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Introduction

This article exposes a hidden duality between �internal� homology and �ex-
ternal� cohomology for certain group-like structures: we prove that cohomology
with trivial coe�cients classi�es (higher) central extensions. Together with the
work in low dimensions and with several closely related results in homology
theory, this reveals a deep connection between Galois theory and cohomology,
and a close link with homology which has been invisible so far.
The context in which we work is su�ciently general to cover cohomology of,

say, groups, crossed modules, Lie algebras and non-unitary rings, as well as the
Yoneda Ext groups in the abelian case, and many new examples can easily be
added to the list. In fact, almost any semi-abelian category would do, as long
as it satis�es a certain commutator condition which occurs naturally in this
setting�see below.
This interpretation of cohomology is part of a bigger programme which in-

tends to understand homological algebra in a non-abelian environment from
the viewpoint of (categorical) Galois theory. Related results include, for in-
stance, higher Hopf formulae for homology in semi-abelian categories [41],
higher-dimensional torsion theories [40], a theory of satellites for homology
without projectives [48], and higher-dimensional commutator theory based on
a notion of higher centrality [44, 45].

Higher centrality. The key novelty in the present approach to (co)homology
of non-abelian algebraic objects is the concept of higher centrality. It allows us
to express in an abstract but simple way the commutator conditions which we
have to deal with.
Following the ideas of Janelidze [58, 59], the formal theory of (not necessarily

central) higher (cubic) extensions was �rst developed in [41] in order to provide
a general setting for the Brown�Ellis�Hopf formulae [26, 33]. The notion of
centrality in the sense of categorical Galois theory [7, 56, 61] depends on a
Galois structure, and accordingly, centrality of higher extensions is de�ned
using a tower of Galois structures.
Let us make this explicit with a concrete example. Consider the category Gp

of all groups and its (re�ective) subcategory Nil2 determined by all groups of
nilpotency class at most 2. The induced re�ector nil2 : GpÑ Nil2, left adjoint
to the inclusion functor, takes a group G and sends it to its 2-nilpotent quo-
tient G{rrG,Gs, Gs. This situation�Gp being a variety of algebras over Set,
and Nil2 a subvariety of it�admits a canonical homology theory: Barr�Beck



HIGHER CENTRAL EXTENSIONS AND COHOMOLOGY 3

comonadic homology [2] with coe�cients in the re�ector nil2. Now for any
group Z, the induced third homology group H3pZ, nil2q of Z may be expressed
by a Hopf formula, namely the quotient [41, Theorem 9.3]

K0 XK1 X rrX,Xs, Xs

rrK0 XK1, Xs, XsrrK0, K1s, XsrrK0, Xs, K1srrX,K0s, K1srrX,Xs, K0 XK1s
.

Here the objects K0 “ Kerpcq and K1 “ Kerpdq are the kernels of c and d, for
any two-cubic presentation

X
c � ,2

d _��

C

_��

D � ,2 Z

(A)

of Z. This means that the objects C, D and X are projective (= free) groups,
and furthermore this commutative square is a two-cubic extension of Z: all
its arrows, as well as the induced arrow to the pullback pd, cq : X Ñ D ˆZ C,
are surjections. The denominator in the formula is a generalised commutator:
a two-cubic extension of groups such as (A) is central (with respect to Nil2)
precisely when this denominator is zero. The concept of centrality of two-cubic
extensions is given by the Galois structure Γ1 in the �tower� consisting of

Γ0 “ pGp,Nil2,E ,F , nil2,Ďq

and

Γ1 “ pExtpGpq,CExtNil2pGpq,E
1,F 1, pnil2q1,Ďq,

where E , F are the classes of surjections and E 1, F 1 are the classes of two-
cubic extensions in Gp and in Nil2, respectively. Here Γ1 is induced by Γ0

through its one-cubic central extensions, which are the objects of the full re-
�ective subcategory CExtNil2pGpq with re�ector pnil2q1 of the category ExtpGpq
of one-cubic extensions in Gp.
It is not hard to construct a two-cubic presentation of an object, certainly

not in the varietal case, since a truncation of any simplicial projective resolu-
tion will do. As is apparent from the formula, the main di�culty in making it
explicit lies in characterising the (two-cubic) central extensions corresponding
to the functor which is being derived (in this case, nil2). Higher cubic cen-
tral extensions are de�ned by induction; let us explain how this is done for
lowest degrees (more details can be found in the following sections and in the
articles [37, 38, 41], amongst others).
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A semi-abelian category [62, 5] is pointed, Barr-exact [1] and Bourn-pro-
tomodular [9] with binary sums. Let X be a semi-abelian category and B a
Birkho� subcategory [61] of X �full, re�ective and closed under subobjects
and regular quotients, so that a Birkho� subcategory of a variety is nothing
but a subvariety. Let

X
I ,2
K B
Ą
lr (B)

denote the induced adjunction, with I the re�ector and η : 1X ñ I the unit.
In this context, a cubic extension f : X Ñ Z is de�ned as a regular epi-

morphism, and an extension pk, fq as a short exact sequence

0 ,2 A � ,2 k ,2 X
f � ,2 Z ,2 0.

Together with the classes of cubic extensions in X and in B, the adjunc-
tion (B) forms a Galois structure in the sense of Janelidze [7, 56]. Central
(cubic) extensions are de�ned with respect to such a Galois structure, as fol-
lows. A cubic extension f is called trivial when the induced naturality square

X
f � ,2

ηX
_��

Z

ηZ_��

IX
If

� ,2 IZ

is a pullback; f : X Ñ Z is central when either of the kernel pair projections
pr0, pr1 : Eqpfq “ X ˆZ X Ñ X is trivial [61]. An extension pk, fq is said to
be trivial or central whenever so is the underlying cubic extension f .
It turns out that the cubic central extensions relative to B determine a

re�ective subcategory CExtBpX q of the category ExtpX q of cubic extensions
in X , so we have an adjunction

ExtpX q

I1 ,2
K CExtBpX q.
Ą
lr

Together with classes of two-cubic extensions, de�ned as in the case of groups
above, this adjunction forms a Galois structure, and thus we acquire the notion
of two-cubic central extension with respect to B. This construction may be re-
peated ad in�nitum, so that notions of n-cubic extension (special n-dimensional
cubes in X ) and n-cubic central extension are obtained. An n-fold (central)
extension will be a special diagram of short exact sequences: a 3n-diagram,
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0

��
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��

0

��
0 ,2 A � ,2 ,2

_��

��

_̈��

��

� ,2
_̈��

��

,2 0

0 ,2 ¨

�$

� ,2 ,2

_��

F2
f0

� ,2

f1
_��

¨

_��

,2 0

0 ,2 ¨
� ,2 ,2

��

¨
� ,2

��

Z

��

,2 0

0 0 0

Figure 1. A two-fold extension is a 3 ˆ 3-diagram: all rows and
columns are short exact sequences.

which is essentially an n-cubic extension with chosen kernels. For instance,
a two-fold extension is a short exact sequence of short exact sequences�a
3ˆ 3-diagram as in Figure 1, where the bottom right square is the underlying
two-cubic extension. The dotted arrows in this diagram form a Yoneda exten-
sion [83] from A to Z, which in the abelian case allows to reconstruct the entire
3ˆ 3-diagram up to equivalence. In general, though, the diagram may not be
thus reduced without loss of information. See Figure 2 below for a picture in
dimension three.
Of course, whether or not an n-cubic extension is central with respect to

some chosen Birkho� subcategory depends on this subcategory more than any-
thing else. In many cases (like, for instance, the case of groups vs. 2-nilpotent
groups) there are explicit descriptions of the central extensions in some, or in
all, degrees (see, for instance, [31, 40, 39, 43]). Knowing, in a given case, what
the central extensions are, gives a complete description of the corresponding
homology objects as higher Hopf formulae: this is the content of Theorem 8.1
in [41]. In this article we only consider cubic extensions which are central
with respect to the Birkho� subcategory B “ AbpX q of all abelian objects
in X , the objects which admit an internal abelian group structure; that is to
say, they are central with respect to abelianisation. The reason for this con-
straint is that we only treat cohomology with trivial coe�cients�coe�cients in
trivial modules, which are precisely the internal abelian group objects. In the
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non-trivial case, where the theory involves Birkho� subcategories of AbpX q,
the situation becomes signi�cantly more complicated, and forms the subject of
current work-in-progress.
The Hopf formulae now take the following shape [41]:

Hn`1pZ,AbpX qq –

Ş

iPn Kerpfiq X xFny

LnrF s
(C)

for any n-presentation F of Z. Here Fn is the �initial object� of the n-cubic
extension F and the fi are the �initial arrows� (see the solid part of Figure 2
for a picture in degree three). The brackets x´y in the formula give the zero-
dimensional commutator of Fn determined by its abelianisation: for any object
X of X there is a short exact sequence

0 ,2xXy � ,2 ,2X
ηX � ,2abX ,20, (D)

so xXy “ rX,Xs, the Huq commutator [19, 54] of X with itself, giving a
functor x´y : X Ñ X . The object in the denominator of the Hopf formula is
the smallest normal subobject of Fn which, when divided out, makes F central;
in other words, an n-cubic extension F is central if and only if LnrF s “ 0. In
many cases (see Section 5) this �abstract higher-dimensional commutator� may
be computed as a join of binary Huq commutators [41, 80].
On the other hand, the use of higher (central) extensions is not at all lim-

ited to homology and Hopf formulae. The concept of higher (cubic) extension
is quite interesting in its own right [38] while centrality may, for instance, be
used to model more exotic commutator theories [44, 45]. The present art-
icle is meant to clarify the connection with cohomology and obtain a higher-
dimensional counterpart of the low-dimensional work which has been done in
this context [11, 22, 51, 79].

Cohomology and centrality. The current development starts with the long-
established interpretation of the second cohomology group H2pZ,Aq of a group
Z with coe�cients in an abelian group A in terms of central extensions of Z
by A (see for instance [67]). A central extension pk, fq of Z by A is a short
exact sequence of groups

0 ,2 A � ,2 k ,2 X
f � ,2 Z ,2 0, (E)

so k “ ker f and f “ coker k, such that the commutator rA,Xs is trivial:

axa´1x´1
“ 1 for all a P A and x P X.
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Two extensions pk, fq : AÑ X Ñ Z and pk1, f 1q : AÑ X 1 Ñ Z of Z by A
are said to be equivalent if and only if there exists a group (iso)morphism
i : X Ñ X 1 satisfying f 1˝i “ f and i˝k “ k1. The corresponding equivalence
classes, together with the so-called Baer sum, form an abelian group Centr1

pZ,Aq,
and this group is isomorphic to H2pZ,Aq.
In this article we generalise the isomorphism Centr1

pZ,Aq – H2pZ,Aq in
two ways: �rst of all, we also consider higher cohomology groups; secondly,
we replace the concrete context of groups by an abstract context of a semi-
abelian category satisfying an additional axiom which holds in many important
examples of semi-abelian categories�in particular, it holds in the category of
groups and in any abelian category.
It was proved in [51], see also [16] and [22], that the classical interpretation

of group cohomology via central extensions may be extended from the con-
text of groups to semi-abelian categories. Here the concept of centrality is the
one coming from Galois theory, using the Birkho� subcategory of all abelian
objects [17]�that is, we use centrality relative to abelianisation�and the co-
homology is comonadic cohomology [2]. Thus the well-known similar results for
Lie algebras over a �eld, commutative algebras, non-unitary rings, (pre)crossed
modules, etc. could be included in a general theory, and new examples could
be studied.
When A is a Z-module with a non-trivial action, of course the above concept

of central extension does no longer su�ce to capture cohomology with coe�-
cients in A. Nevertheless, there is good hope that something can be done in
general and in higher degrees which extends both the present work and the re-
sults in [22]. In the current paper we limit ourselves to the case of trivial module
coe�cients essentially for the sake of simplicity. In contrast with this potential
extension of the theory, when A is not even an abelian object�so when we
enter the realm of true non-abelian cohomology as in [25] for instance�it is
not clear at all how the current approach could form the basis of a new theory.
The next step, an interpretation of the third cohomology group in similar

terms, turned out to be quite hard to take. The reason is that one needs a the-
ory of higher central extensions for this�which until recently was unavailable.
The problem was �nally solved in [79], where the characterisation of two-cubic
central extensions given in [58, 50] is extended to semi-abelian categories and
an isomorphism

H3
pZ,Aq – Centr2

pZ,Aq
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_��
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_��
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_��

��
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{�

_��

¨
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_��
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� ,2 ,2

_��

¨

_��

� ,2 ¨

_��

¨>y�
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� ,2 ,2 ¨=y�

y�

� ,2 ¨Az�

z�
¨

B{�

� ,2 ,2 ¨

>y�

� ,2 ¨

@z�
¨

� ,2 ,2 ¨
� ,2 Z

0

a
f0paq“0

��
0

f2paq“0
AJ

f1paq“0
,20

Figure 2. A 3-fold (central) extension of Z with its direction A.
The solid arrows are the underlying 3-cubic extension.

is constructed. The abelian group Centr2
pZ,Aq consists of equivalence classes

of two-fold central extensions of an object Z by an abelian object A as in
Figure 1, equipped with a canonical addition induced by the internal group
structure of A. It must be mentioned that the cohomology theory used in [79]�
the directions approach, using internal n-fold groupoids, introduced by Bourn
in [11, 13, 16] and further worked out by Bourn and Rodelo in [24, 78]�is
less classical than the one we shall be using here, or at least is not obviously
related to it in higher degrees. In this paper we use a di�erent interpretation
of cohomology which is based on higher torsors [34, 35, 47].
A key ingredient here is the concept of direction of a higher (central) exten-

sion, which is the initial object of this extension E, when E is considered as a
diagram of short exact sequences in X : the objects A in Figure 1 and Figure 2.
From the point of view of the n-cubic extension F underlying E, the direction
is an intersection of (chosen) kernels. For a one-fold extension such as (E),
the direction is the kernel A “ Kerpfq of the underlying one-cubic extension
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f : X Ñ Z, while for a two-cubic extension as in Figure 1 it is the intersec-
tion of the kernels Kerpf0q XKerpf1q. Considering the underlying two-cubic
extension F as an arrow in the category of arrows in X , the kernel of F is a
one-cubic extension in X , whose kernel is isomorphic to the direction of E; so
we write it as Ker2

pF q. In higher degrees a similar (inductive) analysis makes
sense: given an n-fold extension E with underlying n-cubic extension F , its
direction is KernpF q “

Ş

iPn Kerpfiq, which is an abelian object of X when F
is central (compare with the Hopf formula (C)).
Figure 2 gives a picture in degree 3. The di�erent but equivalent ways in

which the direction may be obtained as a kernel come from the several ways in
which a three-cubic extension may be considered as an arrow between two-cubic
extensions, etc. An element of F3 should be viewed as a (directed) triangle with
faces given by f0, f1 and f2, and such a triangle a is in the direction A if and
only if all its faces (edges) are zero.
We write CExtnZpX q for the category of n-fold central extensions over Z.

Thus, for each n ě 1 and any object Z in X , we obtain a functor

Dpn,Zq : CExt
n
ZpX q Ñ AbpX q

that sends an n-fold central extension E of Z to its direction A. Given any
object Z in X and any abelian object A, an n-fold central extension of Z
by A is an n-fold central extension F of Z with direction A, an object of the
�bre D´1

pn,ZqA. Taking connected components gives us the (possibly large) set

CentrnpZ,Aq “ π0pD
´1
pn,ZqAq

which admits a canonical abelian group structure, since, as established in
Proposition 2.21, the assignment A ÞÑ CentrnpZ,Aq gives rise to a product-
preserving functor AbpX q Ñ Set.
Now the question remains whether these groups have any cohomological

meaning. The main body of this article explains that, indeed, they have: we
shall prove that, under the commutator condition (CC), they agree with the
interpretation of comonadic cohomology in terms of higher torsors.

Cohomology via higher torsors. One could say that Duskin and Glenn's
higher torsors [34, 35, 47] are to central extensions what truncations of simpli-
cial resolutions are to cubic extensions, or what groupoids are to pregroupoids:

torsor

central extension
“

truncation of simplicial resolution

cubic extension
“

groupoid

pregroupoid
.
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In a groupoid

G1
B0

,2

B1 ,2
G0σ0lr

there are identities (given by σ0) and a composition m

¨
β

��
¨

α
AJ

γ
,2¨

mpβ, αq “ γ

which is associative, admits inverses and is compatible with the identities; there
is only one object of objects, G0. On the other hand, a pregroupoid [65]

G1
B0

z�

B1

�$

G0 G10

has two objects of objects, G0 and G10. Consequently, it has no identities, and
instead of a composition, there is an (associative) Mal'tsev operation p

¨

¨

γ :D

δ �$

¨

βZd

αz�
¨

ppα, β, γq “ δ

satisfying ppα, α, γq “ γ and ppα, γ, γq “ α. In the present context, associ-
ativity is automatic.
In dimension 3 now, truncating a simplicial object X at degree 2, we obtain

a diagram as on the left

X2 B1
,2

B2 ,2

B0

,2
X1

lr
lr

B1 ,2

B0

,2X0
B0 ,2σ0lr X´1

X2
B0 ,2

B2

��

B1

z�

X1

B1

��

B0
z�

X1
B0 ,2

B1

��

X0

B0

��

X1
B1

z�

B0 ,2X0

B0z�
X0

B0

,2X´1

which may be �unfolded� to a commutative cube as on the right. The extension
property of this cube corresponds to acyclicity of the given simplicial object X
(its being a resolution) up to degree 2. Note that this cube is special, because
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certain objects in it occur several times; on the other hand, the cube does
not capture the degeneracies present in the simplicial object. Groupoids (and
torsors) live in the simplicial world, whereas pregroupoids belong to the cubical
world of n-cubic (central) extensions. As we shall explain in Subsection 3.13,
higher central extensions may be considered as higher-dimensional pregroupoids
in some precise sense.
Given an object Z and an abelian object A in a semi-abelian category X ,

we consider the augmented simplicial object KpZ,A, nq determined by

n`1 n n´1 n´2 ¨¨¨ 0 ´1

An`1 ˆ Z

Bn`1ˆ1Z ,2
prnˆ1Z ,2

pr0ˆ1Z

... ,2
Aˆ Z

prZ ,2

prZ

... ,2
Z ... Z ¨¨¨ Z Z

with Bn`1 “ p´1qn
řn
i“0p´1qi pri. An n-torsor of Z by A is an augmented

simplicial object T equipped with a simplicial morphism ≈ : TÑ KpZ,A, nq
such that

(T1) ≈ is a �bration which is exact from degree n on;
(T2) T – Coskn´1T, the pn´ 1q-coskeleton of T;
(T3) T is a resolution.

Axiom (T2) means that T does not contain information above level n ´ 1,
which together with (T3) amounts to the pn´1q-truncation T of T, considered
as an n-cube, being an n-cubic extension. The �bration property in (T1) is
(almost) automatic, while the exactness tells us that, for all i,

4pT, nq – Aˆ∧ipT, nq. (F)

Here A “
Ş

iPn KerpBiq is the direction of T , the object 4pT, nq consists of all
n-cycles in T and ∧ipT, nq is the object of pn, iq-horns in T. In degree two, for
instance, we obtain the following picture:

4pT, 2q – A ˆ ∧1pT, 2q
¨

β

��
¨

α
AJ

γ
,2¨

0 a
,20

¨
β

��
¨

α
AJ

¨

(G)

Given a, α and β, there is a unique arrow γ “ µ1pa, β, αq such that the
projection prApβ, γ, αq on A gives back a. In some sense a “ 0 if and only if
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the triangle on the left �commutes�, and taking γ “ µ1p0, β, αq “ m1pβ, αq as
a composite of β and α really does de�ne a groupoid structure m1 on T .
Let s`pX q denote the category of augmented simplicial objects in X . The

full subcategory of the slice s`pX q{KpZ,A, nq determined by the n-torsors
of Z by A is written TorsnpZ,Aq. Taking connected components we obtain the
set

TorsnrZ,As “ π0 TorsnpZ,Aq

of equivalence classes of n-torsors of Z by A. It is, in fact, an abelian group [35].
Duskin explains in [34, 35] that the group TorsnrZ,As may be considered as

a cohomology group Hn`1pZ,Aq of Z with coe�cients in the trivial module A,
and that under certain conditions this cohomology coincides with other known
cohomology theories. For instance, when X is monadic over Set, we obtain
Barr�Beck cohomology [35, Theorem 5.2].
If G is the comonad induced by the forgetful/free adjunction of X to Set,

if Z is an object of X and A an abelian object, then for any natural number
n,

Hn`1
pZ,AqG “ Hn hompabGZ,Aq

is the pn` 1q-th cohomology group of Z with coe�cients in A, relative to the
comonad G [2]. This de�nes a functor Hn`1p´, Aq : X Ñ Ab, for any n ě 0.
As mentioned in the previous paragraph, Duskin obtains an isomorphism

Hn`1
pZ,AqG – Hn`1

pZ,Aq,

where the latter cohomology group is TorsnrZ,As by de�nition.

The geometry of higher central extensions. In Section 3 we analyse
higher central extensions from a geometrical point of view so that we can com-
pare them with higher torsors. We work towards Proposition 4.12 which says
that an augmented simplicial object carries a (unique) structure of n-torsor as
soon as its underlying n-fold arrow is an n-cubic central extension. This result
is based on Theorem 3.10 which gives a new characterisation of higher central
extensions: an n-cubic extension F is central if and only if its direction A is
abelian and there is a canonical isomorphism

ü

iPn

Eqpfiq – Aˆ
I
ô

iPn

Eqpfiq (H)

for any (hence, all) I Ď n. (Compare with the isomorphism (F).) The precise

de�nition of the objects
Ü

iPn Eqpfiq and
ÔI

iPn Eqpfiq will be presented in
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Section 3, but we can already explain the meaning of this characterisation in
some low-dimensional cases and give the main idea.
When n “ 1 this characterisation of centrality becomes the well-known result

(see [17, 18]) that an extension pk, fq : AÑ X Ñ Z is central if and only if the
kernel (direction) A of f is abelian and the kernel pair of f may be decomposed
into a product as Eqpfq – AˆX.
When F is the two-cubic extension (A) the isomorphism becomes

Eqpdql Eqpcq – Aˆ pEqpdq ˆX Eqpcqq,

where the direction A is given by A “ Kerpdq XKerpcq. As explained in Sub-
section 3.7, this isomorphism can be obtained as a consequence of the analysis
of two-cubic extensions carried out in [79]. Recall [63, 5] that Eqpdql Eqpcq
contains diamonds (as on the left)

¨

¨

γ :D

δ �$

¨

βZd

αz�
¨

¨

¨

γ :D

¨

βZd

αz�
¨

inX, so that the object EqpdqˆXEqpcq, which is an instance of the pullback (J)
on page 22, contains diamonds with one face missing (as on the right above)
and

π : Eqpdql Eqpcq Ñ Eqpdq ˆX Eqpcq

is the projection which forgets δ. The analogy with (G) is clear and not ac-
cidental: the missing δ corresponds to a unique element a of A; on the other
hand, given any diamond (including δ), the corresponding element a of A meas-
ures how far the diamond is from being �commutative� (in which case one may
think of δ as a composite αβ´1γ). Note that instead of forgetting δ, we could
have chosen to forget α, β or γ; each of those choices determines a di�erent
pullback Eqpdq ˆX Eqpcq which, for the sake of clarity, could be written as
EqpdqdI Eqpcq where the index I Ď 2 determines the chosen projection (in-
deed there are four options).
In general, given an n-cubic extension F , the object

Ü

iPn Eqpfiq contains
what we call �n-dimensional diamonds� in Fn (see Figure 4 on page 52 for

an illustration in dimension 3) and
ÔI

iPn Eqpfiq contains �n-dimensional dia-
monds� with one face (determined by the index I Ď n) missing. The cubic
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extension F is central when its direction A is abelian and the canonical pro-
jection

πI :
ü

iPn

Eqpfiq Ñ
I
ô

iPn

Eqpfiq

induces the isomorphism (H); this means that a missing face in any n-fold
diamond in Fn is completely determined by an element in A. We also obtain
an explicit formula for the splitting prA :

Ü

iPn Eqpfiq Ñ A of the kernel of πI ,
the projection on A which gives us a �measure of commutativity� for n-fold
diamonds: Proposition 3.14 states that the lifting of

ÿ

JĎn

p´1q|J |ηFn
˝ prJ

over A, where prJ :
Ü

iPn Eqpfiq Ñ Fn sends a diamond to its J-face, is prA.
Using this geometrical interpretation of centrality we can compare torsors and

central extensions. Any n-cycle may be �completed� into an n-fold diamond
by adding well-chosen degeneracies, and thus restricting the isomorphism (H)
to an isomorphism (F) we may prove that any augmented simplicial object of
which the underlying n-fold arrow is a central extension is in fact an n-torsor.
The converse, however, needs more, since in general it is not clear how an
isomorphism on the simplicial level may be extended to an isomorphism on
the level of higher-dimensional diamonds. For this implication we pass via an
interpretation of centrality in terms of commutators.

The commutator condition. In order to complete the equivalence between
torsors and higher central extensions, we shall assume that centrality may be
characterised in terms of binary Huq commutators. We call this assumption
the commutator condition (CC) on higher central extensions [80]: it holds
when, for all n ě 1, an n-cubic extension F is central if and only if

”

č

iPI

Kerpfiq,
č

iPnzI

Kerpfiq
ı

“ 0

for all I Ď n. Following [80], an n-cubic extension which satis�es this commuta-
tor condition is called H-central. If we name the concept of centrality coming
from Galois theory categorical centrality, then (CC) says that H-central and
categorically central extensions are the same.
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The condition (CC) amounts to asking that the Hopf formula for higher
homology (C) becomes a quotient of binary Huq commutators: its denomi-
nator LnrF s is then equal to the join

Ť

IĎn

“
Ş

iPI Kerpfiq,
Ş

iPnzI Kerpfiq
‰

, so
that

Hn`1pZ,AbpX qq –

Ş

iPn Kerpfiq X rFn, Fns
Ť

IĎn

“
Ş

iPI Kerpfiq,
Ş

iPnzI Kerpfiq
‰

for any n-cubic presentation F of any object Z and for any n ě 1. We shall,
however, focus on the cohomological meaning of this condition rather than on
Hopf formulae.
It is certain that many categories satisfy (CC), although thus far no explicit

characterisation is known; in the article [41] the categories of groups, Lie alge-
bras and non-unitary rings are given as examples, and it is not di�cult to add
new examples to the list by using the technique explained there. A wide range
of (generally non-trivial) examples are those semi-abelian categories with a pro-
toadditive abelianisation functor [39, 40], of which two extreme special cases are
all semi-abelian arithmetical categories, such as the categories of von Neumann
regular rings, Boolean rings and Heyting semilattices (where the cohomology
theory becomes trivial) on the one hand, and all abelian categories (where,
via a version of the Dold�Kan correspondence [32], the theory gives us the
Yoneda Ext groups) on the other. More recently it was shown in [80] that all
semi-abelian categories with the Smith is Huq [69] property satisfy (CC), while
the categories of loops and of commutative loops do not. So, action repres-
entable semi-abelian categories [8, 6], action accessible categories [23] (which
makes all categories of interest [73] examples [71]), strongly semi-abelian [15]
and Moore categories [46, 77] are all examples of categories with the Smith is
Huq property, thus satisfy (CC). For instance, so do the categories of associat-
ive and non-associative algebras and of (pre)crossed modules, and all varieties
of groups in the sense of [72]. In any case, every semi-abelian category satis�es
(CC) for n “ 1 (see [49, 51]).
Proposition 5.8 now tells us that in a semi-abelian category with (CC),

the n-cubic extension underlying an n-torsor is always central. Hence for a
truncated augmented simplicial object, the two concepts are equivalent (The-
orem 5.9): indeed, given a simplicial object T, when it exists, a morphism ≈
making pT,≈q a torsor is necessarily unique; furthermore, any morphism of
n-fold central extensions of Z by A which restricts to the truncation of a sim-
plicial morphism, extends uniquely to a morphism of n-torsors of Z by A�see
Section 4, in particular Proposition 4.13.
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The main theorem. Proposition 6.4 tells us that, as soon as enough project-
ives exist, any n-fold central extension of an object Z by an abelian object A
is connected to an n-fold central extension of Z by A of which the underlying
n-cube is a truncation of an augmented simplicial object. Thus under (CC),
any n-cubic central extension is connected to the simplicial-object part of an
n-torsor. Since, furthermore, this process is compatible with directions, we
acquire an isomorphism

TorsnrZ,As “ π0 TorsnpZ,Aq – π0pD
´1
pn,ZqAq “ CentrnpZ,Aq,

natural in A. As a consequence we obtain the main result of this article,
Theorem 6.7: if Z is an object and A an abelian object in a semi-abelian
category with enough projectives satisfying the commutator condition (CC),
then for every n ě 1 we have that

Hn`1
pZ,Aq – CentrnpZ,Aq

as abelian groups. This establishes the result conjectured in [79], though for
a di�erent de�nition of cohomology, and has several other interesting implic-
ations. For instance, from [34] it follows that there is a long exact sequence
for CentrnpZ,´q.

�Duality� between �internal� homology and �external� cohomology.
We call a (co)homology theory internal when the (co)homology object is an
actual (abelian) object in the ground semi-abelian category, and external if
it is an (abelian) group and hence, in general, is an object outside the ground
category. For instance, the approach to homology in terms of higher Hopf
formulae discussed above is internal, while the approach to cohomology via
higher central extensions is external. An example of internal cohomology is
developed in Gray's Ph.D. thesis [52].
Combined with the main result of the article [48], our present interpretation of

external cohomology gives an answer to the following somewhat naive question:

In which sense are internal homology
and external cohomology �dual� to each other?

The word �dual� here should not be read in its formal categorical sense, but
similarly to the way we read �dual of a vector space�. It is true that there is
a kind of �duality�, or at least a strong symmetry, in the de�nitions of homo-
logy and cohomology when one uses, for instance, the comonadic Barr�Beck
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approach. Nevertheless, so far there was no meaningful connection at all be-
tween the interpretations of internal homology (using Hopf formulae, say) and
external cohomology (many di�erent approaches here), at least not for non-
abelian algebraic objects. Following [82], we claim that the hidden connection
is the concept of direction for higher central extensions and the analysis of both
homology (internal, relative to abelianisation) and cohomology (external, with
trivial coe�cients) in these terms.
The theory of satellites [48, 55] makes it possible to replace Hopf formulae

for homology with (possibly large) limits, so that homology objects may also
be computed in contexts where not enough projective objects are available.
The results in [48] are again based on higher central extensions in semi-abelian
categories, and the article's Corollary 4.10 tells us that, for any Birkho� sub-
category B of a semi-abelian category X , for any object Z of X and any
integer n ě 1, the homology object Hn`1pZ,Bq is the limit of the diagram
Dpn,Zq : CExt

n
ZpX q Ñ B.

That is to say, in the case of abelianisation, all the internal homological
and external cohomological information on an object Z at a given level n is
contained in one and the same functor

Dpn,Zq : CExt
n
ZpX q Ñ AbpX q : E ÞÑ Dpn,ZqE “

č

iPn

Kerpfiq “ KernpF q

(where F “ E|2n) in two �opposite� ways,

Hn`1pZ,AbpX qq “ limDpn,Zq and Hn`1
pZ,Aq “ π0pD

´1
pn,ZqAq;

homology is a limit of Dpn,Zq while cohomology consists of connected compo-
nents of a �bre of Dpn,Zq. So on the one end we have the limit of all possible
directions and, on the other, all classes of all central extensions with one given
and �xed direction�again, see Figure 2. We consider this �duality� (The-
orem 6.8) to be a major point of the present article. In the article [76] it
is analysed from the point of view of the Yoneda lemma, which deals with
precisely this kind of contrast or �duality� between �internal� and �external�.

Structure of the text. In Section 1 we recall some basic de�nitions and re-
sults which we need later on: semi-abelian categories, simplicial objects, higher
extensions and higher torsors. Section 2 contains all the theory needed to intro-
duce the groups CentrnpZ,Aq. In Section 3 we give a geometric interpretation
of the concept of higher central extension (Theorem 3.10 and Proposition 3.14),
used in the next section where we analyse torsors in terms of this geometry.
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The most important result here is Proposition 4.12 which says that a truncation
of an augmented simplicial object, considered as a higher extension, is a torsor
as soon as it is a central extension. The other implication in the equivalence
between torsors and central extensions is obtained in Section 5 (Proposition 5.8
and Theorem 5.9). However, to make it work, we have to strengthen the con-
text of semi-abelian categories with the additional commutator condition (CC).
The short last Section 6 explains how to suitably transform an n-cubic central
extension (which need not be a truncation of anything simplicial) into an n-
cubic central extension underlying a torsor, so that we may conclude with
Theorem 6.7, the isomorphism Hn`1pZ,Aq – CentrnpZ,Aq for all n ě 1, and
Theorem 6.8, the �duality� between internal homology and external cohomo-
logy.
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1. Preliminaries

We sketch the context in which we shall be working: homological and semi-
abelian categories for all general results, with the approach to external coho-
mology in Barr-exact categories due to Duskin [34, 35] and Glenn [47]. We
also recall the de�nition of higher extensions and the relation with simplicial
resolutions [41, 38].

1.1. Barr-exact, homological and semi-abelian categories. For the sake
of clarity, the results in this article will be presented in the context of semi-
abelian categories. Although this is an extremely convenient environment to
work in, it is probably not the most general context in which the theory may be
developed. Nevertheless, we believe that in this �rst approach it is better not
to cloud our results in technical subtleties concerning the surrounding category,
but rather to focus on their intrinsic meaning and their correctness. The only
disadvantage this added transparency may possibly have is the potential loss
of some more elaborate examples; such examples can always be recovered later
on.
We recall the main de�nitions and properties of Barr-exact [1], homological [5]

and semi-abelian categories [62].
Recall that a regular epimorphism is the coequaliser of some pair of

morphisms. A �nitely complete category endowed with a pullback-stable (regu-
lar epimorphism, monomorphism)-factorisation system is called regular. Reg-
ular categories provide a natural context for working with relations. We denote
the kernel relation (= kernel pair) of a morphism f , the pullback of f along
itself, by pEqpfq, pr0, pr1q or pEqpfq, f0, f1q, depending on the situation. A
regular category is said to be Barr-exact when every equivalence relation is
the kernel pair of some morphism [1].
A pointed category (that is, with a zero object, an initial object that is

also terminal) that admits pullbacks is called Bourn-protomodular [9] when
the Split Short Five Lemma holds. Moreover, if the pointed category is regular,
then protomodularity is equivalent to the (Regular) Short Five Lemma: given
a commutative diagram

0 ,2 Kerpf 1q

k
��

� ,2
ker f 1

,2 X 1

x
��

f 1 � ,2 Y 1

y

��

,2 0

0 ,2 Kerpfq � ,2
ker f

,2 X
f

� ,2 Y ,2 0

(I)



20 DIANA RODELO AND TIM VAN DER LINDEN

with regular epimorphisms f , f 1 and their kernels, if k and y are isomorphisms
then also x is an isomorphism. We usually denote the kernel of a morphism f
by pKerpfq, ker fq. A pointed, regular and protomodular category is called
homological [5]. This is a context where many of the basic diagram lemmas
of homological algebra hold. In particular, here the notion of (short) exact
sequence has its full meaning: a regular (= normal) epimorphism with its
kernel.
In order for commutator theory to work �awlessly, the context should be

�nitely cocomplete and Mal'tsev. By de�nition, a Mal'tsev category [28,
29] is �nitely complete and such that every re�exive relation is necessarily an
equivalence relation. It is well known that any �nitely complete protomodular
category is necessarily a Mal'tsev category [10].
Joining all these conditions brings us to the notion of a semi-abelian cat-

egory which can be de�ned as a pointed, Barr-exact and protomodular category
that admits binary coproducts. This de�nition uni�es many older approaches
towards a suitable categorical context for the study of homological properties
of non-abelian categories such as the categories of groups, Lie algebras, etc. In
the founding article [62] which introduces the concept, it is explained how this
solves the problem of �nding the right axioms to be added to Barr-exactness
in order that the resulting context is equivalent with the contexts obtained in
terms of �old-style axioms� such as, for instance, the one introduced in [54].
Examples of semi-abelian categories include all varieties of Ω-groups [53],

such as groups and non-unitary rings, precrossed and crossed modules, and
categories of non-unitary algebras such as associative algebras and Leibniz and
Lie n-algebras; then there are non-unitary C˚-algebras and loops; also any
abelian category is an example, as is the dual of the category of pointed objects
in any elementary topos.

Lemma 1.2. [21, 12] In a semi-abelian category, given a commutative diagram
with short exact rows such as (I) above, k is an isomorphism if and only if the
right-hand square is a pullback.

Lemma 1.3. [20, Theorem 4.9] In a semi-abelian category, given a short exact
sequence

0 ,2 Kerpfq � ,2
ker f

,2 X
f � ,2

p�lr Y ,2 0

in which the kernel of f is split by a morphism p, the object X is a product of
which the projections are p and f .
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Proof : Applying Lemma 1.2 to the diagram

0 ,2 Kerpfq � ,2
ker f

,2 X

p

��

f � ,2 Y

��

,2 0

0 ,2 Kerpfq Kerpfq � ,2 0

shows that its right hand square is a pullback.

1.4. The Huq commutator and the Smith/Pedicchio commutator.
We work in a semi-abelian category X . A coterminal pair

K
k ,2 X L

llr

of morphisms in X (Huq-)commutes [19, 54] when there is a (necessarily
unique) morphism ϕk,l such that the diagram

K
p1K ,0q

z�

k

�$

K ˆ L ϕk,l ,2 X

L
p0,1Lq

Zd

l

:D

is commutative. We shall only consider the case where k and l are normal
monomorphisms (kernels). The Huq commutator rk, ls : rK,Ls Ñ X of k
and l is the smallest normal subobject of X which should be divided out to
make k and l commute, so that they do commute if and only if rK,Ls “ 0. It
may be obtained through the colimit Q of the outer square above, as the kernel
of the (normal epi)morphism X Ñ Q. The commutator rK,Ls becomes the
ordinary commutator of normal subgroups K and L in the case of groups, the
ideal generated by KL` LK in the case of non-unitary rings, the Lie bracket
in the case of Lie algebras, and so on.
Consider a pair of equivalence relations

R

r0 ,2

r1
,2
Xp1X ,1X qlr p1X ,1X q ,2 S

s0
lr

s1lr
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on a common object X and consider the induced pullback of r1 and s0:

R ˆX S
πS ,2

πR

��

S

s0

��

R r1
,2 X

(J)

The pair pR, Sq (Smith/Pedicchio-)commutes [81, 74, 19] when there is a
(necessarily unique) morphism θ such that the diagram

R
p1R,p1X ,1X qr1q

z�

r0

�$

R ˆX S θ ,2 X

S
pp1X ,1X qs0,1Sq

Zd

s1

:D

is commutative. As for the Huq commutator, the Smith/Pedicchio com-
mutator is the smallest equivalence relation rR, Ss on X which, divided out
of X, makes R and S commute. It can be obtained through a colimit, similarly
to the situation above. Thus R and S commute if and only if rR, Ss “ ∆X ,
where ∆X is the smallest equivalence relation on X. We say that R is a cen-
tral equivalence relation when it commutes with ∇X , the largest equivalence
relation on X, so that rR,∇Xs “ ∆X .

1.5. Abelian objects, Beck modules. In a semi-abelian category X , an
object A is said to be abelian when rA,As “ 0. The abelian objects of X
determine a full and re�ective subcategory which is denoted AbpX q. Given
any object X of X , we shall write xXy “ rX,Xs, so that we obtain a short
exact sequence

0 ,2xXy � ,2 ,2X
ηX � ,2abX “ X{rX,Xs ,20

where ηX is the X-component of the unit η of the adjunction

X
ab ,2
K AbpX q.
Ą
lr

An object in a semi-abelian category is abelian precisely when it admits a (ne-
cessarily unique) internal abelian group structure. In fact, AbpX q may be
viewed as the abelian category of internal abelian groups in X . For instance,
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an abelian object in the category of groups is an abelian group, and an abelian
associative algebra over a �eld is a vector space (equipped with a trivial mul-
tiplication).
Given an object Z of X , a Z-module or Beck module over Z is an

abelian group in the slice category X {Z. Thus a Z-module pf,m, sq consists
of a morphism f : X Ñ Z in X , equipped with a multiplicationm and a unit s
as in the diagrams

Eqpfq
m ,2

��

X

f�	

Z

Z
s ,2 X

f�	

Z

satisfying the usual axioms. In particular we obtain a split short exact sequence

0 ,2 A � ,2
ker f

,2 X
f

� ,2 Z ,2
slr 0

where A is an abelian object in X and f is split by s. Furthermore, the
morphism f satis�es rEqpfq,Eqpfqs “ ∆X . Conversely, given the splitting s
of f , this latter condition makes it possible to recover the multiplication m.
Hence, for split epimorphisms in a semi-abelian category, �being a Beck module�
is a property; the entire module structure is contained in the splitting. Using
the equivalence between split epimorphisms and internal actions [21], we can
replace X with a semi-direct product pA, ξq ¸ Z. By the above, modules are
�abelian actions�. For simplicity, we denote a Z-module by its induced Z-
algebra pA, ξq.
For us, the most important case arises when the Z-module structure on A is

the trivial one, denoted pA, τq: then A is just an abelian object, the semidirect
product pA, τq ¸ Z is AˆZ and f is the product projection prZ : Aˆ Z Ñ Z.

1.6. Connected components. In a category X , two objects are connected
when there exists a (�nite) zigzag of morphisms between them. This de�nes an
equivalence relation between the objects of X , of which the equivalence classes
form the set π0pX q of connected components of X .
In general π0pX q may not be a small set, and even in the two situations

where we shall use this construction (Subsection 1.26 and De�nition 2.15) it
will a priori not be clear whether or not the result is not a proper class. In fact,
even when it is a proper class, this has no signi�cant e�ect at all on the theory
we develop, so we decided not to go into this question any further. Additionally,
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in the monadic case the smallness of the cohomology groups follows from the
interpretation in terms of Barr�Beck cohomology.

1.7. A lemma on double split epimorphisms. By a result in [10], a �nitely
complete category is naturally Mal'tsev [64] when, given a split epimorphism
of split epimorphisms as in

A1
f1

,2

a

��

B1

b

��

f1lr

A0

a

LR

f0

,2 B0

b

LR

f0lr

(K)

(all squares commute), if the square is a (down-right) pullback of split epi-
morphisms, then it is an (up-left) pushout of split monomorphisms. As a
consequence we obtain the following lemma (see also [70] and [38]).

Lemma 1.8. In a naturally Mal'tsev category, given a double split epimor-
phism such as (K), the universally induced comparison morphism

pa, f1q : A1 Ñ A0 ˆB0
B1

to the pullback of f0 and b is a split epimorphism, with a unique splitting

ν : A0 ˆB0
B1 Ñ A1

such that a “ νp1A0
, bf0q and f1 “ νpf0b, 1B1

q.

It is well known that every additive category is naturally Mal'tsev. In partic-
ular, for any semi-abelian category X , the above lemma is valid in the abelian
category AbpX q.

1.9. The von Neumann construction of the �nite ordinals. We shall
write 0 “ ∅ and n “ t0, . . . , n´ 1u for n ě 1. We also write 2n for the power-
set of n, considered as a category of which an object is a subset of n, and an
arrow I Ñ J is an inclusion I Ď J .

1.10. Higher arrows. Let X be any category. The category ArrnpX q con-
sists of n-fold arrows in X : Arr0pX q “ X , while Arr1pX q “ ArrpX q is
the category of arrows in X and Arrn`1

pX q “ ArrpArrnpX qq.
The category of arrows in X is the functor category Funp2op,X q “ X 2op.

Similarly, any n-fold arrow F in X may be viewed as an �n-fold cube with
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chosen directions�, a functor F : p2nqop Ñ X , and any morphism of n-fold
arrows as a natural transformation between such functors. If F is an n-fold
arrow and I and J are subsets of n such that I Ď J , we shall write FI “ F pIq
for the value of F in I and fJI : FJ Ñ FI for the value of F in the morphism
induced by the inclusion I Ď J . When I “ Jztiu we write fi : FJ Ñ FI for f

J
I .

An n-fold arrow given as a functor F : p2nqop Ñ X can be seen as an arrow
between pn ´ 1q-fold arrows F : domF Ñ codF , where its domain domF is
determined by the restriction of F to all I Ď n which contain n ´ 1, and its
codomain codF by the restriction of F to all I Ď n which do not contain n´1.
Thus, if n ě 2, we may see F as a commutative square

X
c ,2

d
��

C
g
��

D
f
,2 Z

(L)

in Arrn´2
pX q or, equivalently, a morphism pc, fq : dÑ g of Arrn´1

pX q.
Given an n-fold arrow F : p2nqop Ñ X , we can always consider the restriction

of this diagram to the subcategory 2nztnu; it is the n-fold cube F without its
�initial object� Fn. When it exists, write pLF, ppriqiPnq for the limit of this
diagram, and

lF “ pf0, . . . , fn´1q : Fn Ñ LF

for the universally induced comparison morphism.

Lemma 1.11. Given n ě 2, if F is an n-fold arrow considered as a square (L)
of pn ´ 1q-fold arrows, then LF may be obtained as LG, where the pn ´ 1q-
fold arrow G is pd, cq : X Ñ D ˆZ C, induced by the pullback of f and g.
Furthermore, lF “ lG.

Proof : This is part of the proof of Proposition 1.16 in [38].

1.12. Higher cubic extensions. Let X be a semi-abelian category. A zero-
cubic extension in X is an object of X and a one-cubic extension is a
regular epimorphism in X . For n ě 2, an n-cubic extension is a com-
mutative square (L) in Arrn´2

pX q such that the morphisms c, d, f , g and the
universally induced comparison morphism pd, cq : X Ñ D ˆZ C to the pullback
of f with g are pn ´ 1q-cubic extensions. The n-cubic extensions determine a
full subcategory ExtnpX q of ArrnpX q, and ExtpX q “ Ext1pX q.
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Proposition 1.13. [38] Given any n-fold arrow F in a regular category, the
following are equivalent:

(i) F is an n-cubic extension;
(ii) for all ∅ ‰ I Ď n, the morphism FI Ñ limJĹI FJ is a regular epimor-

phism.

In particular, the induced comparison lF “ pf0, . . . , fn´1q : Fn Ñ LF is a regu-
lar epimorphism.

In a Mal'tsev category, a double split epimorphism such as (K) above is
always a two-cubic extension. That is to say, the induced comparison morphism
pa, f1q may not be a split epimorphism as in Lemma 1.8, but it will certainly
be a regular epimorphism. More generally, any split epimorphism between one-
cubic extensions is a two-cubic extension, as follows from [27, Theorem 5.7].

1.14. Extensions as diagrams of short exact sequences. In what follows
we view higher extensions slightly di�erently: as diagrams of short exact se-
quences, such as the one displayed in Figure 1 on page 5 and in Figure 2 on
page 8.
Consider the ordinal 3 as a category 0 Ñ 1 Ñ 2 and, for n ě 1, its n-th

power 3n “ 3ˆ ¨ ¨ ¨ ˆ 3. The category 3n has initial object in “ p0, . . . , 0q and
terminal object tn “ p2, . . . , 2q. Moreover, it has an embedding

αe,i : 3 Ñ 3n : k ÞÑ pe1, . . . , ei´1, k, ei`1, . . . , enq

parallel to the i-th coordinate axis, for each object e of 3n.
Now, given objects Z and A in X , an n-fold extension (under A and

over Z, or of Z by A) in X is a functor E : p3nqop Ñ X which sends in to
Z and tn to A, and such that each composite

3op
αop
e,i

,2 p3nqop E ,2 X

is a short exact sequence.
For example, a one-fold extension under A and over Z is just a short exact

sequence A “ E2 Ñ E1 Ñ E0 “ Z. A two-fold (or double) extension under
A and over Z is a 3 ˆ 3-diagram [12] as in Figure 1, in which each row and
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column is short exact:

A “ E2,2
� ,2 ,2

_��

��

E1,2
� ,2

_��

��

E0,2
_��

��

E2,1
� ,2 ,2

_��

E1,1
� ,2

_��

E0,1

_��

E2,0
� ,2 ,2 E1,0

� ,2 Z “ E0,0

Figure 2 displays a 3-fold extension as a 3ˆ 3ˆ 3-diagram. In general, an n-
fold extension is the same thing as a 3n-diagram in X . We write 3n-DiagpX q

for the category of n-fold extensions in X , considered as a full subcategory of
Funpp3nqop,X q. The natural embedding 2n Ñ 3n induces a forgetful functor

p´q|2n : 3n-DiagpX q Ñ ArrnpX q : E ÞÑ F “ E|2n.

As shown in Proposition 1.15 below, this forgetful functor lifts over the inclusion
ExtnpX q Ñ ArrnpX q to a functor 3n-DiagpX q Ñ ExtnpX q which turns out to
be an equivalence of categories. We shall, however, always think of an n-cubic
extension as being part of some 3n-diagram.

Proposition 1.15. For any n ě 1, the functor 3n-DiagpX q Ñ ArrnpX q

corestricts to an equivalence of categories 3n-DiagpX q Ñ ExtnpX q.

Proof : By induction on n, we prove that an n-fold arrow underlies a 3n-diagram
if and only if it is an n-cubic extension. This then shows that the essential image
of the functor 3n-DiagpX q Ñ ArrnpX q is ExtnpX q. Moreover, the functor is
fully faithful, because any morphism between the n-cubic extensions underlying
two given 3n-diagrams extends uniquely to their chosen kernels.
The case n “ 1 is clear. Suppose now that n ě 1. Then a 3n`1-diagram,

being a short exact sequence

0 ,2 K � ,2 k ,2 X
f � ,2 Y ,2 0

of 3n-diagrams K, X and Y , corresponds to a short exact sequence of n-cubic
extensions

0 ,2 K|2n
� ,2
k|2n ,2 X|2n

f |2n� ,2 Y |2n ,2 0

by the induction hypothesis. By Proposition 3.9 in [41]�which is an immediate
consequence of [41, Lemma 3.7]�the exactness of this sequence is equivalent
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to its cokernel piece f |2n being an pn ` 1q-cubic extension. This pn ` 1q-
cubic extension is precisely the underlying pn ` 1q-fold arrow of the given
3n`1-diagram.

Depending on the situation, we may prove categorical properties of 3n-DiagpX q

for ExtnpX q and vice versa.

1.16. Augmented simplicial objects. Recall that the augmented simpli-
cial category ∆` has �nite ordinals n ě 0 for objects and order preserving
functions for morphisms. The category s`pX q of augmented simplicial
objects and augmented simplicial morphisms in a category X is the functor
category Funpp∆`qop,X q. An augmented simplicial object X : p∆`qop Ñ X
is usually considered as a sequence of objects pXnqně´1, with face opera-
tors Bi : Xn Ñ Xn´1 and degeneracy operators σi : Xn Ñ Xn`1 for n ě i ě 0,
subject to the simplicial identities

Bi˝Bj “ Bj´1˝Bi if i ă j

σi˝σj “ σj`1˝σi if i ď j
and Bi˝σj “

$

’

&

’

%

σj´1˝Bi if i ă j

1 if i “ j or i “ j ` 1

σj˝Bi´1 if i ą j ` 1.

Remark 1.17. All simplicial objects we shall be considering in this text will
come equipped with some augmentation, even when we occasionally drop the
word �augmented�.

1.18. Truncations and coskeleta. For n ě 0, let ∆`
n denote the full sub-

category of ∆` determined by the ordinals i ď n. The functor category

SArrnpX q “ Funpp∆`
n q

op,X q

is the category of pn ´ 1q-truncated simplicial objects in X . Indeed, as
soon as X is �nitely complete, there is the adjunction

s`pX q

trn´1 ,2
K SArrnpX q,

coskn´1

lr

where the truncation functor trn´1 is given by composition of a simplicial object
with the inclusion ∆`

n Ď ∆`, and its right adjoint coskn´1 by right Kan exten-
sion along this functor. More explicitly, a coskeleton of an pn ´ 1q-truncated
simplicial object may be computed using iterated simplicial kernels (see the
next subsection).
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Clearly, trn´1coskn´1 “ 1SArrnpX q. Conversely, a coskeleton of an pn ´ 1q-
truncated simplicial object contains no information above simplicial degree
n´ 1; given any simplicial object X, we can remove all higher-dimensional in-
formation by applying the functor Coskn´1 “ coskn´1trn´1 : s`pX q Ñ s`pX q

to it.
Any pn´1q-truncated simplicial object may be considered as an n-fold arrow,

through composition with the functor

an : 2n Ñ ∆`
n

which maps a set I Ď n to the associated ordinal |I|, and an inclusion I Ď J
to the corresponding order-preserving map |I| Ñ |J |. This de�nes a faithful
functor

arrn “ Funp´, anq : SArr
n
pX q Ñ ArrnpX q.

(An pn´ 1q-truncated simplicial object has the additional structure of the de-
generacies: a morphism of n-fold arrows between two given pn ´ 1q-truncated
simplicial objects need not commute with the degeneracy operators, and fur-
thermore its components at two given sets of the same size need not coincide.)
Hence, if X denotes the n-fold arrow underlying the pn ´ 1q-truncation of a
simplicial object X, then XI “ Xp|I|q “ X|I|´1 and, in particular, Xn “ Xn´1.
Note how the di�erence in font style allows to distinguish between the absolute
degree n and the simplicial degree n´ 1.
In presence of enough projectives, we may now characterise higher extensions

as follows.

Proposition 1.19. Given any n-fold arrow F in a regular category with enough
projectives, the following are equivalent:

(i) F is an n-cubic extension;
(ii) for any pn´ 1q-truncated degreewise projective simplicial object X, any

collection of arrows pXJ Ñ FJq|J |ďi satisfying the conditions of a mor-
phism of n-fold arrows up to absolute degree i P n extends to an actual
morphism of n-fold arrows X Ñ F .

Proof : We �rst use induction on i to prove that (i) implies (ii). Suppose a
collection pXJ Ñ FJq|J |ďi like in the statement is given and let I Ď n be such
that |I| “ i` 1. Then we obtain the needed morphism XI Ñ FI as the dotted
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lifting in the diagram

FI

_��

XI

07

,2 limJĹI XJ
,2 limJĹI FJ

�which exists because XI is projective by assumption, while the right hand
side vertical arrow is a regular epimorphism by Proposition 1.13.
To see that (ii) implies (i) we again use Proposition 1.13. This time we

have to show that any morphism P Ñ limJĹI FJ for P projective lifts to a
morphism P Ñ FI . We simply use the pn ´ 1q-truncation of the constant
simplicial object P , and extend the collection of arrows induced by the given
arrow to a morphism of n-fold arrows to obtain the needed lifting.

1.20. Simplicial kernels. Let

pfi : X Ñ Y qiPn

be a sequence of n morphisms in a �nitely complete category X . A simplicial
kernel of pf0, . . . , fn´1q is a sequence

pki : K Ñ XqiPn`1

of n` 1 morphisms in X satisfying fikj “ fj´1ki for 0 ď i ă j ď n, which is
universal with respect to this property. It may be computed as a limit in X .
We need the following lemma, which is probably well known:

Lemma 1.21. Let pfi : X Ñ Y qiPn and pf 1i : X
1 Ñ Y 1qiPn be two sequences

of n morphisms in a �nitely complete category X , and consider morphisms
χ : X Ñ X 1 and υ : Y Ñ Y 1 for which all squares in any diagram

X
fi ,2

χ
��

Y

υ
��

X 1

f 1i

,2 Y 1

are pullbacks. Then all of the induced squares between the respective simplicial
kernels of pfiqiPn and pf 1iqiPn are pullbacks as well.

Proof : It su�ces to give a formal proof in Set. Consider xm inX and px10, . . . , x
1
nq

in the simplicial kernel K 1 of pf 1iqiPn such that χpxmq “ x1m. If px0, . . . , xnq is
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an element of the simplicial kernel K of pfiqiPn, then xj necessarily satis�es

υpfmpxjqq “ υpfj´1pxmqq “ f 1j´1pχpxmqq “ f 1j´1px
1
mq “ f 1mpx

1
jq

in case m ă j, and

υpfm´1pxjqq “ υpfjpxmqq “ f 1jpχpxmqq “ f 1jpx
1
mq “ f 1m´1px

1
jq

when m ą j. This completely determines px0, . . . , xnq via the pullback prop-
erty which we assume to hold. It is also clear that any tuple px0, . . . , xnq
thus obtained is indeed an element of K. In fact, it turns out to be pre-
cisely the needed unique element for which χpx0, . . . , xnq “ px10, . . . , x

1
nq and

kmpx0, . . . , xnq “ xm.

When X is a simplicial object and n ě 0, we write

pBi : 4pX, nq Ñ Xn´1qiPn`1

for the simplicial kernel of the faces pBi : Xn´1 Ñ Xn´2qiPn. The object 4pX, nq
consists of n-cycles in X. For instance, the object 4pX, 2q of 2-cycles in X
contains empty triangles:

¨
β

��
¨

α
AJ

γ
,2¨

Note that4pX, nq “ LptrnXq. Clearly4pX, 1q “ EqpB0q; we also write4pX, 0q
for X´1.
As mentioned in Subsection 1.18, any pn´ 1q-truncated simplicial object X

in X may be universally extended to an n-truncated simplicial object. Its
initial object and morphisms, in (absolute!) degree n`1, are given by the sim-
plicial kernel pki : K Ñ XnqiPn`1 of the initial morphisms pxi : Xn Ñ Xn´1qiPn

of X. The degeneracies pσj : Xn Ñ KqjPn are induced by the simplicial iden-
tities

ki˝σj “

$

’

&

’

%

σj´1˝xi if i ă j

1Xn
if i “ j or i “ j ` 1

σj˝xi´1 if i ą j ` 1

of X and the universal property of the simplicial kernel. Repeating this con-
struction inde�nitely gives the pn´ 1q-coskeleton of X.
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1.22. Resolutions. An augmented simplicial object X in a regular category is
called acyclic or a resolution (of X´1) when for every n ě 0, the comparison
morphism

pBiqi : Xn Ñ 4pX, nq
is a regular epimorphism. (Every n-cycle is a boundary of an n-simplex.) As
explained in [38], in a semi-abelian category this is the case precisely when
all the truncations of X, considered as higher arrows, are extensions. For
this reason we may sometimes also call a truncated simplicial resolution an
extension.

1.23. The simplicial objects KpA, nq and KpZ,A, nq. Let A be an abelian
group in a Barr-exact category X and take n ě 1. The augmented simplicial
object KpA, nq is the coskeleton of the pn` 1q-truncated simplicial object

n`1 n n´1 n´2 ¨¨¨ 0 ´1

An`1

Bn`1 ,2
prn ,2

pr0

... ,2
A

! ,2

!

... ,2
1 ... 1 ¨¨¨ 1 1

with the A in simplicial degree n (in absolute degree n` 1), where the degen-
eracies 1 Ñ A are determined by the neutral element 0 of A and Bn`1 is equal
to

p´1qn
n
ÿ

i“0

p´1qi pri .

When the category is a slice X {Z over an object Z in a semi-abelian cat-
egory X and pA, ξq is a Z-module, the simplicial object KppA, ξq, nq, con-
sidered as a diagram in X , takes the following shape:

n`1 n n´1 n´2 ¨¨¨ 0 ´1

pA, ξqn`1 ¸ Z

Bn`1¸1Z ,2
prn¸1Z ,2

pr0¸1Z

... ,2
pA, ξq ¸ Z

f
,2

f

... ,2
Z ... Z ¨¨¨ Z Z

In case ξ is the trivial module structure τ , we obtain

n`1 n n´1 n´2 ¨¨¨ 0 ´1

An`1 ˆ Z

Bn`1ˆ1Z ,2
prnˆ1Z ,2

pr0ˆ1Z

... ,2
Aˆ Z

prZ ,2

prZ

... ,2
Z ... Z ¨¨¨ Z Z
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with Bn`1 as above and degeneracies p0, 1Zq : Z Ñ Aˆ Z. Given any object Z
and any abelian object A, we shall write KpZ,A, nq for this simplicial object
in X . In particular, Kp0, A, nq “ KpA, nq.

1.24. (Exact) �brations. Let X be a simplicial object in a �nitely complete
category X and consider n ě 2 and 0 ď i ď n. The object of pn, iq-horns
in X is an object ∧ipX, nq together with morphisms xj : ∧ipX, nq Ñ Xn´1 for
i ‰ j P n` 1 satisfying

Bj˝xk “ Bk´1˝xj for all j ă k with j, k ‰ i

which is universal with respect to this property; also∧0pX, 1q “ X0 “ ∧1pX, 1q.
For instance, the object ∧1pX, 2q of p2, 1q-horns in X

¨
β

��
¨

α
AJ

¨

contains �composable pairs of arrows�.
We write

pfi “ pfjqi‰jPn`1 : W Ñ ∧ipX, nq
for the morphism induced by a family pfj : W Ñ Xn´1qi‰jPn`1 in which the
morphism fi is missing.
Now suppose that X is a regular category. A simplicial morphism f : XÑ Y

satis�es theKan condition (respectively satis�es the Kan condition exactly)
in degree n for i when the morphism

ppBi,fnq : Xn Ñ ∧ipX, nq ˆ∧ipY,nq Yn

universally induced by the square

Xn

pBi
��

fn ,2 Yn

pBi
��

∧ipX, nq
∧ipf,nq

,2 ∧ipY, nq

is a regular epimorphism (respectively an isomorphism). The morphism f is
called a �bration when it satis�es the Kan condition for all n ě 1 and all
i. A �bration is exact in degrees larger than n when the Kan condition is
satis�ed exactly in simplicial degrees larger than n for all i.
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A regular category is Mal'tsev if and only if every simplicial object is Kan:
every morphism XÑ 1 is a �bration [27, Theorem 4.2]. Furthermore, a regu-
lar epimorphism of simplicial objects in a regular Mal'tsev category is always a
�bration [42, Proposition 4.4]. The Kan property for simplicial objects may also
be expressed in terms of higher extensions: in a semi-abelian category, a sim-
plicial object X is Kan if and only if all of its truncations, considered as higher
arrows in all possible directions, have a domain which is an extension [38].

Lemma 1.25. In a �nitely complete category, given n ě 1, i P n, and an
augmented simplicial object X, the square

4pX, nq
pBi ,2

Bi
��

∧ipX, nq
Bii´1ˆB

n´i
i

��

Xn´1
pBjqj

,2 4pX, n´ 1q

is a pullback, where the arrow on the right is the restriction of

B
i
i´1 ˆ B

n´i
i “ Bi´1 ˆ ¨ ¨ ¨ ˆ Bi´1

loooooooomoooooooon

i times

ˆBi ˆ ¨ ¨ ¨ ˆ Bi
looooomooooon

n´ i times

: Xn
n´1 Ñ Xn

n´2

to a morphism ∧ipX, nq Ñ 4pX, n´ 1q.

Here is a picture in degree n “ 2 for i “ 1:

¨
β

��
¨

α
AJ

γ
,2¨
ÞÑ

¨
β

��
¨

α
AJ

¨

ÞÑ ÞÑ

¨ γ
,2¨
ÞÑ

¨ ¨

Proof : We again only need to give a formal proof in Set, where it su�ces to
compare the set of couples

pxi, px0, . . . , pxi, . . . , xnqq P Xn´1 ˆ Xn
n´1

which satisfy

Bjpxkq “ Bk´1pxjq for all j ă k with j, k ‰ i
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and

Bjpxiq “

#

Bi´1pxjq if j ă i

Bipxj`1q if i ď j ă n

with the set

tpx0, . . . , xnq P Xn`1
n´1 | Bipxjq “ Bj´1pxiq for 0 ď i ă j ď nu.

These sets are clearly isomorphic, which �nishes the proof.

1.26. Higher-dimensional torsors. Let A be an abelian group in a Barr-
exact category X and consider n ě 1. A KpA, nq-torsor is an augmented
simplicial object T equipped with a simplicial morphism ≈ : TÑ KpA, nq such
that

(T1) ≈ is a �bration which is exact from degree n on;
(T2) T – Coskn´1T;
(T3) T is a resolution.

Let Z be an object of a semi-abelian category X and pA, ξq a Z-module.
An n-torsor of Z by pA, ξq is a KppA, ξq, nq-torsor in the category X {Z.
Morphisms of KpA, nq-torsors are de�ned as in the slice over KpA, nq, and
thus we obtain the category TorsnpX , Aq of KpA, nq-torsors in X as a full
subcategory of s`pX q{KpA, nq. When the action ξ is trivial, we call pT,≈q
an n-torsor of Z by A, and obtain the following picture:

4pT, n` 1q

¨¨¨ ppς˝Biqi,B
n`2
0 q

��

,2
,2

... ,2
4pT, nq

pς,Bn`1
0 q

��

,2
... ,2

Tn´1

Bn0

��

,2
... ,2

Tn´2

B
n´1
0

��

¨¨¨ T0

B0

��

B0 ,2 T´1

An`1 ˆ Z

Bn`1ˆ1Z ,2
prnˆ1Z ,2

pr0ˆ1Z

... ,2
Aˆ Z

prZ ,2

prZ

... ,2
Z ... Z ¨¨¨ Z Z

When Z is an object of a semi-abelian category X and A is an abelian object
in X considered as a trivial Z-module pA, τq, we write TorsnpZ,Aq for the
category TorsnpX {Z, pA, τqq. Taking connected components we obtain the set

TorsnrZ,As “ π0 TorsnpZ,Aq

of equivalence classes of n-torsors of Z by A which is, in fact, an abelian
group [35].
We shall further analyse the concept of torsor in Section 4; for now it su�ces

to understand their cohomological meaning.
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1.27. The pn` 1q-th cohomology group. It follows from [35, Theorem 5.2]
that, when X is a Barr-exact category and

G “ pG : X Ñ X , δ : Gñ G2, ε : Gñ 1X q

is a comonad on X such that the G-projectives coincide with the regular
projectives in X , then

Hn`1
p1, AqG – π0 TorsnpX , Aq

where A is an internal abelian group in X and 1 is the terminal object. If
now Z is an object of X then G induces a comonad G{Z “ pGZ , δZ , εZq
on X {Z via

δZf “

¨

˚

˚

˝

GX
δX ,2

GZf“f˝εX ��

GGX

GZGZf“f˝εX˝εGX�	

Z

˛

‹

‹

‚

and εZf “

¨

˚

˝

GX
εX ,2

GZf“f˝εX ��

X

f�	

Z

˛

‹

‚

for all f : X Ñ Z. Hence when, in a semi-abelian category X , we consider an
abelian object A as a trivial Z-module, we see that

Hn`1
p1Z , pA, τqqG{Z – π0 TorsnpX {Z, pA, τqq

and

Hn`1
pZ,AqG – TorsnrZ,As.

For instance, X may be chosen to be a variety of algebras over Set, so that G is
canonically induced by the forgetful/free adjunction. In any case, TorsnrZ,As
does indeed carry an abelian group structure. Moreover, this de�nes an additive
functor

TorsnrZ,´s : AbpX q Ñ Ab.
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2. The groups of equivalence classes of higher central ex-

tensions

We work towards a de�nition of the group CentrnpZ,Aq of equivalence classes
of n-fold central extensions of Z by A, extending the de�nition of Centr2

pZ,Aq
given in Section 4 of [79]. We start with some basic theory of (higher-dimen-
sional) central extensions, �rst recalling known results and then proving some
new ones.

2.1. Central extensions. We �rst consider some general de�nitions and re-
sults valid in a homological category with a chosen strongly Birkho� subcat-
egory. Here we follow [41].
A Galois structure [57] Γ “ pX ,B,E ,F , I,Hq consists of categories X

and B, an adjunction

X
I ,2

B,
H
lr K

and classes E and F of morphisms of X and B respectively, such that:

(i) X has pullbacks along morphisms in E ;
(ii) E and F contain all isomorphisms, are closed under composition and

are pullback-stable;
(iii) IpE q Ď F ;
(iv) HpF q Ď E .

An element of E is called an E -extension.
We shall only consider Galois structures where X is (at least) a homo-

logical category, all E -extensions are regular epimorphisms, and B is a full
replete E -re�ective subcategory of X . We shall never write its inclusion H.
Such a subcategory is called strongly E -Birkho� when for every E -extension
f : X Ñ Z the induced naturality square

X
f � ,2

ηX
_��

Z
ηZ

_��

IX
If

� ,2 IZ

(M)

is a two-cubic E -extension. (The universally induced morphism to the pullback
must be in E .) From now on we shall always assume this to be the case.
If X is an exact Mal'tsev category and E consists of all regular epimorphisms,

a strongly E -Birkho� subcategory of X is precisely a Birkho� subcategory:



38 DIANA RODELO AND TIM VAN DER LINDEN

full, re�ective and closed under subobjects and regular quotients in X , see [61].
A Birkho� subcategory of a variety of algebras is the same thing as a subvariety.
Outside the exact Mal'tsev context, however, when E is the class of regular
epimorphisms, the strong E -Birkho� property is generally stronger than the
Birkho� property, since not every pushout of extensions needs to be a two-
cubic extension.

Example 2.2 (Abelianisation). It is well known that, in any semi-abelian
category X , the full subcategory AbpX q determined by the abelian objects
is Birkho�. This is the situation which we shall be most interested in here, in
particular from Subsection 2.14 on.

An E -extension f : X Ñ Z in X is trivial when the induced square (M)
is a pullback. Of course, if X and Z lie in B then f is a trivial E -extension.
The E -extension f is said to be normal when both projections pr0, pr1 in the
kernel pair pEqpfq, pr0, pr1q of f are trivial. Finally, f is central when there
exists an E -extension g : Y Ñ Z such that the pullback of f along g is trivial.
It is clear that every trivial E -extension is central. Moreover, every normal

E -extension is central; in the present context, also the converse holds (via The-
orem 4.8 of [61] or Proposition 2.6 in [41]). Hence the concepts of normality
and centrality coincide. It follows immediately from the de�nition that pull-
backs of E -extensions along E -extensions re�ect centrality. Furthermore, in
the present (not necessarily Barr-exact) context, the proofs of Propositions 4.1
and 4.3 in [61] can still be used to show that both the classes of trivial and
of central E -extensions are pullback-stable. It is also well known that a split
epimorphic central E -extension is always trivial.
The following important result (see [49, 41]) will be used in Section 3.

Lemma 2.3. When X is a homological category and B is a strongly E -
Birkho� subcategory of X , the re�ector I : X Ñ B preserves pullbacks of
E -extensions along split epimorphisms.

2.4. The tower of Galois structures for cubic central extensions. Now
we describe the Galois structures for centrality of n-cubic extensions introduced
in [41]. We start with a semi-abelian category X and a Birkho� subcategory B
of X . Choosing E and F to be the classes of regular epimorphisms in X
and B, we obtain a Galois structure Γ as above�B is strongly E -Birkho�.
We may now drop the pre�x E ; the elements of this class are the one-cubic
extensions of Subsection 1.12.
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Let us view the objects of X as zero-cubic extensions, and the objects of B
as zero-cubic central extensions. With respect to the Galois structure Γ0 “ Γ,
there is the notion of central extension, and it is such that the full subcat-
egory CExt1BpX q of Ext1pX q determined by those one-cubic central exten-
sions is again re�ective. Its re�ector I1 : Ext1pX q Ñ CExt1BpX q, together with
the classes E 1 and F 1 of one-cubic extensions in Ext1pX q and in CExt1BpX q

(which we choose to be two-cubic extensions in X , and two-cubic extensions
with central domain and codomain), in turn determines a Galois structure
Γ1. This Galois structure is again �nice� in that CExt1BpX q is again strongly
E 1-Birkho� in the homological category Ext1pX q. Inductively, this de�nes a
family of Galois structures pΓnqně0:

Γn “ pExt
n
pX q,CExtnBpX q,E n,F n, In,Ďq,

each of which gives rise to a notion of pn ` 1q-cubic central extension which
determines the next structure [41, Theorem 4.6]. (Here E 0 “ E , F 0 “ F and
I0 “ I.) In particular, for every n ě 1 we obtain a re�ector (the centralisation
functor)

In : ExtnpX q Ñ CExtnBpX q,

left adjoint to the inclusion CExtnBpX q Ď ExtnpX q.
For any n ě 1, the n-cubic extension xF yCExtnBpX q in the short exact sequence

0 ,2 xF yCExtnBpX q
� ,2
µn
F ,2 F

ηnF � ,2 InF ,2 0

induced by the centralisation of an n-cubic extension F is zero everywhere
except in its initial object xF yn “ pxF yCExtnBpX qqn, because centralisation keeps
all objects in an n-cubic extension �xed except the initial object. So, restricting
to initial objects, we obtain a short exact sequence

0 ,2 xF yn � ,2 ,2 Fn
� ,2 InrF s ,2 0 (N)

in X . In parallel with the case n “ 0 considered in Subsection 1.5, this object
xF yn acts like an n-dimensional commutator which may be computed as the ker-
nel of the restriction of the kernel pair projection ppr0qn´1 : EqpF qn´1 Ñ domFn´1

to a morphism

xpr0y
n´1 : xEqpF qyn´1

Ñ xdomF yn´1

in X . Furthermore, an n-cubic extension F is central if and only if the induced
morphisms

xpr0y
n´1, xpr1y

n´1 : xEqpF qyn´1
Ñ xdomF yn´1
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are isomorphisms�which happens precisely when they coincide; see [37, 41] for
more details. The notation xF yn not mentioning the Birkho� subcategory B
need not lead to confusion, because the only case which we shall use it in is
B “ AbpX q; keeping this in mind, we also write xXy0 “ xXy for the kernel
of ηX : X Ñ abX when X is an object of X .

De�nition 2.5. An n-fold central extension is an n-fold extension of which
the underlying n-cubic extension is central.

Example 2.6 (The simplicial objects KpZ,A, nq). Given any integer n ě 1,
any object Z and any abelian object A in X , the pn ` 1q-cubic extension
underlying KpZ,A, nq is always trivial with respect to abelianisation. This
follows by induction from the fact that both its domain and its codomain are n-
cubic trivial extensions. Note, however, that the pn` 2q-fold arrow underlying
KpZ,A, nq is not even a cubic extension!

Example 2.7 (One-cubic central extensions). Recall that a surjective group
homomorphism f : X Ñ Z is central (with respect to Ab) if and only if rKerpfq, Xs “
0. This result was adapted to a semi-abelian context in [17, 49]: when X
is a semi-abelian category and B “ AbpX q is the Birkho� subcategory de-
termined by all abelian objects in X , the one-cubic central extensions in-
duced by the Galois structure (the �categorically central� ones) are the central
extensions in the algebraic sense. These may be characterised through the
Smith/Pedicchio commutator of equivalence relations as those f : X Ñ Z such
that rEqpfq,∇Xs “ ∆X , which means that the kernel pair of the arrow f is a
central equivalence relation (Subsection 1.4). A characterisation closer to the
group case appears in [51] where the condition is reformulated in terms of the
Huq commutator of normal subobjects so that it becomes rKerpfq, Xs “ 0.

Example 2.8 (Double central extensions). One level up, the double central
extensions of groups vs. abelian groups were �rst characterised in [58]: a two-
cubic extension such as (L) above is central if and only if

rKerpdq,Kerpcqs “ 0 “ rKerpdq XKerpcq, Xs.

General versions of this characterisation were given in [50] for Mal'tsev variet-
ies, then in [79] for semi-abelian categories and �nally in [43] for exact Mal'tsev
categories: the two-cubic extension (L) is central (with respect to abelianisa-
tion) if and only if

rEqpdq,Eqpcqs “ ∆X “ rEqpdq X Eqpcq,∇Xs. (O)
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This means that the span pX, d, cq is a special kind of pregroupoid in the slice
category X {Z.
The main technical problem here is that later on, we will use the Huq commu-

tator of normal monomorphisms rather than the Smith/Pedicchio commutator
of equivalence relations�and the correspondence between the two which exists
in level one is no longer there when we go up in degree. In fact, it is well known
and easily veri�ed that if the Smith/Pedicchio commutator of two equivalence
relations is trivial, then the Huq commutator of their normalisations is also
trivial [19]. But, in general, the converse is false; in [5, 15] a counterexample
is given in the category of digroups, which is a semi-abelian variety, even a
variety of Ω-groups [53]. The equivalence of these commutators is known as
the Smith is Huq condition (SH) and it is shown in [69] that, for a semi-
abelian category, this condition holds if and only if every star-multiplicative
graph is an internal groupoid, which is important in the study of internal
crossed modules [60]. Moreover, the Smith is Huq condition is also known to
hold for pointed strongly protomodular categories [19] (in particular, for any
Moore category [77]) and in action accessible categories [23] (in particular, for
any category of interest [71, 73]).
The condition (SH) also implies that every action of an object on an abelian

object is a module: here, the equality rEqpfq,Eqpfqs “ ∆X in Subsection 1.5
follows from rKerpfq,Kerpfqs “ rA,As “ 0.

2.9. Two lemmas on higher centrality. The centrality of a cubic extension
implies that certain induced lower-dimensional cubic extensions are also central.
The present proof of Lemma 2.11 was kindly o�ered to us by Everaert and
Gran; it is more general and more elegant than our original proof. In the case
of abelianisation, it also follows easily from Theorem 3.10. We �rst recall a
well-known result:

Lemma 2.10. In a semi-abelian category with a chosen Birkho� subcategory,
let f : X Ñ Y be an n-cubic central extension considered as an arrow between
pn ´ 1q-cubic extensions X and Y . Then its kernel K is an pn ´ 1q-cubic
central extension.

Proof : The pn ´ 1q-cubic extension K may be obtained as the kernel of the
n-cubic trivial extension f0 : Eqpfq Ñ X, hence also as the kernel of the n-cubic
extension In´1f0 : In´1 Eqpfq Ñ In´1X in CExtn´1

B pX q.
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Lemma 2.11. Let F be an n-cubic central extension in a semi-abelian category
with a chosen Birkho� subcategory. Then the one-cubic extension lF : Fn Ñ LF
induced by F is always central.

Proof : The case n “ 1 is clear (because then F “ lF ), so take n ě 2. We
shall prove that for an n-cubic central extension, considered as a square (L)
of pn´ 1q-cubic extensions, the induced comparison pd, cq : X Ñ D ˆZ C is an
pn´1q-cubic central extension G. Then the claim follows by induction, because
lF “ lG by Lemma 1.11. Since pd, cq is an pn´1q-cubic extension by de�nition,
we just have to show its centrality.
Using that normal and central extensions coincide, we may �rst reduce the

situation to the special case where F is a trivial extension. Indeed, taking
kernel pairs to the left, we obtain the diagram

Eqpcq

r
_��

c1 � ,2

c0

� ,2 X
c � ,2

d
_��

C

g
_��

Eqpfq
f1 � ,2

f0

� ,2 D
f

� ,2 Z.

It is not hard to see that the induced comparison pr, c1q : Eqpcq Ñ Eqpfq ˆD X
is a pullback of the cubic extension pd, cq: the diagram

Eqpcq

r �$

pr,c1q
,2

c0

��

Eqpfq ˆD X
d˚f1 ,2

��

f˚1 d

z�

X

c

��

d

z�
Eqpfq

f1 ,2

f0

��

D

f

��

X

d �$

pd,cq
,2D ˆZ C

f˚g
z�

g˚f ,2C

g
z�

D
f

,2Z

shows how the back pullback rectangle decomposes as a composite of pullback
squares. Hence if pr, c1q is central then so is pd, cq, because pulling back re�ects
centrality.
Now we reduce to the special case where F is a (necessarily trivial) n-cubic ex-

tension between pn´1q-cubic central extensions. Suppose that the square (L),
viewed as an arrow from d to g, is an n-cubic trivial extension. Consider the fol-
lowing cube, which displays the centralisation of d and of g using the notation
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of (N):

In´1rds

��$

� ,2

_��

In´1rgs

In´1g

_��

¨

T�

* 18

X

��$

� ,2

d

_��

?:D

C

g

_��

?:D

¨

?:D

T�

* 18

D � ,2 Z

D � ,2 Z

Recall from Subsection 2.4 that the centralisation functor only changes the
domain of a cubic extension, which explains the two identity morphisms in the
cube. Since the front square is a trivial extension, the top square is a pullback.
By pullback cancellation, the top square of the prism between the front and
back pullbacks is also a pullback, and it follows that the square of wiggly arrows
is a pullback too. This completes the reduction, since cubic central extensions
are pullback-stable.
Finally, for an n-cubic extension (L) between pn ´ 1q-cubic central exten-

sions d and g the claim that pd, cq : X Ñ D ˆZ C is an pn ´ 1q-cubic central
extension holds, since pd, cq is a subobject of the cubic extension d in the cat-
egory of pn´ 1q-cubic central extensions via the morphism

X
1X ,2

pd,cq
��

X

d
��

D ˆX C
f˚g

,2 D.

Indeed, a monomorphism of cubic extensions is a square of which the top map
is a monomorphism�and cubic central extensions are closed under subobjects.

2.12. (Central) extensions over a �xed base object. Let Z be an object
of X and n ě 1. Denote by ExtnZpX q the category of n-fold extensions of
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Z or over Z, de�ned as the �bre over Z (the pre-image of the identity 1Z) of
the functor

p´q0,...,0 : 3n-DiagpX q Ñ X : E ÞÑ E0,...,0

which projects an n-fold extension on its terminal object�see Subsection 1.14.
Thus the objects of ExtnZpX q are 3n-diagrams with �terminal object� Z, and the
morphisms are those morphisms in 3n-DiagpX q which restrict to the identity
on Z under the functor p´q0,...,0. Similarly CExtnZpX q is the full subcategory of
ExtnZpX q determined by the n-fold extensions of Z that are central with respect
to B as in De�nition 2.5. (The index B being dropped here is not really prob-
lematic, since we shall take B equal to AbpX q anyway from Subsection 2.14
on.) Sending an n-fold (central) extension to its underlying n-cubic (central)
extension, we obtain an equivalence with the category of n-cubic (central)
extensions over Z, the �bre over Z of the functor

codn “ cod ˝ ¨ ¨ ¨ ˝ cod
loooooomoooooon

n times

“ p´q0 : ExtnpX q Ñ X : F ÞÑ F0

or, in the case of central extensions, its restriction to CExtnBpX q.

Lemma 2.13. Consider a semi-abelian category X with a chosen Birkho�
subcategory. Let Z be an object of X and n ě 1. Then ExtnZpX q and
CExtnZpX q have binary products: the product of two n-fold (central) exten-
sions F and G over Z is an n-fold (central) extension over Z. Moreover,
lFˆG “ lF ˆZ lG.

Proof : Given two n-cubic extensions F and G over Z, their product F ˆG in
the category ExtnZpX q is given pointwise by pullbacks in X :

pF ˆGqI “ FI ˆZ GI

for I Ď n. To see that it is the product as n-fold arrows over Z, it su�ces to
verify the universal property. This n-fold arrow is indeed an n-cubic extension
by Proposition 1.13, since

pF ˆGqI Ñ lim
JĹI
pF ˆGqJ “ pFI ˆZ GIq Ñ lim

JĹI
pFJ ˆZ GJq

“ pFI ˆZ GIq Ñ plim
JĹI

FJ ˆZ lim
JĹI

GJq

“ pFI Ñ lim
JĹI

FJq ˆZ pGI Ñ lim
JĹI

GJq

for all ∅ ‰ I Ď n. Note that in particular,

lFˆG “ lF ˆZ lG : pFn Ñ lim
JĹn

FJq ˆZ pGn Ñ lim
JĹn

GJq.
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The n-cubic extension F ˆG is central by the Birkho� property of CExtnBpX q,
it being a subobject in ExtnpX q of an n-cubic central extension. Indeed it
is a subobject of the product pFI ˆ GIqIĎn of F and G in CExtnBpX q. Since
CExtnBpX q is a re�ective subcategory, this product is computed pointwise as in
ExtnpX q, and by the Birkho� property, CExtnBpX q is closed under subobjects
in ExtnpX q.

2.14. The direction of a higher (central) extension. From now on we
assume that X is a semi-abelian category and B “ AbpX q is the Birkho� sub-
category determined by the abelian objects of X . We introduce the concept of
direction for n-fold (central) extensions in X , which is crucial in the de�nition
and in the study of the groups CentrnpZ,Aq. As explained in [79], this notion
is based on Bourn's concept of direction for internal groupoids [13].

De�nition 2.15. The direction of an n-fold extension E is its initial object
E2,...,2 (see Subsection 1.14).
From the point of view of the underlying n-cubic extension F , it is the object

KernpF q, obtained by taking kernels n times�each time considering a pk` 1q-
cubic extension as an arrow between k-cubic extensions�in the way determined
by the extension E. If F is an n-cubic extension, then its kernel KerpF q is an
pn ´ 1q-cubic extension, whose kernel is an pn ´ 2q-cubic extension Ker2

pF q,
and so on. By taking kernels n times we obtain a 0-cubic extension, so an
object KernpF q.
IfE is central then the direction ofE is an abelian object ofX by Lemma 2.10

and the convention regarding zero-cubic central extensions. Given any object
Z of X , this de�nes the direction functor

Dpn,Zq : CExt
n
ZpX q Ñ AbpX q.

The �bre D´1
pn,ZqA of this functor over an abelian object A is the category of

n-fold central extensions of Z by A, which are special 3n-diagrams under
A and over Z. Two n-fold central extensions of Z by A which are connected by
a zigzag in D´1

pn,ZqA are called equivalent. As explained in Subsection 1.6, the

equivalence classes, which we shall denote rEs for E an n-fold central extension
of Z by A, form the set

CentrnpZ,Aq “ π0pD
´1
pn,ZqAq

of connected components of the category D´1
pn,ZqA Ď CExtnZpX q.
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Remark 2.16. Abusing terminology, when this does not lead to confusion,
we sometimes talk about the direction of an n-cubic extension�which is only
determined up to isomorphism, since this n-cubic extension may be part of
many n-fold extensions.

Lemma 2.17. For any n-fold central extension E with underlying n-cubic
extension F we have

Dpn,ZqE “ KerplF q “
č

iPn

Kerpfiq

where lF and the morphisms fi are as in 1.10.

Proof : The chain

KerplF q “ KerplKerpF qq “ ¨ ¨ ¨ “ KerplKern´1
pF qq “ KerpKern´1

pF qq

gives us the �rst equality; the second is immediate from the de�nition.

Remark 2.18. For an n-cubic extension F underlying an n-fold extension E,
an �element� x of Fn is an n-dimensional hyper-tetrahedron with faces xi “
fipxq. Such a tetrahedron is in the direction of E precisely when all its faces
xi are zero�see Figure 2 on page 8 for the case n “ 3.

2.19. The group structure on CentrnpZ,Aq. We are now ready to show
that the set CentrnpZ,Aq of equivalence classes of n-fold central extensions
of Z by A carries a canonical abelian group structure (Corollary 2.22).

Lemma 2.20. For any object Z of a semi-abelian category X and any n ě 1,
the direction functor Dpn,Zq : CExt

n
ZpX q Ñ AbpX q preserves �nite products.

Proof : The terminal object 1 of CExtnZpX q is determined by the �constant�
n-cubic central extension of Z formed out of the identities 1Z ; it is clear that
the direction of 1 is zero.
Given two n-fold central extensions with respective underlying n-cubic ex-

tensions F and G over Z and directions A and B, we have to prove that their
product over Z has direction AˆB. Lemma 2.13 tells us that the product in
question does indeed exist. While lemmas 2.17 and 2.13 give us the direction:
the kernel of lFˆG “ lF ˆZ lG is A ˆZ B “ A ˆ B, since the morphisms from
A and B to Z are null.
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Proposition 2.21. Let Z be an object of a semi-abelian category X . Mapping
any abelian object A of X to the set CentrnpZ,Aq of equivalence classes of n-
fold central extensions of Z by A gives a �nite product-preserving functor

CentrnpZ,´q : AbpX q Ñ Set.

Proof : We explain how the functoriality of CentrnpZ,´q follows from the func-
toriality of Centr1

pLF,´q, which is an instance of Proposition 6.1 in [51]. Given
an n-fold central extension E of Z by A with underlying n-cubic extension F ,
we have an induced one-fold central extension

0 ,2 A � ,2
kF ,2 Fn

lF � ,2 LF ,2 0

by Lemma 2.11 and Lemma 2.17. Now let a : AÑ B be a morphism of abelian
objects in X . Then, applying the function Centr1

pLF, aq to rlF s, we obtain an
element rlF 1s of Centr1

pLF,Bq through the following construction.

0 ,2 A � ,2
kF ,2

p1A,0q

��

Fn
lF � ,2

p1Fn ,0q
��

LF ,2 0

0 ,2 A‘B � ,2
kFˆ1B,2

p a 1B q
_��

Fn ˆB

_��

� ,2 LF ,2 0

0 ,2 B � ,2 ,2 F 1n lF 1

� ,2 LF ,2 0

(Here A‘B is the biproduct of A and B in AbpX q, which may be computed
as their product A ˆ B in X , and F 1n is the pushout of p a 1B q and kF ˆ 1B.)
We de�ne CentrnpZ, aqrEs “ rE 1s, where E 1 is determined by the n-cubic ex-
tension F 1 with initial object F 1n, with initial morphisms f 1i “ pri ˝lF 1 for i P n,
and with F 1I “ FI for all I Ĺ n. The centrality of F 1 is a consequence of F
being central, since the extension F 1 is a quotient of F ˆ KpB, n ´ 1q, which
is central as a product of central extensions (see Example 2.6). The functori-
ality of CentrnpZ,´q is now an immediate consequence of the functoriality of
Centr1

pLF,´q.
The functor CentrnpZ,´q preserves terminal objects: indeed, CentrnpZ, 0q

is a singleton, because the terminal object of CExtnZpX q has direction 0 by
Lemma 2.20; if E is an n-fold central extension of Z by 0, there is the unique
morphism E Ñ 1 to testify that rEs “ r1s. As for binary products, we must
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de�ne an inverse to the map

CentrnpZ,AˆBq
pCentrnpZ,prAq,CentrnpZ,prBqq

,2 CentrnpZ,Aq ˆ CentrnpZ,Bq.lr

This inverse takes a couple prEs, rE 1sq and sends it to rE ˆ E 1s, where the
product is taken over Z: Lemma 2.20 insures that the direction of E ˆ E 1 is
A ˆ B, and the two morphisms are easily seen to compose to the respective
identities.
Indeed, for any couple prEs, rE 1sq, the n-fold extension E is an element of

CentrnpZ, prAqrEˆE
1s, while E 1 is an element of CentrnpZ, prBqrEˆE

1s. This
proves that the dotted arrow is a section. On the other hand, by the universal
property of pullbacks, any n-fold extension H of Z by A ˆ B is connected to
E ˆ E 1 when prEs, rE 1sq “ pCentrnpZ, prAq,CentrnpZ, prBqqrHs. Hence the
dotted arrow is a retraction.

Corollary 2.22. When X is a semi-abelian category, the functor CentrnpZ,´q
lifts uniquely over the forgetful functor AbÑ Set to yield a functor

CentrnpZ,´q : AbpX q Ñ Ab.

In particular, any CentrnpZ,Aq carries a canonical abelian group structure.

3. The geometry of higher central extensions

We give a geometrical interpretation of the concept of higher central exten-
sion, essentially a higher-dimensional version of Bourn and Gran's result [17]
that a one-cubic extension f : X Ñ Z is central if and only if its kernel A is
abelian and its kernel pair pEqpfq, f0, f1q is the product AˆX with f0 “ prX
and f1 “ ϕker f,1X as in Subsection 1.4. Our Theorem 3.10 in essence says that
an n-cubic extension F is central if and only if

(i) the direction of F is abelian, and
(ii) any face in any n-fold diamond in F is uniquely determined by an

element of the direction of F .

In the following sections this will lead to an equivalence between torsors and
central extensions, Theorem 5.9, which in turn will lead to our main result on
cohomology, Theorem 6.7.

3.1. Higher equivalence relations. Recall that a double equivalence re-
lation is an equivalence relation of equivalence relations: given two (internal)
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equivalence relations R0 and R1 on an object X, it is an equivalence rela-
tion R Ñ R1 on the relation R0 Ñ X as in the diagram below:

R

pr00

��

pr01

��

pr10

,2
pr11 ,2 R1

r10

��

r11

��

R0
r00

,2
r01 ,2 X.

That is, each of the four pairs of parallel morphisms on this diagram represents
an equivalence relation, and these relations are compatible in an obvious sense.
For instance, R1 lR0 denotes the largest double equivalence relation on R0

and R1, a two-dimensional version of ∇X ; see [29, 81, 5, 14, 63]. It �consists
of� all quadruples pα, β, γ, δq in X4 in the con�guration

γ

1

β

δ 0 α,

a 2 ˆ 2 matrix where pδ, αq, pγ, βq P R0 and pα, βq, pδ, γq P R1. We shall be
especially interested in the particular case where R is induced by a two-cubic
extension F as in Diagram (L), as follows: R0 “ Eqpcq is the kernel pair of c,
the relation R1 “ Eqpdq is the kernel pair of d and R “ Eqpdql Eqpcq. It is
easily seen that then the rows and columns of the induced diagram

Eqpdql Eqpcq
p1 ,2

p0
,2

r1
��

r0
��

Eqpdq
p
,2

d1
��

d0
��

Eqpgq

g1
��

g0
��

Eqpcq
c1 ,2

c0
,2

r
��

X
c ,2

d
��

C

g

��

Eqpfq
f1 ,2

f0

,2 D
f

,2 Z

(P)

are exact forks, so consist of (e�ective) equivalence relations with their coequal-
isers; it is a denormalised 3ˆ3 diagram as studied in [14]. Since the �elements�
of X may now be viewed as arrows with a domain in D and a codomain in C,
any �element� of Eqpdql Eqpcq corresponds to a (two-fold) diamond [63] in
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the two-cubic extension F :

¨

¨

γ :D

δ �$

¨

βZd

αz�
¨

γ ¨ β

¨

:D

�$

¨

Zd

z�δ ¨ α

γ

1

β

δ 0 α

Note the geometrical duality here, which at this level is almost invisible since
the dual of a square is a square. This will become more manifest in higher
degrees. In some sense Eqpdql Eqpcq is a kind of denormalised direction of F
(where the kernels are replaced by kernel pairs), also in that Eqpdql Eqpcq may
be considered as Eq2

pF q�see Diagram (P) and compare with De�nition 2.15
for n “ 2.
Inductively, an n-fold equivalence relation may be de�ned as an equiva-

lence relation of pn´ 1q-fold equivalence relations. Considered as a diagram in
the base category X , it has n underlying equivalence relations R0, . . . , Rn´1 on

Ü

iP3 Eqpfiq

z�z�

pr01 ,2

pr00

,2

����

Eqpf2ql Eqpf1q

pr11z�

pr10

z�

pr21

��

pr20

��

� ,2 ¨

z�z�

����

¨

?z�

,2
,2

����

Eqpf2q

?z�

pr21

��

pr20

��

� ,2 ¨

?z�

����

¨ ,2
,2

����

¨

����

� ,2 ¨

����

¨

z�z�

,2
,2

_��

Eqpf1q

z� z�

_��

� ,2 ¨

z�z�

_��

¨

?z�

,2
,2

_��

F3

f1
?z�

f2

_��

f0
� ,2 ¨

?z�

_��

¨
,2
,2

_��

¨

_��

� ,2 ¨

_��

¨

z�z�

,2
,2 ¨

z�z�

� ,2 ¨

z�z�
¨

?z�

,2
,2 ¨

?z�

� ,2 ¨

?z�
¨

,2
,2 ¨

� ,2 Z

Figure 3.
Ü

iP3 Eqpfiq for a three-cubic extension F
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a common object X. An internal n-fold equivalence relation is the same thing
as an internal n-fold groupoid (n-cat-group in the case of groups [66]; double
categories appear in [4, 36], for instance) in which all pairs of projections are
jointly monomorphic. The largest n-fold equivalence relation on n given equiv-
alence relations R0, . . . , Rn´1 on an object X�meaning that it contains all
n-fold equivalence relations on those relations�is denoted

ü

iPn

Ri. (Q)

It has projections pri0 and pri1 to Ri, for all i P n, and thus consists of 2n

commutative cubes of projections, one for each choice of projection (either pri0
or pri1) in each direction i P n. This largest n-fold equivalence relation on
R0, . . . , Rn´1 does indeed exist; the elements of

Ü

iPnRi are n-dimensional
matrices in X, in fact matrices of order

2ˆ ¨ ¨ ¨ ˆ 2
looooomooooon

n

.

In the i-th direction of the matrix (counting from 0 to n´ 1) the elements are
related by the equivalence relation Ri. In Subsection 3.2 we give a two-step
formal construction.
In practice the n-fold equivalence relation will be induced by an n-cubic ex-

tension F , by taking Ri “ Eqpfiq. The induced object
Ü

iPn Eqpfiq “ EqnpF q
may then be considered as a denormalised direction of F . Its elements are called
(n-fold) diamonds in F because of their shape in the lower dimensions.
When F is a three-cubic extension (see Figure 3) such a diamond is a hollow

octahedron (see Figure 4) of which the faces are elements of F3. We name the
faces of the octahedron by the vertices of a cube which is formally a three-
dimensional matrix where Eqpf0q is the left-right relation, Eqpf1q is bottom-
top and Eqpf2q is front-back. Note how the geometrical duality between the
octahedron and the cube is explicit here.

3.2. Formal construction of
Ü

iPnRi. Starting with an n-fold arrow. Given
an n-fold arrow F , �rst consider it as an arrow domF Ñ codF between pn´1q-
fold arrows, and then take its kernel pair EqpF q Ñ domF . By Corollary 3.10
in [41], both projections are n-cubic extensions in X if such is F . Then consider
those pn´ 1q-fold arrows as (vertical) arrows between pn´ 2q-fold arrows and
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c b

γ

1

β

d

2

a

δ 0 α

c b

¨

��

	�

γ

1

¨ β

¨

2:

:D

�$

�)

¨

_i

rz

Zd

z�

d

2

¨ a

¨

S[

IP

δ 0 α

¨

��

	�

¨

¨

2:

:D

�$

�)

¨

_i

rz

Zd

z�

¨

¨

S[

IP

Figure 4. Matrix and diamond for a three-cubic extension

take kernel pairs, obtaining a double equivalence relation

Eq2
pF q ,2

,2

����

EqpdomF q

����

dom EqpF q ,2
,2 dom2 F

of pn ´ 2q-fold arrows. All commutative squares in it are n-cubic extensions
in X if such is F , again by [41, Corollary 3.10]. Repeat the process until an n-
fold equivalence relation in X is obtained. The object EqnpF q is

Ü

iPn Eqpfiq.
Starting with equivalence relations pRiqiPn. Take coequalisers fi so that each

Ri is Eqpfiq. Take pushouts of the fi along each other and along their pushouts
until an n-fold arrow F is obtained. Now we can apply the above construction
to obtain

Ü

iPnRi “
Ü

iPn Eqpfiq.

3.3. Indexing the elements of
Ü

iPn Eqpfiq. Consider an n-cubic exten-
sion F . An element of

Ü

iPn Eqpfiq being an n-dimensional matrix, its entries
are indexed by the elements of 2n, the subsets of the ordinal n. An entry xI
in a matrix x P

Ü

iPn Eqpfiq �nds itself in the �rst entry of the i-th direction
when i R I and in the second entry of the i-th direction when i P I. Hence the
entry xI “ prIpxq is

ppr0
δIp0q

˝ pr1
δIp1q

˝ ¨ ¨ ¨ ˝ prn´1
δIpn´1qqpxq (R)
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where

δIpiq “

#

0 if i R I

1 if i P I

and pri0 and pri1 are the �rst and second projection of Eqpfiq, extended to
morphisms

ü

jPk

Eqpfjq Ñ
ü

jPkztiu

Eqpfjq

for all i ă k ď n (see Figure 3). Two entries xI and xJ are related by Eqpfiq
when the only di�erence between I and J is that one does, and the other does
not, contain i. So pxI , xJq P Eqpfiq when J “ I Y tiu or I “ J Y tiu.
For instance, in Figure 4, the face β corresponds to the entry x2: the set 2 Ď 3

contains 0 and 1 but it doesn't contain 2.

3.4. The induced n-cubes. As explained in the paragraph following (Q)
above, given an n-cubic extension F , any choice of a set I Ď n corresponds to
one of the commutative n-cubes in the n-fold equivalence relation

Ü

iPn Eqpfiq,
namely the cube whose diagonal (R) �picks� the I'th entry of any given n-
fold diamond. We shall denote it lpF, Iq. In fact, it again forms an n-cubic
extension in X , and its initial morphisms are the

priδIpiq :
ü

jPn

Eqpfjq Ñ
ü

jPnztiu

Eqpfjq.

The property of being an extension follows, for instance, from the fact that
all its morphisms are compatibly split (by the re�exivity of all the equivalence
relations involved). Since no confusion with the other arrows is possible (com-
pare with the notation introduced in Subsection 1.10), we shall denote such a
�composed splitting� or �composed projection�

lpF, IqJK : lpF, IqJ Ñ lpF, IqK

when J Ď K P 2n or K Ď J P 2n, respectively.

3.5. The objects
ÔI

iPn Eqpfiq. Given an n-cubic extension F and I Ď n, the

elements of the object
ÔI

iPn Eqpfiq are diamonds in F with the I-face missing,
or equivalently, n-dimensional matrices (of order 2ˆ ¨ ¨ ¨ ˆ 2) with the I-entry
left out; it is the limit LplpF, nzIqq from Subsection 1.10 determined by the n-
cubic extension lpF, nzIq. Indeed, removing an I'th vertex from a cube is the
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same thing as considering only those faces which contain the complementary
pnzIq'th vertex. Let

πI “ llpF,nzIq :
ü

iPn

Eqpfiq Ñ
I
ô

iPn

Eqpfiq

denote the canonical projection which forgets the I-face, then clearly the kernel
of πI is isomorphic to the direction of F . (If a diamond is in the kernel of πI

then all faces but one in this diamond are zero, and of course this face has its
boundary zero.) In fact, this gives us a version of Lemma 1.25, valid for higher
extensions:

Lemma 3.6. For any n-cubic extension F , the square

Ü

iPn Eqpfiq

prI
��

πI
,2
ÔI

iPn Eqpfiq

��

Fn
pfiqi

,2 LF

is a pullback.

Proof : This follows from Lemma 1.2 since Kerppfiqiq “ Dpn,ZqF “ KerpπIq as
explained above.

For instance, in
Ô2

iP3 Eqpfiq we have 3-fold diamonds as in Figure 4 in which
the face β “ x2 is missing.
In degree two the pullback Eqpdq ˆX Eqpcq (mentioned in the introduction,

and computed as in Diagram (J)) that contains two-fold diamonds in which
the face δ is missing, is nothing but Eqpdqd∅ Eqpcq, and the projection π is
π∅.

3.7. Analysis of centrality in degree two. As explained in [79] (and, in
full generality, in the proof of Theorem 3.10 below), the two-cubic extension F
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from Diagram (L) is central if and only if in the diagram

xEqpdql Eqpcqy
xπy � ,2

_��

��

xEqpdq ˆX Eqpcqy
_��

��

A � ,2 ,2

_��

Eqpdql Eqpcq

(i)

π
� ,2

_��

Eqpdq ˆX Eqpcq
ιlr

_��

Kerpabπq � ,2 ,2 abpEqpdql Eqpcqq
abπ

� ,2 abpEqpdq ˆX Eqpcqq
νlr

the morphism xπy is an isomorphism. (Recall the bracket notation from (D).)
By Lemma 1.2, this occurs when the square (i) is a pullback, which is precisely
saying that π is a one-cubic trivial extension. (Indeed π is a one-cubic extension,
because it is the comparison to the pullback in a two-cubic extension, in fact
in a double split epimorphism.)
Note that abπ is a split epimorphism by Lemma 1.8, because ab preserves the

pullback EqpdqˆXEqpcq: in fact, it preserves all pullbacks of split epimorphisms
along split epimorphisms, or even all pullbacks of split epimorphisms along
cubic extensions (Lemma 2.3). This makes abπ a product projection. Further
recall that the kernel of π is the direction of F . Finally, note that the splitting
ν commutes with the sections in the double equivalence relation Eqpdql Eqpcq
and the ones induced to Eqpdq ˆX Eqpcq. In fact, it is uniquely determined by
this property (Lemma 1.8).
Hence if F is central then π is a split epimorphism, in fact a product pro-

jection (since product projections are stable under pullbacks), and thus we see
that

Eqpdql Eqpcq – Aˆ pEqpdq ˆX Eqpcqq (S)

where A is the direction of F , an abelian object. Conversely, whenever A is
abelian and π is the projection in the product (S), the extension π is trivial,
so that the square (i) is a pullback, and F is a two-cubic central extension.
The inclusion ι of Eqpdq ˆX Eqpcq into Eqpdql Eqpcq is compatible with

degeneracies in the following sense. The conditions which determine ν uniquely
in Lemma 1.8 extend to the splitting ι of π, so that ι maps

¨

¨

γ :D

¨

βZd

βz�
¨

to

¨

¨

γ :D

γ �$

¨

βZd

βz�
¨

and

¨

¨

β :D

¨

βZd

αz�
¨

to

¨

¨

β :D

α �$

¨

βZd

αz�
¨

.
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Note how the conditions satis�ed by a Mal'tsev operation appear here.
We may also view this slightly di�erently: by Lemma 3.3 in [18], the condition

rEqpdq,Eqpcqs “ ∆X in (O) is equivalent to the morphism

π : Eqpdql Eqpcq Ñ Eqpdq ˆX Eqpcq

being a split epimorphism, compatible with certain splittings as in Lemma 1.8.
Also ∆X “ rEqpdqXEqpcq,∇Xs if and only if π is central [49]. Now a split epi-
morphism is a one-cubic central extension if and only if it is a one-cubic trivial
extension, so π is trivial�the square (i) is a pullback�when the commutators
rEqpdq,Eqpcqs and rEqpdq X Eqpcq,∇Xs vanish.

3.8. Higher degrees. This characterisation of centrality goes up to higher
dimensions. The basic idea is to show by induction that an n-cubic extension F
is central if and only if the morphisms

xπIy : x
ü

iPn

Eqpfiqy Ñ x

I
ô

iPn

Eqpfiqy

are isomorphisms. As we shall see, this then amounts to an isomorphism

ü

iPn

Eqpfiq – Aˆ
I
ô

iPn

Eqpfiq (T)

where A is the direction of F : any missing face in an n-fold diamond is com-
pletely determined by an element in A.

Lemma 3.9. When X is a semi-abelian category, the functor ab : X Ñ AbpX q

preserves any limit
ÔI

iPn Eqpfiq induced by any n-cubic extension F and I Ď n.
Furthermore, the comparison morphism

abπI : abp
ü

iPn

Eqpfiqq Ñ
I
ô

iPn

abpEqpfiqq

admits a splitting. This splitting is uniquely determined by the property that
it commutes with the sections in the n-cubic extension abplpF, nzIqq and the

induced sections to the limit object
ÔI

iPn abpEqpfiqq.

Proof : The �rst part follows from Lemma 2.3, because by Lemma 1.11, the limit
LplpF, nzIqq may be computed by repeated pullbacks of regular epimorphisms
along split epimorphisms.
Indeed, all arrows in the cube lpF, nzIq are (compatibly) split, so that the

pullback in the statement of Lemma 1.11 is a pullback of a split epimorphism
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along a split epimorphism. Now Lemma 1.11 is applied to the induced pn´ 1q-
cubic extension G, in which all morphisms are (compatibly) split, except in
the direction pd, cq. We now take a pullback of an extension along a split
epimorphism. This procedure is repeated until nothing but a pullback of a
regular epimorphism along a split epimorphism is left. Again, by Lemma 2.3
all those pullbacks are preserved.
In the abelian category AbpArrn´1

pX qq, the re�ection pabd, abcq of pd, cq
is a split epimorphism by Lemma 1.8. There is actually a unique splitting,
compatible with the sections in the square (L), coming from the fact that
the Eqpfiq are equivalence relations. Also at each further stage of the above
proof we may now apply Lemma 1.8, so that at every stage a pullback of
a split epimorphism along a split epimorphism is taken, and eventually the
needed morphism νI is obtained. The requirement that at each stage the
chosen splitting commutes with the given sections determines νI uniquely.

Recall from Subsection 2.4 the notation xF yn for the initial object of the
kernel of the unit of the centralisation of an n-cubic extension F , which vanishes
if and only if F is central. It determines a functor x´yn : ExtnpX q Ñ X . In
particular, x´y “ x´y0 : X Ñ X is the kernel of the unit of the abelianisation
functor as in (D).
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Theorem 3.10. In a semi-abelian category, let F be an n-cubic extension with
direction A. Then the following are equivalent:

(i) F is central;
(ii) the n-cubic extension xlpF, Iqy is a limit n-cube;

(iii) the morphism xπIy : x
Ü

iPn Eqpfiqy Ñ x
ÔI

iPn Eqpfiqy is an isomorph-
ism;

(iv) A is abelian and
Ü

iPn Eqpfiq – A ˆ
ÔI

iPn Eqpfiq: we have a short
exact sequence

0 ,2 A � ,2 ,2
Ü

iPn Eqpfiq
πI

� ,2
ÔI

iPn Eqpfiq ,2 0

where πI is a product projection;

for any, hence for all, I Ď n. Furthermore, when these conditions are satis�ed,
there is a unique splitting

ιI :
I
ô

iPn

Eqpfiq Ñ
ü

iPn

Eqpfiq

of πI which commutes with the given sections in the n-cubic extension lpF, nzIq

and the induced sections to the object
ÔI

iPn Eqpfiq.

Proof : First we show that (i) and (ii) are equivalent. The n-cubic extension
F , considered as a morphism domF Ñ codF , is central if and only if either
one of the projections EqpF q Ñ domF is trivial. This, by de�nition of trivial
extensions, occurs when the morphisms

xEqpF qyn´1 ,2
,2 xdomF yn´1

are isomorphisms (see Subsection 2.4 for more details). By Lemma 1.2 this
happens when either one of the commutative squares in

xEq2
pF qyn´2 ,2

,2

����

xEqpdomF qyn´2

����

xdom EqpF qyn´2 ,2
,2 xdom2 F yn´2
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is a pullback. This, in turn, is equivalent to either one of the commutative
cubes in

xEq3
pF qyn´2

����

,2
,2

u�u�

xEq2
pdomF qyn´2

����

u�u�

xEqpdom EqpF qqyn´2

����

,2
,2 xEqpdom2 F qyn´2

����

xdom Eq2
pF qyn´2 ,2

,2

u�u�

xdom EqpdomF qyn´2

u�u�

xdom2 EqpF qyn´2 ,2
,2 xdom3 F yn´2

being a limit cube. This process continues until we obtain a cube of dimension n
whose vertices are brackets x´y and whose edges are parallel pairs of arrows as
in the diagrams above. This cube is precisely the n-fold equivalence relation
x
Ü

iPn Eqpfiqy, considered as a diagram in X �compare with the construction
in Subsection 3.2. As in Subsection 3.4, a choice of I Ď n picks one of any
two parallel arrows in this diagram in such a way that we obtain the n-cubic
extension xlpF, Iqy.
The equivalence between (ii) and (iii) is clear because xlpF, Iqy is nothing

but one of the cubes induced by choosing an n-fold arrow (making a choice
of projections) in the n-fold equivalence relation x

Ü

iPn Eqpfiqy as in Subsec-
tion 3.4; so xπIy is an isomorphism if and only if this cube is a limit. The

functor x´y does indeed preserve the limit
ÔI

iPn Eqpfiq, since so does ab by
Lemma 3.9.
Now we prove the equivalence between (iii) and (iv). Condition (iii) is equiv-

alent to the square

Ü

iPn Eqpfiq
πI

� ,2

_��

ÔI
iPn Eqpfiq

_��

abp
Ü

iPn Eqpfiqq
abπI

� ,2 abp
ÔI

iPn Eqpfiqq

(U)

being a pullback, which means that πI is a one-cubic trivial extension. Since
its kernel is the abelian object A, the extension πI is a product projection if
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and only if it is a split epimorphism. By Lemma 3.9, the latter condition does
indeed hold.
The �nal statement is again a consequence of Lemma 3.9: the needed mor-

phism ιI is induced by the pullback (U) and the splitting νI of abπI given by
the lemma.

In what follows we shall use this result to obtain one half of the equivalence
between torsors and central extensions.

Remark 3.11. Note that the splitting ιI of πI constructed in the proof above
is natural in F , so that also the product decompositions (iv) are natural in the
extension considered.

Remark 3.12. The proof of Theorem 3.10 shows that an n-cubic extension F
is central precisely when, for any I Ď n, the induced pn` 1q-cubic extension

lpF, Iq Ñ abplpF, Iqq

is a limit pn ` 1q-cube. In fact, these pn ` 1q-cubic extensions are part of the
regular epimorphism of n-fold groupoids

ηÜ
iPn Eqpfiq :

ü

iPn

Eqpfiq Ñ abp
ü

iPn

Eqpfiqq,

which therefore is a discrete �bration if and only if F is central. (The concept
of discrete �bration between higher-dimensional internal groupoids is the
obvious extension of the one-fold groupoid case: any of its induced n-fold arrows
must be a pullback. In the situation at hand this gives precisely the condition on
the pn`1q-cubes lpF, Iq Ñ abplpF, Iqq mentioned above.) In the article [39],
the authors study the Galois structure for n-fold groupoids in a semi-abelian
category (n-cat-groups in Gp, for instance [66]) induced by the re�ection

GpdnpX q

Πn
0 ,2
K DisnpX q » X
Ą
lr

to X via the �connected components� functor to discrete n-fold groupoids. It
turns out [39, Proposition 2.9] that the central extensions with respect to this
re�ection are again the regular epimorphisms of internal n-fold groupoids which
are discrete �brations. Hence an n-cubic extension F in X is central relative
to AbpX q if and only if the induced extension of n-fold groupoids ηÜ

iPn Eqpfiq

is central relative to X .
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3.13. Higher central extensions as higher-dimensional pregroupoids.
The isomorphisms (T) determine �multiplications� or �compositions� of pn´1q-
dimensional hyper-tetrahedra (or n-dimensional hyper-triangles) in an n-cubic
central extension, in the sense that any aggregation of hyper-tetrahedra in the
shape of an n-fold diamond with a face missing �composes� to the missing face.
That is to say, the composite morphism

pI :
ÔI

iPn Eqpfiq
p0,1q

,2 Aˆ
ÔI

iPn Eqpfiq
– ,2

Ü

iPn Eqpfiq
prI ,2 Fn

acts as a higher-dimensional Mal'tsev operation or, more precisely, as a higher-
dimensional pregroupoid structure on F . Indeed, Proposition 3.14 below im-
plies that pI satis�es certain conditions which we could call higher-dimensional
Mal'tsev laws. In higher degrees those algebraic properties of the pI still have
to be further studied�for instance, what about associativity?�but we may
already give a few examples.
In the two-dimensional case, δ “ p∅pα, β, γq is the unique choice of δ such

that the projection a “ prApα, β, γ, δq of the diamond pα, β, γ, δq on the di-
rection A is zero. In this case we may think of δ as a composite γβ´1α.
Furthermore, p∅pα, α, γq “ γ, since once α “ β we have to take δ “ γ, as
already explained in Subsection 3.7. Proposition 3.14 below gives us an altern-
ative argument: there is no other choice possible for δ because prApα, α, γ, δq
has to be zero, and δ “ γ is a valid choice, since prApα, α, γ, γq “ 0, so it is
the uniquely valid one.
Similarly, writing δ “ p∅pa, b, c, d, α, β, γq for a con�guration such as in

Figure 4, we �nd
$

’

&

’

%

d “ p∅pa, b, c, d, a, b, cq

α “ p∅pa, b, b, a, α, β, βq

γ “ p∅pb, b, c, c, β, β, γq.

Proposition 3.14. In a semi-abelian category, let F be an n-cubic central
extension with direction A. Then in any product diagram

0 ,2 A � ,2
kerπI

,2
Ü

iPn Eqpfiq
πI

� ,2
prAlr ÔI

iPn Eqpfiq ,2
ιIlr 0

induced by Theorem 3.10, the projection prA is an alternating sum
ÿ

JĎn

p´1q|J |ηFn
˝ prJ (V)
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where prJ :
Ü

iPn Eqpfiq Ñ Fn sends a diamond to its J-face.

Proof : The idea behind the proof may be illustrated as follows in dimension
two. (Here we let F be the two-cubic extension from Diagram (L) to simplify
notations.) When the calculation

γ

1

β

δ 0 α

´

γ

1

β

γ 0 β

`

β

1

β

β 0 β

´

β

1

β

α 0 α

“

0

1

0

δ ´ γ ` β ´ α 0 0,

in which we denote the equivalence classes in the quotient by representative
elements, is made in the abelian object abpEqpdql Eqpcqq, we see that the
result belongs to the kernel A of the projection abπ∅. Indeed, the pullback
EqpdqˆX Eqpcq is preserved by the functor ab, and the projections to abEqpdq
and abEqpcq send the above sum to zero. Writing ηl “ ηEqpdql Eqpcq, this gives
us the morphism

ηl˝ pr∅ ´ ηl˝ prt1u ` ηl˝ pr2 ´ ηl˝ pr1 : Eqpdql Eqpcq Ñ A,

clearly a splitting for kerπ∅; hence by Lemma 1.3 it is the needed product
projection. Note that the terms in this sum are obtained by projecting a
diamond pα, β, γ, δq to a certain subdiamond, and then considering it again as
a two-fold diamond via re�exivity. In the �rst term we do not project at all,
in the second term we project to pγ, βq in Eqpf0q, in the fourth we project to
pα, βq in Eqpf1q, and in the third term we project all the way to F2.
For general n, let us again consider the commutative square (U)�which is a

pullback by centrality of F�and the induced kernels:

A � ,2 ,2
Ü

iPn Eqpfiq
πI

� ,2

ηÜ
iPn Eqpfiq

_��

ÔI
iPn Eqpfiq

ηÔI
iPn Eqpfiq_��

A � ,2 ,2 abp
Ü

iPn Eqpfiqq
abπI

� ,2 abp
ÔI

iPn Eqpfiqq

Since abp
ÔI

iPn Eqpfiqq “
ÔI

iPn abEqpfiq by Lemma 3.9, the abelian object A
being the kernel of abπI implies that it is the direction of abplpF, nzIqq, which
means A “

Ş

iPn Kerpab priδnzIpiqq. In order to de�ne a morphism with codo-

mainA, we now only need to de�ne a morphism with codomain abp
Ü

iPn Eqpfiqq
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which becomes zero when composed with the

ab priδnzIpiq : abp
ü

jPn

Eqpfjqq Ñ abp
ü

jPnztiu

Eqpfjqq.

We shall use this procedure to de�ne a splitting for kerπI as an alternating sum,
which will then automatically be the needed product projection by Lemma 1.3.
Recall the notation introduced in Subsection 3.4. Then, for any J Ď n,

write I a J for the symmetric di�erence pI Y JqzpI X Jq of I and J , and put

ξpF,I,Jq “ lpF, JqnzpIaJqn ˝lpF, JqnnzpIaJq :
ü

iPn

Eqpfiq Ñ
ü

iPn

Eqpfiq.

This formalises the process of �projecting to a subdiamond, then including
again via re�exivity�. Now note that, given any element x of

Ü

iPn Eqpfiq, the
I-entry of ξpF,I,Jqpxq is xJ . Furthermore, after projecting in any direction i P n
onto Eqpfiq, every morphism priδnzIpiq ˝ξpF,I,Jq occurs twice: indeed

priδnzIpiq ˝ξpF,I,Jq “ priδnzIpiq ˝ξpF,I,JYtiuq

when i R J . Two such terms will cancel each other when the alternating sum
below is composed with abπI . Hence the induced morphism

ÿ

JĎn

p´1q|J |ηp
Ü

iPn Eqpfiqq˝ξpF,I,Jq :
ü

iPn

Eqpfiq Ñ abp
ü

iPn

Eqpfiqq

satis�es the conditions required to lift over A�that is to say, it becomes zero
when we compose it with abπI . Its I-entry is precisely the needed formula (V),
while the other entries are zero. In particular, the morphism (V) does indeed
split the kernel of πI .

Note that the formula (V) for the projection prA is independent of the chosen
index I Ď n.
When n “ 1, Proposition 3.14 reduces to a well-known property of (one-

cubic) central extensions (see [17]): if f : X Ñ Z is central and x0, x1 : W Ñ X
are such that f ˝x0 “ f ˝x1, then they induce a unique morphism x1 ´ x0 : W Ñ A
to the kernel A of f such that x0 and x1 ´ x0 together determine x1.

4. Torsors and centrality

We analyse the concept of torsor from the point of view of centrality of higher
extensions. We prove that a truncated simplicial resolution of an object Z is
a torsor of Z by an abelian object A if and only if the underlying extension is
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central with direction A (Theorem 5.9; one implication is Proposition 4.12, the
other Proposition 5.8).
Let Z be an object and pA, ξq a Z-module in a semi-abelian category X .

Recall from Subsection 1.26 that an n-torsor of Z by pA, ξq is an augmented
simplicial object T together with a simplicial morphism ≈ : TÑ KppA, ξq, nq
such that

(T1) ≈ is a �bration which is exact from degree n on;
(T2) T – Coskn´1T;
(T3) T is a resolution.

4.1. Why extensions? Condition (T2) in the de�nition of n-torsor means
that (the simplicial object-part T of) an n-torsor pT,≈q is the pn´ 1q-truncated
simplicial object T “ trn´1T (Subsection 1.18), in the sense that this is the only
information T contains. Its initial object is Tn “ Tpnq “ Tn´1. Condition (T3)
means that the underlying n-fold arrow of T is an extension (Subsection 1.22).

4.2. Why trivial actions? We shall prove that for an n-torsor pT,≈q of an
object Z by a Z-module pA, ξq in a semi-abelian category, the action ξ is trivial
if and only if the induced one-cubic extension

pBiqi “ lT : Tn “ Tn´1 Ñ 4pT, n´ 1q “ LT

is central with respect to abelianisation. In other words, an n-torsor pT,≈q has
a trivial action if and only if

”

č

iPn

EqpBiq,∇Tn

ı

“ ∆Tn or, equivalently,
”

č

iPn

KerpBiq, Tn

ı

“ 0;

see Example 2.7. This extends Proposition 3.3 in [79] to higher dimensions.
It also explains why only cohomology with trivial coe�cients can ever classify
higher central extensions: this commutator condition is part of the centrality
by Lemma 2.11.

Proposition 4.3. In a semi-abelian category, consider an object Z and a
Z-module pA, ξq. For any n-torsor pT,≈q of Z by pA, ξq, the kernel of

pBiqi “ lT : Tn Ñ 4pT, n´ 1q “ LT

is A, and the following conditions are equivalent:

(i) the action ξ is trivial;
(ii) the one-cubic extension lT is central;
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(iii) for all i P n we have 4pT, nq – Aˆ∧ipT, nq; more precisely,

pBi : 4pT, nq Ñ ∧ipT, nq

is a product projection with kernel A.

Proof : For any i P n, Lemma 1.25 tells us that the square

4pT, nq
pBi ,2

Bi
��

∧ipT, nq

��

Tn
pBiqi

,2 4pT, n´ 1q

is a pullback. Note that all its arrows are regular epimorphisms: the mor-
phism Bi as any split epimorphism; pBiqi since T is a resolution; and pBi either
by the Kan property, which all simplicial objects in a semi-abelian category
have, or as a pullback of pBiqi. We see that the kernel of pBiqi is isomorphic

to the kernel of pBi (Lemma 1.2), and furthermore pBiqi is central if and only if

so is pBi�indeed, central extensions are preserved and re�ected by pullbacks of
extensions along extensions. Since pT,≈q is an n-torsor, also the square

4pT, nq
pBi

,2

pς,Bn`1
0 q

��

∧ipT, nqlr

Bn0
��

pA, ξq ¸ Z
p

,2 Z
slr

is a pullback, by the exact �bration property. This already proves that the
kernel of pBiqi is A (again Lemma 1.2). Note that a split epimorphism with
abelian kernel represents a trivial action if and only if it is a product projection,
if and only if it is a trivial extension, if and only if it is a central extension.
Again using that central extensions are preserved and re�ected by pullbacks of
extensions along extensions we obtain the claimed result.

Hence, from now on, we shall only have to consider torsors of Z by a trivial
module pA, τq�we called them n-torsors of Z by A in Subsection 1.26�and
restrict our cohomology theory accordingly. In this case, a torsor �looks� as
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follows:

4pT, n` 1q

¨¨¨ ppς˝Biqi,B
n`2
0 q

��

,2
,2

... ,2
4pT, nq

pς,Bn`1
0 q

��

,2
... ,2

Tn´1

Bn0

��

,2
... ,2

Tn´2

B
n´1
0

��

¨¨¨ T0

B0

��

B0 ,2 T´1

An`1 ˆ Z

Bn`1ˆ1Z ,2
prnˆ1Z ,2

pr0ˆ1Z

... ,2
Aˆ Z

prZ ,2

prZ

... ,2
Z ... Z ¨¨¨ Z Z

(W)

Remark 4.4. It is clear from the proof that the product decomposition (iii)
is natural in pT,≈q, so that any morphism of torsors is compatible with the
induced product decompositions.

Lemma 4.5. For any simplicial resolution X, the kernel of any induced regular
epimorphism pBi : 4pX, nq Ñ ∧ipX, nq is the direction A of the underlying n-
cubic extension X.

Proof : If an pn, iq-horn pxi of an n-cycle x in X is zero, then the i-face xi
which is missing in the horn must have boundary zero, so that xi belongs to A.
Conversely, the inclusion of A into 4pX, nq takes an element a of A and sends
it to the n-cycle in X which is zero everywhere�except in its i-entry, where it
is a. This n-cycle is sent to zero by pBi.
More formally, this also follows from Lemma 2.17 combined with Lemma 1.25,

since pBiqi “ lX : Xn´1 Ñ 4pX, n´ 1q: the kernel of pBi coincides with the kernel
of lX since the square in Lemma 1.25 is a pullback, and the latter kernel is A
by Lemma 2.17.

4.6. Multiplying simplices in a torsor. As explained in [34], given an n-
torsor pT,≈q of Z by A and an integer i P n, the isomorphism

4pT, nq – Aˆ∧ipT, nq
induces a multiplication or composition of the simplices in a horn to the �miss-
ing face� such that the thus completed n-cycle �commutes�, in the sense that
its projection on A is zero. So a horn may be considered as a composable ag-
gregation of simplices�compare with the higher Mal'tsev structures pI from
Subsection 3.13. Indeed, we may simply use the morphism

mi : ∧ipT, nq p0,1q
,2Aˆ∧ipT, nq – ,24pT, nq Bi ,2Tn.

This composition of pn, iq-horns satis�es certain additional properties [34], of
which for us the most important one is compatibility with degeneracies. From
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the axioms of torsor (the requirement that ≈ : TÑ KpZ,A, nq be a simplicial
morphism) it follows that a degenerate n-cycle commutes. Hence any pn, iq-
horn in T which may be completed to a degenerate n-cycle has to be completed
this way, and hence composes to the i-face of this degenerate n-cycle.
For instance, in degree two, the left hand side p2, 1q-horn

¨
σ0B0α

��
¨

α
AJ

¨

¨

σ1α
σ0B0α

��
¨

α
AJ

α
,2¨

�ts into the right hand side degenerate 2-simplex σ1α. It follows by uniqueness
that m1pσ0B0α, αq “ α. Likewise, m0pα, αq “ σ0B0α, etc.

4.7. The exact �bration property. Most of the �bration property (T1)
of a torsor comes for free, since a regular epimorphism of simplicial objects in
a regular Mal'tsev category is always a �bration [42, Proposition 4.4]. Given
a simplicial morphism ≈ : TÑ KpZ,A, nq satisfying (T2) and (T3), already
the ≈i “ B

i`1
0 are regular epimorphisms for all i P n, so it su�ces to check

the regularity of ≈n and ≈n`1. Then there is the exactness, but this reduces
to one square being a pullback�Diagram (X) for any i P n�which in turn
corresponds to a direction property.

Proposition 4.8. Suppose that Z is an object and A is an abelian object
in a semi-abelian category. Let ≈ : TÑ KpZ,A, nq be as in the de�nition of
torsors, satisfying conditions (T2) and (T3). Then for every i the square

4pT, nq
pBi ,2

pς,Bn`1
0 q

��

∧ipT, nq
Bn0
��

Aˆ Z prZ
,2 Z

(X)

is a pullback if and only if the induced morphism
Ş

i KerpBiq Ñ A is an iso-
morphism. When this is the case, the simplicial morphism ≈ is a �bration,
exact from degree n on, so that pT,≈q is an n-torsor of Z by A.

Proof : Again, pBi is a regular epimorphism by the Kan property. As in the proof
of Lemma 4.5, the kernel of pBi is KerppBiqiq “

Ş

i KerpBiq. Via Lemma 1.2 this
already proves the equivalence.
Recall that every regular epimorphism of simplicial objects in a semi-abelian

category is a �bration. When the above square (X) is a pullback (for any i P n),
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the morphism Bn0 being regular epimorphic implies that also pς, Bn`1
0 q is a regular

epimorphism.
One degree up, the corresponding squares are automatically pullbacks: in-

deed, any comparison 4pT, n` 1q Ñ ∧ipT, n` 1q is an isomorphism by the
axiom (T2) which tells us that every n-simplex in T is an n-cycle, as is any
morphism

pBi : A
n`1

ˆ Z Ñ ∧ipKpZ,A, nq, n` 1q “ An`1
ˆ Z.

In higher degrees there is nothing to be checked because ≈ : TÑ KpZ,A, nq is
completely determined by the coskeleton construction. This implies that ≈ is
a regular epimorphism in all degrees, hence it is a �bration. This �bration is
exact in degree n since (X) is a pullback for every i, and in higher degrees since
both its domain and its codomain are constructed as a coskeleton, so that we
can apply Lemma 1.21.

Thus we see that an n-torsor pT,≈q of Z by A has an underlying n-cubic
extension of Z of which the direction is A. Furthermore, the squares (X) are
pullbacks, which means that 4pT, nq – Aˆ∧ipT, nq. Note that the projection
on ∧ipT, nq is pBi and the projection on A is ς .
In what follows we shall prove that this condition is equivalent to the central-

ity of the underlying n-cubic extension. Given an n-cubic central extension T
of Z by A, we construct a simplicial morphism ≈ : T “ coskn´1T Ñ KpZ,A, nq
such that the squares (X) are all pullbacks. As explained above, this is enough
for pT,≈q to be an n-torsor. Furthermore, Proposition 4.13 tells us that such a
simplicial morphism ≈ is uniquely determined, so that its existence is a prop-
erty of T , not additional structure�as it should be, because centrality is also
a property.
The other implication (which says that the underlying n-cubic extension of

an n-torsor is always central) will be treated in the following section.

4.9. Embedding cycles into diamonds. Up to symmetry of the diamond,
there is a unique way a cycle may be embedded into a diamond using degen-
eracies to �ll up missing faces. In degree two there is the morphism

s2pXq : 4pX, 2q Ñ EqpB1ql EqpB0q : px0, x1, x2q ÞÑ

σ0B1x0

1

x2

x0 0 x1
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which sends the left hand side (empty) triangle

¨
x0

��
¨

x2
AJ

x1
,2¨

¨

¨

σ0B1x0
:D

x0 �$

¨

x2
Zd

x1z�
¨

to the right hand side diamond. In degree three we have

s3pXq : 4pX, 3q Ñ
ü

iP3

EqpBiq : px0, x1, x2, x3q ÞÑ

σ0B2x0 x3

σ0B1x0

1

x2

σ1B2x0

2

σ1B2x1

x0 0 x1

and in general we have an inductive formula, as follows.

Notation 4.10 (Décalage). Let ´X denote the décalage of X, the augmented
simplicial object constructed out of X by forgetting the lowest degree X´1 and
the last face operators Bn : Xn Ñ Xn´1, so that ´Xn “ Xn`1. We obtain a
morphism of simplicial objects : ´XÑ X by n “ Bn`1 : ´Xn “ Xn`1 Ñ Xn.

Proposition 4.11. For any simplicial object X in a semi-abelian category and
any n ě 2 there is a canonical natural inclusion

snpXq : 4pX, nq Ñ
ü

iPn

EqpBiq.

Proof : We give a proof by induction; the base step is explained above. Suppose
snpXq is de�ned for every X and natural in X; we then construct a morphism
sn`1pXq, natural in X. Given an pn` 1q-cycle

x “ px0, . . . , xn, xn`1q P 4pX, n` 1q,

note that both pxn`1 “ px0, . . . , xnq and

pyn`1 “ pσn´1B0xn`1, . . . , σn´1Bn´1xn`1, xn`1q,

where

y “ σnxn`1 “ pσn´1B0xn`1, . . . , σn´1Bn´1xn`1, xn`1, xn`1q,
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are in 4p´X, nq. The induction hypothesis gives us a pair of diamonds, and
we de�ne

sn`1pXqpxq “ psnp
´Xqppxn`1q, snp

´Xqppyn`1qq P
ü

iPn

Eqp´Biq ˆ
ü

iPn

Eqp´Biq.

Now we only have to show that this pair does belong to
Ü

iPn`1 EqpBiq, which
means that Bnpsnp

´Xqppxn`1qq “ Bnpsnp
´Xqppyn`1qq. This equality follows from

the naturality of sn, which makes the square

4p´X, nq
4p,nq

,2

snp
´Xq

��

4pX, nq
snpXq
��

Ü

iPn Eqp´Biq ,2
Ü

iPn EqpBiq

commute, and the fact that 4p, nqppxn`1q is equal to 4p, nqppyn`1q. Indeed, we
have Bnxn “ Bnxn`1 and

Bnxi “ Bixn`1 “ Bnσn´1Bixn`1

for every i P n, so that the latter equality holds. This completes the construc-
tion of sn`1pXq, which is evidently natural in X.
The morphism snpXq constructed above takes an �element� x “ px0, . . . , xnq

of the object 4pX, nq and maps it to the diamond snpXqpxq which has xi on its
i-entry and degeneracies elsewhere (see Subsection 3.3). Clearly, snpXq restricts
to morphisms

9sinpXq : ∧ipX, nq Ñ
i

ô

jPn

EqpBjq,

natural in X.
When we say that an pn´ 1q-truncated simplicial resolution is central, we

mean that such is the underlying n-cubic extension. We write SCExtnZpX q

for the (non-full) subcategory of 3n-DiagpX q consisting of those 3n-diagrams
with an underlying n-cubic extension which is a central pn´ 1q-truncated sim-
plicial resolution, with morphisms between such which restrict to simplicial
morphisms. We write

dpn,Zq : SCExt
n
ZpX q Ñ AbpX q (Y)

for the restriction of Dpn,Zq to this category.

Proposition 4.12. If, in a semi-abelian category, an pn ´ 1q-truncated sim-
plicial resolution is central, then it is an n-torsor.
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Proof : Let T be a simplicial resolution and let A be the direction of T “ trn´1T,
considered as a trivial Z-module. We have to de�ne a morphism of augmented
simplicial objects ≈ : TÑ KpZ,A, nq as in (W). Such a simplicial morphism is
completely determined by the choice of a suitable morphism ς : 4pT, nq Ñ A.
Consider, for i P n` 1, the commutative square of solid arrows

0 ,2 A ,2 4pT, nq
ςlr

pBi

,2

snpTq
��

∧ipT, nqlr

9sinpTq
��

,2 0

0 ,2 A ,2
Ü

jPn EqpBjq
πi

,2
prAlr Ôi

jPn EqpBjq
lr ,2 0

which embeds cycles into diamonds. By assumption, the kernel of πi is A;
moreover, by Theorem 3.10,

ü

jPn

EqpBjq – Aˆ
i

ô

jPn

EqpBjq

with πi the projection on
Ôi

jPn EqpBjq. The square above is a pullback as a

consequence of Lemma 1.2, since pBi is a regular epimorphism by the extension
property of T , and since the kernel of pBi is A by Lemma 4.5. This implies that

4pT, nq – Aˆ∧ipT, nq
with pBi the projection on ∧ipT, nq. We may now complete the square with the
dotted arrows.
We choose ς to be prA ˝snpTq : 4pT, nq Ñ A, the projection of 4pT, nq on A.

We must prove that this does indeed give us a genuine morphism≈ : TÑ KpZ,A, nq;
then the exact �bration property holds by Proposition 4.8, so that pT,≈q is an
n-torsor.
For this, we only need to check that all the squares in the diagram

4pT, n` 1q

ppς˝Biqi,B
n`2
0 q

��

Bn`1 ,2
,2

... ,2
4pT, nq

pς,Bn`1
0 q

��

An`1 ˆ Z

Bn`1ˆ1Z ,2
prnˆ1Z ,2

pr0ˆ1Z

... ,2
Aˆ Z
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commute. This condition reduces to the commutativity of just one square, the
one �on top�:

ς˝Bn`1 “ p´1qn
n
ÿ

i“0

p´1qiς˝Bi. (Z)

In fact the morphism ppς˝Biqi, B
n`2
0 q is already the unique one that makes all

the other squares commute. But this equality follows from Proposition 3.14,
which tells us that the morphism ς itself may be considered as an alternating
sum,

ς “
ÿ

JĎn

p´1q|J |ηTn´1
˝ prJ ˝snpTq.

Using that the alternating sum

n`1
ÿ

i“0

p´1qiη4pT,nq˝Bi

is zero by the simplicial identities, the equality (Z) may now be obtained via a
direct calculation in the abelian object A.

Proposition 4.13. Given f : X Ñ Y in SCExtnZpX q, let pX,xq and pY,yq
be the n-torsors corresponding to X and Y and f : XÑ Y the simplicial mor-
phism corresponding to f . If f keeps the direction �xed, that is to say, if

dpn,Zqf “ 1: dpn,ZqX Ñ dpn,ZqY,

then y˝f “ x so that f is a morphism of torsors. In other words, we have
a functor

d´1
pn,ZqAÑ TorsnpZ,Aq.

Furthermore, this functor is fully faithful.

Proof : For any morphism of central truncated simplicial objects which keeps
the terminal object and the direction �xed, the projections to the directions
are compatible with it. To see this we only need to consider the diagram

A � ,2 ,2 4pX, nq
4pf,nq
��

ςX�lr � ,2 ∧ipX, nq
∧ipf,nq
��

A � ,2 ,2 4pY, nq
ςY�lr � ,2 ∧ipY, nq
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and note that ςY˝4pf, nq “ ςX by naturality of the product decompositions
induced by centrality�see Remark 3.11 or the above proof. This shows that f
is a morphism of torsors.
This immediately shows that the functor d´1

pn,ZqA Ñ TorsnpZ,Aq is fully

faithful as claimed: after all, a morphism in TorsnpZ,Aq is nothing but a
morphism in d´1

pn,ZqA satisfying an additional condition�but we just proved

that this condition always holds.

5. The commutator condition

In general it is not clear how an isomorphism on the simplicial level may
be extended to an isomorphism on the level of higher-dimensional diamonds.
Therefore, to prove that every n-torsor is an n-cubic central extension, we shall
add an assumption on the base category: we ask that higher central extensions
may be characterised in terms of binary Huq commutators. This happens in
many cases, but thus far we have no precise characterisation of the categories
which satisfy this condition.
It is proved in Section 9.1 of [41] that an n-cubic extension of groups F is

central with respect to Ab if and only if
“
Ş

iPI Kerpfiq,
Ş

iPnzI Kerpfiq
‰

“ 0 for
all I Ď n. The theory which we develop depends crucially on a similar charac-
terisation of higher central extensions, valid in a su�ciently general context.

De�nition 5.1. [80] We say that an n-cubic extension F in a semi-abelian
category X is H-central when

”

č

iPI

Kerpfiq,
č

iPnzI

Kerpfiq
ı

“ 0

for all I Ď n. The category X satis�es the commutator condition on
n-cubic central extensions when the H-central n-cubic extensions in X
coincide with the categorically central ones, namely those which are central
with respect to AbpX q in the Galois-theoretic sense used throughout the rest
of the paper. We say that X satis�es the commutator condition (CC)
when it satis�es the commutator condition on n-cubic central extensions for
all n.

5.2. The cases n “ 1 and n “ 2. As explained in the Introduction and in
Example 2.7, every semi-abelian category satis�es the commutator condition
for one-cubic central extensions. From the Introduction and Example 2.8, it
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follows that in a semi-abelian category, the commutator condition on two-cubic
central extensions is weaker than the Smith is Huq condition [69].

5.3. Some examples. It is shown in [41] that, next to the category of groups,
also the categories Lie algebras and non-unitary rings have (CC). The examples
of Leibniz and Lie n-algebras were treated in [31]. Moreover, from [80] we know
that any semi-abelian category with the Smith is Huq condition has (CC), while
the categories of loops and of commutative loops do not satisfy this condition.
As examples we have action representative semi-abelian categories [8, 6], ac-
tion accessible categories [23]�in particular all categories of interest [73, 71],
so also all varieties of groups [72]�next to all strongly semi-abelian [15] and
Moore categories [46, 77]. For instance, the categories of associative and non-
associative algebras and of (pre)crossed modules satisfy (CC).
A general context where many examples may be found is given by those semi-

abelian categories for which the abelianisation functor is protoadditive [39, 40],
as considered below. This example gives two extreme special cases: semi-
abelian arithmetical categories recalled in Example 5.5, such as the categories
of von Neumann regular rings, Boolean rings and Heyting semilattices (where
the cohomology theory becomes trivial) on the one hand, and abelian catego-
ries recalled in Example 5.6 (where, via a version of the Dold�Kan correspond-
ence [32], the theory gives us the Yoneda Ext groups) on the other.

Example 5.4 (Protoadditive abelianisation). Recall from [39] that a functor
between semi-abelian categories is protoadditive when it preserves split short
exact sequences

0 ,2 K � ,2 k ,2 X
f

� ,2 Y ,2
slr 0

(the cokernel f is split by some morphism s). It is explained in [40] that,
when X is semi-abelian and the abelianisation functor ab : X Ñ AbpX q is
protoadditive, the Huq commutator rK,Ls of two normal subobjects K, L of
an object X is xK X Ly “ rK X L,K X Ls. This gives us

”

č

iPI

Kerpfiq,
č

iPnzI

Kerpfiq
ı

“

”

č

iPn

Kerpfiq,
č

iPn

Kerpfiq
ı

“ xDpn,ZqF y

for any n-cubic extension F of Z and any I Ď n. Furthermore, by another
result in [40], an n-cubic extension is categorically central if and only if its
direction is abelian; hence the commutator condition (CC) holds. In fact, this
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argument extends easily to a proof that all semi-abelian arithmetical categories
satisfy (SH).

A non-trivial instance of this situation, mentioned in [40], is the variety of
non-unitary rings that satisfy the law abab “ ab. We now explain another
special case, one which is less interesting from a cohomological point of view,
but which does give a class of extreme examples.

Example 5.5 (Arithmetical categories). Recall from [75] that an exact Mal'-
tsev category is arithmetical when every internal groupoid is an equivalence
relation. We restrict ourselves to semi-abelian arithmetical categories, examples
of which are the dual of the category of pointed sets, more generally, the dual
of the category of pointed objects in any topos, and also the categories of von
Neumann regular rings, Boolean rings and Heyting semi-lattices [5]. Since in
such a category all abelian objects are trivial, the abelianisation functor is
protoadditive, so that the commutator condition (CC) holds. (By the above,
as shown in [70], every arithmetical category moreover satis�es (SH).) Here
an n-cubic extension is categorically central if and only if its direction is zero,
which means that the extension is a limit n-cube (or an isomorphism, when
n “ 1). Hence the interpretation of cohomology in terms of higher central
extensions (Theorem 6.7) just means that any two n-cubic central extensions
of an object Z, so limit n-cubes over Z, are connected, because CentrnpZ, 0q –
Hn`1pZ, 0q is trivial�which is, however, not di�cult to prove directly.

At the other end of the spectrum we �nd the context of abelian categories
where (CC) also holds, and where the cohomology theory reduces to Yoneda's
interpretation of ExtnpZ,Aq.

Example 5.6 (Abelian categories). In an abelian category all Huq commuta-
tors are zero while all extensions are categorically central, which already gives
us (CC). On top of that the abelianisation functor is an identity, so that it is
trivially protoadditive. Via the Dold�Kan theorem [32], an pn ´ 1q-truncated
simplicial resolution, considered as an n-fold extension of Z by A, corresponds
to an exact sequence

0 ,2 A � ,2 ,2 Cn´1
,2 Cn´2

,2 ¨ ¨ ¨ ,2 C0
� ,2 Z ,2 0

of length n. (See Figure 1 on page 5 for a picture when n “ 2.) As a con-
sequence of the results in Section 6 we get

ExtnpZ,Aq – CentrnpZ,Aq – Hn`1
pZ,Aq,
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the equivalence between Yoneda's cohomology via Ext groups [83, 67] and
comonadic cohomology which was �rst established in [3]. (See also [2]. A
proof of the same result via torsor theory is given in [47].) The dimension
shift is there because our numbering of the cohomology objects agrees with the
classical non-abelian examples (groups, Lie algebras, etc.) rather than with the
abelian case.

5.7. From torsors to central extensions. We are now ready to prove the
equivalence between torsors and central extensions we need for our cohomolo-
gical interpretation of higher central extensions.

Proposition 5.8. In a semi-abelian category, the underlying n-cubic extension
of an n-torsor is H-central.

Proof : Let pT,≈q be an n-torsor of Z by A with underlying n-cubic exten-
sion T . Then already the commutator rTn, As is zero: by Proposition 4.3, since
A is a trivial Z-module, and by Example 2.7.
Now suppose that ∅ ‰ I Ĺ n and consider x : X “

Ş

jPI KerpBjq Ñ Tn and
y : Y “

Ş

jPnzI KerpBjq Ñ Tn. We are to show that x and y Huq-commute (see

Subsection 1.4), so that T is H-central.
Without any loss of generality we may assume that B0y “ 0. (If not, reverse

the roles of x and y.) Let i be the smallest element of I. Then Bix “ 0
and Bjy “ 0 for all j ă i, and the boundaries

Bσi´1x “ pσi´2B0x, . . . , σi´2Bi´2x, x, x, 0, σi´1Bi`1x, . . . , σi´1Bn´1xq

and

Bσiy “ p0, . . . , 0, 0, y, y, σiBi`1y, . . . , σiBn´1yq

of σi´1x and σiy determine pn, iq-horns

x “ {pBσi´1xqi “ pσi´2B0x, . . . , σi´2Bi´2x, x, 0, σi´1Bi`1x, . . . , σi´1Bn´1xq

and

y “ {pBσiyqi “ p0, . . . , 0, 0, y, σiBi`1y, . . . , σiBn´1yq

in T which Huq-commute with each other. The �rst i ` 1 components do
so because anything commutes with zero. The others commute for the same
reason, one of Bjx or Bjy being trivial by assumption on x and y. In other
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words, there is a morphism pϕi such that the diagram

X

p1X ,0q

�'

x

$,

X ˆ Y pϕi
,2 ∧ipT, nq

Y

p0,1Y q

7A

y

3:

is commutative, namely, the morphism determined by the family

ϕj “

$

’

&

’

%

xj˝ prX if j ă i (so that j R I)

xj˝ prX if j ą i and j ´ 1 R I

yj˝ prY if j ą i and j ´ 1 P I;

note that indeed Bk˝ϕj “ Bj´1˝ϕk for all k ă j such that i R tj, ku. Further-
more, being induced by degeneracies, x and y compose to the face left out�see
Subsection 4.6�so that the diagram

X

p1X ,0q

!)
x

&-

x

'.X ˆ Y pϕi
,2 ∧ipT, nq mi ,2 Tn

Y

p0,1Y q

5=

y

29

y

07

is commutative, and x and y Huq-commute.

Thus we proved that, in a semi-abelian category, any categorically central
truncated simplicial resolution gives a torsor (Proposition 4.12) and any tor-
sor gives an H-central truncated simplicial resolution (Proposition 5.8). To
complete the circle, what we need is precisely the commutator condition (CC).

Theorem 5.9. In a semi-abelian category which satis�es the commutator con-
dition (CC), an augmented simplicial object T is part of an n-torsor pT,≈q if
and only if its underlying n-fold arrow is an n-cubic central extension.

Corollary 5.10. Under (CC), the functor d´1
pn,ZqAÑ TorsnpZ,Aq described in

Proposition 4.13 is an equivalence of categories.

Proof : Theorem 5.9 tells us that this functor is essentially surjective, while it
is fully faithful by Proposition 4.13.



78 DIANA RODELO AND TIM VAN DER LINDEN

6. Cohomology classi�es higher central extensions

In this last section we prove our main result, Theorem 6.7, which states that,
for any object Z, any abelian object A, and any n ě 1, we have a natural
group isomorphism

Hn`1
pZ,Aq – CentrnpZ,Aq.

To do so, we only need to use the results of the previous sections and establish
a natural bijection between the underlying sets.
We already know that, for truncated simplicial resolutions, being a torsor is

equivalent to being central. Now we have to explain how any (central) extension
may be approximated by a truncated augmented simplicial object so that the
two types of objects may be compared. In fact, any equivalence class of central
extensions of Z by A contains a truncated simplicial object.

6.1. Simplicial approximation of higher-dimensional arrows. Using
a classical Kan extension argument, every n-dimensional arrow may be uni-
versally approximated by an pn´ 1q-truncated simplicial object. Indeed, the
functor from Subsection 1.18

arrn “ Funp´, anq : SArr
n
pX q Ñ ArrnpX q

has a right adjoint

sn “ Rananp´q : Arr
n
pX q Ñ SArrnpX q

which takes an n-fold arrow F : p2nqop Ñ X and maps it to the right Kan
extension

RananF : p∆`
n q

op
Ñ X

of F along the functor an : 2n Ñ ∆`
n .

Proposition 6.2. Let X be a regular category with enough projectives. Then
for all n ě 1, the functors arrn and sn preserve n-cubic extensions.

Proof : Since an pn´ 1q-truncated simplicial object is by de�nition an n-cubic
extension if and only if so is its underlying n-fold arrow, the functor arrn pre-
serves and re�ects n-cubic extensions. The case of sn for n ě 2 is more complic-
ated: given an n-fold arrow F , the Kan extension snF “ RananF is computed
pointwise as a limit (see for instance [68]). For example, a two-cubic extension
such as (L) has

Eqpdq ˆX Eqpcq ,2
,2
Xlr ,2 Z
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as its simplicial approximation. It is easily seen that also in general, snF
has the morphism Fn Ñ F0 as its augmentation. In order to obtain a quick
formal proof in higher degrees we assume that X has enough projectives and
use Proposition 1.19. Let X be an pn ´ 1q-truncated degreewise projective
simplicial object and consider a collection of arrows pXJ Ñ psnF qJq|J |ďi as in
the proposition. Composing with the counit u : arrnsnF Ñ F of the adjunction
at F we obtain a collection of arrows to the n-cubic extension F , which extends
to a morphism of n-fold arrows X Ñ F . By adjointness we now obtain the
needed morphism of n-fold arrows X Ñ snF , extending the given collection of
arrows. This proves that snF is an n-cubic extension.

We now return to the semi-abelian context and prove that then these adjunc-
tions also preserve centrality. These two results together extend Proposition 5.1
in [79] to higher degrees and beyond the case of central extensions.

Lemma 6.3. Suppose F is an n-cubic extension, G “ arrnsnF and u : GÑ F
is the counit of the adjunction at F . Let LF (respectively LG) be the limit
described in Subsection 1.10 and lF (respectively lG) the comparison morphism.
Then the square

Gn
un ,2

lG _��

Fn

lF_��

LG
Lu
,2 LF

(AA)

is a pullback.

Proof : We prove that the pullback LGˆLF Fn is isomorphic to Gn by showing
that the pn´1q-truncated simplicial object H which is equal to G everywhere,
except in level n ´ 1 where it is LG ˆLF Fn, is actually isomorphic to the
simplicial approximation of F .
The n-cubic extension H is indeed an pn´ 1q-truncated simplicial object:

the degeneracies are induced by composition of the degeneracies of G with the
comparison morphism Gn Ñ LGˆLF Fn. This comparison morphism is part of
a morphism of pn´1q-truncated simplicial objects GÑ H. Its inverse H Ñ G
is now induced by the universal property of G.



80 DIANA RODELO AND TIM VAN DER LINDEN

Proposition 6.4. Let X be a semi-abelian category with enough projectives.
For all n ě 1, the functors arrn and sn preserve centrality. Furthermore, both
functors preserve the direction of a central extension.

Proof : Let F be an n-cubic central extension. Then the directionA “
Ş

iPn Kerpfiq
of F (Lemma 2.17) is part of the short exact sequence

0 ,2 A � ,2 ,2 Fn
lF � ,2 LF ,2 0.

By Lemma 6.3 we have that the square (AA) is a pullback. Via Lemma 2.11,
this already implies that lG is a central extension when F is central; moreover,
we have A “

Ş

iPn Kerpgiq by Lemma 1.2, so that the functor sn preserves
directions. Since pullbacks preserve product projections, by Theorem 3.10 we
only need to prove that any square

Ü

iPn Eqpgiq ,2

πI
G
��

Ü

iPn Eqpfiq

πI
F
��

ÔI
iPn Eqpgiq ,2

ÔI
iPn Eqpfiq

is a pullback. To see this, consider the commutative cube

Ü

iPn Eqpgiq

w�

,2

πI
G

��

Ü

iPn Eqpfiq

πI
F

��

w�
Gn un

,2

lG

��

Fn
lF

��

ÔI
iPn Eqpgiq ,2

w�

ÔI
iPn Eqpfiq

w�

LG
Lu

,2 LF

in which the left and right hand side faces are the ones of Lemma 3.6. These
squares are pullbacks, and since we already proved that the front face (AA) is
a pullback as well, the claim follows.

6.5. The equivalence between central extensions and torsors. By Prop-
osition 6.4 the functors arrn and sn not only preserve central extensions, but
also the directions of those central extensions. Hence for any object Z and any
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abelian object A, these functors (co)restrict to an adjunction

d´1
pn,ZqA

arrn ,2
K D´1

pn,ZqA
sn

lr

where the functor (Y)

dpn,Zq : SCExt
n
ZpX q Ñ AbpX q

is the restriction of Dpn,Zq to those 3n-diagrams which, as an n-cubic central
extension, are an pn ´ 1q-truncated simplicial object. Taking connected com-
ponents gives a bijection of sets (see Remark 5.2 in [79]). By Corollary 5.10
this bijection takes the shape

π0 TorsnpZ,Aq – π0pd
´1
pn,ZqAq – π0pD

´1
pn,ZqAq (AB)

when also the commutator condition (CC) holds.
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Proposition 6.6. The bijection (AB) is natural in A.

Proof : In [35, Section 4] the functor π0 TorsnpZ,´q is de�ned as follows: given
f : AÑ B in AbpX q, an n-torsor pX,xq of Z by A universally induces an
n-torsor f˚pX,xq of Z by B. The construction in Proposition 2.21 gives
us another n-torsor pY,yq of Z by B together with a simplicial morphism
f : XÑ Y over Kpf, nq which, by the universal property de�ning f˚pX,xq,
yields a morphism f˚pX,xq Ñ pY,yq of n-torsors of Z by B. Thus f˚pX,xq
and pY,yq end up in the same equivalence class, so that the bijection (AB)
is natural in A.

Thus we see that the underlying sets of the abelian groups

Hn`1
pZ,Aq “ TorsnrZ,As “ π0 TorsnpZ,Aq

and CentrnpZ,Aq “ π0pD
´1
pn,ZqAq are naturally isomorphic. Since both

Hn`1
pZ,´q and CentrnpZ,´q : AbpX q Ñ Set

are product-preserving functors (Proposition 2.21), they lift to naturally iso-
morphic functors AbpX q Ñ Ab, which gives us

Theorem 6.7. Let Z be an object and A an abelian object in a semi-abelian
category with enough projectives satisfying the commutator condition (CC).
Then for every n ě 1 we have an isomorphism Hn`1pZ,Aq – CentrnpZ,Aq,
natural in A.

Thus we obtain the claimed �duality� between internal homology and external
cohomology.

Theorem 6.8. Consider n ě 1 and let Z be an object in a semi-abelian
category with enough projectives X which satis�es the commutator condition
(CC). Then

Hn`1pZ,AbpX qq “ limDpn,Zq and Hn`1
pZ,Aq – π0pD

´1
pn,ZqAq,

where A is any abelian object in X . When, in particular, X is monadic
over Set, the homology and the cohomology are comonadic Barr�Beck (co)ho-
mology with respect to the canonical comonad on X .

Proof : The equality holds by de�nition, while the isomorphism is Theorem 6.7.
The interpretation in terms of comonadic (co)homology is the main result of [48]
in the case of homology, and of [34, 35] in the case of cohomology.
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