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CHAPTER 1

INTRODUCTION

The interaction of electromagnetic waves and solids is an ever expanding topic. Ever

since Maxwell’s equations, the development of Solid-state physics has exploded. Among

these topics is the existence of excitation’s of oscillating charge densities throughout the

system called plasmons. Alongside this bulk interaction, it was theorized that excitation of

plasmons could exist on the surface of materials, along with accompanying electromagnetic

waves bound to the surface, called surface plasmon polaritons (SPP), theorized by Rufus

Ritchie in 1957 [9].

As an electromagnetic wave propagates through a material it causes oscillations in

the electrons in the structure. The change in electron density then results in an opposing

force fighting back against the perturbing force. This push and pull relation can be solved

via the Maxwell equations, and their interactions fundamentally dictate the many electronic

properties of the system, via the dielectric function. The dispersion relation of the electro-

magnetic wave in the medium follows from this interaction. Since electrons in metals are

free, they tend to screen around local charges, screening them from outside sources. As far

range interactions are decreased dramatically, how an electronic system feels an external

perturbation changes , which changes how interactions play out. The dielectric function can

then be solved more extensively, and shows numerous other properties than simple oscilla-

tions. Using this dynamic interaction to find the electronic response gives us the Lindhard

function[3], an equation that relates the dielectric function to induced polarization via a

screened response.

One of the many derivations of this function includes the idea that instead of free

electrons, they are bound to an intense laser field with modulated wave-functions. This

causes the lindhard function to change, cascading into everything it influences. This ’dynamic

screening’ function[11] is the core basis to this paper.

The inspiration for this paper arose when a group of Hungarian researchers saw what
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they believed to be superconductive effects while experimenting with surface plasmons[7][8].

During experiments using Kretschmann configuration, they seemed to see electron pairing

as well as magnetic field repulsion. Upon further examination, they observed an oscilla-

tory change in the dispersion polaritons. They pointed to a paper by C. Zhang[11][6] as

an explanation, claiming the dynamic polarization function as the basis to this oscillatory

behavior.

This paper discusses basic theory including bulk plasmon and surface plasmon-polariton

dispersion, as well as the mentioned dynamic screening function. It then expands upon their

interactions and the consequences that arise.
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CHAPTER 2

PLASMONICS

2.1. Maxwell’s Equations

No paper involving electromagnetic waves can be written without first mentioning the

father of all involved theory, the Maxwell equations. For electromagnetic waves in matter,

we have

(2.1) ∇ ·D = pf

(2.2) ∇ · E =
p

ε0

(2.3) ∇ ·B = 0

(2.4) ∇× E = −∂B/∂t

(2.5) ∇×H = J + ∂D/∂t

(2.6) D = εoεE = εoE + P

(2.7) B = µ0H

Where ε0 is the permitivity of free space, ε the permitivity of a specific medium, and µ0 the

magnetic permeability. From these, all following theory can be derived.
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2.2. Dielectric Function

The dielectric function ε is among the most important variables in determining the

electronic properties of the system. Working specifically in the long wavelength (small q)

regime, the classical approximation for ε can be shown from the equation of motion of the

free electron in the presence of a field, E[5].

(2.8) m
∂2x

∂t2
= −eE

Given that E(t) and x(t) depend on e−iωt, it follows that

(2.9) −ω2mx = −eE, x =
eE

mω2

With −ex being the dipole moment, and P being the polarization (dipole moment per unit

volume, with n being electron concentration)

(2.10) P = −nex =
−ne2E

mω2

now, with

(2.11) D = εεoE

(2.12) ε =
D

εoE
= 1 +

P

εoE

The classical dielectric function follows

(2.13) ε(ω) = 1− ne2

ε0mω2
= 1− ω2

p/ω
2

With the ωp being the plasma frequency,

(2.14) ωp = ne2/mε0
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2.3. Plasmons

From the classical dielectric function, we can see ε(ω) = 0 when the incoming fre-

quency ω = ωp. Large oscillations in the plasma occur via resonance when this happens.

The quanta of energy for these oscillations of electron gas are called Plasmons, with energy

~ωp.

2.4. Dispersion Relation

Moving over to cgs from SI units (replacing 1/ε0 with 4π), the basic wave equation

in a non-magnetic medium is

(2.15)
∂2D

∂t2
= c2∇2E

which gives the dispersion relationship

(2.16) ε(ω)ω2 = c2K2

Which gives the plot (with ωp set for gold)

Wave vector q(ω) (written as k above) as a function of frequency ω. The yellow line is the vacuum relation
ω ∗ c. The function bottoms out at the plasma frequency, with a forbidden range below it

Figure 2.1. Basic dispersion relation

2.5. Screening Effect

Due to the free nature of the electrons in the plasma, they tend to be influenced

more by local charges, crowding around them and screening them from the outside. This

drastically influences electromagnetic interactions inside the material, as the influence of

local charges is highly diminished at long ranges.

5



Replacing the ω dependent dielectric function ε(ω) with its K dependent variant ε(k)

(derivation [5])

(2.17) ε(k) = 1− k2
s/K

2

where ks is the Thomas-Fermi wave vector. The coulomb interaction q
r

is transformed

to the classical screened potential

(2.18)
q

r
e−ksr

showing the influence of a charge exponentially decays, almost removing long range

interactions until at length 1/ks, the screening length.

2.6. Lindhard Function

A more complete method of calculating the dielectric function is to look at how the

electronic system reacts to some arbitrary potential. This derivation in particular uses the

random phase approximation, RPA, where the response to the system is dictated not by the

induced potential but a total screened potential [3][10].

The Fourier transformed local (and assumed screened) potential can be represented

as

(2.19) φ(r, t) =

∫∫
(φ(q, ω)ei(q·r−ωt)e(δt) + φ∗e−i(q·r−ω)te(δt))dqdω

which we will use to perturb the system (δ is an infinitesimal to insure an adiabatic

system). Under this, we can show the perturbed wave-function as a complete set with the

unperturbed wave-function as the basis.
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(2.20) ψk(r, t) =
∑
k′

ak′(t)ψ
0
k′(r)e

−iεk′ t/~

From the potential, we can see the allowed interaction states involve ak+q and ak−q.

Expanding the wave-function, we have

(2.21) ψk(r, t) = ψ0
k(r)e

−iεkt/~ + ak+q(t)ψ
0
k+q(r)e

−iεk+qt/~ + ak−q(t)ψ
0
k−q(r)e

−iεk−qt/~

Solving for the coefficients under the time dependent perturbation theory, they become

(2.22) ak+q(t) = −i/~
∫ t

−∞
〈ψ0

k+q|H1(t1)|ψ0
k〉ei(εk+q−εk)t1/~dt1

(2.23) ak−q(t) = −i/~
∫ t

−∞
〈ψ0

k−q|H1(t1)|ψ0
k〉ei(εk−q−εk)t1/~dt1

Integrating over time (and space in the inner-product) gives

(2.24) ak+q = −φ(q)ei(εk+q−εk−~ω)t/~e(δt)

εk+q − εk − ~ω − (iδ)

(2.25) ak−q = −φ
∗(q)ei(εk−q−εk+~ω)t/~e(δt)

εk−q − εk + ~ω − (iδ)

Expanding the full wave-function

(2.26) ψk(r, t) = ψ0
k(r)e

−iεkt/~[1− φ(q, ω)ei(q·r−ωt)e(δt)

(εk+q − εk − ~ω − (iδ))
− φ∗(q, ω)e−i(q·r−ωt)e(δt)

(εk−q − εk + ~ω − (iδ))
]

Since (δt) is an infinitesimal, I’m going to leave it out of the calculations for now for

convenience and throw it back in at the end. The induced density can be found from this.
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(2.27) pk(r, t) = [|ψk(r, t)|2 − |ψ0
k(r)|2]

With normalization giving the ψ0
k(r) component equal to 1 and keeping only terms

linear to φ(q, ω), ignoring φ∗ for convenience

(2.28) pk(r, t) = −[
φ(q, ω)ei(q·r−ωt)

εk+q − εk − ~ω
+ +

φ(q, ω)ei(q·r−ωt)

εk−q − εk + ~ω
]

Taking into account all states, the total density fluctuation can be represented as

(2.29) p(r, t) = 2
∑
k

pk(r, t)fk

where fk is the fermi distribution function, and the factor of 2 due to spin states.

With a change of variable from k to k+q in the term with εk−w, and using the Fourier

relation (p(r, t)→ p(q, ω))

(2.30) p(q, ω) = 2
∑
k

[
fk+q − fk

εk+q − εk − ~ω
φ(q, ω)]

This gives the polarization function, Π0, from p(r, t) = φ(q, w)Π(q, w), (along with

adding the infinitesimal back in)

(2.31) Π0(q, w) = 2
∑
k

[
fk+q − fk

εk+q − εk − ~ω − iδ

The dielectric function in the RPA (random phase approximation), which uses the total

screened potential response, finally becomes

(2.32) ε(q, w) = 1− 4πe2

q2
Π0(q, w) = 1− 4πe2

q2
[2
∑
k

fk+q − fk
εk+q − εk − ~ω − iδ

]
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Which is called the Lindhard Dielectric function (4πe2

q2
is φ(q)).

Using different approximations, familiar results can be achieved. In the long wave-

length limit (q ⇒ 0) and the static limit (ω ⇒ 0), and assuming the potential is slowly

varying with respect to the electron wavelength, the Lindhard function reduces roughly to

(2.33) ε(w) = 1− ω2
p/ω

2

and

(2.34) ε(q) = 1 + k2
s/q

2

where ks is the Thomas-Fermi wave vector.

From this we can plot the normal dielectric and corresponding dispersion relation, q(w) =

ω/c
√
ε(w)

Dielectric ε as a function of ω, with arbitrary unit values

Figure 2.2. Dielectric function

Wave vector q as a function of ω, with ωp set for gold

Figure 2.3. Basic dispersion relation
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2.6.1. Low Temperature Limit

Taking the polarization function Π(q, w), and applying the limit as temperature T

→ 0, we can write the function as[3]

(2.35)
∑

k<kf ,k+q>kf

[
1

~ω − εk+q + εk
− 1

~ω − εk + εk+q

]

Graphing this gives

Polarization function Π dependence on ω, with arbitrary unit values

Figure 2.4. Polarization function

The poles in the graph correlate to electron-hole pair formations, with an upper value

ωmax above which has no more pairs. The right end tail intersection with the horizontal line

at 1 (with φ(q) normalized to 1) corresponds to the plasma frequency ωp, which involves

large scale plasma oscillations instead of individual particle excitation.
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CHAPTER 3

DYNAMIC SCREENING

3.1. Dynamic Screening Function

In the previous section the basic Lindhard function was derived using the perturbation

of free electrons by the total screened interaction. This section involves the same idea, except

instead of a free electron we use a wave-function modified by an external field, shown here

[11].

As mentioned, we will modify the basic free electron wave-function

(3.1) ψ(r, t) = exp(ik · r) exp (−itεk) ;

(3.2) εk =
k2

2m∗

with an external field, with the potential in the form

(3.3) A =
E sin(ωt)

ω
ex

Where the time dependent Schrödinger equation in an external field is transformed by

(3.4) U = exp (2γ1itw) exp [γ0ikx(1− cos(tw)) exp (γ1i sin(2tw))

(3.5) γ0 = (eE)/m∗ω2, γ1 = (eE)2/(8m∗ω3)

a unitary operator, where

(3.6) U [i
∂ψ(r, t)

∂t
− p2

2m∗
] = i

∂

∂t
− (p− Ae)2ψ(r, t)

2m∗
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(3.7) i
∂ψ(r, t)

∂t
= Hψ(r, t) =

(p− Ae)2ψ(r, t)

2m∗

The wave-function is

(3.8) ψ0
k(r, t) = Uexp(−iεkt)exp(ik · r)

Make F (t) = 2γ1ωt+ γ1sin(2ωt), then

(3.9) ψ0
k(r, t) = eiF (t)eiγ0kx(1−cos(ωt)eik·re−iεkt

(3.10) 〈ψ0
k(r, t)|ψ0

k(r, t)〉 = δk,k′

From this, the wave-function is still normalized, so no charge fluctuation

(3.11) p0
k = e|ψ0

k(r, t)|2 = e

Using this wave-function as the basis for the complete set, we can follow the same process

as before.

(3.12) ψ(r, t) =
∑
k

ak(t)e
iF (t)eiγ0kx(1−cos(ωt))eik·reiεkt

with the Fourier transformed local potential given again as

(3.13) φ(r, t) =

∫
dq′

∫
dΩeiq

′·re−iΩtφ(q′,Ω) +

∫
dq′

∫
dΩe−iq

′·reiΩtφ(q′,Ω)

Using this as the perturbing potential, the coefficients are solved for

(3.14) i
∂ψ

∂t
= (H − eφ)ψ
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(3.15) a′k(t) = −ie
∫ ∞
−∞

dteiγ0(kx−k′x)[1−cos(wt)]ei(εk′−εk)t ×
∫
dre−ik

′·rφ(r, t)eik·r

Using the Generating Bessel function

(3.16) eiacosx =
∑
m

imJm(a)eimx

and the Fourier expansion for the local potential, you get

(3.17) ak+q = −ee−iγ0qx
∑
m,Ω

imJm(qxγ0)φ(q,Ω)× ei(εk+q−εk−Ω−mω)t

εk+q − εk − Ω−mω − iδ

(3.18) ak−q = −ee−iγ0qx
∑
m,Ω

imJm(qxγ0)φ(q,Ω)× ei(εk−q−εk+Ω+mω)t

εk−q − εk + Ω +mω − iδ

with the infinitesimal iδ back in as before. Plugging these into

(3.19) ψk(r, t) = ψ0
k(r, t) +

∑
q

ak±q(t)ψ
0
k±q(r, t)

the induced charge density is

(3.20) pk(r, t) = e[|ψk(r, t)|2 − |ψ0
k(r)|2]

pk(r, t) = −e2
∑
q,Ω

∑
m

imφ(q, ω)Jm(qxγ0)×

[
e−iγ0qxcos(wt)e−i(Ω+mw)t

εk+q − εk − Ω−mω − iδ
eiq·r

+
(−1)meiγ0qxcos(wt)ei(Ω+mw)t

εk−q − εk + Ω +mω + iδ
eiq·r]

(3.21)

This is similar to the derived original Lindhard density function,
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(3.22) pk(r, t) = −[
φ(q, ω)ei(q·r−ωt)

εk+q − εk − ~ω − iδ
+ +

φ(q, ω)ei(q·r−ωt)

εk−q − εk + ~ω − iδ
]

Using the generating Bessel function again on e−iγ0qxcos(wt)

(3.23) eiacosx =
∑
m

imJm(a)eimx

the dielectric function can be found, with a slight difference

(3.24) ε(q, w) = 1− 4πe2

q2
Π(q, w) = 1− 4πe2

q2

∑
m

J2
m(qxγ0)[

∑
k

fk+q − fk
εk+q − εk − Ω−mω − iδ

]

where

(3.25)

Π(q,Ω +mω) =
∑
m

J2
m(qxγ0)[

∑
k

fk+q − fk
εk+q − εk − Ω−mω − iδ

] =
∑
m

J2
m(qxγ0)Π0(q,Ω +mω)

In all, the dynamic function has a very similar form as the original lindhard function,

with two notable exceptions: A squared Bessel function, dependent on the wave vector,

frequency, and intensity of the laser, and an additional frequency term on the bottom with

integer m. Both summed for m over infinity.

3.2. Analyzing the Excited Lindhard Function

If we apply the same T → 0 limit as before, we can plot the polarization as a

function of ω and static laser intensity (in the form of amplitude E) with a = eE/cm∗,

turning J2(qxγ0)→ J2(qxa/ω
2). Here I take arbitrary values of q, a, and ω, just to view the

behavior function, with all other values set to unity(1).
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(A)

(B)

(C)
Π as a function of ω, with increasing field intensities going from a to c

Figure 3.1. Excited polarization function

It is evident that turning on the laser and increasing the intensity adds a multitude of

poles to the function. This is a result of the multi-photon processes influencing the available

number of excitation states. As well, with increasing intensity comes a suppression of the

plasma frequency.

Spreading out the function to include more states

15



(A)

(B)

(C)
Π as a function of ω, with increasing field intensity for each graph

Figure 3.2. Excited polarization function, expanded

Again as before, there is a large increase in available excitation states, including many

in the previously empty zone below the minimum required frequency for excitation.

Looking at the far end (again with arbitrary absolute values), the lowering of the

plasma frequency becomes more clear.
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(A)

(B)

(C)
Π as a function of ω with continually increased field intensity for each graph

Figure 3.3. Tail of excited polarization function

Since the primary application of this theory will be on surface plasmons, another

interesting regime is to take Ω = ω considering the excited polaritons will share the same

frequency as the incident laser. Graphing, the function take on an oscillatory behavior on

the far tail in with increasing intensity
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(a) (b)

(c) (d)
Π as a function of ω, with continually increased field intensity from A to D

Figure 3.4. Tail of excited polarization function, Ω = ω

Not only is there a suppression of plasma frequency, but more modes involving ωp.

The higher the intensity, the more available plasma frequency modes are present. Essentially,

it is opening up holes in the spectrum for electromagnetically induced transparency.

3.2.1. Long Wavelength Limit

Applying the same limits to the dynamic polarization function as before to the normal

Lindhard function, taking q → 0 and T → 0, as well working with frequencies Ω = ω [6]

The polarization function

(3.26) Π(q, ω) =
∑
m

J2
m(qxγ0)Π0(q, ω +mw)

can be reduced to
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(3.27) φ(q)Π(ω) =
ω2
p

ω2

∑
m

J2
m(qxγ0)

(1 +m)2

Taking the function g(w) where w = qxγ0 (where γ0 = (eE)/m∗ω2)

(3.28) g(w) =
∑
m

J2
m(w)

(1 +m)2

and plotting with unit values set to unity again to show the behaviour dependence on inten-

sity (noting w =/= ω)

Oscillating function g(w) dependence on intensity (via w = qxγ0)

Increased intensity range

Figure 3.5. Oscillating dependence on field intensity

The function shows a clear oscillatory behavior, with a decreasing amplitude for

increasing intensity (and obviously reversed for its dependence on ω).

Taking this approximated dynamic polarization function, assuming low q where qc/ω

is roughly linear (so qc/ω ≈ 1, then w → eE/cm ∗ ω) we can plot the classical dispersion

relation

19



q(ω) = w/c ∗
√
ε(ω), with low arbitrary intensity

Figure 3.6. Dispersion relation

And you get, at low intensity, the same dispersion relation as normally.

Looking at the functions at high intensity however shows a different result.

(a) (b)
Dispersion relation, showing wave vector q as a function of ω with each graph having increased laser field

intensity

Figure 3.7. Modified dispersion relation

(a) (b)
Dispersion relation, showing wave vector q as a function of ω with each graph having increased laser field

intensity

Figure 3.8. Modified dispersion

20



Zooming in on the function, we can see ’holes’ opening up in the spectrum.

(a)

Figure 3.9. Plasma modes increased

Evidently the function shows with increased intensity comes a decreased plasma fre-

quency and an opening of multiple plasma frequencies, with allowed and disallowed regions

in between. This matches up with the interpretation from the results of the un-approximated

dynamic polarization function. One source of inaccuracy though, is this does not follow the q

linear with ω rule set before. However, the behavior that causes it, the Bessel function,is still

in the approximation,. So while the exact numbers may not match up the overall behavior

should still exist.
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CHAPTER 4

SURFACE PLASMON POLARITONS

Surface plasmons, a phenomenon predicted back in 1957 by Rufus Ritchie[9], are

electron density oscillations that occur on the surface, with different modes then related

bulk plasmons. Existing with the surface plasmon is the propagation of an electromagnetic

wave bound to the surface (and the underlying plasma oscillations) called a surface plasmon

polariton.

To derive, we look at a classical model of a semi infinite system,treating µ as 1 and

assuming the absence of external sources. Giving two medium a plane at z = 0, with z < 0

as ε1, and z > 0 as ε2 (more thoroughly found [9])

(4.1) ∇×Hi = εi
1

c

∂

∂t
Ei

(4.2) ∇× Ei = −1

c

∂

∂t
Hi

(4.3) ∇ · (εiEi) = 0

(4.4) ∇ ·Hi = 0

where i determines the material at the boundary. The boundary conditions (given in Jack-

son’s Classical Electrodynamics)

(4.5) D1,z = D2,z

(4.6) B1,z = B2,z

(4.7) E1,x/y = E2,x/y
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(4.8) H1,x/y = H2,x/y

It can be shown that S-polarization for incoming light cannot form propagating waves on the

surface and as such, it must be P-polarized with magnetic field H parallel to the surface[[9][4]].

Choosing the X direction as the propagation vector on the surface, there are components

of the electric field in the direction of propagation as well as an exponentially decaying

component in the Z direction, normal to the surface[1].

(4.9) Ei = (Eix , 0, Eiz) = e−κi|z|ei(qix−ωt)

(4.10) Hi = (0, Hiy , 0)e−κi|z|ei(qix−ωt)

Plugging these into the boundary conditions and Maxwell’s equations above gives

(4.11) iκ1H1y = (ω/c)ε1E1x

(4.12) iκ2H2y = (−ω/c)ε2E2x

with the z-component being

(4.13) κi =
√
q2
i − εiω2/c2

Knowing that the boundary conditions define continuity for the parallel components of E

and B,

(4.14)
κ1

ε1
H1y +

κ2

ε2
H2y = 0

and

(4.15) H1y −H2y = 0
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Which gives the surface plasmon condition [9]

(4.16)
ε1
κ1

+
ε2
κ2

= 0

The boundary conditions further imply q1 = q2 = q. Solving for q in the equation

above gives us

(4.17) q(ω) =
w

c

√
ε1ε2
ε1 + ε2

In the classical long-wavelength model with ε1 = 1 − ω2
p/ω

2 and ε2 = 1 for a vacuum, the

equation becomes

(4.18) q(ω) =
w

c

√
ω2 − ω2

p

2ω2 − ω2
p

Solving for ω gives

(4.19) ω2(q) = ω2
p/2 + c2q2 ±

√
w2
p/4 + c4q4

Plotting q(ω) then gives

Left blue line is SPP dispersion, right blue line is photon disperion through material. Left grey line is
ωp/
√

2, right grey line is ωp for gold

Figure 4.1. Surface plasmon dispersion relation

This is the dispersion function (reversed, q(ω) instead of ω(q)) for surface plasmon

polaritons. There is classically a gap in between, where the dielectric function leads to

imaginary results, causing the incoming radiation to be reflected with no surface propagation.

As well, the dispersion line for the polaritons lies above the q = w/c line leading to free
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radiation being unable to excite surface plasmons. In order to get around this, setups such

as gratings on the surface, or refraction via prisms (Kretschmann configuration) may be

used.
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CHAPTER 5

SURFACE PLASMON POLARITONS AND DYNAMIC SCREENING

Now that the basics of SPP dispersion have been laid out, we can move into the

dynamically screened dispersion relation. Taking a look at the dynamic polarization function

(5.1) Π(q,Ω +mω) =
∑
m

J2
m(qxγ0)Π0(q,Ω +mω)

we apply the same limits as before. Taking q → 0 and T → 0, and working with frequencies

Ω = ω and with ωp set for gold, we use the function

(5.2) φ(q)Π(ω) =
ω2
p

ω2

∑
m

J2
m(qxγ0)

(1 +m)2

and plug the calculated ε into q(ω) = w
c

√
ε1ε2
ε1+ε2

, treating ε2 as 1 and qxγ0 as eE/cm ∗ ω

(where I took qxc/ω → 1, mimicking [6])

q(ω)as a function of frequency, with arbitrarily low intensity

Figure 5.1. SPP low q dispersion

Looking at low q values, this mimics the classical dispersion relation and is linear to

the vacuum dispersion qc/ω = 1. Increasing intensity turns on an oscillatory behavior as

well as a slowly increasing q, varying off of the vacuum line
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q(ω) with arbitrarily increased intensity

Figure 5.2. SPP low q excited dispersion

Breaking the approximation setting set earlier (a linear q/w relation) and looking

towards the classic split between surface plasmon polariton dispersion and photon dispersion,

a new shape appears

(a)

(b) (c)
Surface plasmon polariton dispersion relation varying from no laser field (A) to arbitrarily high laser field

(C)

Figure 5.3. SPP excited disperison

When introducing high intensity into the play, the dispersion relation takes on a whole

new shape. A broad thickness appears due to high frequency oscillations in the polarization
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function. This mimics the bulk dispersion pattern, showing multiple new plasma frequencies.

As well, the original gap that existed between ωp/
√

2 and ω has now been closed. There is

an overlap in allowed frequencies, giving rise to the possibility of surface plasmon polariton

and bulk photon propagation at the same time (although in a very dynamic fashion, with

each allowed state being out of phase). The true shape in this region, especially for the line

on the left given its explosion of q, will not look exactly as shown. But the behavior that

causes it,
∑

m
J2
m(qxγ0)
(1+m)2

, exists regardless of which approximation you use. In fact, the value

inside of the bessel function will increase in the presence of large q, possibly causing a more

extreme version of what we see here. Further investigation in this region warrants solving

the system in a self-consistent manner.
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CHAPTER 6

SPECIAL TOPICS

6.1. Experimental Verification

All of this was fundamentally inspired by experimental data. The original derivation

of the dynamic screening function claimed an oscillatory nature depending on the wavelength

of incoming radiation and a decreased plasma frequency for an increased laser intensity. Re-

cent papers from Hungary [6] claim this dynamic screening model also caused the oscillatory

behavior and general increased value of the wave-vector dependence in their absorption spec-

trum. All of these effects have been shown to exist in various ways in this expanded analysis,

with the caveat of some inappropriate looks outside approximation domains. As mentioned

before, the cause of the behavior, the Bessel function, still exists in the un-approximated so-

lutions. Experimental verification gives validity to the interpreted consequences, and inspire

a more self-consistent approach to be solved.

6.2. Superconductive Observation

One cause for an increased look into this particular theory behind femtosecond laser

interactions with surface plasmons is the claimed evidence of superconductivity in recent

experiments by the same group [[7] [8]]. They claim that this is caused by the intense

electromagnetic waves on the surface inducing a negative potential, as shown in a paper

deriving electron-electron scattering in external fields [2]. By finding a theory to appropri-

ately describe the electronic system present, we can move forward and attempt to find more

precisely the nature of this observation, whether its a multitude of matter interactions or

instead solely due to the electron scattering in intense fields. Regardless this will be a large

inspiration moving forward.

6.3. Ideas for Future Experiments

Following the current experiment, a similar one will be performed by adding gratings

on the surface. Other potential scenarios range from thinning out the gold further, to going
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the other way and looking at the possibility of surface excitation on bulk materials, if it is

indeed possible for SPP and normal photon dispersion as predicted above. While performing

additional experimentation, it will be interesting to see how well this theory holds up and

whether the phenomena predicted in the poor approximation zones really exist or if some

approximated-out effect prevents them in real dynamically evolving environments.
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CHAPTER 7

CONCLUSION

This paper has shown a variety of effects that arise in the case of laser-stimulated elec-

tron systems. The dynamic screening function affects the core behaviour inside of the metal,

including plasmon to surface plasmon dispersion relations. We can see the experimentally

found plasma frequency suppression and oscillatory behavior of the allowed wave vectors

match up with the theoretical models proposed. In addition, new electron-hole excitation

via multi-photon processes can be found, as well as new modes of plasma excitation and

a potential overlap in allowed frequencies for bulk and surface plasmon oscillations. These

consequences will ultimately shape future development.
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