
The General Purpose Analog Computer and

Computable Analysis are two equivalent

paradigms of analog computation

Olivier Bournez1,6, Manuel L. Campagnolo2,4, Daniel S. Graça3,4, and
Emmanuel Hainry5,6

1 INRIA Lorraine, Olivier.Bournez@loria.fr
2 DM/ISA, Universidade Técnica de Lisboa, 1349-017 Lisboa, Portugal

mlc@math.isa.utl.pt
3 DM/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal

dgraca@ualg.pt
4 CLC, DM/IST, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
5 Institut National Polytechnique de Lorraine, Emmanuel.Hainry@loria.fr

6 LORIA (UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP), Campus scientifique, BP
239, 54506 Vandœuvre-Lès-Nancy, France

Abstract. In this paper we revisit one of the first models of analog
computation, Shannon’s General Purpose Analog Computer (GPAC).
The GPAC has often been argued to be weaker than computable analysis.
As main contribution, we show that if we change the notion of GPAC-
computability in a natural way, we compute exactly all real computable
functions (in the sense of computable analysis). Moreover, since GPACs
are equivalent to systems of polynomial differential equations then we
show that all real computable functions can be defined by such models.

1 Introduction

In the last decades, the general trend for theoretical computer science has been
directed towards discrete computation, with relatively scarce emphasis on analog
computation. One possible reason is the fact that there is no Church-Turing
thesis for analog computation. In other words, among the many analog models
that have been studied, be it the BSS model [2], Moore’s R-recursive functions
[17], neural networks [23], or computable analysis [20, 13, 25], none can be treated
as a “universal” model.

In part, this is due to the fact that few relations between them are known.
Moreover some of these models have been argued not to be equivalent, making
the idea of a Church-Turing thesis for analog models an apparent utopian goal.
For example the BSS model allows discontinuous functions while only continuous
functions can be computed in the framework of computable analysis [25].

However, this objective may not be as unrealistic as it seems. Indeed, we will
prove in this paper the equivalence of two models of analog computation that
were previously considered non-equivalent: on one side, computable analysis and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Algarve

https://core.ac.uk/display/216316356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on the other side, the General Purpose Analog Computer (GPAC). The GPAC
was introduced in 1941 by Shannon [22] as a mathematical model of an analog
device, the Differential Analyzer [6]. The Differential Analyzer was used from the
30s to the early 60s to solve numerical problems, especially differential equations
for example in ballistics problems. These devices were first built with mechanical
components and later evolved to electronic versions.

A GPAC may be seen as a circuit built of interconnected black boxes, whose
behavior is given by Fig. 1 page 6, where inputs are functions of an independent
variable called the time. It will be more precisely described in Subsection 2.2.

Many of the usual real functions are known to be generated by a GPAC, a
notable exception is the Gamma function Γ (x) =

∫ ∞

0 tx−1e−tdt [22]. Since this
function is known to be computable under the computable analysis framework
[20], it seems and it has often been argued that the GPAC is a weaker model than
computable analysis. However, we believe this is mostly due to a misunderstand-
ing, and that this limitation is more due to the notion of GPAC-computability
rather than the model itself.

In fact, the GPAC usually computes in “real time” - a very restrictive form of
computation. But if we change this notion of computability to the kind of “con-
verging computation” used in recursive analysis, then the Γ function becomes
computable as shown recently in [9]. In this paper, the term GPAC-computable
will refer to this notion. Notice that this “converging computation” with GPACs
corresponds to a particular class of R-recursive functions [17, 18, 4]. As in [4] we
only consider a Turing-computable subclass of R-recursive functions, but here,
in some sense, we restrict our focus to functions that can be defined as limits of
solutions of polynomial differential equations.

In this paper, we extend the result from [9] to obtain the following theorem: A
function defined on a compact domain is computable (in the sense of computable
analysis) if and only if it is computed by a GPAC in a certain framework.

It was already known [10] that Turing machines can be simulated by GPACs.
Since functions computable in the sense of computable analysis are those com-
puted by function-oracle Turing machines [13], this paper shows that the previous
result can be extended to such models. This way, it gives an argument to say
that the Church-Turing thesis may not be as utopian as it was believed: the Γ
function is not generable by a GPAC but computable by a GPAC, and more
generally, computable analysis is equivalent to GPAC computability.

This paper is an extended abstract. Detailed proofs can be found in technical
report [3].

2 Preliminaries

2.1 Computable Analysis

Recursive analysis or computable analysis, was introduced by Turing [24], Grze-
gorczyk [12], and Lacombe [15].

2

The idea underlying computable analysis is to extend the classical com-
putability theory so that it might deal with real quantities. See [25] for an up-to-
date monograph of computable analysis from the computability point of view,
or [13] for a presentation from a complexity point of view.

Following Ko [13], let νQ : N3 → Q be the following representation of dyadic
rational numbers by integers: νQ(p, q, r) 7→ (−1)p q

2r .
Given a sequence (xn, yn)n∈N, where xn, yn ∈ N, we write (xn, yn) x to

denote the following property: for all n ∈ N, |νQ(xn, yn, n) − x| < 2−n.

Definition 1. (computability)

1. A point x = (x1, ..., xd) ∈ Rd is said computable (denoted by x ∈ Rec(R)) if
for all j ∈ {1, ..., d}, there is a computable sequence (yn, zn)n∈N of integers
such that (yn, zn) xj .

7

2. A function f : X ⊆ Rd → R, where X is compact, is said computable
(denoted by f ∈ Rec(R)), if there is some d-oracle Turing machine M with
the following property: if x = (x1, ..., xd) ∈ X and (αj

n) xj , where αj
n ∈

N2, then when M takes as oracles the sequences (αj
n)n∈N, it will compute a

sequence (βn)n∈N , where βn ∈ N2, satisfying (βn) f(x). A function f :
X ⊆ Rd → Rk, where X is compact, is said computable if all its projections
are.

The following result is taken from [13, Corollary 2.14]

Theorem 1. A real function f : [a, b] → R is computable iff there exist two
recursive functions m : N → N and ψ : N4 → N3 such that:

1. m is a modulus of continuity for f , i.e. for all n ∈ N and all x, y ∈ [a, b],
one has

|x− y| ≤ 2−m(n) =⇒ |f(x) − f(y)| ≤ 2−n

2. For all (i, j, k) ∈ N3 such that νQ(i, j, k) ∈ [a, b] and all n ∈ N,
∣

∣

∣

∣

νQ(ψ(i, j, k, n)) − f

(

(−1)i j

2k

)∣

∣

∣

∣

≤ 2−n.

2.2 The GPAC

The GPAC was originally introduced by Shannon in [22], and further refined in
[19], [16], [11], [9]. The model basically consists of families of circuits built with
the basic units presented in Fig. 1. In general, not all kinds of interconnections
are allowed since this may lead to undesirable behavior (e.g. non-unique outputs.
For further details, refer to [11]).

Shannon, in his original paper, already mentions that the GPAC generates
polynomials, the exponential function, the usual trigonometric functions, their
inverses. More generally, Shannon claims that all functions generated by a GPAC
are differentially algebraic, i. e. they satisfy the condition the following definition:

7 A computable sequence of integers (xn)n∈N is a sequence such that xn = f(n) for
all n ∈ N where f : N → N is recursive.

3

Definition 2. The unary function y is differentially algebraic (d.a.) on the in-
terval I if there exists a nonzero polynomial p with real coefficients such that

p
(

t, y, y′, ..., y(n)
)

= 0, on I. (1)

As a corollary, and noting that the Gamma function Γ (x) =
∫ ∞

0
tx−1e−tdt

is not d.a. [21], we get that

Proposition 1. The Gamma function cannot be generated by a GPAC .

However, Shannon’s proof relating functions generated by GPACs with d.a.
functions was incomplete (as pointed out and partially corrected in [19], [16]).
However, for the more robust class of GPACs defined in [11], the following
stronger property holds:

Proposition 2. A scalar function f : R → R is generated by a GPAC iff it is a
component of the solution of a system

y′ = p(t, y), (2)

where p is a vector of polynomials. A function f : R → Rk is generated by a
GPAC iff all of its components are.

From now on, we will mostly talk about GPACs as being systems of ordinary
differential equations (ODEs) of the type (2). For a concrete example of the
previous proposition, see Fig. 2 page 6. GPAC generable functions (in the sense
of [11]) are obviously d.a.. Another interesting consequence is the following (recall
that solutions of analytic ODEs are always analytic - cf. [1]):

Corollary 1. If f is a function generated by a GPAC, then it is analytic.

As we have seen in Proposition 1, the Gamma function is not generated by
a GPAC. However, it has been recently proved that it can be computed by a
GPAC if we use the following notion of GPAC computability [9]:

Definition 3. A function f : Rn → Rk is computable by a GPAC via approx-
imations if there exists some polynomial ODE (2) with n components y1, ..., yn

admitting initial conditions x1, ..., xn such that, for some particular components
g and ε of y1, ..., yn, one has limt→∞ ε(x1, ..., xn, t) = 0 and

‖f(x1, ..., xn) − g(x1, ..., xn, t)‖ ≤ ε(x1, ..., xn, t). (3)

More informally, this model of computation consists of a dynamical system
y′ = p(y, t) with initial condition x. For any x, the component g of the sys-
tem approaches f(x), with the approximation error being bounded by the other
component ε which goes to 0 with time.

One point, behind the initial definitions of GPAC from Shannon, is that
nothing is assumed on the constants and initial conditions of the ODE (2). In
particular, there can be non-computable reals, and some outputs of a GPAC can
a priori have some unbounded rate of growth.

This kind of GPAC can trivially lead to super-Turing computations. To avoid
this, the model of [9] can actually be reinforced as follows:

4

Definition 4. We say that f : [a, b] → R is GPAC-computable iff:8

1. There is a φ computed by a GPAC U via approximations, with initial con-
ditions (α1, . . . , αn−1, x) set at t0 = 0, such that f(x) = φ(α1, . . . , αn−1, x)
for all x ∈ [a, b];

2. The initial conditions α1, . . . , αn−1 and the coefficients of p in (3) are com-
putable reals.

3. If y is the solution of the GPAC U , then there exists c,K > 0 such that
‖y‖ ≤ cK |t| for time t ≥ 0.

We remark that α1, . . . , αn−1 are auxiliary parameters needed to compute f .
The result of [9] can be reformulated as:

Proposition 3 ([9]). The Γ function is GPAC-computable.

In this paper, we show that this actually hold for all computable functions
(in the sense of computable analysis). Indeed, we prove that if a real function f
is computable, then it is GPAC-computable. Reciprocally, we prove that if f is
GPAC-computable, then it is computable.

2.3 Simulating TMs with ODEs

To prove the main result of this paper, we need to simulate a TM with differential
equations and, in particular, we need to compute the iterates of a given function.
This can be done with the techniques described in [5] (cf. Fig. 3).

Proposition 4. Let f : N → N be some function. Then it is possible to iterate
f with an ODE, i.e. there is some g : R3 → R2, such that for all x0 ∈ N, any
solution of ODE y′ = g(y, t), with y1(0) = x0 satisfies y1(m) = f [m](x0) for all
m ∈ N.9

However Branicky’s construction involves non-differentiable functions. To
avoid this, we follow instead the approach of [7, p. 37] which shows that ar-
bitrarily smooth functions can be used. In a first approach, we use the function
θj : R → R, j ∈ N − {0, 1} defined by

θj(x) = 0 if x < 0, θj(x) = xj if x ≥ 0.

This function can be seen [8] as a Cj−1 version of Heaviside’s step function θ(x),
where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0. This construction can even be
done with analytic functions, as shown in [10].

Using the construction presented in [7], it is not difficult to simulate the
evolution of a Turing machine. Indeed, it suffices to code each one of its con-
figurations into integers and apply Branicky’s trick, i.e. f : Nk → Nk gives the

8 Recall that in the paper, the term GPAC-computable refers to this particular no-
tion. The expression “generated by a GPAC” corresponds to Shannon’s notion of
“computability”.

9 f [m] denotes the mth iteration of f .

5

k +

iu

k u
v u+v

v

A constant unit associated to
the real value k

An adder unit

An integrator unit A multiplier unit

x
u
v uvw

asw�(t)=u(t)v�(t)
w(t)=0

Fig. 1. Different types of units used in a GPAC.

� � �-1

q

q

t
y3

y2

y1

�� � y′

1 = y3 & y1(0) = 1
y′

2 = y1 & y2(0) = 0
y′

3 = −y1 & y3(0) = 0

Fig. 2. Generating cos and sin via a GPAC: circuit version on the left and ODE version
on the right. One has y1 = cos, y2 = sin, y3 = − sin.

0.5 1 1.5 2 2.5 3

1

2

3

4

Fig. 3. Simulation of the iteration of the map f(n) = 2n via ODEs.

6

transition rule of the TM (note that with a similar construction, we can also
iterate vectorial functions with ODEs). In general, if M has l tapes, we can sup-
pose that its transition function is defined over N2l+1: each tape is encoded by
2 integers, plus one integer for the state.

Proposition 5. Let M be some Turing machine with l tapes and let x ∈ N2l+1

be the encoding of the initial configuration of M. Then there is an ODE

z′ = g(z, t), zi(0) = xi for i ∈ {1, ..., 2l+ 1},
zi(0) = 0 otherwise

(4)

that simulates M as follows: (z0(m), ..., z2l+1(m)) = f
[m]
M (x1, ..., x2l+1), where

f
[m]
M (x1, ..., x2l+1) gives the configuration of M after m steps. Moreover each com-

ponent of g can be supposed to be constituted by the composition of polynomials
with θj ’s.

3 The result

In this section we present the main result of this article. This result relates
computable analysis with the GPAC, showing their equivalence in a certain
framework.

Theorem 2 (Main result). A function f : [a, b] → R is computable iff it is
GPAC-computable.

Notice that, by Proposition 2, dynamical systems defined by an ODE of the
form y′ = p(t, y), where p is a vector of polynomials are in correspondence with
GPAC. Then, in a first step, we suppose in the proof that we have access to the
function θj and refer to the systems

y′ = p(t, y, θj(y)) (5)

where θj(y) means that θj is applied componentwise to y, as θj-GPACs [9].
Similarly to Def. 4, we can define a notion of θj-GPAC-computability. Later, we
will see how these functions θj ’s can be suppressed. To prove Theorem 2 we will
need to simulate a cyclic sequence of TM computations.

To be able to describe GPAC constructions in a modular way, it helps to break
down the system into several intermixed systems. For example, the variables of
vector y of ODE y′ = p(t, y) can be arbitrarily split into two blocks y1, y2.
The whole system then rewrites into two sub-systems y′1 = p1(t, y1, y2), and
y′2 = p2(t, y1, y2). This allows to describe each subsystem separately: we will
consider that y2 is an “external input” of the first, and y1 is an “external input”
of the second. By abuse of notation, we will still call such sub-systems GPAC.

Since any Turing machine can be simulated by a θj-GPAC [10], then there
is also a θj-GPAC that can simulate an infinite sequence of computations of a
Turing machine M over successive inputs (k1, 1), (k2, 2), . . . , where kn is some

7

function of n. Moreover, this θj-GPAC can be designed so that it keeps track
of the last value computed by M and the corresponding index n, and it “ticks”
when M starts a new computation with some input (kn, n). This is done by
adding extra components in Equation (5), which depend on the variables that
encode the current configuration of M . More precisely, the following lemma can
be proved (see [3]).

Lemma 1. Let M be a Turing machine with two inputs and two outputs, that
halts on all inputs, and let m : N → N be a recursive function. Let L ∈ N − {0}.
If (kn) is a sequence of natural integers10 that satisfies kn ≤ 2m(n)L, then there
is a θj-GPAC

y′ = p(t, y, θj(y), u1, u2), (6)

given u1(0) = y1, u2(0) = 0, with the following properties:

1. The θj-GPAC simulates M with inputs u1(n),u2(n), starting with n = 0.
When this simulation finishes, n is incremented and the simulation restarts
with inputs u1(n+ 1) and u2(n+ 1) = n+ 1, and so on;

2. Three variables of the θj-GPAC act as a “memory”: they keep the value of
the last n where the computation M(kn, n) was carried out, and the corre-
sponding two outputs;

3. There is one variable yclock of the θj-GPAC which takes value 1 each time n
is incremented, such that if tn denotes the nth time yclock = 1, then for all
kn ≤ 2m(n)L, tn+1 − tn ≥ t(kn, n).

3.1 Proof of the “if” direction for Theorem 2

Let f : [a, b] → R be a GPAC-computable function. We want to show that f
is computable in the sense of computable analysis. By definition, we know that
there is a polynomial ODE

y′ = p(t, y)

y(0) = x

which solution has two components g : R2 → R and ε : R2 → R such that

|f(x) − g(x, t)| ≤ ε(x, t) and lim
t→∞

ε(x, t) = 0

From standard error analysis of Euler’s algorithm, function g and ε can be
computed using Euler’s algorithm on ODE y′ = p(t, y) up to any given precision
2−n, as soon as we have a bound on the derivative of y. This is provided by the
3rd condition on the Definition 4.

So, given any n ∈ N, we can determine t∗ s.t. ε(x, t∗) < 2−(n+1) and compute
g(x, t∗) with precision 2−(n+1). This gives us an approximation of f(x) with
precision 2−n.

10 Notice that (kn) needs not a priori to be a computable sequence of integers.

8

3.2 Proof of the “only if” direction for Theorem 2

Here we only prove the result for θj-GPACs. Indeed, in [10] it was shown how
to implement Branicky’s construction for simulating Turing machines in GPACs
without using θj ’s. The idea is to approximate non-analytic functions with an-
alytic ones, and to control the error committed along the entire simulation.
Applying similar techniques, it is possible to remove the θj ’s of the following
lemma (see [3] for further details).

Lemma 2. A function f : [a, b] → R computable then it is θj-GPAC-computable.

Proof. By hypothesis, there is an oracle Turing machine M such that for all
oracles (j(n), l(n))n∈N x ∈ [a, b], the machine outputs a sequence (zn) f(x),
where zn ∈ N2. From now on we suppose that a > 0 (the other case will be
studied later). We can then assume that j(n) = 0 for any n and, hence, the sign
function j is not needed. Using Theorem 1, it is not difficult to conclude that
there are computable functions m : N → N, abs, sgn : N2 → N such that given
x ∈ [a, b] and non-negative integers k, n satisfying

∣

∣k/2m(n) − x
∣

∣ < 2−m(n), one
has

∣

∣

∣

∣

(2 × sgn(k, n) − 1)
abs(k, n)

2n
− f(x)

∣

∣

∣

∣

<
1

2n
. (7)

Now, given some real x, we would like to design a θj-GPAC that ideally would
have the following behavior. Given initial conditions n = 1 and x, it would:

1. Obtain from real x and integer n, an integer k satisfying
∣

∣k/2m(n) − x
∣

∣ <

1/2m(n);
2. Simulate M to compute sgn(k, n) and abs(k, n);
3. When sgn(k, n), abs(k, n) are obtained, compute

(2 × sgn(k, n) − 1)
abs(k, n)

2n
(8)

and memorize the result just till another cycle is completed;
4. Take n = n+ 1 and restart the cycle.

With Lemma 1, we can implement steps 2, 3, and 4 with a θj-GPAC. This
GPAC outputs a signal yclock that says each time the computation should be
restarted and increases the variable n in step 4. But we still have to address the
first step of the algorithm above: given some real x, and some integer n, we need
to compute an integer k satisfying

∣

∣2−m(n)k − x
∣

∣ < 2−m(n).

There is an obvious choice: take k = bx2m(n)c. The problem is that the
discrete function “integer part” b·c cannot be obtained by a GPAC (as a non-
continuous and hence non-analytic function). Our solution is the following: use
the integer part function r : R → R defined by

r(0) = 0, r′(x − 1/4) = cjθj(− sin 2πx), (9)

where cj =
(

∫ 1

0 θj(− sin 2πx)dx
)−1

. The function r has the following property:

r(x) = n, whenever x ∈ [n − 1/4, n+ 1/4], for all integer n. Then we cover b·c

9

over all of its domain by three functions yri
(t) = r(t + 1/4 + i/3), for i = 0, 1, 2

and we define (see below) a set of detecting functions ωi such that if ωi(t) 6= 0,
then yri

(t) is an integer (cf Fig. 4). Hence we can get rid of non-integer values
with the products ωiyri

.
Remember that the Turing machine M can be simulated by an ODE (5)

y′ = pU(t, y, θj(y), yinput(1), yinput(2)), (10)

denoted by U . This system has two variables corresponding to the two exter-
nal inputs of M yinput(1), yinput(2), and two variables, denoted by ysgn, yabs,
corresponding to the two outputs of M.

Then we construct a system of ODEs as Fig. 5 suggests. More formally, the
GPAC contains three copies, denoted by U0,U1 and U2 of the system (10), each
one with external input yri

, n:

Ui : Y ′
i = pU(t, Yi, θj(Yi), yri

, n) i = 0, 1, 2.

In other words, they simulate a Turing machine M with input (k, n) whenever
yri

(t) = k. Denote by ysgni
and yabsi

its two outputs. The problem is that
sometimes yri

(t) /∈ N and hence the outputs ysgni
and yabsi

of Ui may not have
a meaningful value. Thus, we need to have a subsystem of ODEs (the “weighted
sum circuit”) that can select “good outputs”. It will be constructed with the
help of the “detecting functions” defined by ωj,i(t) = θj(sin 2π(t − i/3)), for
i = 0, 1, 2 (cf. Fig. 4).

It can be shown that for every t ∈ R, ωj,0(t) + ωj,1(t) + ωj,2(t) > 0 and that
if ωj,i(t) > 0, then yri

(t) is an integer and it fed Ui with a “good input”: yri
(t)

is an integer. Hence, in the weighted sum

yabs =
ωj,0(nx)yabs0

+ ωj,1(nx)yabs1
+ ωj,2(nx)yabs2

ωj,0(nx) + ωj,1(nx) + ωj,2(nx)
(11)

only the “good outputs” yabsi
are not multiplied by 0 and therefore yabs provide

abs(k, n),11 whatever the value of real variable x is. Replacing absi by sgni

provides in a similar way sgn(k, n).
Then we use an other subsystem of ODEs for the division in equation (8),

which provides an approximation yapprox of f(x), from abs(k, n) and sgn(k, n),
with error bounded by 2−n (this gives the error bound ε). It can be shown that,
using the coding of TMs described in [14, 10], we can make the θj-GPAC satisfy
condition 3 of Definition 4.

Then, to finish the proof of the lemma, we only have to deal with the case
where a ≤ 0. This case can be reduced to the previous one as follows: let k
be an integer greater than |a|. Then consider the function g : [a + k, b + k] →
R such that g(x) = f(x − k). The function g is computable in the sense of

11 In reality, it gives a weighted sum of abs(k, n) and abs(k − 1, n). This is because if
nx ∈ [i, i + 1/6], for i ∈ Z, we have that both yr0

(nx) = i and yr2
(nx) = i − 1 gives

“good inputs”. Nevertheless this is not problematic for our concerns, since this only
introduces an error bounded by 2−n.

10

0.5 1 1.5 2

-1

-0.5

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 4. Graphical representations of functions ri and ωi (i = 0, 1, 2).

yr0 yr1 yr2

U0 U1 U2

×

x

Weighted sum�Memory

Output

UClock

2m(n)

2n

yClock

Fig. 5. Schema of a GPAC that calculates a real computable function f : [a, b] → R.
x is the current argument for f , the two outputs of the “weighted sum unit” give
sgn(k, n) and abs(k, n). The divisor computes (8). The dotted line gives the signal
that orders the memory to store the current value and the other GPACs to restart the
computation with the new inputs associated to n + 1.

11

computable analysis, and has only positive arguments. Therefore, by the previous
case, g is θj-GPAC-computable. Then, to compute f , it is only necessary to use
a substitution of variables in the system of ODEs computing g.

We remark that our proof is constructive, in the sense that if we are given a
computable function f and the Turing machine computing it, we can explicitly
build a corresponding GPAC that computes it.

4 Conclusion

In this paper we established some links between computable analysis and Shan-
non’s General Purpose Analog Computer. In particular, we showed that con-
trarily to what was previously suggested, the GPAC and computable analysis
can be made equivalent, from a computability point of view, as long as we take
an adequate and natural notion of computation for the GPAC. In addition to
those results it would be interesting to answer the following questions. Is is pos-
sible to have similar results, but at a complexity level? For instance, using the
framework of [13], is it possible to relate polynomially-time computable func-
tions to a class of GPAC-computable functions where the error ε is given as a
function of a polynomial of t? And if this is true, can this result be generalized
to other classes of complexity? From the computability perspective, our results
suggest that polynomial ODEs and GPACs are very natural continuous-time
counterparts to Turing machines.

Acknowledgments. This work was partially supported by Fundação para a
Ciência e a Tecnologia and FEDER via the Center for Logic and Compu-
tation - CLC, the project ConTComp POCTI/MAT/45978/2002 and grant
SFRH/BD/17436/2004. Additional support was also provided by the Fundação
Calouste Gulbenkian through the Programa Gulbenkian de Est́ımulo à Inves-
tigação, and by the Program Pessoa through the project Calculabilité et com-
plexité des modèles de calculs à temps continu.

References

1. V. I. Arnold. Ordinary Differential Equations. MIT Press, 1978.
2. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over

the real numbers: NP-completeness, recursive functions and universal machines.
Bull. Amer. Math. Soc., 21(1):1–46, 1989.

3. O. Bournez, M. L. Campagnolo, D. S. Graça, and E. Hainry. Polynomial
differential equations compute all real computable functions. available at
http://www.loria.fr/~hainry/Limits.pdf.

4. O. Bournez and E. Hainry. Recursive analysis characterized as a class of real
recursive functions. to appear in Fund. Inform.

5. M. S. Branicky. Universal computation and other capabilities of hybrid and con-
tinuous dynamical systems. Theoret. Comput. Sci., 138(1):67–100, 1995.

6. V. Bush. The differential analyzer. A new machine for solving differential equations.
J. Franklin Inst., 212:447–488, 1931.

12

7. M. L. Campagnolo. Computational Complexity of Real Valued Recursive Functions

and Analog Circuits. PhD thesis, IST/UTL, 2002.
8. M. L. Campagnolo, C. Moore, and J. F. Costa. Iteration, inequalities, and differ-

entiability in analog computers. J. Complexity, 16(4):642–660, 2000.
9. D. S. Graça. Some recent developments on Shannon’s General Purpose Analog

Computer. Math. Log. Quart., 50(4-5):473–485, 2004.
10. D. S. Graça, M. L. Campagnolo, and J. Buescu. Robust simulations of Turing ma-

chines with analytic maps and flows. In S. B. Cooper, B. Löwe, and L. Torenvliet,
editors, CiE 2005: New Computational Paradigms, LNCS 3526, pages 169–179.
Springer, 2005.

11. D. S. Graça and J. F. Costa. Analog computers and recursive functions over the
reals. J. Complexity, 19(5):644–664, 2003.

12. A. Grzegorczyk. On the definitions of computable real continuous functions. Fund.

Math., 44:61–71, 1957.
13. K.-I Ko. Computational Complexity of Real Functions. Birkhäuser, 1991.
14. P. Koiran and C. Moore. Closed-form analytic maps in one and two dimensions

can simulate universal Turing machines. Theoret. Comput. Sci., 210(1):217–223,
1999.

15. D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou
plusieurs variables réelles III. Comptes Rendus de l’Académie des Sciences Paris,
241:151–153, 1955.

16. L. Lipshitz and L. A. Rubel. A differentially algebraic replacement theorem, and
analog computability. Proc. Amer. Math. Soc., 99(2):367–372, 1987.

17. C. Moore. Recursion theory on the reals and continuous-time computation. The-

oret. Comput. Sci., 162:23–44, 1996.
18. J. Mycka and J. F. Costa. Real recursive functions and their hierarchy. J. Com-

plexity, 20(6):835–857, 2004.
19. M. B. Pour-El. Abstract computability and its relations to the general purpose

analog computer. Trans. Amer. Math. Soc., 199:1–28, 1974.
20. M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer,

1989.
21. L. A. Rubel. A survey of transcendentally transcendental functions. Amer. Math.

Monthly, 96(9):777–788, 1989.
22. C. E. Shannon. Mathematical theory of the differential analyzer. J. Math. Phys.

MIT, 20:337–354, 1941.
23. H. T. Siegelmann. Neural Networks and Analog Computation: Beyond the Turing

Limit. Birkhäuser, 1999.
24. A. M. Turing. On computable numbers, with an application to the Entscheidung-

sproblem. Proc. London Math. Soc., 2(42):230–265, 1936.
25. K. Weihrauch. Computable Analysis: an Introduction. Springer, 2000.

13

