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The Edgeworth Conjecture with Small Coalitions and

Approximate Equilibria in Large Economies

Siddharth Barman∗ Federico Echenique†

Abstract

We revisit the connection between bargaining and equilibrium in exchange economies, and

study its algorithmic implications. We consider bargaining outcomes to be allocations that cannot

be blocked (i.e., profitably re-traded) by coalitions of small size and show that these allocations

must be approximate Walrasian equilibria. Our results imply that deciding whether an allocation

is approximately Walrasian can be done in polynomial time, even in economies for which finding

an equilibrium is known to be computationally hard.

1 Introduction

We present a quantitative core convergence theorem, with economic and algorithmic implications. Economists

have, since Francis Edgeworth in 1881, been interested in the convergence of bargaining in finite

economies to market equilibrium. The celebrated Edgeworth conjecture states that bargaining inde-

terminacy and monopoly power disappear in large economies. Edgeworth focused on the contract

curve, what we think of now as the core. The core, however, requires agents to join coalitions of

arbitrary size. In our quantitative core convergence theorem we show that coalitions of a fixed size

suffice. The fixed size depends polynomially on the approximation error, the number of goods in the

economy, and consumers’ heterogeneity.

The economic analysis of markets is based on the notion of Walrasian (competitive) market equi-

librium and price-taking behavior. Walrasian equilibrium requires that goods are assigned prices,

each agent maximizes her utility subject to what she can afford, and the market clears. Walrasian

equilibria provide a conceptually crisp framework for economic analysis: with prices as guide, agents

direct themselves, in a decentralized manner, to a Pareto optimal allocation. That agents are price

takers means that they treat prices as fixed; they will not renegotiate the terms of trade with other

agents.

The Edgeworth conjecture, or core convergence, is the economist’s basic justification for the price-

taking assumption. Specifically, it postulates that, in a large economy, bargaining collapses to Wal-

rasian equilibrium, i.e., in a large economy, no group of agents would choose to upset an equilibrium

by renegotiating among themselves.

In a small economy, agents bargain over the terms of trade. They may not trade at fixed prices.

Each individual agent in a small economy is to some degree unique and can therefore command a cer-

tain degree of monopoly power. Imagine the market for professional soccer players, or high-profile
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academics, in which each individual agent is special. Then terms of trade are determined by haggling

and bargaining, not as fixed prices in competitive markets. By contrast, in a large economy with lim-

ited heterogeneity, no agent is special. Imagine the market for a commodity, like corn or steel, or

for a standard piece of technology, like a personal desktop. In such economies, bargaining outcomes

(formally, outcomes in the core) should collapse to the competitive outcomes that correspond to a

Walrasian equilibrium. This claim is the Edgeworth conjecture.

Bargaining is a complex process, and difficult—arguably impossible—to model in detail. So

economists use the notion of the core to impose discipline on bargaining outcomes. The core of an

economy is the set of allocations (redistribution of goods among agents) that no subset, or coalition,

of agents can improve upon via re-trading among themselves. In other words, the core comprises

the outcomes that are not “blocked” by any coalition of agents. Any allocation that is not in the core

would be renegotiated, or re-contracted, by some set of agents. Note that the definition of the core

involves all possible coalitions of agents, of all possible sizes.

The core convergence theorem states that in a large (in an asymptotic sense) economy any out-

come in the core, arrived at through seemingly indeterminate reallocations and bargaining, will, in

fact, be a Walrasian equilibrium. In other words, the core convergence theorem captures the meaning

of the Edgeworth conjecture, and supports the use of Walrasian equilibria and price-taking behavior

in large economies.

Edgeworth’s conjecture was first formalized by Debreu and Scarf [DS63] as well as Aumann [Aum64].1

In our paper we shall follow Debreu and Scarf; Aumann’s model assumes a limit economy with a

continuum of agents, hence there is no scope in his model to address the questions we are interested

in.2 Debreu and Scarf consider a large economy with limited heterogeneity. Their idea, which goes back

to Edgeworth himself, is to postulate a finite number of agent types, say h, and then imagine a se-

quence of replica economies. The n-th replica of the economy has n identical copies of each type

of agent t ∈ [h]. Under standard assumptions, they show that, in the limit as n → ∞, the core of

the nth replica economy approaches the set of Walrasian equilibrium allocations. Note that, the core

convergence theorem not only requires n to be asymptotically large, but, to address the core, one has

to account for coalitions that are arbitrarily large, both in size and in number.

In contrast to the core, we focus on the κ-core: the set of allocations that cannot be blocked by

any coalition of size at most κ. In a large economy, it is unlikely that coalitions of arbitrary size can

function effectively. Even if a large coalition can effectively communicate among its members, they

would face significant hurdles in aggregating their preferences to achieve an outcome that is collec-

tively better for the members of the coalition. Think of Arrow’s theorem: preference aggregation is

known to be very problematic, and the size and number of all coalitions in a large economy makes

the problem even worse. The κ-core demands much less of the blocking coalitions, and seems to us

a more plausible solution concept than the core. In addition, the number of coalitions to check for is

much smaller in the κ-core than in the core (
(n
κ

)
with fixed κ, rather than 2n).

Our main result is that under benign assumptions on agents’ preferences, an allocation that is in

the κ-core must be an approximate equilibrium (an ε-Walrasian equilibrium). κ depends polynomi-

ally on the approximation guarantee and on the agent heterogeneity in the economy. Our result is

non-asymptotic; it holds for finite economies, as long as the number of agents, n, exceeds κ. We adopt

the model and the assumptions of Debreu and Scarf. In fact, to make our paper self-contained, their

1See [Hil74] and [And92] for reviews of the literature on core convergence.
2A “fractional” version in atomless economies is still possible, see [Sch72; Gro72; Vin72].
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result is restated in Section 3.

We are not the first to prove a quantitative version of Edgeworth’s conjecture. The closest paper

to ours is Mas-Colell [MC79], who also exhibits a bound on the size of blocking coalitions needed for

core convergence.3 The main difference between Mas-Colell’s result and ours is that he considers an

average error as his approximation guarantee. He ensures that the average budget gap, where the

average is taken over all agents in the economy, is small. If we translate his results into our stronger

objective of a per-agent approximation guarantee, his result requires κ to be a function of n.4 Our

result will instead say that κ is O(1/ε2) (as long as n ≥ κ). We should emphasize that Mas-Colell’s

theorem requires substantially weaker assumptions than ours and does not rely on the Edgeworth-

Debreu-Scarf replica setting.

Our main theorem has important algorithmic consequences for the problem of deciding whether

an allocation can be supported as an approximate Walrasian equilibrium. Imagine a policy maker

who would like to install a given allocation using decentralized markets. The standard advise to

such a policy maker comes from the second welfare theorem, which says that any Pareto optimal

allocation can be obtained (given certain assumptions on the economy) as a Walrasian equilibrium,

using a system of taxes and subsidies to adjust all agents’ incomes. We study the same question as in

the second welfare theorem, but when the policy maker is unable to freely use taxes or subsidies.

Specifically, given an allocation in an exchange economy, we consider the problem of deciding

whether there exists prices that make the allocation an approximate Walrasian equilibrium. Our

main algorithmic result is to provide a polynomial-time algorithm that resolves the question. Our

finding stands in stark contrast to the existing hardness results for Walrasian equilibria, see, for ex-

ample, [CDDT09; CSVY06; VY10; GMVY17]. There are settings for which it is known that finding an

equilibrium is hard, and for which our algorithm efficiently decides whether a given allocation can

be supported as an approximate Walrasian equilibrium.

We are, to the best of our knowledge, the first to study the question of “testing” a putative equi-

librium allocation. That is, without use of taxes and subsidies, and thus outside of the second welfare

theorem framework. Our paper resolves this question with a satisfactory algorithm.

1.1 Informal statement of our results

Our paper makes an economic and an algorithmic contribution. The economic contribution is in

the form of a non-asymptotic core convergence theorem, for a weakened notion of the core: one

that only requires robustness to blocks by small coalitions. The algorithmic contribution is to the

problem of testing whether an allocation is a (approximate) Walrasian equilibrium allocation. The

main lemma in our core convergence result allows us to develop an efficient algorithm that decides

whether an allocation can be supported as an approximate Walrasian equilibrium (and find the sup-

porting/equilibrium prices, if they exist).

The κ-core is the set of allocations that are not blocked by coalitions of size at most κ. We show

that core convergence is obtained as long as κ is polynomially large (in the approximation parameter

3Mas-Colell’s result builds on techniques due to Anderson [And78]. Anderson’s theorem, however, does not bound the

size of the blocking coalitions, and hence does not speak to the κ-core. His result connects the size (and other parameters)

of the economy with the approximation guarantee.
4Per-agent approximation guarantees are the focus of modern results in algorithmic game theory. In the terminology of

Anderson’s survey [And92] it reflects uniform convergence (what he terms U3), and it is rare in the older literature on core

convergence, even for results that rely on the power of all coalitions.
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and agent heterogeneity) and the size of the economy is at least κ. Thus, core convergence is obtained

in finite economies.

Specifically, we prove that in any replica economy with well-behaved utilities, allocations in the

κ-core are, in fact, ε-Walrasian, as long as κ is O
(
h2ℓ
ε2

)
; here, h denotes the heterogeneity of the

economy (i.e., the number of different types of agents), ℓ denotes the number of goods, and ε > 0 is

the approximation parameter; see Theorem 3.2. Note that our result does not require the number of

agents n, or the size of blocking coalitions, to be arbitrarily large. The result is applicable whenever

n is Ω(κ).

Our work develops new techniques for addressing core convergence. Instead of relying on limit-

ing, or measure-theoretic, arguments as in the classical literature (see [Hil74]), our proof builds upon

geometric insights and dimension-free results. Specifically, we employ the approximate version of

Carathéodory’s theorem (see [Bar15] and references therein). The classical theorem of Debreu and

Scarf requires a “rounding to rational numbers” argument–the size of the economy needs to be arbi-

trarily large so that such a rounding is possible. Our proof avoids such a rounding by invoking the

approximate Carathéodory theorem. In this manner, we ascertain that the largest coalitions needed

to ensure an approximate Walrasian equilibrium are only polynomially large and independent of the

size of the economy.

Our key technical insight is provided through an efficiently implementable characterization of

approximate Walrasian equilibrium allocations (see Lemma 3.3 in Section 3.1). Our characterization

yields, not only a quantitive version of core convergence, but also an efficient algorithm that tests

whether a given allocation can be supported as an approximate equilibrium.

Our algorithm takes as input an allocation, and determines whether there are prices that make the

allocation into an approximate Walrasian equilibrium. This result is potentially useful to understand

the policy objectives that can be obtained in a descentralized fashion, as a Walrasian equilibrium. It

also contributes to the algorithmic literature on equilibrium computation, as it identifies a notable

dichotomy between testing and computing Walrasian equilibria.

The problem of computing Walrasian equilibria has been studied extensively in algorithmic game

theory. Most results in this direction are negative: finding a Walrasian equilibrium is computationally

hard for general settings; see, e.g., [CDDT09; CSVY06; VY10; GMVY17]. By contrast, we show that the

testing counterpart is computationally tractable. In particular, we develop a polynomial-time algo-

rithm that, for a given allocation, finds prices (if they exist) that make the allocation an approximate

Walrasian equilibrium (Theorem 4.2).5

The above-mentioned results require the utilities in the economy to be strongly concave. Hence,

as is, they do not address piecewise-linear concave (PLC) utilities, which, while concave, are not

strongly concave. The PLC case is particularly important in light of the hardness results in [DD08;

CDDT09; GMVY17]. However, we show that the developed ideas can be adapted to obtain an effi-

cient testing algorithm even for PLC economies (Theorem 4.5).

5Note that, in particular settings, it might be possible to efficiently test if a given allocation is Pareto optimal and, hence

(using the characterization provided by the welfare theorems), determine whether the allocation can be supported as an

exact equilibrium. However, in and of itself, this observation does not extend to approximate equilibria. Furthermore, it

does not directly lead to an efficient method for finding the supporting, equilibrium prices.
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2 Notation and Preliminaries

Notational Conventions. For vectors x, y ∈ R
ℓ, write x ≤ y iff xi ≤ yi for all i ∈ [ℓ]. Also,

x ≪ y denotes that xi < yi for all i ∈ [ℓ]. We will use ∆ to refer to the standard simplex in R
ℓ,

∆ :=
{
x ∈ R

ℓ |∑ℓ
i=1 xi = 1 and xi ≥ 0 for all i

}
. The convex hull of a set of vectors A ∈ R

ℓ will be

denoted by cvh(A). In addition, the all-ones and all-zeros vector will be denoted by 1 and 0, respec-

tively.

Exchange economies. An exchange economy E comprises of a set of consumers, [h] := {1, 2, . . . , h},

and a set of goods, [ℓ] := {1, 2, . . . , ℓ}. Each consumer is endowed with different quantities of the

goods as an endowment; specifically, for every consumer i ∈ [h], the vector ωi ∈ R
ℓ
+ denotes (compo-

nentwise) the amount of each good endowed to i. The preference of consumer i ∈ [h], over bundles

of goods, is specified by a utility function, ui : R
ℓ
+ 7→ R. In particular, every consumer is described

by a pair (ui, ωi). An exchange economy E is a tuple ((ui, ωi))
h
i=1.

We shall adopt some standard assumptions on consumers’ utilities: uis are continuous and mono-

tone increasing. We further assume that the utilities are continuously differentiable6 and α-strongly

concave, with α > 0. Strong concavity (convexity) is a well-studied property in convex optimization

(see, for example, [BV04]). It provides a parametric strengthening of concavity. Formally, a differen-

tiable function, u : Rℓ 7→ R, is said to be α-strongly concave within a set R ⊂ R
ℓ iff the following

inequality holds for all x, y ∈ R:

u(y) ≤ u(x) +∇u(x)T (y − x)− α

2
‖y − x‖2.

Here, ∇u(x) is the gradient of the function u at point x and ‖ · ‖ denotes the Euclidean norm. Note

that if α = 0, then u is simply a concave function. Furthermore, the case of α > 0 corresponds to strict

concavity.

The set R specifies the subdomain over which strong concavity holds. We assume that R is appro-

priately large and, in particular, that it contains the Euclidean ball of radius r ∈ R+ and center ωi (the

endowment vector), for each i. We assume that the radius r satisfies αr2 ≥ 2ελℓ
h + 2, with ε > 0 being

the approximation parameter and λ denoting the Lipschitz constant of the utilities. At a high level,

the condition asserts that agent i’s utility function has sufficient curvature close to i’s endowment

ωi. The strong concavity assumption is satisfied by standard examples of utility functions used in

economics; in particular, utilities of the form u(y) := (
∑ℓ

i=1 y
ρ
i ), with 0 < ρ < 1—i.e., utilities within

the CES (constant elasticity of substitution) family of utilities—are strongly concave; see Appendix B

for an illustrative example. Throughout, for ease of presentation, we will simply say that the utilities

are α-strongly concave, with the set R being implicit.

Core. For an exchange economy with h consumers and ℓ goods, E = ((ui, ωi))
h
i=1, we define the

following central constructs

• An allocation in E is a vector, x = (xi)
h
i=1 ∈ R

hℓ
+ , such that

∑h
i=1 xi =

∑h
i=1 ωi. In other words, an

allocation corresponds to a redistribution of the endowments among the consumers.

6This additional smoothness assumption is primarily for ease of exposition. One can extend the arguments developed

in this work to continuous functions by replacing gradients with subgradients.
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• A nonempty subset S ⊆ [h] is a coalition. Let S be a coalition, then a vector (yi)i∈S is an S-

allocation if
∑

i∈S yi =
∑

i∈S ωi.

• A coalition S blocks the allocation x = (xi)
h
i=1 in E if there exists an S-allocation (yi)i∈S such that

ui(yi) > u(xi) for all i ∈ S. That is, a blocking coalition is a group of consumers that are better

off trading among themselves, than they would have been under x.

• The core of E is the set of all allocations that are not blocked by any coalition.

• The κ-core of E , for κ ∈ Z+, is the set of allocations that are not blocked by any coalition of

cardinality at most κ. Hence, in an economy with n consumers, the core is the n-core and the

set of individually rational allocations are the 1-core.

Equilibrium and approximate equilibrium. In an exchange economy E = ((ui, ωi))i∈[h], a Walrasian

equilibrium is a pair (p, x) ∈ R
ℓ
+ × R

hℓ
+ in which

1. p ∈ R
ℓ
+ is a price vector for the ℓ goods in the economy.

2. x = (xi)i∈[h] ∈ R
hℓ
+ is an allocation, i.e., under x supply equals the demand,

∑h
i=1 xi =

∑h
i=1 ωi.

3. Every consumer i ∈ [h] maximizes its utility ui, while consuming its endowment ωi. That

is, pTxi = pTωi and, for all bundles y ∈ R
ℓ
+ with the property that ui(y) > ui(xi), we have

pT yi > pTωi.

Next, we describe what we mean by an approximate Walrasian equilibrium. We use a notion

of approximation in which consumers are optimizing exactly, subject to budget constraints that are

satisfied approximately.

Formally, in an exchange economy E = ((ui, ωi))i∈[h], ε-Walrasian equilibrium is a pair (p, x) ∈
R
ℓ
+×R

hℓ
+ in which the (normalized) price vector p ∈ ∆ and the allocation x ∈ R

hℓ
+ satisfy the following

two conditions, for all consumers i ∈ [h]:

(i) |pTxi − pTωi| ≤ ε and

(ii) for any bundle y ∈ R
ℓ
+, with the property that ui(y) > ui(xi), we have pTy > pTωi − ε/h.

Our notion of approximation is different from the standard use in algorithmic game theory, where

agents are approximately optimizing, but it conforms to the most used definitions in economic the-

ory: see [Sta69; AH71; HSZ73; Hil74; And78; And82; AKR82; MC78; MC79]. Economists do not view

utilities as objective, observable, entities. Hence it is natural in economics to measure the approxima-

tion error in monetary terms, using consumers’ expenditure, instead of measuring approximation in

terms of utility loss.

That said, it is straightforward to move between different notions of approximate equilibrium,

and our result continues to apply. One can, instead, require that the approximation guarantee be in

terms of the utilities. Or that budget exhaustion holds exactly (so the value of agents’ consumption

equals the value of their endowment), but the overall supply is only approximately equal to the de-

mand. In Appendix A we show that one can obtain these kinds of approximations as well from the

results in this present paper.
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Walrasian allocation. The term (approximate) Walrasian allocation refers to an allocation x ∈ R
hℓ
+ in E

for which there exists a price vector p ∈ ∆ such that (p, x) is a (approximate) Walrasian equilibrium.

Utility normalization. Our work addresses additive approximations, hence, we will follow the stan-

dard assumption (used in the context of absolute-error bounds) that the utilities are normalized so

that ui(xi) ∈ [0, 1) for all consumers i ∈ [h] and all allocations (xi)i ∈ R
hℓ
+ . In fact, we shall nor-

malize then so that ui(xi) ∈ [0, 1 − η̄), where η̄ ∈ (0, 1) for all consumers i ∈ [h] and all allocations

(xi)i ∈ R
hℓ
+ . These normalizations are possible as the set of all allocations is compact and, hence, each

utility function will achieve a maximum over the space of allocations.

Note that the utilities are normalized only for feasible allocations in the underlying exchange

economy. A bundle which is, say, component-wise greater than the total endowment in the exchange

economy—or, allocations in a replica economy (defined below)—can have utility arbitrarily greater

than one.

Also, we will use λ to denote the Lipschitz constant of the utility functions, uis.

Replica Economies. Let E = ((ui, ωi))i∈[h] be an exchange economy over the commodity space R
ℓ
+.

The n-th replica of E , for n ≥ 1, is the exchange economy En = ((ui,t, ωi,t))i∈[n],t∈[h], with nh consumers.

In En the consumers are indexed by (i, t), with index i ∈ [n] and type t ∈ [h], and they satisfy:

ui,t = ut and ωi,t = ωt.

Replica economies constitute the basic model of a large economy with limited heterogeneity. See

[MCWG+95, Chapter 18] for a textbook treatment.7

As mentioned previously, the utility normalization is considered only with respect to feasible al-

locations in the underlying economy E .8 Indeed, the consumers’ utilities scale up for feasible bundles

in En, since the amount of each good in the economy increases as a function of n.

An allocation x = (xi,t) of En is said to have the equal treatment property iff all the consumers with

the same type are allocated identical bundles, i.e., iff xi,t = xi′,t for every t ∈ [h] and i, i′ ∈ [n].

The following lemma is established in the work of Debreu and Scarf [DS63] and it asserts that

allocations contained in the h-core necessarily satisfy the equal treatment property. Debreu and Scarf

state the result as a consequence of the core, or, in the terminology of our paper, the (n×h)-core. In ac-

tuality, the stronger statement below holds true. We include a proof in Appendix C for completeness,

but the proof is really the same as that of Debreu and Scarf.

Lemma 2.1 (Equal treatment property). Let the utilities of each consumer be strictly monotonic, continuous,

and strictly concave in an exchange economy E = ((ui, ωi))i∈[h] and, hence, in the corresponding replica

economy En. Then, every h-core allocation of En satisfies the equal treatment property.

By Lemma 2.1, we can express the h-core allocations of En as vectors in R
hℓ
+ ; with the convention

that consumers that have the same type receive the same bundle. This succinct representation also

applies to our main result, which considers κ-cores, with κ ≥ h. Hence, for brevity, we represent

7The idea of replicas was suggested by Edgeworth himself in his discussion of the competitive hypothesis in large

economies. He used X and Y to refer to two different agents, and wrote: “Let us now introduce a second X and a second

Y ; so that the field of competition consists of two Xs and two Ys. And for the sake of illustration (not of argument)

let us suppose that the new X has the same requirements, the same nature as the old X; and similarly that the new Y is

equal-natured with the old.” [Edg81].
8This, in particular, ensures that this normalization is compatible with the strict monotonicity of the utilities.
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κ-core allocations9 of the replica economy En as vectors in R
hℓ
+ .

The definition of a Walrasian equilibrium (both, exact and approximate) naturally extends to

replica economies En, wherein the price vector p ∈ R
ℓ
+ and the allocation x ∈ R

nhℓ
+ .

Furthermore, note that if (p, x) is a (approximate) Walrasian equilibrium in E , then p and an n-

times replicated version of x constitute a (approximate) Walrasian equilibrium in En. Analogously, if

x is a Walrasian allocation in E , then it10 is a Walrasian allocation in En as well, for all n ≥ 1.

Throughout, we will address allocations that satisfy the equal treatment property. Hence, we will

simply state that (p, x) ∈ R
ℓ
+ × R

hℓ
+ is a (approximate) Walrasian equilibrium—or that x ∈ R

hℓ
+ is a

(approximate) Walrasian allocation—without distinguishing between E and En in this context.

3 A Quantitative Core Convergence Theorem

“. . . the reason why the complex play of competition tends to a simple uniform result – what is

arbitrary and indeterminate in contract between individuals becoming extinct in the jostle of com-

petition – is to be sought in a principle which pervades all mathematics, the principle of limit, or

law of great numbers as it might perhaps be called.”

(Francis Ysidro Edgeworth [Edg84])

The following classic result of Debreu and Scarf [DS63] establishes that, as n tends to infinity, each

allocation in the core of En is a Walrasian allocation.

Theorem 3.1 (Debreu-Scarf Core Convergence Theorem). Assume that in an exchange economy E—with

h consumers and ℓ number of goods—the consumers’ utilities are strictly monotonic, continuous, and strictly

quasiconcave. Furthermore, suppose that an allocation x ∈ R
hℓ
+ belongs to the core of En for all n ≥ 1. Then,

x is a Walrasian allocation, i.e., there exists a nonzero price vector p ∈ R
ℓ
+ such that (p, x) is a Walrasian

equilibrium.

By contrast, our result is nonasymptotic–it shows that as long as n is quadratic in h, ℓ, and 1/ε, a

core allocation is an ε-Walrasian allocation. In fact, our result holds for κ-cores, where κ is O
(
h2ℓ
ε2

)
.

Theorem 3.2 (Main Result). Assume that in an exchange economy E = ((ui, ωi))i∈[h]—with h consumers

and ℓ number of goods—the utilities, uis, are strictly monotonic, continuously differentiable, and α-strongly

concave. Furthermore, suppose that an allocation x ∈ R
hℓ
+ belongs to the κ-core of En, for any

n ≥ κ ≥ 16

α

(
λℓh

ε
+

h2

ε2

)
.

Then, x is an ε-Walrasian allocation (i.e., there exists a price vector p ∈ ∆ such that (p, x) is an ε-Walrasian

equilibrium). Here, ε > 0 is the approximation parameter and λ is the Lipschitz constant of the utilities.

We will establish this theorem by showing that if an allocation x is in the κ-core, then there exists

a price vector p ∈ ∆ such that (p, x) is a ε-Walrasian equilibrium. It is relevant to note that, in-

stead of relying on limiting arguments, we use nonasymptotic results (with relevant approximation

9Note that in En an arbitrary allocation (say, one that does not satisfy equal treatment) is, in fact, a vector in R
nhℓ
+ .

10Specifically, a replicated version of x
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guarantees), such as the approximate version of Carathéodory’s theorem (see [Bar15] and references

therein). Developing such a proof ensures that the underlying parameters (e.g., the core size κ) are

only polynomially large (and not arbitrarily large). This approach not only provides us with a quan-

titive version of the core convergence theorem, but also an efficiently implementable characterization

(Section 3.1). In Section 4 we will use the developed characterization to design an efficient algorithm

that tests whether a given allocation is approximately Walrasian, or not.

We will begin by establishing (in Section 3.1) a useful geometric property that is satisfied by all

allocations (Walrasian or otherwise). At a high level, this property shows that one can focus on

a bounded subset of a specific convex hull, which in itself is unbounded. This bounding exercise

essentially enables us to bypass asymptotic arguments, and prove the quantitative version of the

core convergence theorem in Section 3.3.

The fact that we can work with a bounded set (and not an unbounded one) is also essential

from an algorithmic standpoint. Specifically, it lets us apply the Ellipsoid method and develop (in

Section 4) an efficient, testing algorithm for Walrasian allocations.

3.1 Bounded Hull

The result developed in this section applies to arbitrary allocations; allocations that might or might

not be in the core. Consider an exchange economy E = ((ui, ωi))i∈[h]—with h consumers and ℓ

goods—in which the utilities, uis, are strictly monotonic, continuously differentiable, and α-strongly

concave. As before, λ denotes the Lipschitz constant of the utility functions. Let δ := ε/h.

Let y = (yi)i∈[h] be an allocation in E . With parameter η ∈ (0, 1), for each consumer i ∈ [h]

we define V η
i :=

{
y ∈ R

ℓ
+ | ui(y) ≥ ui(yi) + η

}
to denote the upper contour set with respect to the

allocated bundle yi and margin η. Also, write Qη
i to denote the set of trades from the endowment ωi

that render consumer i better off than the allocated bundle, Qη
i :=

{
z ∈ R

ℓ | ui(z + ωi) ≥ ui(yi) + η
}

.

By definition, z ∈ Qη
i iff (z + ωi) ∈ V η

i .

For each consumer i, we also consider Q̂η
i , a bounded subset of Qη

i ; specifically,

Q̂η
i := Qη

i ∩
{
z ∈ R

ℓ : ‖z‖ ≤
√

2(λℓδ + 1)

α

}
,

The set Q̂η
i is obtained by intersecting Qη

i with the Euclidean ball of radius
√

2(λℓδ+1)
α and center

0.

Since the utility ui is continuous and concave, the set Qη
i is closed and convex. Therefore, the sub-

set Q̂η
i is compact (closed and bounded) and convex. The following lemma shows that, by bounding

the sets in this manner, we do not not loose out on an important containment property.

Lemma 3.3. Let y be an allocation in an economy E with strictly monotonic, continuously differentiable, and

strongly concave utilities. Suppose that the sets Qη
i and Q̂η

i , for i ∈ [h], are as defined above, with parameters

δ > 0 and η ∈ [0, η̄). Then,

(−δ)1 ∈ cvh

(
h⋃

i=1

Qη
i

)
iff (−δ)1 ∈ cvh

(
h⋃

i=1

Q̂η
i

)
.

Proof. The reverse direction of the claim is direct, since Q̂η
i ⊂ Qη

i for all i ∈ [h].

9



For the forward direction, we have vectors zi ∈ Qη
i and a convex combination λi ≥ 0, for i ∈ [h],

such that
∑h

i=1 λi = 1 and

h∑

i=1

λizi = (−δ)1 (1)

Let R := maxi{‖zi‖ : i ∈ [h]}. By definition, the zis are contained in the (closed) Euclidean ball

B(R) of radius R and center 0. Note that, for each i ∈ [h], the intersection Qη
i ∩B(R) is a compact set.

Let Z denote the collection of all tuples

(z′1, z
′
2, . . . , z

′
h) ∈ (Qη

1 ∩B(R))× (Qη
2 ∩B(R))× . . .×

(
Qη

h ∩B(R)
)

for which there exists exists convex coefficients λ′
is such that

∑
i λ

′
iz

′
i ≤ (−δ)1, i.e., there exists a

convex combination of z′is which is component-wise upper bounded by (−δ)1.11

From (1), we know that Z is nonempty. Given that the sets (Qη
i ∩ B(R))s are compact, one can

show that Z is compact as well. Hence, the problem of minimizing max {‖z′i − (−δ)1‖ | (z′i)i ∈ Z}
admits an optimal solution, say (z∗t )t. Note that, by definition of Z , there exists convex coefficients

(λ∗
t )t∈H∗ that satisfy

∑
t∈H∗ λ∗

t z
∗
t ≤ (−δ)1; here, subset H∗ ⊆ [h] is selected to ensure that λ∗

t > 0 for

all t ∈ H∗.

Next, we will prove that ‖z∗t ‖ ≤
√

2(λℓδ+1)
α , for all t ∈ H∗. Subsequently, we will show that using

z∗t s we can obtain vectors z̃t ∈ Qη
t that satisfy the same norm bound (‖z̃t‖ ≤

√
2(λℓδ+1)

α ) and whose

convex combination is equal to (−δ)1. This norm bound implies that z̃t ∈ Q̂η
t and, hence, leads to the

desired containment: (−δ)1 ∈ cvh
(⋃h

i=1 Q̂
η
i

)
.

Assume, by way of contradiction, that ‖z∗i ‖ >

√
2(λℓδ+1)

α , for some i ∈ H∗. For such an i, consider

bundle x∗i := z∗i +ωi. By definition, z∗i ∈ Qη
i and, hence, x∗i ∈ V η

i (i.e., x∗i belongs to the upper contour

set). Given that ui is α-strongly concave, we have12

ui(ωi) ≤ ui(x
∗
i ) +∇ui(x

∗
i )

T (ωi − x∗i )−
α

2
‖ωi − x∗i ‖2 (2)

Since ‖ωi − x∗i ‖ = ‖z∗i ‖ >
√

2(λℓδ+1)
α , inequality (2) reduces to

∇ui(x
∗
i )

Tx∗i < ∇ui(x
∗
i )

Tωi + (ui(x
∗
i )− ui(ωi))−

α

2

2(λℓδ + 1)

α
(3)

Now observe that x∗i must satisfy ui(x
∗
i ) = ui(ȳi) + η < 1: if this is not the case (i.e., we have

ui(x
∗
i ) > ui(ȳi) + η), then by reducing a positive component13 of z∗i = x∗i − ωi we can ensure that z∗i

11The definition of Qη
i s provide a component-wise lower bound as well: zi ≥ −ωi, for each vector zi ∈ Qη

i .
12Note that, here the desired bound holds even if x∗

i lies outside the range set R of strong concavity (see Section 2).

Specifically, we can consider a convex combination of ωi and x∗
i , say vector x̃i, that is at a distance r (as specified in

Section 2) away from ωi. The assumption on R ensures that x̃i ∈ R and αr2

2
≥ λδℓ + 1. Applying strong concavity

with x̃i we get ui(ωi) ≤ ui(x̃i) + ∇ui(x̃i)
T (ωi − x̃i) −

α
2
‖ωi − x̃i‖

2 ≤ ui(x̃i) + ∇ui(x̃i)
T (ωi − x̃i) − (λℓδ + 1). Since

ui(x
∗
i ) +∇ui(x

∗
i )

T (ωi − x∗
i ) ≥ ui(x̃i) +∇ui(x̃i)

T (ωi − x̃i), inequality (3) follows.
13If all the components of z∗i are negative, then x∗

i ≤ ωi and we get the desired bound ui(x
∗
i ) ≤ ui(ωi) ≤ 1 − η̄. Here,

the last inequality follows from the fact that the utility of any feasible allocation (and, hence, for ωi) is normalized to be at

most 1− η̄
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moves closer to (−δ)1 and at the same time z∗i continues to be in Qη
i (i.e., the following inequality

continues to hold ui(x
∗
i ) ≥ ui(ȳi) + η). Also, note that such a reduction maintains the containment

of z∗i s in Z ; specifically, the following inequality continues to hold
∑

t λ
∗
t z

∗
t ≤ (−δ)1. A repeated

application of this argument gives us x∗i = z∗i + ωi with the property that ui(x
∗
i ) = ui(ȳi) + η < 1;

here, we have the last inequality since η < η̄.14

The utility function ui is λ-Lipschitz, hence, its gradient at any point x∗i ∈ R
ℓ satisfies ‖∇ui(x

∗
i )‖∞ ≤

λ. That is, ‖∇ui(x
∗
i )‖1 ≤ λℓ. Therefore,

∇ui(x
∗
i )

Tx∗i < ∇ui(x
∗
i )

T (ωi + (−δ)1) (4)

Now, we can apply Proposition 3.4 (stated and proved below) with x = x∗i , w = (ωi+(−δ)1), and

inequality (4), to establish that there exists a positive µ ∈ (0, 1] such that ui(x
∗
i ) ≤ ui ((1− µ)x∗i + µ (ωi + (−δ)1)).

Rewriting, we get ui ((1− µ)(x∗i − ωi) + µ(−δ)1+ ωi) ≥ ui(x
∗
i ). Therefore,

ẑi := (1− µ)(x∗i − ωi) + µ(−δ)1 = (1− µ)z∗i + µ(−δ)1 ∈ Qη
i ,

as x∗i ∈ V η
i and z∗i ∈ Qη

i .

The vector ẑi is itself a convex combination of z∗i and (−δ)1. This ensures that there exists a convex

combination, (λ̂t)t∈H∗ , such that

λ̂iẑi +
∑

t∈H∗\{i}
λ̂tz

∗
t ≤ (−δ)1.

Note that ‖ẑi−(−δ)1‖ = (1−µ)‖z∗i −(−δ)1‖ < ‖z∗i −(−δ)1‖. This argument can be repeated for all

other js with ‖z∗j − (−δ)1‖ = max{‖z∗t − (−δ)1‖ | t ∈ H∗}, contradicting the definition (optimality)

of z∗t s.

Therefore, the desired upper bound on the norm holds: ‖z∗t ‖ ≤
√

2(λℓδ+1)
α , for all t ∈ H∗.

To complete the proof we will show that z∗t s can be transformed into vectors z̃t ∈ Qη
t that satisfy

the same norm bound and whose convex combination is equal to (−δ)1. Write ϕ :=
∑

t λ
∗
t z

∗
t and note

that ϕ ≤ (−δ)1. If component a ∈ [ℓ] of ϕ is strictly less than −δ, then there exists a z∗i such that its ath

component is less than −δ as well: z∗i,a < −δ. We can increase z∗i,a till either it becomes equal to zero,

or the ath component of ϕ reaches −δ.15 Note that in this transformation while the ath component of

z∗i increases in value, it decreases in magnitude. Hence, the utility ui(z
∗
i +ωi) increases and the norm

of z∗i decreases. Repeatedly applying this procedure gives us vectors z̃t ∈ Qη
t such that ‖z̃t‖ ≤ Λ and∑

t λ
∗
t z̃t = (−δ)1.

Overall, this implies that (−δ)1 ∈ cvh
(⋃h

i=1 Q̃i

)
and the stated claim follows.

The following observation was used in the proof of Lemma 3.3.

Proposition 3.4. For a continuously differentiable and concave function u : Rℓ 7→ R, let vector x,w ∈ R
ℓ

satisfy the inequality ∇u(x)Tx < ∇u(x)Tw. Then, there exists a positive µ ∈ (0, 1] such that u(x) ≤
u ((1− µ)x+ µw).

Proof. Let ζ := ∇u(x)T (w − x) > 0. Also, for parameter µ ∈ (0, 1], denote by xµ the convex combina-

tion (1− µ)x+ µw. As µ tends to zero, xµ tends to x.

14Recall that the utility of any feasible allocation (and, hence, for yi) is normalized to be at most 1− η̄.
15Here, the convex coefficients, λ∗

t s, remain unchanged.
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Given that u is concave,

u(x) ≤ u(xµ) +∇u(xµ)
T (x− xµ)

= u(xµ)− µ∇u(xµ)
T (w − x) (5)

The Cauchy-Schwarz inequality gives us |〈∇u(xµ) − ∇u(x), (w − x)〉| ≤ ‖∇u(xµ) − ∇u(x)‖ ·
‖w − x‖. Since u is continuously differentiable, there exists a small enough, but positive, µ such

that the right-hand-side of the previous inequality is strictly less than ζ . For such a µ > 0 we have

∇u(xµ)
T (w − x) > 0. Therefore, using inequality (5), we get that there exists a µ ∈ (0, 1] for which

u(x) ≤ u ((1− µ)x+ µw).

3.2 Lemma for κ-Core Allocations

Recall the notation from Theorem 3.2 and write δ := ε
h along with γ :=

√
2(λℓδ+1)

α . Note that, in

Theorem 3.2, the lower bound on κ is equal to 8γ2

δ2
.

In this section we apply Lemma 3.3 to establish an important separation property satisfied by

allocations in the κ-core of an economy. In contrast to the result developed in the previous section,

the next lemma (Lemma 3.5) specifically addresses κ-core allocations.

In particular, given a κ-core allocation x = (xi)i∈[h] ∈ R
hℓ
+ , let η̄ > 0 be such that ui(xi) ∈ [0, 1 − η̄]

for all i ∈ [h]–the normalization of the utilities (to lie in [0, 1)) ensures that such a η̄ exists. Consider

an arbitrarily small, but positive, parameter η ∈ (0, η̄).

For each consumer i ∈ [h], write Uη
i :=

{
x ∈ R

ℓ
+ | ui(x) ≥ ui(xi) + η

}
to denote the upper con-

tour set with respect to the allocated bundle xi and margin η. Also, write P η
i to denote the set of

trades from the endowment ωi that render consumer i better off than the allocated bundle, P η
i :={

z ∈ R
ℓ | ui(z + ωi) ≥ ui(xi) + η

}
. By definition, z ∈ P η

i iff (z + ωi) ∈ Uη
i .

The next lemma provides an important characterization in terms of the convex hull of the P η
i s.

This lemma shows that under a κ-core allocation beneficial trades (i.e., vectors in P η
i s) cannot be

combined (as a convex combination) across consumers to obtain (−δ)1; recall that δ := ε/h. At a high

level, this corresponds to the fact that, under a κ-core allocation, mutually beneficial redistributions

are not possible across consumers.

Lemma 3.5. For any allocation x = (xi)i∈[h] that belongs to the κ-core of an economy En, we have

(−δ) 1 /∈ cvh

(
h⋃

i=1

P η
i

)
.

Proof. Write ν := (−δ)1. Suppose, towards a contradiction, that ν ∈ cvh
(⋃h

i=1 P
η
i

)
. Then, applying

Lemma 3.3, we get that there exist vectors z∗t ∈ P η
t such that their norm is bounded, ‖z∗t ‖ ≤

√
2(λℓδ+1)

α ,

and their convex hull contains ν:

ν ∈ cvh (z∗t )t∈H∗

Here, H∗ is a subset of [h] with the property that all t in H∗ have strictly positive weight in the convex

combination that yields ν.
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Therefore, via the approximate version of Carathéodory’s theorem (see, in particular, Theorem 2

in [Bar15]), we get that, for any integer k ≥ 8γ2

δ2 , there exists a vector ν ′ ∈ cvh (z∗t )t∈H∗ which is δ close

to ν (i.e., ‖ν ′ − ν‖ < δ) and it satisfies

ν ′ =
∑

t∈H∗

βt
k
z∗t ,

with integers βt ∈ Z+ summing up to k:
∑

t∈H∗ βt = k.

Choose an integer k ≥ 8γ2

δ2
with k ≤ κ. Then, ν ′ is δ-close to ν and it is a k-uniform convex

combination of the z∗t s. Given that the Euclidean distance between ν ′ and ν = (−δ)1 is strictly

smaller than δ, the vector ν ′ is componentwise strictly negative: ν ′ ≪ 0.

Now, consider a coalition S in En defined by including βt ∈ Z+ copies of consumers of type

t ∈ H∗. Note that |S| = k ≤ κ.

For each member of S of type t, let consumption bundle y∗i,t := z∗t + ωt. Since z∗t ∈ P η
t , we have

ut(y
∗
i,t) ≥ ut(xt) + η for all (i, t) ∈ S.

Also, the fact that ν ′ is a k-uniform convex combination of the z∗t s gives us

1

k


 ∑

(i,t)∈S
y∗i,t −

∑

(i,t)∈S
ωt


 = ν ′ ≪ 0

Therefore,
∑

(i,t)∈S y∗i,t ≪
∑

(i,t)∈S ωt =
∑

(i,t)∈S ωi,t. As a consequence, the coalition S, which has

cardinality k ≤ κ, blocks the given allocation x = (xi)i∈[h], in the replica economy En. This contradicts

that x belongs to the κ-core of En.

3.3 Proof of Theorem 3.2

For the given κ-core allocation x = (xi)i∈[h] ∈ R
hℓ
+ of the economy En, we have Uη

i := {x ∈ R
ℓ
+ |

ui(x) ≥ ui(xi) + η} and P η
i := {z ∈ R

ℓ | ui(z + ωi) ≥ ui(xi)}, for each i ∈ [h].

Lemma 3.5 guarantees that (−δ) 1 /∈ cvh
(⋃h

i=1 P
η
i

)
. Hence, there exists a hyperplane between

(−δ) 1 and the convex hull; an implication of the hyperplane separation theorem.

In particular, let p ∈ R
ℓ specify such a separating hyperplane: p · ((−δ)1) ≤ p ·cvh

(⋃h
i=1 P

η
i

)
. The

upward closure of P η
i s (a consequence of strict monotonicity of the consumers’ utility functions), and

p 6= 0, ensures that p > 0. Hence, by scaling, we can assume that p ∈ ∆.

We will show that p—as a price vector—certifies that x is an ε-Walrasian allocation, i.e., (p, x) is

an ε-Walrasian equilibrium.

Recall that, in an exchange economy E = ((ui, ωi))i∈[h], a pair (q, y) ∈ ∆ × R
hℓ
+ (with price vector

q and allocation y) is deemed to be an ε-Walrasian equilibrium iff the following two conditions hold

for every consumer i: (i) |qT yi − qTωi| ≤ ε and (ii) for any bundle x, with ui(x) > ui(yi), we have

qTx > qTωi − ε/h. To complete the proof, we will show that (p, x) satisfies these conditions.

Note that, for each i ∈ [h] and any z = (x− ωi) ∈ P η
i , the separation by p ∈ ∆ implies

pT (x− ωi) = pT z ≥ pT ((−δ)1) = −δ.

Hence, for any bundle x ∈ Uη
i (i.e., for any bundle x that satisfies ui(x) ≥ ui(xi) + η) the expenditure

is at least the income (minus δ): pTx ≥ pTωi − δ; recall that δ = ε/h.

13



Here, the analysis holds for any η > 0, however small. That is, for a bundle x ∈ R
ℓ
+, with the

property that, ui(x) > ui(xi), we have

pTx ≥ pTωi − δ (6)

Therefore, (p, x) satisfies the second condition in the definition of an ε-Walrasian equilibrium.

Finally, we will show that even under the allocated bundle xi, the expenditure is close to the

income. Using the continuity of the utilities and a small enough η, we can apply inequality (6) to

obtain pTxj ≥ pTωj − δ for all consumers j ∈ [h].

Allocation x = (xj)j∈[h] satisfies the equal treatment property (Lemma 2.1), hence
∑

j∈[h] xj =∑
j∈[h] ωj . Therefore, for each consumer i, we have (xi − ωi) =

∑
j∈[h]\{i}(ωj − xj). Taking inner

product with p ∈ ∆, we get that (p, x) satisfies the first condition in the definition of an ε-Walrasian

equilibrium as well:

pT (xi − ωi) =
∑

j∈[h]\{i}
pT (ωj − xj) ≤ (h− 1)δ < ε.

Overall, we get that (p, x) is an ε-Walrasian equilibrium and this completes the proof.

4 Testing Algorithm for Walrasian Allocations

This section develops a polynomial-time algorithm that efficiently determines whether a given alloca-

tion is an ε-Walrasian allocation, or not. Specifically, given an exchange economy16 E = ((ui, ωi))i∈[h]—
with h consumers and ℓ goods—along with an allocation y = (yi)i∈[h] ∈ R

hℓ, the developed algorithm

efficiently finds a price vector p ∈ ∆ (if one exists) such that (p, y) is an ε-Walrasian equilibrium in

E . If no such price vector exists (i.e., y is not an ε-Walrasian allocation), then the algorithm correctly

reports as such.

The developed algorithm runs in time that is polynomial in the number of consumers h. The

algorithm applies, in particular, to completely heterogeneous economies, in which all the consumers

can be of different type. In other words, our algorithmic results are not confined to the replica-

economy framework.

The testing algorithm builds upon Lemma 3.3. As before, for any given allocation y = (yi)i∈[h]
(which might or might not be approximately Walrasian) and each consumer i ∈ [h], we define the set

Qi := {z ∈ R
ℓ | ui(z+ωi) ≥ ui(yi)}.17 We will prove (in Lemma 4.1 below) that the (non) containment

of (−δ)1 in the convex hull of the Qis characterizes Walrasian equilibria; recall that δ := ε/h.

This geometric characterization is interesting in its own right. However, given that the sets Qis are

unbounded, this characterization (in terms of Qis), does not, in and of itself, translate into an efficient

testing algorithm. Specifically, in order to apply the Ellipsoid method and test whether a vector is

contained in a specific convex set, one requires the set to be bounded. The quantitive treatment

developed in this paper—in particular, Lemma 3.3—enables us to bypass this issue. Specifically, we

will show that it suffices to work with the a bounded subset of Qi. Towards that end, we define

Q̂i := Qi ∩
{
z ∈ R

ℓ : ‖z‖ ≤
√

2(λℓδ + 1)

α

}
(7)

16Our algorithm only requires oracle access to the underlying utilities uis and their gradients. In particular, our algorith-

mic result will hold even in the absence of an explicit (say, a closed form) description of the utility functions.
17That is, in terms of the notation developed in Section 3.1, we are considering Qη

i with η = 0.
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Here, α is the strong-concavity parameter of the utilities and λ is their Lipschitz constant.

As observed before, the set Qi is closed and convex. Furthermore, the subset Q̂i is compact (closed

and bounded) and convex.18 Also, note that any vector z in Qi of norm less than
√

2(λℓδ+1)
α , belongs

to Q̂i as well.

Lemma 4.1. An allocation y is an ε-Walrasian allocation in an economy E iff

(−δ) 1 /∈ cvh

(
h⋃

i=1

Q̂i

)
.

Here, for each consumer i ∈ [h], the set Q̂i is as defined above.

Proof. First, we will consider the case wherein (−δ)1 ∈ cvh
(⋃h

i=1 Q̂i

)
and show that this contain-

ment implies that y is not an ε-Walrasian allocation. Then, we will address the complementary case

and prove that if (−δ)1 /∈ cvh
(⋃h

i=1 Q̂i

)
, then y is indeed an ε-Walrasian allocation.

The containment (−δ)1 ∈ cvh
(⋃h

i=1 Q̂i

)
implies that there exists vectors zi ∈ Q̂i ⊂ Qi, with

i ∈ [h], along with convex coefficients λis such that
∑

i λizi = (−δ)1. Here, λi ≥ 0, for all i, and∑
i λi = 1.

For each i, write xi = zi + ωi. Hence, we have
∑

i

λi(xi − ωi) = (−δ)1 (8)

Furthermore, given that zi ∈ Qi, the definition of Qi implies ui(xi) ≥ ui(yi), for each i.

Say, towards a contradiction, that y is an ε-Walrasian allocation. That is, there exits a price vector

p ∈ ∆ such that (p, y) is a ε-Walrasian equilibrium. Taking inner product with p on both sides of the

equation (8), we obtain
∑

i λi p
T (xi−ωi) = −δ. Since λis are convex coefficients, there exists an index

j such that pTxj ≤ pTωj − δ.19 Since uj(xj) ≥ uj(yj), the inequalities contradict the fact (in particular,

contradict the second condition in the definition of an approximate Walrasian equilibrium) that (p, y)

is an ε-Walrasian equilibrium.

To complete the proof we now consider the complementary case: (−δ)1 /∈ cvh
(⋃h

i=1 Q̂i

)
. Using

Lemma 3.3 (in contrapositive form, with η = 0) we get (−δ)1 /∈ cvh
(⋃h

i=1Qi

)
.

Consider a hyperplane between (−δ)1 and this convex hull: p · ((−δ)1) ≤ p · cvh
(⋃h

i=1Qi

)
. The

hyperplane separation theorem guarantees the existence of such a p ∈ R
ℓ. Since Qi is upward closed,

p is componentwise nonnegative. Therefore, and given that p 6= 0, by scaling we can assume that

p ∈ ∆. Next, we will show that (p, y) is an ε-Walrasian equilibrium.

For each consumer j ∈ [h] and any z ∈ Qj , consider the vector y = z + ωj . The definition of

Qj implies uj(y) ≥ uj(yj). The separating property of hyperplane p gives us pT (y − ωj) = pT z ≥
pT (−δ)1 = −δ. Therefore, for each j ∈ [h], the second condition in the definition of an approximate

Walrasian equilibrium is satisfied: for any y with the property that uj(y) > uj(yj) we have

pTy ≥ pTωj − δ (9)

18We can enlarge Q̂i to ensure that it always has a nonempty interior. For instance, we can set the the radius of the

intersecting Euclidean ball to be, say, max

{√
2(λℓδ+1)

α
, 2‖yi‖

}
; note that yi ∈ Qi and, hence, with this redefinition we

have yi ∈ Q̂i.
19With a slightly smaller value of δ we can directly obtain a strict inequality pTxj < pTωj − ε/h.
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Inequality (9) holds, in particular, for yjs: pT yj ≥ pTωj−δ. In addition, given that y is an allocation

in the economy E we have that, under y, the supply is equal to the demand:
∑h

j=1 yj =
∑h

j=1 ωj .

Hence, for any fixed i, yi − ωi =
∑

j∈[h]\{i}(ωj − yj). Multiplying both sides of this equality with

pT we establish the first condition that defines an ε-Walrasian equilibrium:

pT (yi − ωi) =
∑

j∈[h]\{i}
pT (ωj − yj)

≤
∑

j∈[h]\{i}
δ (using (9) with y = yj)

= (h− 1)δ < ε

That is, |pT yi−pTωi| ≤ ε. Hence, (p, y) is an ε-Walrasian equilibrium and the stated claim follows.

In light of Lemma 4.1, testing whether an allocation y is approximately Walrasian, or not, reduces

to determining whether the vector (−δ)1 is contained in the convex hull of the Q̂is. Below, in Theo-

rem 4.2, we develop an efficient separation oracle for the convex hull of the Q̂is–the testing algorithm

is obtained by simply applying this separation oracle onto (−δ)1.

For designing the efficient oracle, we use the equivalence of optimization and separation [GLS12].

We show that (linear) optimization problems can be solved in polynomial time over the convex hull

of the Q̂is. Therefore, we obtain the desired separation oracle. Note that this is a somewhat atypical

application of the optimization-separation equivalence–we start with an optimization algorithm to

obtain a separating one.

The running time of our algorithm is polynomial in the input size; in particular, the running time

is polynomial in the bit complexity of the underlying parameters (including ε). Furthermore, the

algorithm only requires oracle access to the utilities and their gradients.

Theorem 4.2 (Testing Algorithm). Let E be an exchange economy with monotonic, continuously differen-

tiable, and strongly concave utilities. Then, there exists a polynomial-time algorithm that, given an allocation

y in E , determines whether y is an ε-Walrasian allocation.

Proof. As a direct consequence of Lemma 4.1 we have: testing for approximately Walrasian allocation

corresponds to determining whether the vector (−δ)1 is contained in the convex hull of the Q̂is; see

equation (7) for the definition of these sets.

Write Q̂ := cvh
(⋃h

i=1 Q̂i

)
. We will develop an efficient algorithm, ALG, for solving linear opti-

mization problems over Q̂, i.e., for solving problems of the form

max cT z subject to z ∈ Q̂ (10)

Here, c ∈ R
ℓ is an input vector.

The equivalence of optimization and separation (see, e.g., [GLS12]) implies that ALG can be used

to design a polynomial-time algorithm SEP that provides a separation oracle for Q̂. That is, using SEP

we can perform the desired test of determining whether (−δ)1 ∈ Q̂, or not.

In order to apply the optimization-separation equivalence we need to ensure that Q̂ is compact,

convex, and has a nonempty interior. These properties are satisfied by Q̂is individually, hence they
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hold for Q̂ as well. Therefore, we can evoke the equivalence (via an application of the Ellipsoid

method over the polar of Q̂) and obtain the algorithm SEP.

To develop the algorithm, ALG, that efficiently solves linear optimization problems of the form

(10), we note that the feasible set Q̂ is a convex hull of the Q̂is. Hence, for any c ∈ R
ℓ, an optimal

solution of (10) can be obtained by solving

max
i∈[h]

(
max cT zi subject to zi ∈ Q̂i

)
(11)

Here, for each i, the decision variable zi ∈ R
ℓ lies in the set Q̂i. Below we will provide, for each i,

a polynomial-time algorithm, ALGi, that solves the linear optimization problem over Q̂i, i.e., ALGi

efficiently solves max cT zi subject to zi ∈ Q̂i. Hence, ALG can be obtained by directly taking a

maximum over the (optimal) solutions obtained by the ALGis.

We will now complete the chain of arguments mentioned above by designing the optimization

algorithm ALGi. This algorithm is itself based on the Ellipsoid method. As detailed below, the gradi-

ents of the utility function ui (at different points) can be used to separate Q̂i from vectors that are not

contained in it. Hence, with this separation technique in hand, we can apply the Ellipsoid method

over Q̂i to obtain ALGi.
20

Given a query vector q ∈ R
ℓ, it is easy to test if q ∈ Q̂i := Qi ∩

{
z ∈ R

ℓ : ‖z‖ ≤
√

2(λℓδ+1)
α

}
. We

directly verify (i) ui(q + ωi) ≥ ui(yi) (to ensure that q ∈ Qi) and (ii) ‖q‖ ≤
√

2(λℓδ+1)
α .

Consider the case in which q /∈ Q̂i. To run the Ellipsoid method (that underlies ALGi), we need a

separating hyperplane for such a q ∈ R
ℓ. There are two complementary (though, nonexclusive) cases

either (i) q /∈ Qi (i.e., ui(q + ωi) < ui(yi)) and (ii) ‖q‖ >

√
2(λℓδ+1)

α .

In case (i), the gradient at q+ωi (i.e., ∇ui(q+ωi) ∈ R
ℓ
+) provides the separating hyperplane: utility

ui is concave, hence ui(z+ωi) ≤ ui(q+ωi)+∇ui(q+ωi)
T (z+ωi− q−ωi), for any z ∈ R

ℓ. Specifically,

if z ∈ Qi, then ui(z+ωi) ≥ ui(yi) > ui(q+ωi). Using the previous two inequalities we get the desired

separation, via π := ∇ui(q + ωi)

πT q < πT z for all z ∈ Q̂i ⊂ Qi.

In case (ii), the vector π := − q
γ‖q‖ suffices; here γ =

√
2(λℓδ+1)

α . Note that

πT q = −‖q‖
γ

< −1 (12)

For any z ∈ Q̂i we have ‖z‖ ≤ γ. Now, the Cauchy-Schwartz inequality gives us |πT z| ≤ ‖π‖‖z‖ =
1
γ ‖z‖ ≤ 1. This inequality along with (19) shows that π is indeed a separating hyperplane: πT q < πT z

for all z ∈ Q̂i.

Overall, we observe that separation with respect to the Q̂is can be performed efficiently. Hence,

via the Ellipsoid method, we obtain, for each i, the algorithm ALGi that optimizes over Q̂i.

Combining ALGis we get the optimization algorithm (over Q̂) ALG, which, in turn, leads to SEP

(the desired algorithm that separates with respect to Q̂).

20Recall that, Q̂is are compact, convex, and have a nonempty interior. Hence, the Ellipsoid method is applicable over

these sets.
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Remark 4.1. The proof of Theorem 4.2 shows that if allocation y is an ε-Walrasian allocation, then the

hyperplane separating the vector ν := (−δ)1 from Q := cvh (∪iQi) provides the equilibrium prices

p ∈ ∆. That is, if vector p ∈ ∆ satisfies p · ν ≤ p · Q, then (p, y) is an ε-Walrasian equilibrium. Note

that such a price vector can be obtained by considering PQ(ν) ∈ Q, the projection (under Euclidean

distance) of ν onto Q. In particular, via the variational characterization of convex projections, we have

(z−PQ(ν))T (ν−PQ(ν)) ≤ 0 for all z ∈ Q. That is, (PQ(ν)−ν)T z ≥ (PQ(ν)−ν)TPQ(ν) ≥ (PQ(ν)−ν)T ν

for all z ∈ Q. Hence, with p = PQ(ν)−ν
‖PQ(ν)−ν‖1 , we get the desired separation.

The norm of PQ(ν) is polynomially bounded: note that ‖PQ(ν) − ν‖ ≤ mini ‖yi − ν‖, since

yi ∈ Q. Another relevant observation is that Lemma 3.3 is not confined to (−δ)1–we can establish

such a containment result for any vector q ∈ R
ℓ as long as we take obtain Q̂is by intersection Qis with

a large enough ball. The radius of the ball just has to be polynomially large in ‖q‖. Hence, with large

enough Q̂is, we can ensure that PQ(ν) ∈ Q̂ := cvh
(
∪iQ̂i

)
.

Additionally, the set containment Q̂ ⊂ Q implies the projection of ν onto Q̂, say PQ̂(ν) ∈ R
ℓ, is

the same as the desired vector PQ(ν).
In the proof of Theorem 4.2 we have developed a polynomial-time separation oracle for Q̂. There-

fore, via the Ellipsoid method, the projection PQ̂(ν) can be computed efficiently and, hence, we can

find the equilibrium prices p =
PQ̂(ν)−ν

‖PQ̂(ν)−ν‖1 .

4.1 Testing Algorithm for Economies with Piecewise-Linear Concave Utilities

In this section we consider economies, E = ((ui, ωi))i∈[h], in which consumers’ utilities are piecewise-

linear concave (PLC). In this PLC setting, for every agent, the utility of each consumption bundle is

obtained by taking a minimum over a set of linear functions. Specifically, PLC utilities have the form

ui(x) := mink

{∑
j U

k
i,jxj + T k

i

}
, here xj is the amount of good j in the consumption bundle x ∈ R

ℓ
+

and the nonnegative parameters Uk
i,j ∈ R+ and T k

i ∈ R+ define the kth linear function for agent i.

These parameters are given as input to specify each agent’s utility.

While PLC utilities are concave, they are not strongly concave. Hence, under PLC utilities, one

cannot directly apply Theorem 4.2. However, we show that the ideas developed in the previous

section can be adapted to obtain a polynomial-time algorithm for testing whether a given allocation

is approximately Walrasian in a PLC economy. Finding equilibria (exact and approximate) is known

to computationally hard under PLC utilities [DD08; CDDT09; GMVY17]. Hence, the result in this

section identifies an interesting dichotomy between testing and finding a Walrasian equilibrium.

First, we will establish a containment result analogous to Lemma 3.3. Using this containment

result (and arguments similar to the ones developed in Theorem 4.2) we develop an efficient, testing

algorithm for PLC economies in Theorem 4.5.

In the PLC context, a key observation (established below in Lemma 4.3) is that the containment

property can be obtained by considering vectors of norm at most

Λ := max
i∈[h],x∈Rℓ

+

{
‖x− ωi‖ : ui(x) ≤ ui

(
∑

i

ωi

)}
(13)

Under PLC utilities, the bit complexity of Λ is polynomially bounded: specifically, for any con-

sumption bundle x ∈ R
ℓ
+, with the property ui(x) ≤ ui (

∑
i ωi), we have, for each component a ∈ [ℓ],
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xa ≤ ui(
∑

i ωi)
mink Uk

i,a
≤ ui(

∑
i ωi)

mink,j U
k
i,j

.21 The bit complexity of this upper bound is polynomially large and,

hence, Λ is also polynomially upper bounded, in terms of bit complexity.

Note that, this bound does not require the utilities to be normalized. In fact, the results developed

in this section hold for any exchange economy wherein the utilities are concave and Λ (as defined in

(13)) is appropriately bounded.

For any given allocation y = (yi)i∈[h], consider the bundle yi ∈ R
ℓ allocated to consumer i and, as

before, write Qi := {z ∈ R
ℓ | z + ωi ∈ R

ℓ
+ and ui(z + ωi) ≥ ui(yi)}. In addition, we define a bounded

subset of Qi

Q̃i := Qi ∩
{
z ∈ R

ℓ | ‖z‖ ≤ Λ
}

(14)

For each consumer i, the subset Q̃i is compact, convex, and has a nonempty interior.

Lemma 4.3. Let y be an allocation in an exchange economy E with PLC utilities. Suppose that the sets Qi and

Q̃i, for i ∈ [h], are as defined above. Then, with parameter δ > 0, we have

(−δ)1 ∈ cvh

(
h⋃

i=1

Qi

)
iff (−δ)1 ∈ cvh

(
h⋃

i=1

Q̃i

)
.

Proof. The proof of this claim is almost identical to that of Lemma 3.3–the difference being that here

we use the bound provided by Λ, instead of relying on strong concavity.

To begin with, note that the reverse direction of the claim is direct, since Q̃i ⊂ Qi for all i ∈ [h].

For the forward direction, we have vectors zi ∈ Qi and a convex combination λi ≥ 0, for i ∈ [h],

such that
∑h

i=1 λi = 1 and

h∑

i=1

λizi = (−δ)1 (15)

Let R := maxi{‖zi‖ : i ∈ [h]}. By definition, the zis are contained in the (closed) Euclidean ball

B(R) of radius R and center 0. Note that, for each i ∈ [h], the intersection Qi ∩B(R) is a compact set.

Let Z denote the collection of all tuples

(z′1, z
′
2, . . . , z

′
h) ∈ (Q1 ∩B(R))× (Q2 ∩B(R))× . . .× (Qh ∩B(R))

for which there exists exists convex coefficients λ′
is such that

∑
i λ

′
iz

′
i ≤ (−δ)1, i.e., there exists a

convex combination of z′is which is component-wise upper bounded by (−δ)1.22

From (15), we know that Z is nonempty. Given that the sets (Qi ∩ B(R))s are compact, one can

show that Z is compact as well. Hence, the problem of minimizing max {‖z′i − (−δ)1‖ | (z′i)i ∈ Z}
admits an optimal solution, say (z∗t )t. Note that, by definition of Z , there exists convex coefficients

(λ∗
t )t∈H∗ that satisfy

∑
t∈H∗ λ∗

t z
∗
t ≤ (−δ)1; here, subset H∗ ⊆ [h] is selected to ensure that λ∗

t > 0 for

all t ∈ H∗.

Next, we will prove that ‖z∗t ‖ ≤ Λ, for all t ∈ H∗. Subsequently, we will show that using z∗t s

we can obtain vectors z̃t ∈ Qt that satisfy the same norm bound (‖z̃t‖ ≤ Λ) and whose convex

21We can address the case in which one of the nonnegative coefficients Uk
i,j is equal to zero. In particular, adapting the

arguments in Lemma 4.3 one can obtain xa ≤
ui(

∑
i ωi)

min
{k,j:Uk

i,j
6=0}

Uk
i,j

.

22The definition of Qis provide a component-wise lower bound as well: zi ≥ −ωi, for each vector zi ∈ Qi.
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combination is equal to (−δ)1. This norm bound implies that z̃t ∈ Q̃t and, hence, leads to the desired

containment: (−δ)1 ∈ cvh
(⋃h

i=1 Q̃i

)
.

The bundle x∗i := z∗i + ωi must satisfy ui(x
∗
i ) = ui(ȳi) ≤ ui(

∑
i ωi): if this is not the case (i.e., we

have a strict inequality ui(x
∗
i ) > ui(ȳi)), then by reducing a positive component23 of z∗i = x∗i − ωi

we can ensure that z∗i moves closer to (−δ)1 and at the same time z∗i continues to be in Qi (i.e., the

following inequality continues to hold ui(x
∗
i ) ≥ ui(ȳi)). Also, note that such a reduction maintains

the containment of z∗i s in Z ; specifically, the following inequality continues to hold
∑

t λ
∗
t z

∗
t ≤ (−δ)1.

A repeated application of this argument gives us x∗i = z∗i +ωi with the property that ui(x
∗
i ) = ui(ȳi) ≤

ui (
∑

i ωi), for all i. Therefore, using the definition of Λ (see (13)), we obtain the stated bound ‖z∗i ‖ ≤
Λ.

To complete the proof we will show that z∗t s can be transformed into vectors z̃t ∈ Qt that satisfy

the same norm bound and whose convex combination is equal to (−δ)1. Write ϕ :=
∑

t λ
∗
t z

∗
t and note

that ϕ ≤ (−δ)1. If component a ∈ [ℓ] of ϕ is strictly less than −δ, then there exists a z∗i such that its

ath component is also less than −δ: z∗i,a < −δ. We can increase z∗i,a till either it becomes equal to zero,

or the ath component of ϕ reaches −δ.24 Note that in this transformation while the ath component of

z∗i increases in value, it decreases in magnitude. Hence, the utility ui(z
∗
i +ωi) increases and the norm

of z∗i decreases. Repeatedly applying this procedure gives us vectors z̃t ∈ Qt such that ‖z̃t‖ ≤ Λ and∑
t λ

∗
t z̃t = (−δ)1.

Overall, this implies that (−δ)1 ∈ cvh
(⋃h

i=1 Q̃i

)
and the stated claim follows.

Lemma 4.3 leads to the following characterization for approximate equilibria in PLC economies.

Lemma 4.4. An allocation y is an ε-Walrasian allocation in a PLC economy E iff

(−δ) 1 /∈ cvh

(
h⋃

i=1

Q̃i

)
.

Here, for each consumer i ∈ [h], the set Q̃i is as defined above.

The proof of this result is identical to that of Lemma 4.1 and is omitted; one has to simply use

Lemma 4.3, instead of Lemma 3.3.

We now establish the main result of this section.

Theorem 4.5. There exists a polynomial-time algorithm that—given an allocation y = (yi)i∈[n] in an ex-

change economy E = ((ui, ωi))i∈[n] with PLC utilities—determines whether y is an ε-Walrasian allocation, or

not.

Proof. The design of the testing algorithm for PLC utilities is quite similar to the method developed

in the proof of Theorem 4.2. We present the details for the PLC setting for completeness.

As a direct consequence of Lemma 4.4 we have: testing for approximately Walrasian allocation

corresponds to determining whether the vector (−δ)1 is contained in the convex hull of the Q̃is;

see (14) for the definition of these sets.

Write Q̃ := cvh
(⋃h

i=1 Q̃i

)
. We will develop an efficient algorithm, ALG, for solving linear opti-

mization problems over Q̃, i.e., for solving problems of the form

max cT z subject to z ∈ Q̃ (16)

23If all the components of z∗i are negative, then x∗
i ≤ ωi and we get the desired bound ui(x

∗
i ) ≤ ui(ωi) ≤ ui(

∑
i ωi).

24Here, the convex coefficients, λ∗
t s, remain unchanged.
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Here, c ∈ R
ℓ is an input vector. The equivalence of optimization and separation (see, e.g., [GLS12])

implies that ALG can be used to design a polynomial-time algorithm SEP that provides a separation

oracle for Q̃. That is, using SEP we can perform the desired test of determining whether (−δ)1 ∈ Q̃,

or not.

In order to apply the optimization-separation equivalence we need to ensure that Q̃ is compact,

convex, and has a nonempty interior. These properties are satisfied by Q̃is individually, hence they

hold for Q̃ as well. Therefore, we can evoke the equivalence (via an application of the Ellipsoid

method over the polar of Q̃) and obtain the algorithm SEP.

To develop the algorithm, ALG, that efficiently solves linear optimization problems of the form

(16), we note that the feasible set Q̃ is a convex hull of the Q̃is. Hence, for any c ∈ R
ℓ, an optimal

solution of (16) can be obtained by solving

max
i∈[h]

(
max cT zi subject to zi ∈ Q̃i

)
(17)

Here, for each i, the decision variable zi ∈ R
ℓ lies in the set Q̃i. Below we will provide, for each i,

a polynomial-time algorithm, ALGi, that solves the linear optimization problem over Q̃i, i.e., ALGi

efficiently solves max cT zi subject to zi ∈ Q̃i. Hence, ALG can be obtained by directly taking a

maximum over the (optimal) solutions obtained by the ALGis.

We will now complete the chain of arguments mentioned above by designing the optimization

algorithm ALGi. This algorithm is itself based on the Ellipsoid method. As detailed below, the gradi-

ents of the utility function ui (at different points) can be used to separate Q̃i from vectors that are not

contained in it. Hence, with this separation technique in hand, we can apply the Ellipsoid method

over Q̃i to obtain ALGi.
25

Given a query vector q ∈ R
ℓ, it is easy to test if q ∈ Q̃i := Qi ∩

{
z ∈ R

ℓ : ‖z‖ ≤ Λ
}

. We directly

verify (a) ui(q + ωi) ≥ ui(yi) (to ensure that q ∈ Qi) and (b) ‖q‖ ≤ Λ.26

Consider the case in which q /∈ Q̃i. To run the Ellipsoid method (that underlies ALGi), we need a

separating hyperplane for such a q ∈ R
ℓ. There are two complementary (though, nonexclusive) cases

either (i) q /∈ Qi (i.e., ui(q + ωi) < ui(yi)) and (ii) ‖q‖ > Λ.

In case (i), the subgradient at χ := q+ωi provides the separating hyperplane: in particular, for the

PLC utility ui, let k̄ ∈ argmink

{∑
j U

k
i,j χj + T k

i

}
, i.e., ui(q+ωi) =

∑
j U

k̄
i,jχj +T k̄

i . The (subgradient)

vector π := (U k̄
i,j)j∈[ℓ] provides the desired separation. This follows from the fact that, for any z ∈ R

ℓ

we have

ui(z + ωi) ≤ πT (z + ωi) + T k̄
i

= πT (q + ωi) + T k̄
i + πT (z − q)

= ui(q + ωi) + πT (z − q) (18)

Specifically, if z ∈ Qi, then ui(z + ωi) ≥ ui(yi) > ui(q + ωi). Hence, using (18), we get the desired

separation

πT q < πT z for all z ∈ Q̃i ⊂ Qi.

25Recall that, Q̃is are compact, convex, and have a nonempty interior. Hence, the Ellipsoid method is applicable over

these sets.
26We do not have to compute Λ exactly. Here, for the algorithm, an upper bound (with polynomial bit complexity) of Λ

suffices.
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In case (ii), the vector π := − q
Λ‖q‖ suffices. Note that

πT q = −‖q‖
Λ

< −1 (19)

For any z ∈ Q̃i we have ‖z‖ ≤ Λ. Now, the Cauchy-Schwartz inequality gives us |πT z| ≤ ‖π‖‖z‖ =
1
Λ‖z‖ ≤ 1. This inequality along with (19) shows that π is indeed a separating hyperplane: πT q < πT z

for all z ∈ Q̃i.

Overall, we observe that separation with respect to the Q̃is can be performed efficiently. Hence,

via the Ellipsoid method, we obtain, for each i, the algorithm ALGi that optimizes over Q̃i.

Combining ALGis we get the optimization algorithm (over Q̃) ALG, which, in turn, leads to SEP

(the desired algorithm that separates with respect to Q̃).
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A Other Notions of Approximate Equilibria

In this section we will show that the notion of approximate Walrasian equilibrium considered in this

work relates to other notions studied in computer science and economics.

A common alternate (to the one considered in this work) definition of approximation seeks to

relax how exactly the consumers optimize, see, e.g., [DPS02] and [GMVY17]. This notion requires

that the consumers are approximately maximizing their utilities, though it assumes that the demand

is approximately equal to the supply. Specifically, under this complementary notion, a pair (p, x) ∈
∆ × R

hℓ
+ , with price vector p ∈ ∆ and allocation x, is said to be an ε̂-equilibrium (in an economy

E = ((ui, ωi))i with h consumers and ℓ goods) iff the following conditions hold for all consumers

i ∈ [h]:27

(C1) For any bundle y ∈ R
ℓ
+, with the property that pT y ≤ pTωi, we have ui(y) ≤ ui(xi) + ε̂.

(C2) |pTxi − pTωi| ≤ ε̂.

Note that, (C1) corresponds to the following requirement: ui(xi) ≥
(
maxy∈Rℓ

+

{
ui(y) | pT y ≤ pTωi

})
−

ε̂.

We will show that an ε-approximate Walrasian equilibrium (as defined in Section 2) satisfies con-

ditions (C1) and (C2) with ε̂ = ελ
√
ℓ

h ; here, λ is the Lipschitz constant of the utilities uis.

By definition (see Section 2), an ε-approximate Walrasian equilibrium, say (p, x), satisfies (C2).28

To establish the claim, next we will prove the contrapositive form of (C1) holds for (p, x). Consider

a bundle y ∈ R
ℓ
+ with high utility ui(y) > ui(xi) + ε̂ = ui(xi) +

ελ
√
ℓ

h .

Observe that the Euclidean ball B
(
y, ε

√
ℓ

h

)
, with center y and radius ε

√
ℓ

h , is entirely contained

in the upper contour set
{
x ∈ R

ℓ
+ | ui(x) ≥ ui(xi)

}
. Say, towards a contradiction, that this is not the

case. Then, there exists a bundle y′ ∈ R
ℓ
+ on the boundary of the upper contour set that is at most

27Note that (C1) and (C2) are a strengthening of the alternate formulation mentioned above, since here we insist that the

demand is exactly equal to the supply.
28Here, assume that ε̂ ≥ ε, otherwise we can consider ε̂ = max

{
ελ

√
ℓ

h
, ε
}

.
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a distance ε
√
ℓ

h away from y, i.e., a boundary point y′ that satisfies ‖y − y′‖ ≤ ε
√
ℓ

h . Since y′ is at

the boundary of the upper contour set, ui(y
′) = ui(xi). This fact contradicts the high utility of y:

|ui(y)− ui(y
′)| ≤ λ‖y − y′‖ ≤ ελ

√
ℓ

h .

Therefore, in particular, the vector
(
y − ε

√
ℓ

h
p

‖p‖

)
∈ B

(
y, ε

√
ℓ

h

)
belongs to the upper contour set.

That is, ui

(
y − ε

√
ℓ

h
p

‖p‖

)
≥ ui(xi).

Hence, our definition of ε-Walrasian equilibria ensures that

pT

(
y − ε

√
ℓ

h

p

‖p‖

)
≥ pTωi − ε/h (20)

Since the price vector p ∈ ∆, we have ‖p‖ ≥ 1√
ℓ
. Rearranging inequality (20) shows that y satisfies

(the contrapositive form of) the condition (C1): pT y ≥ pTωi.

Supply vs demand and average budge gap. In contrast to some of the other formulations, the defini-

tion of approximate equilibria considered in this work strictly enforces that the supply is equal to the

demand. Also, we consider a bound on the budget gap, |pTxi − pTωi|, for every consumer i. Hence,

our approximate equilibrium satisfies the average budget gap requirement considered in [MC79].

B Illustrative Example of Strongly Concave Utilities

This section provides a simple example to illustrate the interplay of strong concavity and other pa-

rameters related to the utility functions. Consider an economy E = ((ui, ωi))i∈[h] (with h consumers

and ℓ goods) wherein the utility of each consumer is

u(x) :=
1

N

ℓ∑

j=1

√
xj + θ.

Here, xj is the amount of good j (present in the consumption bundle x ∈ R
ℓ
+), θ > 0 is a fixed

constant, and N > 0 is a normalization term. Here, dividing by a large enough, but fixed, parameter

N ensures that for each feasible bundle x ∈ R
ℓ
+ in E , we have u(x) ∈ (0, 1). In particular, let ωj denote

the total amount of good j ∈ [ℓ] present in the economy (ωj :=
∑

i ωi,j). Then, N =
∑ℓ

j=1

√
ωj + θ.

Also, note that the additive shift of θ ensures that the gradient of u is bounded for all x ∈ R
ℓ
+ and

the Lipschitz constant of the utilities λ = 1
2
√
θ
.

One can show that a function u : R
ℓ 7→ R is α-strongly concave in a set R ⊂ R

ℓ iff f(x) :=

u(x)+α
2 ‖x‖2 is concave within R. That is, for any α > 0, if the Hessian of f(x) is negative semidefinite

for all x ∈ R, then u is α strongly concave in R.

The utility function u is separable across the ℓ goods, hence its Hessian (at point x ∈ R
ℓ
+) is a

diagonal matrix with the (diagonal) entries being −1
4N(xj+θ)3/2

for each j ∈ [ℓ]. That is, for an α > 0

and x ∈ R
ℓ
+, the Hessian of f is again a diagonal matrix with entries −1

4N(xj+θ)3/2
+ α, with j ∈ [ℓ].

Therefore, within the Euclidean ball of radius r (and center 0), the function u is
(

1
4N(r+θ)3/2

)
-

strongly concave; this value of α ensures that f is negative semidefinite throughout the ball.

As stated in Section 2, we require strongly concavity to hold within an appropriately large set
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around the endowments.29 Specially, we need αr2 ≥ 2ελℓ
h + 2 (see Section 2). Using the above-

mentioned expression for the modulus of strong concavity, α, the required inequality translates to

√
r

4N(1 + θ/r)3/2
≥ 2ελℓ

h
+ 2

The left-hand-side of the previous inequality is an increasing function of r. Hence, this inequal-

ity holds for an appropriately large r (which only depends on the parameters of E and not on the

replication factor n). With this r and the corresponding value of α in hand one can apply the results

developed in this work.

C Proof of Lemma 2.1

This section shows that, if the utilities of the consumers are strictly monotonic, continuous, and

strictly concave, then allocations in the h-core of a replica economy satisfy the equal treatment prop-

erty.

Let x = (x1,1, . . . , x1,h, . . . , xn,1, . . . , xn,h) be an h-core allocation of the economy En. We will show

that if x does not satisfy the equal treatment property, then a coalition of size h—consisting of the

worse off consumers of each type—will block the allocation x, contradicting the fact that it is in the

h-core.

Say, towards a contradiction, that x does not satisfy the equal treatment property. Since each

consumer of type t ∈ [h] has the same utility function, we can select the worse off consumer among

the n ones that have type t; in particular, for each t ∈ [h], let index j∗(t) ∈ [n] be such that ut(xj∗(t),t) ≤
ut(xi,t) for all i ∈ [n].

Consider the size-h coalition S := {(j∗(t), t)}t∈[h] and the S-allocation (x̂t)(t∈[h]) defined as x̂t :=
1
n

∑n
i=1 xi,t.

Note that (x̂t)t∈[h] is indeed an S-allocation: Since x is an allocation in En, it satisfies
∑n

i=1

∑h
t=1 xi,t =∑n

i=1

∑h
t=1 ωt =

∑h
t=1 nωt. Dividing by n gives us

∑h
t=1 x̂t =

∑h
t=1 ωt. Therefore, the consumers in

the coalition S can trade among themselves and, individually, obtain bundles x̂ts.

Furthermore, the strict concavity of uts ensures that ut(x̂t) ≥ ut(xj∗(t),t) for all (j∗(t), t) ∈ S—

with one of the inequalities being strict. Hence, coalition S blocks the allocation x and, by way of

contradiction, the stated claim follows.

29For ease of presentation, here we assume that the endowments are 0. Shifting all the vectors by −ωi, directly provide

the arguments for general endowment vectors.
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