams (against activation and radiation damage)

by ×10 compared with a BPNS or a tokamak based volume neutron source. Another

advantage of injecting away from where the neutron-flux peaks is that the space occupied

by beam injection and beam dump ducts do not displace neutron irradiation test regions.

(3) The two peak neutron flux regions at either end of the DTNS can be optimized for

different purposes: for example, one end for material studies; the other end with a larger

volume for component tests, such as tritium-breeding blanket modules, fusion-fission

hybrid modules; or one end for long term irradiations, the other for shorter terms. 4) The

axisymmetric design maintains a circular plasma cross section, which allows irradiation

of samples closer to the axis in a higher neutron flux than with the elliptical cross section

of minimum-B plasma. Finally, the scattered neutron energy spectrum can closely

approach that of ITER or DEMO, as will be discussed3.

A schematic illustration of a DTNS is seen in Figure 11.  Illustrated are magnets,

(superconducting and copper coils), neutron shielding and neutral beam injection

systems.  Shown on the right is a 2.5 m zone for small samples (inserted axially) and on

the left is a 1 m long zone for components (inserted radially). The 2.5 m zone provides a

volume of 20 l, over an annulus that is 0.025 m thick, approximately 59% of this volume

is filled with samples in the present design. Because this layer is thin relative to its radius,

the neutron flux is nearly constant across it; so all samples are irradiated at a similar rate,

which is near the maximum 2 MW/m2. Note that the magnets are shielded from neutrons

for longer life and reduced cooling power. The neutral beams inject near the midplane

where neutron production is an order of magnitude lower than at either end at the



irradiation test regions, reducing radiation damage to the injectors and associated

cryopumps.

The DTNS mirror-to-mirror length is slightly longer than in the GDT. Compared to

GDT, the DTNS has 10 times higher neutral beam injection power, as well as 4 times

higher ion energy, electron temperature, plasma density, and magnetic field.  Both

systems have similar beta (60%), ion gyro-radius, and neutral beam penetration depth.

Thus the two systems are dimensionally similar. Fischer, Möslang, and Ivanov3 have

assessed the neutronic characteristics. In Fig. 12 we see that the first-wall neutron-spectra

from DTNS is virtually identical with that of ITER (in contrast to IFMIF). This means

that measurements of neutron damage from dpa or helium embrittlement can be applied

to ITER or DEMO, without the uncertainties of correcting for the neutron energy

spectrum, and that activation products will not include (false positive) isotopes with

production thresholds exceeding 14 MeV. Maintaining the ITER-like neutron spectrum in

the much smaller DTNS requires care in designing the neutron reflectors.

The radial and axial uniformity of DTNS is illustrated in Fig. 13 (calculated in Ref.

3).  It is seen that the uniformity is better that the 20% per cm requirement for materials

irradiation testing.

The design of a tubular test assembly capable of accommodating as many as 8,000

miniaturized specimens in a volume of 20 l is illustrated in Fig 14(a-d). These are located

outside of the DTNS vacuum wall, so that samples can be changed without an air-cycle,

and mechanical and electrical stresses can be applied and measured more conveniently.

Helium gas provides cooling without significant interaction with the neutrons, and



without chemically reacting with samples, some of which will be at elevated

temperatures.

V.B. The technical readiness of key DTNS systems

Based on previous mirror neutron source studies and the state of technology

developed within the ITER program we conclude that the only missing element is steady-

state neutral beam system. DTNS needs much lower energy beams than are being

developed for ITER.  The DTNS requires 65 to 80 keV beams at a power level now

common on tokamaks such as JET, DIII-D, TFTR, etc.  These beam systems are

presently limited to several second pulses, primarily by the beam line – not the source

module.  The needs of DTNS are similar to those of EAST, KSTAR, JT-60SA as well as

potential US devices such as FNS or CTF.  With this worldwide need and market

opportunity, steady-state neutral beams are expected to be developed.

Two other systems, magnets and tritium systems, would also employ current

technology but are worthy of mention:  magnets, because they are rather high field (~12-

30 Tesla); tritium handling, because the gas throughput of the DTNS is substantial.

V.C.  Steady-state neutral beams

The long-pulse ion source, developed by LBNL for TFTR and DIIID53, proved to be

highly reliable, with availabilities exceeding 90% on DIIID54,55, and approaching 95% on

TFTR56. The version used on DIIID, operating at 80 keV with 80 A of ion current, is

close to the requirements for a DTNS which needs 65-80 keV D and T ions3.



Steady-state operation will require further development of the beam lines components

used on TFTR and DIIID. The most complex component, the ion accelerator is already

cooled for steady-state operation; successful operation of the water-filled molybdenum

tube electrodes has been demonstrated for more than 10 thermal time constants in the 1-5

sec operation achieved in present day beam lines. A possible cooling technology for

larger components, hypervapotron arrays57, has been used extensively and successfully on

JET. This is a candidate for cooling ion-beam dumps, calorimeters, apertures, and beam

dumps on the far side of the plasma. Additional cooling is needed on the back-side of the

ion source (if the accelerator were to operate above 80 keV53) to handle heating from

backwards-accelerated electrons, the mask defining the plasma source grid aperture, and

possibly other areas, such as neutralizer ducts56.

Additional engineering to achieve steady-state operation is needed in two areas: (1) the

present hot-filament cathodes are expected to last a minimum of 12 days (lifetimes have

not been established, and may be significantly greater than this), based on present pulsed

performance, We ultimately need lifetimes at least an order of magnitude greater than this

in the DTNS. (2) Cryopumping can handle the steady-state gas loads, but additional

pumping area must be supplied so that a portion of the pumps can be off-line for

regeneration, and the maximum time between regenerations needs to be determined to

ensure that the hydrogen isotope accumulation remains well below the explosive limit in

all parts of the DTNS in the worst case of a significant air-leak.

A neutral beam manufacturing capability needs to be established for the DTNS, or for

any tokamak-based neutron sources. The RCA Power Tube Division built the original

Long-pulse ion sources for DIIID and TFTR during 1984-88. That capability no longer



exists. GA has successfully built the most critical replacement accelerator electrodes,

which have performed well in subsequent tests58. Manufacture outside of the U.S.A. may

also be possible.

Beam focusing in the narrow plane could enhance DTNS operation by allowing

plasma diameters smaller than ~25 cm55, which would reduce end losses and enhance the

fusion gain-factor, Q. Beam focusing in both planes was demonstrated in TMX-U, where

curved electrode wires were assembled on a cylindrically curved surface, producing

focusing to the centers of curvature59. Narrow-plane focusing could be incorporated in the

long-pulse sources by bending the molybdenum electrode tubes into a cylindrical shape

with the center of curvature at the beam focus position (possibly done in a curved

restraint during heat-treatment and stress relieving). Focusing in the longer plane was

accomplished for the DIII-D 80 keV neutral beams by building each accelerator electrode

with 5 flat cards, the outer cards inclined inwards to focus outer beamlets onto the same

area as inner beamlets53. The effects of focusing would need to be revaluated at each

beam dump location, to ensure that peak powers do not exceed cooling capabilities.

Beam focusing on the entrance aperture to a torus could also benefit tokamak neutron

sources by reducing the size of the aperture, hence the number of neutrons entering the

neutral beam line.

These issues can be handled with a four-phase DTNS program that may be preceded by

further experiments on the GDT or an upgraded facility:

a. Beam-line assembled first – begin neutral beam commissioning, testing, and

further development as required. All elements needed for steady-state operation

can be tested, and developed further as required, including beam dumps and duct



cooling on the far side of the plasma which will handle lower power densities

when plasma is present.

b. Hydrogen-operation of DTNS – beginning with long pulse and increasing to

steady state. No neutron shielding is required. This will demonstrate neutral beam

injectors and mirror physics.

c. Deuterium-operation – requires neutron shielding but no tritium-handling system.

Compare the neutron flux, and the increase in Te, and beta with expectations, for

assurance of DT performance.

d. Deuterium-Tritium operation – can begin at low tritium concentration and

increase to ~50% as systems are commissioned. Compare parameters with

expectations, begin materials and component testing program.

V.D. Magnets

The Efremov Institute in St. Petersburg, Russia has designed a number of DTNS

magnets4,60-63. Magnet design requirements included providing access for neutral beam

injectors and beam dumps at 30 to 40° from the axis, aimed at the midplane of the DTNS,

and that these be adequately shielded from neutrons62,63, which peak at the ion turning

points.  Magnet designs have included all superconducting coils as well as hybrid

magnets with high field copper insert coils to reach 25-26 Tesla  (for higher fields and

mirror ratios).  Shown in Fig. 11 is one example of such a hybrid magnet system. All

superconducting mirror coils were studied after finding that half of the power

consumption (30 MW) was required to reach 26 T with a design of hybrid mirror coils;



superconducting coils achieved similar mirror fields of 24.5 T in a 60 cm bore by using

Nb3Sn conductor and cooling to 1.8 K64,65. Other groups have generated solenoidal fields

of 14 T in a 60 cm bore with superconducting coils; by adding resistive inserts this

system reached up to 45 T66. The ITER Central Solenoid Model Coil has been tested to

13 T peak field, in a 1.6 m diameter bore67.  This work, as well as that carried out earlier

in the US convinces us that magnets required for DTNS are within engineering

capability.

An example of a neutron-shielded magnet design from Effremov institute [Ref 61] is

shown in Fig. 15. Neutrons are generated by the hot-ion plasma (7) on axis at the left half

of the figure. Samples to be irradiated (8) surround this plasma, with shielding between

the samples and the solenoidal superconducting magnets (4 and 5) located at larger radii.

The neutrons at the magnet positions are computed with the code MCNP-A68. The mirror

coils are to the right, and include an outer superconducting magnet (3) that is carefully

shielded from neutrons, with resistive inserts (1 and 2) that have less, or no, shielding.

V.E. Tritium Processing

While the consumption of tritium in DTNS is modest (~150 grams per year), the flow

rate of tritium and deuterium recirculating in the system is substantial. There are three

isolated regions of gas flow: plasma chamber, neutral beam tanks, and the end tanks; each

of these operates on a mixture of deuterium and tritium). Since mixtures of deuterium and

tritium can be tolerated in neutral beam fueling of the hot ions and in gas (or pellet)

fueling of the warm plasma, gas processing can be simplified by not separating tritium



from deuterium. To maintain the desired fractions of each component, it is sufficient to

use cryopanels at different temperatures69. It will be possible in initial DT operation to

gradually increase the tritium concentration from near zero to ~50%, as the

commissioning of the tritium/gas system, neutron production, and neutron shielding

progresses.  Gases other than deuterium and tritium must be maintained below a level to

be determined; this may be the major issue for the gas-handling system.

VI. RECOMMENDED FUTURE ASSESSMENT AND ANALYSIS

A number of aspects of the DTNS concept warrant further analysis in order to better

optimize its characteristics

1. Obtain a better understanding of the scaling of parameters from the GDT

experiments to the DTNS parameters, including testing details of the rotational

stabilization mechanism.

2. Seek ways to reduce the throughput of warm plasma flow in order to raise the

electron temperature and to reduce the tritium inventory. Maintaining MHD

stability and micro-stability are likely to limit how far the warm-plasma flow can

be reduced.
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 TABLE I. – Requirements for a fusion materials neutron source, as modified from Ref.

[28].

Neutron flux/Volume
Requirements

Equivalent to 2 MW/m2 in 0.5 L Volume (Note, 1 MW/m2

= 4.5x1017 n/(m2-s) at E = 14 MeV, which is equivalent to
3x10-7 dpa/s in Fe)

Neutron spectrum • Simulate first wall fusion reactor spectrum as close as
possible
•  Criteria include primary recoil spectrum and He/H
transmutant production (e.g., ≈ 10 appm He/dpa in Fe)

Neutron fluence
accumulation

DEMO-relevant fluences of 150 dpa in a few years

Neutron flux gradient ≤ 20%/cm
Machine availability > 70% to provide quasi-continuous operation



TABLE II.  Example DEMO Candidate Blanket Concepts.

Concept Acronym Materials

Helium-cooled
ceramic breeder

HCCB •  RAFS structure
•  Be multiplier, ceramic breeder (Li2TiO3, Li4SiO4, Li2O)
•  Helium coolant and purge

Water-cooled ceramic
breeder

WCCB •  RAFS structure
•  Be multiplier, ceramic breeder (Li2TiO3, Li2O)
•  Water coolant, He purge

Helium-cooled Lead-
Lithium

HCLL •  RAFS structure
•  Molten Pb-17Li breeder/multiplier
•  Helium coolant

Dual-coolant Lead-
Lithium

DCLL •  RAFS structure
•  SiC flow channel inserts
•  Molten Pb-17Li breeder/coolant
•  Helium coolant



TABLE III.  Design parameters for TASKA, TDF, and TASKA-M.

Parameter TASKA TDF TASKA-M
Publication Year 1982 1983 1984

Type

Tandem mirror
with separate

thermal barrier
and yin-yang
ion-plug cells

Tandem mirror
with combined
thermal barrier
and yin-yang
ion-plug cells

Axisymmetric
central cell with

sloshing ions plus
yin-yang MHD
anchors but no

thermal barrier or
ion plug

Maximum Neutron Wall
Load, MW/m2 1.5 1.4 1.3

Average Neutron Wall
Load, MW/m2 1.5 1.4 0.6

Test Zone Surface
Area, m2 7.8 8 3.6

Fusion Power, MW 86 20 7

Input Power, MW 117 51 40

Input systems NB/ICRF/ECRF NB/ECRF NB/ICRF

Total Length, m 60 24 24
Central (Test) Cell

Length, m 19 8 5

Maximum B Field, T 20 15 17.5
Central Cell Beta
(plasma/B-field

pressure)

0.5 0.24 0.30
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FIGURE CAPTIONS

Figure 1 – Illustration of the materials design window for the fusion energy environment,

as a function of temperature. At low temperature, materials component lifetime is limited

by irradiation hardening and fast fracture, while dimensional instability or swelling may

limit performance at intermediate temperatures. Increasing temperature alleviates these

degradation modes, but component lifetime is now limited by thermal creep,

environmental degradation (e.g., corrosion) and He embrittlement. It is important to note

that limited data exists for very high concentrations of transmutant He in current

candidate fusion materials and thus, it is possible that high He concentrations may further

narrow or even close the design window.

Fig. 2. Types of experiments for fusion blanket material systems.

Fig. 3. The HEXCALIBER test article for solid breeder blanket pebble bed

thermomechanics experiments at ENEA Brasimone33.

Fig. 4. Two of the three kinds of drums used in HICU experiments with 4 × 42 mm or 9 ×

20 mm tubes.

Fig. 5.  A blanket submodule test vehicle with weld joints and pipes can provide many

useful engineering data for blanket designs and fabrications. The test article is based on

the JAEA water-cooled solid breeder blanket design37.



Fig. 6.  (a) TASKA, (b) TASKA-M, and (c) TDF main features.

Fig. 7.  Axial profiles of magnetic field (B) and electrostatic potential (Φ) for

(a) TASKA, (b) TDF, and (c) TASKA-M.

Fig. 8. Schematic of beam-plasma neutron source. The central section of the vacuum

chamber and the neutron shielding of superconducting magnets are not shown.

Fig. 9. Test volumes versus neutron flux for four versions of the BPNS and the FMIT.

Fig. 10. Neutron flux as a function of electron temperature in DTNS.

Fig. 11. Schematic of DTNS showing superconducting and resistive magnets, sample

irradiation zones, neutron shielding, and neutral beam injection/dump lines.

Fig. 12. Neutron flux as a function of neutron energy for ITER, the DTNS, and IFMIF.

Fig. 13. DTNS neutron flux density as a function of radius and axial  position.

Fig. 14(a,b). DTNS irradiation sample holders with provision for helium gas cooling and

instrumentation.

Fig. 14(c,d). DTNS irradiation sample holders with provision for helium gas cooling

mechanical stress application, and instrumentation.



Fig. 15. Design scheme of the radiation shielding of the solenoids in the area of

maximum neutron yield. 1 – resistive solenoid with radial water cooling; 2 – resistive

solenoid with axial water cooling; 3-5 – superconducting solenoids; 6 – neutron release

area; 7 – plasma; 8 – experimental module; 9 – radiation shielding; 10 – mechanical

structures.
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