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The viscous dynamic permeability of some fractal-like channels is studied. For our

particular class of geometries, the ratio of the pore surface area-to-volume tends to

∞ (but has a finite cutoff), and the universal scaling of the dynamic permeability,

k(ω), needs modification. We performed accurate numerical computations of k(ω)

for channels characterized by deterministic fractal wall surfaces, for a broad range

of fractal dimensions. The pertinent scaling model for k(ω) introduces explicitly the

fractal dimension of the wall surface for a range of frequencies across the transition

between viscous and inertia dominated regimes. The new model provides excellent

agreement with our numerical simulations.
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I. INTRODUCTION

The dynamic interaction between a flowing fluid and the solid constituents of a porous

medium is a key issue controlling wave propagation in geological1–3, biological4,5, and engi-

neered systems6,7. The general theory of wave propagation in porous media was developed

in references8–12. In these theoretical developments, it is invariably assumed that it is always

possible to identify two separate spatial scales, denoted by x (the macroscopic, “slow” scale),

and by y (the microscopic, “fast” scale). When the characteristic length scale of the pores,

Ly, is significantly smaller than the characteristic length of a macroscopic sample of the

porous medium, Lx, i.e., ε = Ly/Lx � 1, it is possible to uncouple elastic motion of solid

matrix from oscillations of pore fluid13, and viscous from thermal dissipation14. In this work,

we consider an isothermal system and assume that the driving force is a small-amplitude

harmonic macroscopic pressure gradient ∇〈p〉 oscillating at a frequency ω. The operator 〈·〉

represents a spatial average of microscopic quantities over the fluid part of a porous medium

with porosity, φ. Assuming small-amplitude flow perturbations, it is possible to write all

the quantities of interest in the form f(r, t) = f̂(r, ω) exp(iωt). Under such assumptions,

a linear relationship exists between 〈v〉 and ∇〈p〉, the coefficient of proportionality being a

complex-valued function k(ω), called the viscous dynamic permeability.

Despite the great variability of the pore microgeometries considered in the literature15–18,

it is generally found, both experimentally and numerically, that the normalized dynamic

permeability k̃(ω) matches reasonably well a scaling function19,20 which depends on a char-

acteristic frequency ωc and a similarity parameter, M . Remarkably, M is usually found

to be almost configuration independent and close to unity, as long as the pore surface is

locally smooth19,21,22. Experimental observations, however, indicate that pore roughness

may exhibit self-similar characteristics over a wide range of length scales. Experimental

studies based on different experimental techniques23–25 (e.g., scanning electron microscopy,

small-angle neutron scattering, nitrogen adsorption isotherm) have demonstrated that, for

instance, the pore space of sandstones and shales is approximately fractal over length scales

ranging from 10 Å to 100 µm, with corresponding fractal dimensions varying between 2.57

and 2.87. Other experimental studies26,27 have proven that fractured-rock wall surfaces also

display fractal and multifractal properties over a range of scales between 0.1 µm to 1 cm.

Numerical investigations of the effects of fractal walls on the dynamic permeability have
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been the subject of previous works28–30. In this study, we explore the effects of such self-

similar rough surfaces on the scaling of the dynamic permeability. Other studies have con-

sidered the problem of the static (frequency independent) flow in fractal trees31,32.

We present accurate numerical simulations of longitudinal frequency-dependent Stokes’

flow in channels with fractal pore-surface structure, similar to the ones considered by

Pozrikidis30. The effect of self-similar sharp edges on the flow streamlines (transverse flow)

will be considered separately elsewhere, as the corrections to the universal scaling associated

with this type of singularity21,22 add-up in a non-trivial way to the effects which are the main

object of study here.

In Section II we develop the theoretical basis of our analysis, which is followed, in Sec-

tion III by a review of some basic concepts of fractal geometry. Section IV illustrates the

numerical methods and the dynamic-response solutions for a broad range of fractal dimen-

sion, whereas Section V presents the modified scaling function that are used to model the

numerical solutions. Finally, conclusions and open problems are summarized in Section VIII.

II. THEORY

A. Homogenization of the flow equations

The linearized fluid motion is fully characterized at the microscopic level by small per-

turbations to state of rest of the fluid velocity v̂(r, ω), and fluid pressure p̂(r, ω). Expressing

the pressure in units of Lxη
2/ρL3

y, and the frequency ω in units of ν/L2
y, the governing flow

equations are the (nondimensional) frequency-dependent Stokes’ equations13,14,16:

iωv̂ = −ε−1∇p̂+∇2v̂, (1a)

∇ · v̂ = 0, (1b)

v̂ = 0 on Afs, (1c)

where Afs is the fluid-solid surface.

Homogenization of these flow equations requires expressing v̂ and p̂, and the differential
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operator ∇ as a function of the slow scale x and the fast scale y (see Sanchez-Palencia33),

v̂(x, y) = v̂0(x, y) + εv̂1(x, y) + ε2v̂2(x, y) + · · · (2a)

p̂(x, y) = p̂0(x, y) + εp̂1(x, y) + ε2p̂2(x, y) + · · · (2b)

∇ = ε∇x +∇y. (2c)

Collecting the terms with the same power in ε leads to a hierarchy of equations:

∇yp̂0 = 0, (3a)

iωv̂0 −∇2
yv̂0 +∇yp̂1 = −∇xp̂0, (3b)

∇y · v̂0 = 0, (3c)

v̂|Afs
= 0. (3d)

Equation (3a) indicates that p̂0 is a macroscopic variable, whereas equation (3b) shows that

the fluid is incompressible at the microscopic scale. Since the fields p̂1(x, y), and v̂0(x, y), are

the solutions of linear systems, they can be formally expressed by means of linear operators

acting on the macroscopic source term −∇xp̂0:

−p̂1 = Pω(x, y) · ∇xp̂0, (4a)

−v̂0 = Vω(x, y) · ∇xp̂0. (4b)

The linear operators Pω(x, y), Vω(x, y) are vector and second rank tensor operators respec-

tively. Substitution of equations (4) into (3) yields the following set of partial differential

equations:

iωVω −∇2
yVω +∇yPω = I, (5a)

∇y · Vω = 0, (5b)

Vω|Afs
= 0, (5c)

where I is a second rank identity tensor.

4



B. Macroscopic flow equations

Averaging of (4b) over the (fast) y-scale, leads to the macroscopic equation

〈v̂0〉 = −k(ω)
φ

· ∇xp̂0, (6)

where

k(ω) = φ 〈Vω(x, y)〉, (7)

which is an extension of the classical Darcy law in the frequency domain. Written in dimen-

sional form, (6) reads

〈v̂〉 = −k (ω)
ηφ

∇〈p̂〉, (8)

The low frequency limit of the real part of the dynamic permeability, k0 = lim
ω→0

Re(k(ω)),

is the static Darcy permeability which can be calculated as, k0 = φ〈V0〉L2
y, where V0 is

the solution of (5) for a frequency ω = 0. To study the high frequency limit of (8), it

is convenient to rewrite it in terms of Newton’s law, by introducing a dynamic tortuosity,

α (ω), as follows:

ρα (ω) iω〈v̂〉 = −∇〈p̂〉. (9)

This formula results from Brown’s work34, showing the connection between electrical and

inertial properties.

The limit of α (ω) for ω → +∞, is called the tortuosity of the porous medium, α∞, and

equals α∞ = 〈V2
∞〉/〈V∞〉2. The velocity field V∞ is the high-frequency limiting solution of

(5) and can be expressed as the gradient of a harmonic potential field ψ, i.e., V∞ = ∇ψ

and ∇2ψ = 0 with homogeneous Neumann boundary conditions at the fluid-solid interface.

As a first order approximation, the macroscopic law describing the fluid flow in the high

frequency regime can be expressed via Newton’s law of motion:

iωρα∞〈v̂〉 = −∇〈p̂〉. (10)

The low frequency limit of the real part of α(ω), α0 = lim
ω→0

Re[α(ω)], is called static viscous

tortuosity, and can be computed as35–37 α0 = 〈V0
2〉/〈V0〉2, where V0 is the solution of (5)

at ω = 0. Substituting the Poiseuille flow solution into the above equation, we find that for
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a straight tube (3D flow) α0 = 4/3, while for a set of parallel planes (2D flow) α0 = 6/5.

From (8) and (9), we derive the relation between the dynamic parameters k(ω) and α(ω)

α (ω)

α∞
=

k0
k (ω)

ωc

iω
, (11)

where ω̃ = ω/ωc, and ωc = ηφ
α∞k0ρ

, is the characteristic frequency for the transition be-

tween the viscous and the inertia dominated regimes. For smooth pore-wall surfaces, the

asymptotic high-frequency behavior for α (ω) is19

α(ω) ∼ α∞

[
1 + (1− i)

δ(ω)

Λ

]
, (12)

where

δ(ω) = (2η/ρ ω)1/2, (13)

is the viscous boundary layer thickness, which can take on arbitrarily small values as fre-

quency increases. The Λ parameter is a characteristic viscous length scale defined as a

velocity-weighted pore volume (Vf )-to-pore surface (Afs) ratio:

Λ = 2

∫
Vf

V2
∞dV∫

Afs
V2
∞dA

, (14)

and is therefore a purely geometrical parameter. The boundary layer thickness, δ(ω), in (13)

identifies a boundary layer region where, as a consequence of the no-slip boundary condition,

energy is dissipated by viscous forces, whereas in the complementary region, the fluid flow

becomes inviscid (inertial response only).

The high-frequency asymptotic behavior of k(ω) is given by

k(ω)

k0
∼ −iω̃−1 +

1

2
(1 + i)

√
Mω̃− 3

2 . (15)

where

M =
8k0α∞

φΛ2
, (16)

is a nondimensional scaling parameter of order one19,22. The M parameter enters also the
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higher-order terms of the low-frequency asymptotic behavior of α(ω)

α(ω) ∼ α0 − i

(
α∞ω̃

−1 − 2

M

(α∞ − α0)
3

α2
∞

ω̃

)
. (17)

Finally, we note that the drag force, f(ω), is proportional to the time derivative of the added

mass20 (α(ω)/α∞ − 1):

f(ω) = −iω̃α∞

(
α(ω)

α∞
− 1

)
. (18)

For smooth pore-walls, the dynamic permeability (and consequently the dynamic tortu-

osity, and the complex-valued drag force) exhibit a universal scaling behavior. The universal

scaling can be modeled in terms of a function, F (ω), which is defined in such a way to satisfy

both the low- and high-frequency theoretical limits, and to be exact in the limiting case of

2D slit flow. The expression for the dynamic permeability reads thus19,20

k(ω)

k0
= [F (ω) + iω̃]−1 (19)

where

F (ω) = 1− 3

10

M

a

(
1− iω̃

1

3
b

tanh(z)

z − tanh(z)

)
, (20)

and

a =
α0 − 1

α∞
, (21)

b = 50
a2

M
, (22)

z =
√
biω̃. (23)

The parameter z, scales like the inverse of the thickness of the boundary layer, z ∼ δ−1:

we will use this fact to generalize the scaling functions to the case of fractures with fractal

surfaces.

III. FRACTAL WALL SURFACES

Let us consider rock fractures delimited by two rough surface walls symmetric with re-

spect to a horizontal plane, and analyze the effects that asperities (at many scales, down

to some pre-microscopic cutoff) have on frequency-dependent flow. We assume that the
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fracture is periodic in the plane that contains the fracture aperture, and that there is no

geometry variation in the direction perpendicular to this plane. Moreover, we assume that

the flow direction is also directed perpendicularly to the fracture aperture plane. This flow

configuration can then be studied there by means of a two-dimensional model in which the

only pertinent component of the velocity vector is along the longitudinal direction x3, i.e.,

vx1 = vx2 = 0, where xi, with i = 1, 2, 3 represent the three spatial coordinates in a rectan-

gular (orthogonal) coordinate system. The longitudinal component vx3 , is a function only

of the two spatial coordinates of the longitudinal cross-section, x1, x2, hence
∂vx1
∂x3

= 0, from

which it follows that the condition on the divergence of the flow is automatically satisfied.

Moreover, a pressure gradient exists only along the longitudinal direction x3, from which it

follows that the Stokes problem reduces to a Poisson problem in the scalar variable vx3 . The

corresponding closure problem reduces thus to finding V
(3)
ω , which is the x3 component of

the closure problem vector Vω = (V
(1)
ω ,V

(2)
ω ,V

(3)
ω ), satisfying

iωV(3)
ω −∇2

yV
(3)
ω = 1, and V(3)

ω |Afs
= 0. (24)

For such a geometry, α∞ ≡ 1, i.e., there is no tortuosity along the flow streamlines. Fur-

thermore, the expression for the characteristic viscous length Λ reduces to14

Λ = 2
Vf
Afs

. (25)

Before analyzing the precise geometry of these surfaces, it may be useful to recall a few

definitions from Euclidean and fractal geometry. The Euclidean measure of a d-sphere38

with, d ∈ N, is equal to bd = πd/2

Γ(d/2+1)
. Rescaling a d-sphere by a factor λ, results in a

measure proportional to λd. The exponent of the scaling factor in the rescaled measure is

called the dimension of the object. Fractal geometrical objects generalize these notions by

allowing non-integer dimensions. This type of scaling is commonly observed in many nat-

ural phenomena. Natural fracture-wall surfaces, for instance, present asperities at different

scales, and there is ample consensus in the rock mechanics literature that rock surfaces are

characterized by non-integer dimensions over a broad range of spatial scales, typically from

10−5 − 101 meters. Single fractures wall surfaces are fractal therefore in a stochastic sense.

In this work, we will consider only fracture-wall surfaces defined as the Cartesian product
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of a deterministic fractal K and a 1-d segment of arbitrary length. The dimension of the

fractal curve, 1 < d < 2, characterizes completely the dimension of the fractal curve. The

deterministic fractal considered in this study is a Köch fractal curve39. The prototypical

Köch curve is generated by dividing the segment [0, 1] into three smaller segments of equal

length l1 = 1/3, and replacing the central segment with two segments of length l1 to form

an equilateral triangle. This construction is then repeated over the resulting segments,

and iterated indefinitely. The resulting curve, K, is autosimilar, i.e., admits a partition

{Ki}, i = 1, . . . , n, such that every Ki is homothetical (identical when rescaled) to K. After

k iterations the Euclidean length of the curve built over the unit segment equals Lk = (4/3)k

a value which tends to ∞ for k → ∞. The area of the corresponding fracture-wall surface

tends, therefore, also to ∞.

Let Ld(K) be the d-dimensional measure of K. There exists at most one value of d for

which 0 < Ld(K) <∞ and we indicate this number as d, the Hausdorff dimension39 of K.

The measure of the Köch curve K[0,1] constructed on the unit segment L = 1 [m], is

Ld(K[0,1]) = bd

4n∑
i

(diam(Ki)/2)
d = bd

1

2d

(
4

3d

)n

= bd
1

2d
= 0.953097

[
m

log 4
log 3

]
, (26)

a value that does not depend on the iteration n in the construction of the fractal curve.

Real world materials, however, do not of course exhibit such ideal autosimilar behavior

at all scales of observation. Rather, they show upper and lower cutoff lengths at which the

autosimilar property breaks off. Below the lower cutoff length, and above the upper cutoff

length, the geometry of the object is Euclidean, i.e., measures scale with integer exponents.

Any approximation of such a real world object will entail a finite number n of iterations of

the omothetical construction. The cutoff length scale, `, equals the smallest of the geometric

details of the fracture surface.

In channels with fractal pore-fluid surfaces Afs, the classical scaling in (20) does not hold

anymore because Λ ≡ 2Vf/Afs → 0, and consequently M → ∞. If the yardstick of our

fractal analysis is represented by the thickness of the boundary layer, δ, we expect that the

measure of the boundary layer itself will roughly follow the scaling of the fractal surface.

At low frequencies, the boundary layer will be sufficiently separated from the actual fractal

surface and thus will be smooth, with a length roughly proportional to L1 = 4/3 [m]. At

very high frequencies, when δ � `, the finest detail of the surface for a given maximum
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number of iterations n, the measure of the boundary layer will scale again as an Euclidean

geometrical object. For the classical Köch curve of dimension d = log 4/ log 3, the Euclidean

length of the boundary layer at such high frequencies will be thus roughly proportional to

Ln = (4/3)n [m], which for large n is a large number, but not infinite. There must exist,

therefore, an intermediate range of frequencies over which the length of the boundary layer

scales with a non-integer exponent, and takes values of a length to a non-integer power. In

this range of frequencies, the scaling of the boundary layer thickness must be different from

the classical expression δ ∼ ω̃−1/2.

To fix ideas, consider a fracture with permeability k0 = 1.59×10−8 m2, tortuosity α∞ = 1,

fractal dimension d ∼ 1.27, and water as the oscillating fluid (at a temperature T=25 �,

water density ρ = 997 kg·m−3, and viscosity η = 8.90 × 10−4 Pa·s). The corresponding

viscous-inertia transition frequency is ωc = 63 Hz. A range of nondimensional frequencies

between 10−2 < ω̃ < 104 corresponds therefore to dimensional frequencies roughly in the

range between 1 Hz and 0.1 GHz. As will be shown in our numerical computations section,

the dimension of the corresponding computational cell is on the order of 1 mm. For a

maximum number of iterations n = 5, the length of the smallest detail of the surface is

roughly ` ∼ (1mm/4n) ∼ 1 µm, a value which is within the range of previous experimental

determinations of the fractal dimensions for single fractures surface walls.

Pozrikidis30 also introduces another scaling exponent for fractal geometries, d′, the gain

in wall length with increasing refinement. The values of d′ corresponding to the fractal

dimensions considered in this study can be found in Table III.

It becomes clear therefore that the scaling expression for the viscous boundary layer

presented in (13), and the associated scaling models presented in Section II B need to be

modified. The numerical simulations of the dynamic permeability presented in the next

Section will determine the analytical expression of the scaling models appropriate for fractal

surface channels.

IV. NUMERICAL SIMULATIONS

In this Section, we present a series of numerical solutions of the closure problem (24) for

a two-dimensional cross-section with fractal walls defined by Köch-like curves for a range

of fractal dimension. Kostek et al.29 and Pozrikidis30 studied longitudinal and transverse
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oscillating flow for such geometries. The fractal-walls profiles in our study (see Figure 1) were

generated by means of a simple L-system algorithm40. We allowed the fractal dimension d of

the surface to vary in the range 1.16 < d < 1.49. We constructed two sets of geometries, for

two different values of the maximum number of iterations in the fractal construction, n = 4

and n = 5. A periodic repetition of a unit cell of length 1 and width 1 is assumed along the

transverse direction. We exploit the reflection symmetry of unit cell along the middle plane.

Equation (24) is solved numerically for different values of the nondimensional frequency ω̃

by means of a finite element numerical scheme; a typical mesh is shown in Figure 2. From

the numerical solutions of (24), we calculate the dynamic permeability, k(ω), as a function

of frequency, and the scaling functions coefficients, α0, α∞, and Λ.

In Figure 3, we plot the evolution of the value of the Darcy (static) permeability, k0

as a function of the porosity for a range of maximum iterations in the fractal geometry

construction, n. It is observed that, in this range of porosity variation, the permeability

follows closely a Kozeny-Carman relationship, k0/φ = c1
1

180
φ2

(1−φ)2
+ c2. The linear regression

lines are shown in red, and the corresponding coefficients are listed in Table I. As the value

of the permeability remains bounded, and the value of Λ → 0, it follows that the scaling

parameter, M → ∞.

In Figure 4, we present the evolution of the velocity field for different values of the

frequency. At small frequencies, the phase of the velocity field, Θ(V
(3)
ω ), (right hand side

panels) is negligibly small, but the shape of the boundary layer can be appreciated from

the plot of the absolute value of the velocity itself. At intermediate frequencies, we see

that the boundary layer follows closely the profile of the fluid-solid interface, and as such

exhibits the same fractal dimension scaling. At much higher frequencies, the boundary layer

is indistinguishable from the bounding surface itself, and the phase of the velocity field is

equal to −π/2 throughout the fluid space, indicating an inertia-dominated flow regime. For

these frequencies, the thickness of the boundary layer is much smaller than the smallest

details of the pore-fluid surface, `; hence, the boundary layer thickness scales according to

(13). This result can be better appreciated in Figure 5, which shows a contour plot of the

boundary thickness as a function of the frequency. The precise position of the boundary

layer is largely a matter of convention in the choice of the threshold. In this work, we define

the boundary layer as the loci of the points for which Θ(V
(3)
ω ) = −0.7. Similar results are

obtained for different choices of the threshold.
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In Figure 6 we plot the evolution of the length and thickness of the boundary layer for

the entire range of fractal dimensions, and for a number of iterations in the construction of

the fractal n = 4 (top panels), and n = 5 (bottom panels). We observe that the length of

the boundary layer, increases as the frequency increases. Moreover the rate of this increase

is larger for larger values of the fractal dimension, d. The boundary layer length tends to

stabilize to the Euclidean measure of the fracture surface, and this value increases with d.

This stabilization of the value of the length happens above some critical frequency threshold,

the value of which decreases with increasing d. We also note that the critical frequencies

for the stabilization of the boundary layer length increase with the value of n. This can

be understood by keeping in mind that the yardstick for the evolution of this length is

the boundary layer thickness, δ, represented in the left hand side panels of Figure 6: so,

the higher the frequency, the smaller the thickness of the boundary layer, and when this

thickness becomes smaller than the smallest segment length in the fractal curve, the solid

surface which is subject to the viscous flow dissipation becomes flat for all intents and

purposes. The red lines in Figure 6 indicate the regions over which it was possible to define

a power law scaling for the boundary layer length and thickness. The critical frequency, ω̃′,

and the corresponding exponents βL, and βδ, respectively, are reported in Table II. The

scaling exponent βL, does not seem to correspond directly to the exponent d′, the gain in

wall length with increasing refinement. The exponent βδ seems to maintain a value close to

−1/2 only for n = 4, whereas its values deviate significantly for n = 5, showing a decrease

for increasing, d.

We can now plot the numerical results of the dynamic response and the correspond-

ing models. In Figure 9, we plot the frequency dependence of the added mass phase,

Θ(α(ω)/α∞−1). This representation enhances the differences between the numerical results

and the scaling function. The blue curve in Figure 9, represents the model in 20, for a value

of Λ corresponding to the Euclidean length of the fractal curve, Ln. Such scaling function

does not represent a good model of the dynamic tortuosity for these geometries. We will

discuss the model represented by red lines in the next Section.
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V. SCALING MODELS FOR FRACTAL MEDIA

Johnson et al.19 proposed that the characteristic viscous length for fractal media, Λ,

scales as 2/Λ ∼ δ2−de , where 1 < de < d, is an exponent characterizing the dynamic process.

Furthermore, these authors19 conjectured that for high frequencies, the added mass scales

according to the expression

α̃(ω)

α∞
− 1 ∼

(
1

2
(1− i)

√
Me

ω̃

)(2−de)

, (27)

where Me, is a nondimensional effective scaling parameter. Our calculations show that, in

the case of fractures with fractal pore walls, the added mass does not scale according to the

power-law expression in (27). In Figure 7, we plot the real and imaginary parts of the added

mass as a function of the nondimensional frequency (in double-logarithmic scale) for the

range of fractal dimensions analyzed in this work. While the real part follows a power-law

best for d < 1.3, the imaginary part does not follow the simple scaling in (27) for any value

of the fractal dimension.

Pozrikidis30 proposed that, in fractal media, the absolute value of the drag force, f(ω),

scales as a function of the inverse boundary layer thickness, δ, i.e.,

|f(ω)| ∼ (
1√
ω̃
)1+d′ , (28)

where d′ is the gain in wall length with increasing refinement, and δ ∼ 1√
ω̃
. The left hand side

panel of Figure 8, shows the quantity |ω̃−1/2|f(ω) vs. ω̃−1/2 on a double-logarithmic scale.

We estimated the value of the slope in the region where the graph can be approximated by

a power-law. The right-hand side of Figure 8, shows the estimated slopes versus the value

of d′, and also displays a quadratic polynomial relationship between these two quantities.

We cannot therefore confirm the Pozrikidis’ claim30 that “... results for longitudinal motion

provide an explicit example in which the magnitude of the drag force and rate of dissipation

diverge according to the fractal dimension of the surface.”

Instead, as it will be shown below, we find that the drag force scaling depends explicitly

on the value of the fractal dimension d in a well-contrained range of frequencies.

We start from the observation that there must exist a range of frequencies, ω̃l < ω̃ < ω̃u,
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for which the scaling of the boundary layer thickness does not follow the classical scaling

(13). Outside of this range of frequencies, the dynamic process develops as if the surface

were smooth, hence with no exponent corrections. The plots in Figure 6 show the evolution

of the length and thickness of the boundary layer as a function of frequency, for n = 4 and

n = 5.

Therefore, we propose to modify the expression for the z nondimensional variable in (23)

as

z =

(
g
M(ω)

m2
3iω̃

)γ(ω̃)

(29)

where

γ(ω̃) = 1/2, ω̃ < ω̃l

1

(ω̃u − ω̃l)

∫ ω̃u

ω̃l

γ(ω̃)dω̃ = 1− d

2
, ω̃l < ω̃ < ω̃u

γ(ω̃) = 1/2, ω̃ > ω̃u

(30)

i.e., we impose the condition that the average value of the correction in the range of fre-

quencies ω̃l < ω̃ < ω̃u, to be dictated by the value of the fractal dimensions itself, d. The

universal scaling parameter, M , is defined now as a function of the frequency, M(ω), as

Md =
8kd0α∞

φL2
d

, ω̃ < ω̃M

M =
8k0α∞

φΛ2
, ω̃ > ω̃M ,

(31)

where the relevant characteristic viscous length for ω̃ < ω̃M is given by the Hausdorff

length of fractal curve, Ld. The two values of M are interpolated by means of a 5th degree

polynomial.

Figure 9 shows the best-fit scaling (red lines) obtained with the modifications in Equations

(29), (30), and(31) for the phase of the added mass. The proposed model captures all the

essential features of the numerical data, with only three free parameters: the lower and

upper cutoff frequencies, ω̃l and ω̃u, and the transition frequency ω̃M . We conclude that the

modified scaling introduced in (29), which introduces explicitly the value of fractal dimension

of the surface, d, is the key to understand the frequency dependence of the dynamic response

of oscillating fluids in porous media.

14



As a concluding remark, we note that in Eq. (31), the expression in Md does not have

exactly the same functional form as M as the definition of the characteristic length for

d > 1 is not a ratio of volume over surface area. Should the characteristic viscous length be

defined as volume to surface-area ratio, i.e., equal to 2Vf/Ld, then the pertinent exponent

in (31) would be 2− d, and not d. Nonetheless, for d = 1, the numerical values and physical

dimensions of Ld and Λ, do coincide, and the smooth porous media model is recovered as a

limiting case. To resolve this apparent inconsistency, various modifications of the expressions

in (29), (30), and (31), aimed at introducing explicitly the characteristic viscous length as

a volume to surface-area ratio, have been tested. Even though these modified expressions

reproduce the numerical data with an accuracy comparable to the best-fits reproduced in

Figure 9, they invariably require the introduction of an additional free-parameter in place

of the fractal dimension exponent in (29). In other words, the explicit appearance of the

fractal dimension value has disappeared from these modified models.

We have opted, therefore, for a model that reproduces the data with the minimum number

of parameters, in this case Equations (29), (30), and(31), which invokes only three free

parameters. The resulting apparent paradox will perhaps be resolved through a careful

first-principles analysis of the boundary-layer scaling near the fractal surface. The classical

expression for the velocity of a fluid oscillating on a flat surface (Rayleigh problem) is

v = v0 e
−ζ/δ(ω)ei(ζ/δ(ω)−ωt), with v0 the reference velocity, and ζ a coordinate orthogonal

to the oscillating flow direction. This expression is the solution to the diffusion equation

∂v/∂t = ν∂2v/∂x2. The profile of the oscillating velocity near a flat boundary is thus the

solution to a classical diffusion problem, and is characterized by an exponential decay of the

velocity amplitude, i.e., by a distribution with finite mean and variance.

The fractal surface, however, introduces anomalies in the diffusion process which can-

not be described any longer by Gaussian distributions of the microscopic quantities41, but

rather by Levy-type distributions, distributions characterized by infinite mean and variance.

We speculate that the lack of a characteristic length scale into the fractal surface may be

the equivalent of the lack of a mean value and variance in Levy-type distributions. The

introduction of Levy distribution in the description of diffusion processes often translates

in the introduction of convolution operators in space and time42. As such, we expect that

the classical expression for the characteristic viscous length in (14), Λ, motivated by the

solution of a potential flow (diffusion) problem, needs modification. A more detailed study
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of the viscous boundary-layer around fractal surfaces will be the object of a future study.

VI. CONCLUSIONS

We have presented a numerical study on the effect of fractal wall surfaces on oscilla-

tory fluid flow. Motivated by our interest in fluid flow in fractures, we have considered

two dimensional longitudinal flows in channels whose side-wall geometries are bounded by

deterministic fractal curves. For these geometries, the classical models valid for smooth wall

surfaces break down. We proposed a modified scaling model for macroscopic quantities such

as the dynamic permeability and tortuosity. These new models introduce explicitly the value

of the fractal dimension of the surface as an independent parameter, and modify the classi-

cal expressions only in the range of frequencies where the boundary layer explores the fine

structure of the fractal surface. The model proposed in this study has three free parameters,

namely the lower and upper cutoff frequencies, ω̃l and ω̃u, respectively, and a characteristic

frequency for the transition to the high-frequency smooth-surface dynamic regime, ω̃M . Our

model gives excellent agreement with the numerical simulations. Additional effort, however,

is needed to provide a first-principle derivation of these modified scalings to include explic-

itly, via fractional-order derivatives, the anomalous nature of the diffusive processes in the

viscous boundary layer. Finally, our results indicate that the fractal dimension of a fracture

surface wall may be assessed by studying the high-frequency behavior of the added-mass

phase signal in laboratory experiments.
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d c1 c2

1.1646 2.6480× 10−2 4.0459× 10−2

1.2002 3.1389× 10−2 3.5982× 10−2

1.2359 3.4851× 10−2 3.2047× 10−2

1.2715 3.6724× 10−2 2.8553× 10−2

1.3071 3.6941× 10−2 2.5447× 10−2

1.3427 3.5548× 10−2 2.2652× 10−2

1.3783 3.2691× 10−2 2.0180× 10−2

1.4139 2.8508× 10−2 1.7936× 10−2

1.4496 2.3311× 10−2 1.5927× 10−2

1.4852 1.7501× 10−2 1.4146× 10−2

TABLE I. Linear Regression coefficients for the Kozeny-Carman relationship k0/φ = c1
1

180
φ2

(1−φ)2
+

c2 for the range of fractal dimensions, d, considered in this study.

n = 4 n = 5

d d′ log10 ω̃
′ βL βδ log10 ω̃

′ βL βδ

1.1646 −0.1646 3.5862 0.0636 −0.4953 3.5862 0.0494 −0.4724

1.2002 −0.2002 3.3793 0.0829 −0.4940 3.3793 0.0677 −0.4698

1.2359 −0.2357 3.1724 0.1079 −0.4958 3.1724 0.0856 −0.4649

1.2715 −0.2714 2.9655 0.1330 −0.4967 2.9655 0.1016 −0.4569

1.3071 −0.3069 2.7586 0.1584 −0.4962 2.7586 0.1217 −0.4522

1.3427 −0.3427 2.5517 0.1832 −0.4922 2.5517 0.1488 −0.4526

1.3783 −0.3780 2.3448 0.2052 −0.4827 2.3448 0.1757 −0.4491

1.4139 −0.4137 2.1379 0.2274 −0.4711 2.1379 0.2008 −0.4363

1.4496 −0.4495 2.1379 0.2760 −0.4927 2.1379 0.2138 −0.4106

1.4852 −0.4852 2.1379 0.3302 −0.5210 2.1379 0.2189 −0.3788

TABLE II. Exponents of the power law scalings for boundary layer length βL and thickness βδ, for

n = 4 and n = 5. The value of log10 ω̄ represents the limit over which a power law scaling could

be estimated. These power law scalings are illustrated in red in Figure 6.
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d d′ k0/φ he Λ Ld M Md log10 ω̃l log10 ω̃M log10 ω̃u

1.1646 −0.1646 0.0462 0.7449 0.4187 0.9744 2.1101 0.2349 −0.9023 0.8858 3.8438

1.2002 −0.2002 0.0416 0.7122 0.3530 0.9681 2.6704 0.1879 −1.0435 0.3336 3.5595

1.2359 −0.2357 0.0374 0.6815 0.2982 0.9617 3.3624 0.1489 −1.2152 0.2824 3.4936

1.2715 −0.2714 0.0335 0.6526 0.2523 0.9550 4.2121 0.1169 −1.2658 0.0843 3.2849

1.3071 −0.3069 0.0300 0.6255 0.2140 0.9482 5.2387 0.0910 −1.4271 −0.1251 3.1232

1.3427 −0.3427 0.0268 0.6001 0.1819 0.9411 6.4760 0.0700 −1.4910 −0.1299 3.0020

1.3783 −0.3780 0.0239 0.5767 0.1554 0.9339 7.9178 0.0534 −1.6503 −0.2671 2.8815

1.4139 −0.4137 0.0212 0.5551 0.1330 0.9264 9.6030 0.0402 −1.8443 −0.3926 2.8166

1.4496 −0.4495 0.0188 0.5357 0.1144 0.9188 11.5032 0.0299 −1.9293 −0.3870 2.7321

1.4852 −0.4852 0.0167 0.5191 0.0992 0.9110 13.5533 0.0220 −2.0602 −0.4532 2.6512

TABLE III. Summary of the macroscopic parameters for the various simulations for n = 4.

d d′ k0/φ he Λ Ld M Md log10 ω̃l log10 ω̃M log10 ω̃u

1.1646 −0.1646 0.0461 0.7433 0.3488 0.9744 3.0309 0.2341 −1.0620 > 4 5.1885

1.2002 −0.2002 0.0414 0.7101 0.2826 0.9681 4.1507 0.1870 −1.2249 > 4 5.0718

1.2359 −0.2357 0.0372 0.6789 0.2293 0.9617 5.6587 0.1481 −1.2278 1.8168 4.0376

1.2715 −0.2714 0.0333 0.6493 0.1863 0.9550 7.6820 0.1161 −1.3006 1.7147 3.9823

1.3071 −0.3069 0.0298 0.6215 0.1518 0.9482 10.3600 0.0902 −1.4749 1.6248 3.9554

1.3427 −0.3427 0.0266 0.5952 0.1237 0.9411 13.9075 0.0694 −1.6573 1.4817 3.9038

1.3783 −0.3780 0.0237 0.5709 0.1014 0.9339 18.4652 0.0528 −1.8443 1.3054 3.8315

1.4139 −0.4137 0.0211 0.5483 0.0832 0.9264 24.3616 0.0397 −1.9134 1.1087 3.6952

1.4496 −0.4495 0.0187 0.5278 0.0686 0.9188 31.7466 0.0295 −2.0219 0.9693 3.5969

1.4852 −0.4852 0.0165 0.5102 0.0570 0.9110 40.6032 0.0217 −2.1908 0.8385 3.5462

TABLE IV. Summary of the macroscopic parameters for the various simulations for n = 5.
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FIG. 1. Fractal surface profiles considered in this study. Only the bottom half of the computational

cell is represented.
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FIG. 2. Typical mesh used for the numerical simulations. Fractal dimension of the channel,

d = 1.2714.
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FIG. 3. Evolution of the Darcy (static) permeability, k0, as a function of the porosity, φ, at

different values of the iteration, n. Linear regression lines are shown in red and the corresponding

coefficients are listed in Table I.
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FIG. 4. Absolute value and phase of the velocity field V
(3)
ω as a function of the frequency, ω̃, for

a fractured channel with fractal dimension d = 1.2714, and a number of iterations n = 5. (a)

ω̃ = 0.01; (b) ω̃ = 0.73; (c) ω̃ = 85.31; (d) ω̃ = 10000.
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FIG. 5. Evolution of the boundary layer thickness, δ, as a function of the frequency, ω̃ for a fractal

surface of dimension d = 1.2714. Inset: scaling of the boundary layer thickness as a function of

the nondimensional frequency. The scaling exponent for this fractal dimension equals −0.45.
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FIG. 6. Evolution of the length, L(ω), and thickness, δ(ω), of the boundary layer for the entire

range of fractal dimensions, d, and for a number of iterations in the construction of the fractal

n = 4 (top panels), and n = 5 (bottom panels).
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FIG. 7. Scaling of the real and imaginary parts of the added mass α(ω)/α∞ − 1 for the range of

fractal dimensions analyzed in this work. The red lines represent the best fit of (27) to the data.
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FIG. 8. Left hand side panel: Scaling of the drag force f(ω) absolute value, with the inverse of

the square root of the nondimensional frequency ω/ωc. Right hand side panel: comparison with

Pozrikidis’ model30, slope of (ω/ωc)
(−1/2)f(ω)] vs the d′, the gain in wall length with increasing

refinement. The best fit to the slope data points is a quadratic polynomial, −1.4117d′2+0.4544d′+

0.0423. Pozrikidis’ model30 predicts that the slope and d′ should be equal, whereas present results

indicate deviations from this prediction.
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FIG. 9. Black dotted line: plot of the added-mass phase (normalized to π/2) for all the fractal

dimensions d considered in this study. Blue line: best fit for the smooth-walls model [Eqs. (20),

(23)]. Red line: best fit for the model proposed in this study [Eqs. (20), (29),(30), and (31)].
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