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ABSTRACT

Coastal ecosystem studies using remote visible/infrared spectroscopy typically invert an atmospheric model to
estimate the water-leaving reflectance signal. This inversion is challenging due to the confounding effects of
turbid backscatter, atmospheric aerosols, and sun glint. Simultaneous estimation of the surface and atmosphere
can resolve the ambiguity enabling spectral reflectance maps with rigorous uncertainty quantification. We de-
monstrate a simultaneous retrieval method that adapts the Optimal Estimation (OE) formalism of Rodgers (2000)
to the coastal domain. We compare two surface representations: a parametric bio-optical model based on
Inherent Optical Properties (IOPs); and an expressive statistical model that estimates reflectance in every in-
strument channel. The latter is suited to both land and water reflectance, enabling a unified analysis of terrestrial
and aquatic domains. We test these models with both vector and scalar Radiative Transfer Models (RTMs). We
report field experiments by two airborne instruments: NASA's Portable Remote Imaging SpectroMeter (PRISM)
in an overflight of Santa Monica, California; and NASA's Next Generation Airborne Visible Infrared Imaging
Spectrometer (AVIRIS-NG) in an overflight of the Wax Lake Delta and lower Atchafalaya River, Louisiana. In
both cases, in situ validation measurements match remote water-leaving reflectance estimates to high accuracy.
Posterior error predictions demonstrate a closed account of uncertainty in these coastal observations.

1. Introduction

2018). However, investigators will only observe the radiance at the
instrument, so they must account for atmospheric interference.

Remote imaging spectrometers, also known as hyperspectral im-
agers, can map ecosystem composition over wide areas. They are well-
suited for the land/water boundary comprised of coastal oceans, inland
water, and wetlands, which provide invaluable societal services and are
sensitive to climate change (Hartmann et al., 2013; ESAS, 2018;
Parslow et al., 2000). Imaging spectrometers in the Visible/Shortwave
Infrared (VSWIR) range can map the benthic composition (Hochberg
et al., 2003), sessile, emergent and near-shore vegetation (Turpie et al.,
2015), and water properties such as suspended sediment (Fichot et al.,
2016) or phytoplankton (Kudela et al., 2015). Spatial sampling near
30 m enables detailed study of these phenomena (Giardino et al., 2018).
A recent survey by the National Academies advocated an orbital spec-
troscopic investigation with global coverage of the coastline (ESAS,

* Corresponding author.
E-mail address: david.r.thompson@jpl.nasa.gov (D.R. Thompson).

https://doi.org/10.1016/j.rse.2019.05.017

Coastal and inland waters can hinder current atmospheric correc-
tion methods (Wang et al., 2010; Goyens et al., 2013; Palacios et al.,
2015). Transitional zones have optically complex waters with in-
determinacy between turbidity, atmospheric aerosol, and glint. The
community has developed atmospheric correction algorithms for turbid
scenarios (Mobley et al., 2016), but many are multi-band methods that
do not extend naturally to spectroscopic data. Their accuracy could be
improved (Goyens et al., 2013) and their relative performance is un-
predictable for novel conditions. Their assumptions may fail for partly-
inundated pixels, high turbidity, or high spatial resolution that in-
validates Cox-Munk glint models (Muller-Karger et al., 2018). The al-
gorithms vary in statistical rigor, use of climatology or other back-
ground knowledge, and consideration of noise or calibration
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Fig. 1. The retrieval models the entire observation system consisting of surface,
atmosphere, and instrument. Aircraft image courtesy NASA.

uncertainties. Uncertainty accounting will be important to prevent bias
from local atmospheric conditions in global studies. Measurement un-
certainty is significant due to weak reflectance signals and difficult
radiometric calibration (Helmlinger et al., 2016). More broadly, the
community lacks a unified approach for atmospheric correction to
study interactions between land and sea.

New algorithms offer a potential solution. Recently, Thompson
et al., (2018c) adapted the Optimal Estimation (OE) formalism of
Rodgers, (2000) for imaging spectroscopy with a physics-based model
combining surface, atmosphere, and instrument (Fig. 1). While that
work used terrestrial spectra, OE also promises advantages for coastal
applications. First, it exploits combined surface/atmosphere models
using the full spectral range and resolution. This implicitly captures
surface slope, shape, and magnitude constraints to disambiguate at-
mospheric effects, and is valuable for atmospheric aerosols lacking
distinctive absorption signatures. It incorporates climatology using
statistical priors. These surface and atmosphere constraints allow the
retrieval to fully utilize the rich information from the diverse coastal
spectrum. Rather than define such constraints explicitly using ad hoc
heuristics, OE captures them automatically in the statistical properties
of the combined model. OE is also distinct from other simultaneous
open water retrieval methods (Wang et al., 2010) which apply mainly
to multi-band data or limited water properties (Frouin et al., 2019),
often disregard uncertainties, and do not generally work over land.

A second advantage of OE is flexibility to use different surface
parameterizations, including but not limited to bio-optical models.
Parametric bio-optical models specify the water leaving reflectance
using a small number of optical parameters. For example, Lee et al.,
2002 use Inherent Optical Properties (IOPs) having direct physical in-
terpretations as — for example — Colored Dissolved Organic Matter
(CDOM) and phytoplankton pigment absorption. Alternatively, more
expressive parameterizations such as those of our prior work
(Thompsonet al., 2018c) retrieve reflectance separately in each
channel. This uses a larger state vector to estimate wholly novel re-
flectance shapes. It can represent unanticipated phenomena such as
new benthic reflectance signatures or subtle phytoplankton pigmenta-
tion signals (Gitelson et al., 2011). More generally, it enables a unified
methodology for aquatic, terrestrial. and inland water surfaces.

OE's third advantage for coastal studies is rigorous uncertainty
propagation and accounting. It incorporates priors on instrument per-
formance, meteorology, and water properties from ancillary measure-
ments or climatology (Rodgers, 2000). It enables posterior predictive
uncertainties of retrieved surface and atmosphere parameters for sub-
sequent analyses. This allows a principled fusion of data from multiple
locations and times. It also reveals information content and the state
vector parameters measurable from the observing system.

This work extends imaging spectrometer Optimal Estimation to
coastal and inland water domains. We describe bio-optical and
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channelwise surface parameterizations, quantify the remote measure-
ment information, and evaluate consistency of uncertainties with field
measurements. We also address the interplay between different surface
and atmospheric parameters including aerosols. This demonstration of
surface models and Bayesian estimation is independent from the spe-
cific choice of atmospheric Radiative Transfer Model (RTM). We eval-
uate both scalar and vector RTMs to show that the framework is general
enough to incorporate any atmospheric physics assumptions.

The experiments use two airborne case studies from different coastal
environments. First, we consider NASA's Portable Remote Imaging
SpectroMeter, PRISM (Mouroulis et al., 2014), an imaging spectrometer
that measures the visible to near infrared (VNIR) interval. PRISM flew
on a high-altitude ER-2 aircraft over Santa Monica Bay, CA, in October
2015, an observation which viewed 95% of the atmospheric column
making it a direct analogue of orbital observations. Coincident in-situ
validation spectra corroborate reflectance accuracy. Second, we ana-
lyze data from NASA's Airborne Visible Infrared Imaging Spectrometer,
AVIRIS-NG (Thompson et al., 2018a), which covers the entire visible to
shortwave (VSWIR) interval. In October 2016, AVIRIS-NG observed the
Wax Lake Delta and lower Atchafalaya River, LA (Jensen et al., 2018), a
network of turbid rivers with high backscatter and suspended sediment
loads. In both cases, we demonstrate in situ measurements are con-
sistent with remote OE retrievals.

Section 2 reviews atmospheric correction methods, focusing on
coastal spectroscopy. Section 3 details OE and our implementation for
the coastal ocean. Sections 4 and 5 present two field experiments. Each
description summarizes the instrument preparation, acquisition, and
the ancillary data collection. We compare surface parameterizations
and performance versus traditional methods.

2. Background

Atmospheric correction of VSWIR remote sensing is a broad field.
The algorithms partition naturally into categories for multi-band or
spectroscopic instruments, and terrestrial or oceanic environments.
Multi-band methods include the MODIS approach for land (Vermote
et al., 2002) and ocean (Wang and Shi, 2007). They typically follow a
sequential strategy of: first, estimating atmospheric parameters using
simplified surface assumptions; and then, after the atmosphere is fixed,
algebraically inverting the measured radiance to estimate the chan-
nelwise surface reflectance. They estimate atmospheric features with
specific band values, hard-coded ratios, and thresholds based on phy-
sical insight and hard-coded climatological constraints (Schldpfer et al.,
1998). A typical example is the aerosol retrieval algorithm of Kaufman
et al., 1997 which exploits reduced particle scattering in near infrared
to predict the reflectances of dark pixels. Discrepancies, attributed to
aerosol scattering, permit retrievals based on a global climatology
partitioned by latitude and longitude. The designer optimizes thresh-
olds and boundaries using instrument characteristics and considerable
background knowledge. After estimating the atmosphere, the water-
leaving reflectance can be recovered algebraically with a functional
relationship for gaseous and particulate transmission and absorption.
Examples include formulae by Vermote et al. (1997) and Vermote and
Kotchenova (2008) for land, or Gordon and Clark (1981) and Gordon
and Wang (1994) for ocean This inversion uses optical coefficients from
Radiative Transfer Models (RTMs) (Kotchenova et al., 2008) such as the
MODTRAN package (Berk et al., 2014) based on the scalar DISORT
code (Stamnes et al., 1988), or the VLIDORT-based 6S package
(Kotchenova et al., 2006; Kotchenova and Vermote, 2007), based on the
vector VLIDORT code (Spurr, 2006).

The open ocean deserves special attention, since water-leaving ra-
diance is a small fraction of the total signal reaching the sensor.
Moreover, key productivity indicators like chlorophyll absorption are
sensitive to distortion by atmospheric scattering. On the other hand, the
water optical system enables some simplifications. For example, strong
liquid water absorption means path radiance dominates in the near
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infrared (Siegel et al., 2000), or, for very turbid waters, the shortwave
infrared (Wang and Shi, 2007). Another advantage of the deep ocean is
relative insensitivity to atmospheric gases such as H,O. Finally, at
spatial resolutions relevant to the open ocean, many unwanted surface
effects such as Fresnel reflectance and sunglint are predictable by
windspeed-based models (Gordon, 2005).

Unfortunately, coastal environments thwart many of these ad-
vantages. Their water surfaces have higher variability and turbidity
(Parslow et al., 2000; Neumann et al., 2000). They do not always satisfy
the dark near infrared assumption (Wang and Shi, 2007). Higher
spectral resolution is needed for signatures such as functional type in-
dicators, benthic environments or near shore vegetation. Moreover,
their higher spatial resolutions may impact Cox-Munk glint models. For
the interested reader, Wang et al., 2010 review ocean color atmospheric
correction; Hochberg et al., (2015) review coastal applications.

Fewer atmospheric correction algorithms have been developed for
spectroscopic observations with hundreds of channels. VSWIR spectra
are sensitive to atmospheric effects ranging from extreme Rayleigh and
Aerosol scattering in the ultraviolet, through pervasive water vapor
effects throughout the near infrared and into deep water absorptions at
1480 and 1880 nm. Reviews are found in Thompson et al., 2018c for
land and Frouin et al. (2019) for open ocean. Most approaches are
variations of multi-band sequential algorithms (Guanter et al., 2009).
Common software packages include ATREM (Gao et al., 1993), ATCOR
(Richter and Schldpfer, 2005; Richter and Schlédpfer, 2002), and
FLAASH (Perkins et al., 2012). Specific coastal versions have been de-
veloped to use dark-NIR aerosol retrievals (Gao et al., 2000; Gao et al.,
2007; Thompson et al., 2017). Variants have been deployed to atmo-
spherically-correct data from the HICO instrument (Lewis et al., 2009;
Corson et al., 2008). Nevertheless, it is still common to rely on em-
pirical, in-scene corrections such as the empirical line approach
(Thompson et al., 2016) or cloud-shadow methods (Amin et al., 2014).
Such variants require manual intervention and homogeneous atmo-
spheric effects throughout the scene, making them infeasible for global
applications.

A separate class of retrieval methods deserves special attention.
Simultaneous algorithms estimate both atmospheric and surface para-
meters simultaneously in a combined solution, applying constraints to
the surface and/or atmosphere to resolve numerical indeterminacy.
This can potentially make retrievals more robust to departures from
heuristic surface assumptions (Frouin et al., 2019). The joint surface/
atmosphere fit facilitates rigorous posterior uncertainty predictions
(Frouin and Pelletier, 2015). Most simultaneous algorithms apply to
multi-band instruments. Examples include the POLDER/PARASOL al-
gorithm, which adjusts water surface and atmosphere parameters to
optimize a spectral match between model and measurement by a multi-
band, multi-angle observer (Dubovik et al., 2011). In the open ocean,
Steinmetz et al. (2011) demonstrate a Principal Component (PC) sur-
face representation enabling joint retrieval of sunglint, aerosol, and
water properties. Brajard et al. (2008) and Brajard et al. (2012) adopt a
similar method for multi-band observations of water using a neural
network as the radiative transfer model. Saulquin et al. (2016) use a
Gaussian mixture model to represent surfaces in a small number of
bands. Finally, Frouin and Pelletier (2015) have demonstrated Bayesian
retrievals with informed priors to permit simultaneous retrieval and
posterior uncertainty propagation for open water.

While these surface/atmosphere parameterizations are effective for
multi-band instruments, future coastal spectroscopy will demand both a
high degree of flexibility in the surface (to capture subtle perturbations
related to different phytoplankton pigments and benthic cover) as well
as high dimensionality (to accommodate hundreds of spectral chan-
nels). It is still unclear whether prior methods can satisfy these objec-
tives (Frouin et al., 2019). On land, surfaces are even more diverse and
target signatures even more subtle. There, joint surface/atmosphere
fitting has been implemented only for restricted surface models (Hou
et al., 2016; Hou et al., 2017). The full potential of simultaneous fitting
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Table 1
Notation conventions. Boldface indicates vectors, vector-valued functions, and
matrices. We treat all vectors as columns for matrix algebra.

Symbol Interpretation

A Averaging kernel matrix, per Rodgers (2000)

a Optical absorption coefficient of the water column, m ™!

by Optical backscatter coefficient of the water column

c; Vector-valued correction factors for pushbroom column i

d@g) Distance of a surface reflectance to the cluster j

€o Solar irradiance at the top of the atmosphere

f Forward model, a vector-valued function mapping x to y

80, &1 coefficients relating backscatter and absorption to ry

G Gain matrix, with elements dx/dy

G Colored Dissolved Organic Matter (CDOM) absorption, as in Lee et al.
(2004)

I Identity matrix

K Jacobian matrix, with elements dy/ox

Lobs Measured radiance at the sensor

Lops” “True” radiance at the sensor aperture

m Number of measurement channels in £,ps

n Number of elements in the state vector x

P Phytoplankton absorption, as in P of Lee et al. (2004)

q Quality score quantifying pushbroom striping

Q Sunglint magnitude in units of water-leaving reflectance

Iy Remote sensing reflectance below the air-water interface (per
steradian)

Ry Remote sensing reflectance above the air-water interface (per
steradian)

s Spherical sky albedo at the surface

s Posterior covariance of state vector

Sa Covariance of state vector prior distribution

Covariance of uncertainty due to model unknowns
Covariance of surface state (prior distribution)

Covariance of surface state (prior distribution) for cluster j
Covariance of reflectance library spectra

Covariance of resolving error component of §

Covariance of measurement error component of §
Covariance of atmospheric state (prior distribution)
Covariance of measurement noise due to the instrument
Covariance of measurement noise at cross-track location i
Covariance of random observation noise

Diffuse and direct transmission of the sun/surface/sensor path
Complete state vector, X = [Xsyrr, Xarm]

Estimated state vector

Mean of state vector prior distribution

Mean of surface state vector prior distribution

Mean of atmospheric state vector prior distribution

Mean of surface state vector prior distribution for cluster jj
Free parameters of atmosphere

Free parameters of surface

Visibility at 550 nm (km)

Estimated state vector

-
A R U N R
=

IR

1]
ERE]

X

X Backscatter, as in X of Lee et al., 2004

y Radiance measurement in each channel, yWnm ™' cm™2sr™!
% Modeled radiance in each channel, yWnm ! cm ™ 2sr ™!
Y Backscatter exponent, as in Y of Lee et al., 2004

z L1 norm (area under the curve) of a reflectance spectrum
a Regularizer for shrinkage covariance estimation

€ Random observation noise

x* Cost function

Pobs Top of Atmosphere (TOA) reflectance

Pa Atmospheric path reflectance

Ps Surface water-leaving reflectance

Py Estimated surface reflectance

bo Cosine of solar zenith angle

oy Noise-equivalent change in radiance

Ocar Standard deviation of radiometric uncertainty

4 Standard deviation of marginal posterior uncertainty

o, Standard deviation of marginal posterior measurement noise
O Standard deviation of marginal posterior resolving error
3 Vector of systematic radiative transfer uncertainty

° Element-wise multiplication

/ Element-wise division (for matrices and vectors)
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and the potential benefits for uncertainty quantification has yet to be
realized operationally. The Optimal Estimation (OE) formalism of
Rodgers (2000) offers one promising solution across both aquatic and
land targets. The following section describes the approach and presents
an implementation adapted for the coastal aquatic domain.

3. Optimal estimation approach
3.1. Mathematical background

We build on a decades-long heritage of OE in atmospheric instru-
ments like OCO-2 (Cressie, 2018). OE explains the measured radiance y
by modeling the observation system including the surface, atmosphere
and instrument. The free parameters to be estimated from a state vector
X = [xq, ...,x,]". Table 1 summarizes our notation, following conven-
tions in Rodgers (2000) and Thompson et al. (2018a), (2018c). Boldface
symbols indicate vectors, vector-valued functions, and matrices. Vec-
tors are lowercase and matrices are uppercase. The hat symbol ~ de-
notes an estimated quantity. We treat all vectors as columns for matrix
algebra. Our state vector is the concatenation of free surface parameters
xsyrr and free atmospheric parameters x4y, detailed in Sections 3.2
and 3.3 respectively. A physics-based forward model f(x) predicts the
instrument radiance measurement for any state using any Radiative
Transfer Model (RTM) compatible with the instrument wavelength
range and sampling. The actual measurement y incurs zero-centered
random noise €:

y = fx) +e for x=[xsyrrXamm]" (@)

The algorithm begins with an initial guess for x. This state has a
probability proportional to the product of a statistical prior re-
presenting background knowledge, and a likelihood term representing
the goodness of fit between the model and the measurement. We adjust
the state vector repeatedly in the gradient direction of increasing pos-
terior probability, iterating until convergence. At each step, we line-
arize the forward model about the current solution. Locally, we treat
both prior and likelihood terms as multivariate Gaussian distributions.
The log probability is a cost x with two squared error terms penalizing
the model's divergence from the measurement and the prior:

200 = 20 = xS x = %) + S (3 — £V (Y — £x) -
The prior distribution has mean x, and covariance matrix S,. The
covariance matrix S, represents observation uncertainty; it incorporates
a measurement noise covariance S, and unknown, unretrieved para-
meters of the surface or atmosphere that are treated as random vari-
ables with a covariance S;,. Typically S, has diagonal structure; we
translate it to measurement covariance using the Jacobian matrix Kp,
the partial derivatives of the radiance with respect to each unknown:

Se =S, + KpSpK] 3)

Similarly, the Jacobian matrix K gives partial derivatives of f(x) with
respect to x, i.e. K; = dy;/0x;. It reveals the forward model's sensitivity
to the state vector and is used in the gradient descent calculation. Least-
squares optimization methods such as the Levenberg-Marquardt algo-
rithm (More, 1978) converge quickly to a cost minimum. Multiple re-
starts could prevent sub-optimal local minima, but were not needed for
our experiments where the error surface was stable near the solution
state. The prior distribution provides additional resilience to local
minima. (Thompson et al., 2018c)provide additional detail.

In summary, Optimal Estimation for imaging spectroscopy requires:

1. A surface parameterization Xsyrr representing retrieved surface
parameters.

2. A surface prior, ie. the mean and covariance structure of surface
parameters. These form elements in x,, and a diagonal block in S,.

3. An atmosphere parameterization xsry representing retrieved
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atmospheric parameters.

4. An atmospheric prior, i.e. the mean and covariance atmospheric
parameters. These define the other elements in x, and S,.

5. A forward model f(x), a deterministic operation mapping the free
parameters to the at-sensor radiance with a Radiative Transfer
Model (RTM).

6. The measurement covariance S,, representing the random in-
strument noise.

7. The covariance of model unknowns S;, representing variability in
unretrieved model parameters.

8. Jacobian matrices K and K, formed respectively by partial deri-

vatives of radiance with respect to the retrieved and unretrieved
model parameters, reevaluated at the current solution with each
iteration.
This structure provides considerable design flexibility. In particular,
designers can include any quantity in the state vector regardless of
whether the measurement has information to estimate it reliably.
Rodgers, 2000 gives several ways to characterize the actual in-
formation content. The gain matrix G is the sensitivity of the re-
trieved state to the measurement y, defined as G; = By?i/ayj. It has a
closed form expression:

G = (K'S;'K + S;))K'S;! 4

The averaging kernel matrix A = GK is the sensitivity of the retrieved
state vector to the “true” state vector, accounting for instrument noise
and correlations between surface and atmosphere. Its diagonal elements
show the Degrees of Freedom (DOF) for each state vector parameter
(Rodgers, 2000). A DOF near unity means that the retrieved state tracks
the true value. A DOF near zero indicates low sensitivity. Rows of the A
matrix are averaging kernels that show the result's sensitivity to different
elements of the true state. They portray the resolving power in the re-
trieval process

Under local linearity, the posterior predictive uncertainty has cov-
ariance S:

5 = (K'S;'K + S;)! 6)

This posterior distribution accounts for several uncertainties. One is
observation error from random instrument noise or unknown para-
meters of the environment that are not retrieved. This has a covariance
S,.. Another is the intrinsic information in the inversion process relative
to the prior, caused by measurement insensitivity to the parameters of
interest. This source has a covariance matrix S,,. The two combine via:

S = GCGT + (I— A)S,(I — AT
= Sn + Sm (6)

This decomposition can quantify the sources of retrieval uncertainty.
More generally, the posterior error predicts system performance en-
abling comparison of different physics assumptions and observing
conditions.

3.2. Surface parameterizations and prior distributions

The term surface reflectance can refer to several distinct physical
properties (Schaepman et al., 2009). This work deals with the hemi-
spherical directed reflectance representing the reflected fraction of in-
cident light from the entire hemisphere above the surface, measured in
the direction of the sensor. This is the starting point for most analyses of
the Earth surface and underlies “Level 2” science data products in prior
campaigns. We evaluate two alternative parameterizations of Xsyrp.
The first uses the water column's Inherent Optical Properties (IOPs).
The second extends the statistical surface model of Thompson et al.,
(2018c) to the aquatic domain, providing a common formalism for at-
mospheric correction across land and aquatic zones that can handle
highly turbid inland water.
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3.2.1. Bio-optical representation

Our first parameterization uses the bio-optical model of Lee et al.
(1999) and Lee et al. (2002). It relates the angular remote-sensing re-
flectance below the air/water interface, r,, to the remote sensing re-
flectance above the water surface, R, and the water leaving reflectance

Ps:

Ry = Q forQ>0
1.562(R,s — Q) + 0.518 7

ps/m ~ Rys, where 1, =

Here, Q is a spectrally-constant value representing the magnitude of
additive sun glint. There are many functional forms relating r, to
column properties like optical absorption, a, and backscatter, b, (Lee
et al., 2002; Lee et al., 2004; Gordon et al., 1988). We favor the fol-
lowing simple relation for optically deep water:

col )
§o a+b, (8)

with go = 0.0895 and g; = 0.1247 (Lee et al., 2002). The spectrum by, is
the sum of water backscatter b, and particle backscatter iy,; we define
the former as constant (Morel, 1974) and the latter as in Lee et al.
(1999):

rrS:gla-be

Y
bbp=X(M) for X>0, 0<Y<25
A (€C)]
We retrieve the Y and X as free parameters. Here, A represents the
center wavelength of each channel's spectral response in nanometers.
The absorption spectrum a is the sum of absorption coefficients by
water, a,,, phytoplankton, a,, and CDOM + detritus ag, using the fol-
lowing formulae,

a=a,+ag+a, (10)
a, = Ge 0015G-40) for G > 0 an
ag = ®P + ®,Plog PforP >0 (12)

where G and P are free parameters related to CDOM + detritus ab-
sorption and phytoplankton respectively. Coefficients ®; and @, re-
ferenced in Lee et al. (1999) describe phytoplankton absorption sig-
natures. A good approximation for the physical quantity of chlorophyll-
a in units of mg m ™3 is Lee et al. (1999):

Chl —a= e(log (P/0.06)/0.65) (13)

Finally, we model F, a feature variously attributed to backscatter
and the emission of phytoplankton fluorescence. This free parameter is
a nonnegative “fluorescence line height” in units of water-leaving ra-
diance. It defines a Gaussian shape with center wavelength 683 nm and
standard deviation of 10.6 nm, following Abbott and Letelier (1999).

In summary, the IOP parameterization generates a water-leaving
reflectance spectrum using six free parameters: glint Q, the backscatter
X, the backscatter exponent Y, the CDOM + detritus absorption G, the
phytoplankton absorption P, and the fluorescence line height F. For
simplicity we take these parameters to be unconstrained and un-
correlated, ascribing a prior covariance matrix with large diagonal
values.

3.2.2. Channelwise representation

We also consider a more expressive parameterization based on the
statistical approach of Thompson et al., (2018c). It represents separate
reflectance values for each instrument channel. A multivariate Gaussian
prior constrains the values to physically-plausible solutions. The de-
signer can use statistical regularization to create strong or weak con-
straints on reflectance shape. Typically, we use very weak constraints to
ensure that the measurement dominates the prior for estimating arbi-
trary spectral reflectance shapes. This preserves unexpected features or
subtle band position shifts that are critical for many Earth science
analyses. Constraints on relative slopes or discontinuities are only
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needed in areas with critical atmospheric information such as the
oxygen A band or certain near infrared water vapor absorption features.
Specific investigations can apply more constraints; for example,
“tighter” Gaussians give more numerical leverage to estimate subtle
atmospheric perturbations.

We define a multi-component, multivariate Gaussian prior by fitting
a diverse library of reflectance spectra. This approach has precedent for
surface/atmosphere inversions of MERIS multiband water measure-
ments (Saulquin et al., 2016), making it a promising option for high
resolution spectroscopy. At run time, for each retrieval iteration, we
find the component Gaussian that is closest to the current state ac-
cording to Mahalanobis or Euclidean distance (Thompson et al., 2018c).
The closest component becomes the prior surface distribution for that
iteration. The prior is normalized so it only constrains the shape but not
the magnitude of the reflectance spectra. During the retrieval, we
normalize each estimated reflectance spectrum before calculating dis-
tances, and after finding the best matching component, rescale it for
consistency with the actual state vector.

Unlike many land surfaces, the apparent reflectance of coastal wa-
ters can have strong directionality. Our model captures the most im-
portant physical mechanisms that contribute to this non-Lambertian
behavior. An additional state vector element represents the magnitude
of additive sun glint, as in the Q parameter of the IOP version. Its prior
is unconstrained and uncorrelated from the other parameters. Second,
the channelwise surface prior represents the apparent water-leaving
reflectance as measured in the viewing direction, implicitly accounting
for the directionality of the upwelling signal from the water column. An
investigator inverting ps to retrieve water column optical parameters
could use a directional model, or limit the applicable range of geome-
tries and water conditions as in Eq. (8). A third effect, directional sur-
face-atmosphere coupling via multiple scattering events (Fan et al.,
2017), is less significant for our experiments due to low-AOT conditions
and near-nadir viewing angles. Section 6 describes how the retrieval
could use a combined surface/atmosphere model in the future.

Our model includes both terrestrial and aquatic components, at-
tempting to span the space of physically-realizable surface spectra. We
fit the terrestrial components with a diverse library of surfaces de-
scribed in prior work (Thompson et al., 2018c). The water-leaving re-
flectances come from two sources. First, we construct synthetic spectra
with varied backscatter, phytoplankton, and dissolved carbon content
using the bio-optical model of Section 3.2.1. These cover water surfaces
with low turbidity. We also incorporate a library of highly turbid inland
water cases by Tan et al. (2016), extending their wavelength ranges into
the shortwave infrared by extrapolating from AVIRIS-NG river water
observations in our field experiment. We identify the best-matching
AVIRIS-NG reflectance observation for each library ()spectrum using
the spectral angle distance, and rescale the former to match at the
900 nm join point. This procedure proves adequate for a generic and
highly regularized prior, fully encompassing the land and water sur-
faces in our datasets.

After assembling the library, we identify component centers using
K-means, estimate their full covariances, and finally regularize with a
“shrinkage” addition to diagonal elements (Theiler, 2012). Figs. 2, 3,
and 4 illustrate the mean spectra and marginal standard deviations of a
multi-component surface model. The distribution of sunglint-removed
spectra captures patterns of NIR and SWIR water reflectance slopes and
magnitudes. We find results are stable with respect to the number of
components and regularization.

3.2.3. Atmospheric parameterization, prior distributions, and RTM
simulations

The atmospheric model uses a physics-based simulation of photon
transport in the atmosphere. To demonstrate generality of the OE ap-
proach we consider two different Radiative Transfer Model (RTM) op-
tions. We focus mainly on the MODTRAN 6.0 RTM which is widely used
by the coastal and terrestrial imaging spectroscopy communities, and
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Fig. 2. Deep aquatic components of the statistical surface model, showing
means and marginal standard deviations of the covariance matrix. Large stan-
dard deviations near 1000 nm relate to calibration challenges in these wave-
lengths.

Terrestrial surface components

0.9 3
0.8 e —+—3F3F
07 1 BE I
0.6
B =L
]

'S

Normalized reflectance (offset for clarity)
[=]
W

0.2
0.1 {—I—I

O 1 1 1 1 1
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Wavelength (nm)

1 1 1 1 1

Fig. 3. Terrestrial components of the statistical surface model, showing means
and marginal standard deviations of the covariance matrix.
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Fig. 4. Turbid components of the statistical surface model, showing means and
marginal standard deviations of the covariance matrix.

incorporated into typical commercial packages such as FLAASH
(Perkins et al., 2012) and ATCOR (Richter and Schlédpfer, 2005; Richter
and Schldpfer, 2002). However, coastal observations of dark targets are
sensitive to minor differences in Rayleigh and aerosol scattering cal-
culations which may require vector-based RTMs that respect polariza-
tion. To demonstrate that these models are also an option for the OE
approach, we perform a limited subset of tests using the 6SV radiative
transfer engine (Kotchenova et al., 2006; Kotchenova and Vermote,
2007).

Most atmospheric parameters are known a priori (such as observa-
tion geometry) or sufficiently constrained by climatology (such as the
atmospheric profile). Consequently, our atmospheric state vector has
just four free parameters. We retrieve the total water vapor column
abundance, in gcm ™2 We also retrieve the Aerosol Optical Depth
(AOD) at 550 nm. The MODTRAN RTMs permit arbitrary scattering and
absorption profiles, so we retrieve the AOD independently for each of
three canonical aerosol types: an absorbing carbon aerosol; a dust
aerosol characteristic of rural or continental sources; and a highly
scattering sulfate aerosol type. We do not intend these retrieved AODs
to imply the mixture of species observed, but instead use them as a
diverse palette for the retrieval to represent aerosol-like distortions. In
other words, they act as a structured error term promoting accurate
surface retrievals without restriction to a stock aerosol mixture. In the
6SV RTM simulations, we use a stock marine model. Retrieved AODs
were quite low for all field experiments making the specific choice of
aerosol optical properties less significant.

We write the measured radiance y as fops = [r1, +..»laml > and
transform it to an apparent top of atmosphere reflectance pyps. This
normalizes solar input to remove variability downward irradiance e, at
the top of the atmosphere (Kneizys et al., 1988). It includes ¢, re-
presenting the cosine of the solar zenith angle. OE permits optical
coupling between surface and atmosphere, but we use a decoupled
approximation for simplicity and heritage from existing VSWIR codes
like ATCOR, FLAASH, TAFKAA and ATREM. The spectrum p,,s de-
composes into a path reflectance p,, a spherical albedo s, atmospheric
transmittance t, and the surface reflectance p; (Adler-Golden et al.,
1999; Thompson et al., 2018c):

0 - leobs77~' — tops
BT gee 1 (sop,) (14)

Here, - indicates element-wise multiplication. Since ps represents the
water leaving reflectance as measured in the sensor direction, our
surface models must capture the full expected range of bi-directional
reflectances. The channelwise parameterization handles this implicitly
in the probability density function, which captures the range of up-
welling radiance from the water. In contrast, the IOP parameterization
promotes invariance by limiting applicability to a range of conditions
(Lee et al., 2002). Directional IOP models would extend applicability at
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the cost of additional complexity. Both parameterizations handle the
sunglint contribution to apparent reflectance through the explicit sun-
glint variable. Diffuse skylight is implicit in the spherical albedo term of
the atmospheric model. Working in the space of apparent reflectances,
there is no direct representation of downwelling and upwelling ra-
diances, but those could be calculated by independent RTM runs based
retrieved atmospheric properties.

Our model accounts for the pushbroom instrument in which dif-
ferent Focal Plane Array (FPA) elements see different optical paths and
scattering geometries. We use the RTMs to calculate e,, t, py, and s for a
set of viewing geometries and reference atmospheres, with lookup table
interpolation to find intermediate values. We then downsample by the
instrument response function. Denoting resampling by brackets < >
and free coefficients as functions of the state vector:

. _ t0op ()
y = <¢oeoﬂ [&(x) 1o s<x)ops<x>>}>

The only unspecified atmospheric terms are water vapor and AOD.
Atmospheric parameters are unconstrained and uncorrelated with the
other state variables.

(15)

4. Field demonstration I: PRISM coastal observations of Santa
Monica Bay, CA

4.1. Experimental method

We evaluate two different environments: the low-sediment, phyto-
plankton-dominated coastal waters of Santa Monica Bay; and the highly
turbid inland waters of the Wax Lake Delta and lower Atchafalaya
River. Together, the study areas have diverse water properties with two
different remote instruments and a number of in situ comparisons
comparable to, or larger than, prior coastal spectroscopy studies
(Palacios et al., 2015).

We first evaluate the retrieval using a PRISM flight on a high alti-
tude ER-2 aircraft over Santa Monica Bay, California, on October
262,015. Santa Monica is a near-shore bay in the Southern California
Bight that is semi-enclosed and influenced by the populated Los Angeles
basin (Trinh et al., 2017). It is an interesting test case due to its high
productivity and diverse aquatic ecosystem (Hickey, 1992; Corcoran
and Shipe, 2011). Nutrients come from various sources including sea-
sonal upwelling as well as transient point sources such as wastewater
outflow during diversion events (Trinh et al., 2017). The ER-2 over-
flight took place during one such wastewater diversion. Remote and in
situ measurements reveal a large algal bloom associated with this out-
flow event (Trinh et al., 2017). The ER-2 flight altitude of 20 km pro-
vides wide area coverage of this feature at 20 m ground sampling. It
observes approximately 95% of the atmospheric column making it an
analogue for orbital measurements. Fig. 5 shows the flightline with the
location of coincident in situ validation spectra that were acquired using
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Satlantic HyperPro instruments with a protocol described by Trinh
et al., (2017). We reference these sites as D8W, D8.5W, DOW, and
D9.5W.

PRISM measures radiance at wavelengths spanning the
370—1050 nm range and sampled at approximately 3 nm. We initially
calibrate the PRISM data using a laboratory measurement of a National
Institute of Standards Technology (NIST) reference source imaged
under known viewing geometry. We then generate an initial flat field
estimate using an optical integrating sphere. We transform the raw
instrument data to units of yWnm ™' st~ ' em ™2, and adjust the data to
account for any remaining drift in the radiometric response of different
FPA elements following the procedure detailed in the appendix. We
orthorectify the data cube using standard practice, ray tracing the view
direction of each instrument element to a digital elevation model. We
derive the instrument position from synchronized onboard IMU/GPS
data. Our validation uses the average radiance of a square region ap-
proximately 100 m on a side centered on each in situ collection site.

We use a vicarious calibration to address post-installation differ-
ences in radiometric response. This accounts for factors including:
window transmission effects for the ER-2 installation, which are ex-
pected to be significant relative to the measured signal; any mean ca-
libration drift over time (as opposed to the relative flat field variability);
implicitly, any time-dependent differences in the solar irradiance
spectrum or the fine-scale spectral sampling thereof (Thompson et al.,
2015a); and any deviation from a completely linear gain response that
could affect results at the sub-1% level for the dark ocean targets. This
is standard practice for imaging spectrometers such as AVIRIS-NG and
PRISM, which experience more thermal change than typical orbital
instruments (Green et al., 1998). Here, we use the first in situ spectrum
at the D8W location as the calibration target. It is still necessary to
retrieve atmospheric parameters since they are not measured at the
surface, and in any case, terms like the water vapor absorption along
the sun-surface-observer path are not directly measurable. Conse-
quently, we use an initial retrieval to calculate atmospheric parameters,
apply them to the surface reflectance to predict the uncorrected at-
sensor radiance via Eq. (14), and calculate channelwise gain coefficients
(scaling factors) that align the PRISM measurement. This leaves three in
situ spectra separated by several kilometers as validation. In the fol-
lowing section, the AVIRIS-NG experiment uses a similar strategy over
multiple flightlines and days to demonstrate generalization across more
widely differing atmospheres, surfaces, and geometries.

Table 2 shows the uncertainty budget for both in situ and remote
reflectances. The only uncertainty term for the in-situ reflectances is the
temporal variability, which we calculate from the full sequence of
measurements spanning the range of the overflight. We exclude cali-
bration and measurement uncertainty, since the former is not known
and the latter is not significant due to the large number of integrations.

We validate retrieved reflectances with several quality scores. First,
we consider a qualitative assessment of “bowing” or parabolic magni-
tude trends in the cross-track direction, which reveals geometric

o D8W

0 D9.5W

Fig. 5. Visible color image of PRISM flightline prm20151026t173213

. The inset shows the location of the study area and validation sites.
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Table 2

Uncertainty account for the PRISM flightline. Uncertainty values are standard
deviations, except where indicated. HO uncertainties are consistent with
Rothman et al., 2013.

Source Elements Value Notes
Remote estimated state X
Prior uncertainty S,
Surface reflectance 242 x 242 Empirical Figs. 2-3
Atmospheric H,O 1 >10gem™2
Aerosol AOT550 3 0.05
Observation noise S,
Measurement noise Sy 242 X 242 Empirical A
Unknown variables S,
H,0 absorption 1 1% See caption
In situ reflectance
Temporal variability 242 Varies Empirical

nonuniformities in path radiance. We then compare spectral shape and
magnitude with in situ data using squared error and spectral angle
metrics. Next, we compare surface reflectance from the bio-optical and
channelwise parameterizations. We contrast their spectral fidelity and
the information content of the state vector according to the Rodgers
(2000) DOF analysis. To compare the models' ability to fit the radiance,
we extract a large square region approximately 500 pixels on a side
from the center of the flightline, and decompose the residual radiance
errors into Empirical Orthogonal basis Functions (EOFs) using singular
value decomposition of residual covariances. This reveals any sys-
tematic errors incurred from each surface modeling approach.

4.2. Experimental results

Fig. 6 shows the retrieved Rrs. for the entire PRISM scene in re-
presentative channels. This result used the statistical surface model
with the MODTRAN RTM. Black lines show isobath contours at every
200 m. Clouds in the southern portion appear blank. The images are
consistent with data acquired on the same day by the Landsat space-
craft, as reported by Trinh et al. (2017). Cross-track radiance profiles
suggest the influence of variable viewing geometry is significant for this
scene. Fig. 7 shows the relationship between path radiance and the
resulting reflectance. It shows a single horizontal profile across the focal
plane array in the 460 nm channel, excluding the extrema to avoid
influence from the FPA edge (left side) and surface phenomena (right
side). The bowed shape results from view-dependent differences in
scattering which are significant for the dark water surface. Scalar RTM
calculations with lookup table interpolation provide sufficient accuracy
to estimate the view-dependent path radiance, significantly improving
the reflectance results. The bottom panel shows two actual reflectance
retrievals from the flightline. The red curve uses a traditional nadir
view assumption, while the black curve uses the complete geometry-
aware model. The geometry-aware version corrects the path radiance
contribution. The post-correction uniformity suggests polarization ef-
fects are minimal, so that a scalar but geometry-aware calculation is
sufficient for this flightline.

Table 3 shows the spectrum fit and reflectance performance metrics.
We report the Mean Squared Error (MSE) of the radiance fits and the
Spectral Angles (SAs) of the remote and in situ surface reflectances. The
field measurement is more uncertain in the UV range, so we calculate
spectral angles over the interval from 380 nm to 660 nm. The long
wavelength cutoff avoids the 683 nm peak in D9W, which is treated
separately from the water-leaving reflectance by the bio-optical model.
Smaller values are better. All surface reflectances match the relative
shapes of in situ spectra to within a narrow spectral angle. The final
columns show the fraction of OE MODTRAN RTM points for which
discrepancies lie outside the 50% and 95% posterior predicted con-
fidence intervals, based on the OE uncertainty model and Table 2. It
also shows the associated p value for the chi squared hypothesis test
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that the residuals are drawn from this distribution; in two of three
cases, the p value is far greater than typical rejection thresholds (e.g.
0.05), indicating the uncertainty budget accounts for observed dis-
crepancies.

Fig. 8 shows the maximum a posteriori radiance and reflectance so-
lutions, with radiances residuals vs. the instrument measurement. The
black line shows the retrieval from the statistical model with the
MODTRAN RTM,; error bars indicate posterior marginal standard de-
viations accounting for all instrument and retrieval uncertainty. The red
line shows the statistical model with the 6SV RTM. The blue line shows
the MODTRAN RTM using the bio-optical surface parameterization. The
grey line shows the in situ result with standard deviations. The absolute
reflectance magnitudes differ most in the case of D9.5W, though in
practice it is common to observe magnitude shifts in remotely sensed
spectral reflectance over coastal water targets with minimal impact on
spectroscopic water property estimation algorithms based on spectral
shape (Kudela et al., 2015).

Fig. 9 decomposes the radiance fitting error into orthogonal bases,
or Empirical Orthogonal error Functions (EOFs). The left column shows
radiance errors incurred by the bio-optical surface model. The right
column shows radiance errors from the statistical (channelwise) surface
model. The bio-optical model leaves far more structure in important
water-leaving reflectance channels, suggesting that its limited flex-
ibility cannot completely model the reflectance spectrum. This is not
surprising; the six-parameter model is an approximation and actual
spectra inevitably diverge due to modeling inaccuracies and novel
constituents. The bio-optical model is a compromise that strives for
physical interpretability rather than reflectance fidelity. In contrast, the
statistical surface model shows only a few broad biases with shapes
suggesting minor differences in glint and/or magnitude of the water-
leaving reflectance signal. Systematic errors near 400 nm, where cali-
bration and solar input is most uncertain, dominate the residuals.

Finally, Fig. 10 explores sensitivity and uncertainty for both surface
models. We first decompose the total uncertainty of our statistical
surface model into noise and resolution terms as in Thompson et al.
(2018a), (2018c). The top row shows the estimated reflectance for two
held-out validation sites. D8.5W is located in blue water with little
chlorophyll. DOW is located closer to shore and contains higher levels
chlorophyll absorption and fluorescence. Both converged solutions
have over 236 Degrees of Freedom (DOF), close to number of in-
dependent surface parameters (242). This indicates high sensitivity to
reflectance variability in all channels. The atmospheric parameters all
have DOFs exceeding 0.99. The middle row of Fig. 10 decomposes total
uncertainty into measurement noise (S,) and resolution (S,,), re-
presented as the marginal standard deviations in each reflectance
channel. D8.5W is darker at longer wavelengths, and the sensor noise
component competes with resolving error over most of the retrieved
spectrum. In general, measurement noise dominates over retrieval re-
solution as the main source of uncertainty. This reflects the heavy
regularization intended to minimize bias on retrieved spectral shapes.

The final row of Fig. 14 shows cross sections of the gain matrix G,
ie. the partial derivative of the state vector element with respect to
measured radiance. We show H,O, glint, and the atmospheric sulfate
particle AOD550. The spectroscopic measurement provides leverage to
disambiguate state vector elements which affect the radiance in similar
ways, e.g glint and aerosol path radiance. Their different effects in
short wavelengths, and in atmospheric absorption features such as
water vapor and the 760 nm oxygen A band, can disentangle surface
and atmosphere. Fig. 11 shows the gain factors for surface terms of the
IOP parameterization, demonstrating that the different parameteriza-
tion affects the relative influence of the different radiance channels at
the solution state. Similar patterns are apparent, however, with short
wavelengths and the modulation of atmospheric absorption features
providing the most information. The IOP surface parameters all have
DOF 1.00, indicating that the measurement is sensitive to all in-
dependent parameters. The one exception is the Y parameter
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Fig. 7. The change in path radiance due to viewing geometry is significant, and
proper accounting leads to a noticeable improvement in the uniformity of the
reflectance. Upper and lower panels show the estimated path radiance and
surface reflectance, respectively, at 460 nm. (For interpretation of the refer-
ences to color in this figure, the reader is referred to the web version of this
article.)

representing the backscatter exponent, which has only 0.77 DOF. This
parameter is subtle and often held fixed by inversion algorithms. Clear
water cases such as these provide little leverage on particulate optical
properties.

5. Field demonstration II: AVIRIS-NG observations of the wax Lake
Delta and lower Atchafalaya River, LA

5.1. Experimental method

Our second field experiment is an overflight of the Wax Lake Delta
Region and Atchafalaya River in Louisiana, USA by NASA's AVIRIS-NG
instrument (Jensen et al., 2019). Such river delta regions are critical
targets for future orbital investigations; they are diverse and productive
ecosystems but vulnerable to sea level rise and climate change (Morris
et al., 2002; Twilley et al., 2016). The Wax Lake Delta, the site of ex-
tensive engineering and aggradation amidst coastal sea level rise, ac-
companies the adjacent Atchafalaya River as the primary outflow of the
Mississippi River (Twilley et al., 2016). Imaging spectroscopy can in-
form models of delta evolution, erosion and subsidence with measure-
ments of river water sediment loads and the functional properties of
near-shore vegetation (Jensen et al., 2019). While regional studies have
made significant progress with multi-band remote sensing, empirical
models based on a limited number of channels seldom generalize across
regions or campaigns (Warrick et al., 2004; Chen et al., 2015). This
underscores the value of full-spectrum physical models for global ap-
plicability across the land/water interface in optically complex waters.

Table 3
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Fig. 12 shows both mosaics of the delta area, revealing a network of
turbid inland rivers and ponds.

AVIRIS-NG measures the full visible to shortwave infrared regime
from 380 to 2500 um, similar to the range anticipated for future in-
vestigations lik the Surface Biology and Geology observations ad-
vocated for future NASA missions (ESAS, 2018). On October 17 and 18,
2016, a series of fligtlines transected the delta region in a dense cov-
erage pattern over two days (Fig. 12). In this installation, a B-200 King
Air aircraft platform flew at 5000 m altitude providing a 5m ground
sampling distance. Meanwhile, field teams visited different open-water
locations within the river network and measured water-leaving re-
flectance with field radiometers. These measurements took place within
approximately 6 h of the overflight. Field spectrometers were directed
at the water surface with a nadir-pointing orientation. The team ac-
quired multiple measurements at each site alternating with white re-
ference calibration panels and the water surface. We exclude a handful
of sites with extreme values suggesting measurement error, as well as a
site in the gulf beyond the river mouth with suspect temporal stability
between in situ and remote measurements. This left 11 in situ mea-
surements. The spectral ranges of the field data varied, since both
Visible/Near Infrared (VNIR) and Visible/Shortwave Infrared (VSWIR)
devices were deployed. Consequently, the remote retrievals use on the
full AVIRIS-NG spectral range but our in situ comparisons focus on the
380-900 nm range covered by all instruments.

The AVIRIS-NG analysis is similar to PRISM, starting with an initial
radiometric calibration and orthorectification. To account for specular
sunglint with effectively constant reflectance, we align in-situ and re-
mote retrievals at 900 nm for comparison. As for PRISM, we use the first
measurement as a target for vicarious calibration resulting in minor
(~1%) changes to radiometric calibration coefficients. We withhold
this measurement from all validations and reported results. The IOP
surface parameterization does not apply to the highly turbid water so
we use only the statistical option. We compare the OE estimation
strategy to the standard AVIRIS-NG atmospheric correction result dis-
tributed by the instrument team (Thompson et al., 2015b). The stan-
dard algorithm is a conventional sequential atmospheric correction. It
uses absorption coefficients derived from HITRAN 2012 (Rothman
et al.,, 2013) together with scattering calculations by the 6S RTM
(Vermote et al., 1997) to form a lookup table of optical coefficients
parameterized by water vapor and pressure altitude. It retrieves these
two parameters from the depths and shapes of H,O and O, absorption
features respectively. The standard product incorporates multiple em-
pirical correction steps, including an adjustment to account for cali-
bration uncertainty in the blue/ultraviolet interval (Thompson et al.,
2018a) and a multiplicative residual suppression vector to fix sys-
tematic reflectance residuals related to RTM modeling and spectral
sampling of atmospheric structure. We hold corrections close to unity
and apply the same values uniformly to all spectra in the campaign.
Consequently, evaluating many spectra over the course of multiple days
contrasts the generalization performance of the simultaneous and
conventional methods, which are OE and the standard approach, re-
spectively Table 4 shows the complete uncertainty account. The
AVIRIS-NG measurement uncertainty is channel- and signal-dependent,

Validation performance metrics for statistical and bio-optical surface models. Columns show the Root Mean Squared Error (RMSE) of the reflectance vis-a-vis the in-
situ measurement, and the Spectral Angle (SA) of the surface reflectance. The “Statistical” columns refer to the statistical surface model with the MODTRAN RTM; the
“6SV” columns use the statistical model with the alternative RTM. The “Bio-optical” columns use MODTRAN with the alternative IOP surface parameterization. The
three rightmost columns show the fraction of points for which in situ discrepancies exceed 50% and 95% posterior confidence intervals, and the associated p value.

Trial Statistical (MODTRAN) Statistical (6SV) Bio-optical CI CI P
RMSE SA RMSE SA RMSE SA > 50% > 95%

D8.5W 0.00050 0.033 0.00069 0.022 0.00037 0.034 10.2 0.0 1.00

DOW 0.00323 0.100 0.00089 0.081 0.00254 0.084 98.3 56.2 0.00

D9.5W 0.00063 0.041 0.00019 0.027 0.00048 0.026 42.6 0.0 1.00

10
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Fig. 8. PRISM validation spectra. The right column shows the residual of the best-fit radiance vis a vis the remote measurement. The right column compares remote
reflectance retrievals with water-leaving reflectance estimated from in situ radiometers. Error bars show standard deviations of the posterior uncertainty. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 9. Empirical Orthogonal basis Functions (EOFs) for radiance residuals incurred by Statistical and IOP surface models. We show the top six components.
Significance decreases beginning from the top.

and includes both instrument noise and systematic calibration errors are similar to the PRISM case, with the OE approach outperforming in
per Thompson et al., (2018c). The in situ measurement uncertainty in- 81% of the cases. Additional columns show the fraction of points ex-
corporates the temporal variability, again estimated using the empirical ceeding 50% and 95% posterior predicted confidence intervals, and the
time series, as well as a conservative 1% systematic error term reported associated p value as before. Extremely high p values indicate the un-
by Analytical Spectral Devices, Inc. for the field spectrometers. certainty budget accounts for observed discrepancies. Fig. 13 shows
example spectra from representative field sites. The black, red, blue,

5.2. Experimental results and grey lines show the OE solution with the MODTRAN RTM, the OE
solution with the 6SV RTM, the standard atmospheric correction, and

Table 5 compares retrievals to field measurements. Spectral angles the in-situ glint corrected surface reflectances respectively. Error bars
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Fig. 10. Retrieval information content. Top row: retrieved reflectances for two validation cases. Middle row: uncertainty decomposition for the statistical surface
model. Bottom row: rows of the gain matrix G for several elements of the atmospheric state vector. See text for explanation of annotations. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 11. Gain factors for IOP-based surface parameterization.

indicate the predicted posterior marginal standard deviations. The
conventional approach does not provide uncertainty estimates. Quali-
tatively the results of the different methods are all similar, except in the
shortest wavelengths where the OE result better captures the shape —
though not always the magnitude — of the in situ spectrum. There are
also minor differences in the 500 to 700 nm interval where the OE
approach resolves both 610 and 675 nm absorptions. The in situ and
remote estimates generally align within posterior confidence intervals.
Radiance residuals indicate the largest discrepancies in the uncertain
blue wavelengths which are most impacted by calibration issues and
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the sampling uncertainty. The latteris likely responsible for the struc-
tured spikes in both RTMs, associated with sharp solar features.

Finally, Fig. 14 shows retrieval error decompositions and gain ma-
trices. The left column shows a turbid open water case. Here, the
converged surface reflectance has 196.3 Degrees of Freedom (DOF),
slightly lower than the PRISM spectra due to a different balance of
Signal to Noise and surface variability. Despite having more channels,
AVIRIS-NG has lower signal to noise and the surface reflectance in
“extra” channels is highly constrained over water. The right column
shows a dark green vegetation spectrum from the scene, which we in-
clude as a radically different surface type. The converged reflectance
has just 165.8 DOF due to even stronger constraints in vegetation
components of the surface model. All atmospheric DOFs exceed 0.99
indicating sensitivity to these parameters. Error decompositions are
similar to the PRISM experiment. Water vapor information comes
mainly from the atmospheric absorption features, while both visible
wavelengths and the modulation of absorption features provide aerosol
information. Gain factors grow at long wavelengths due to the lower
overall signal. With few exceptions, there is information for all para-
meters distributed across the entire VSWIR range. The shortwave in-
terval beyond 1500 nm is particularly discriminative for turbid water;
different state vector parameters show very different gain factor profiles
in this region. This suggests that slopes and offsets in these spectral
intervals can disambiguate the terms.

6. Discussion and conclusions

The field experiment reflectance accuracies compare favorably to
prior remote spectroscopic study of coastal oceans and inland waters
(Jensen et al., 2019; Palacios et al., 2015; Kudela et al., 2015). In 14
validation cases, just one in situ measurement exceeds the posterior
predicted error envelope: the PRISM D9W site. This was a highly dy-
namic station close to the effluent outflow, so time variability could
contribute to the larger discrepancy. Moreover, there was a time offset
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Fig. 12. A mosaic of AVIRIS-NG flightlines covering the Wax Lake Delta and lower Atchafalaya River. The map shows visible wavelength channels and the location of
in situ samples on both days. We exclude the vicarious calibration site 17-ICWW from the performance evaluation.

Table 4

Uncertainty account for the AVIRIS-NG campaign. Uncertainty values are
standard deviations, except where indicated. We use the channel- and signal-
dependent AVIRIS-NG measurement uncertainty model from Thompson et al.,
(2018c¢). H,0 uncertainties are consistent with Rothman et al. (2013).

Source Elements Value Notes
Remote estimated state X
Prior uncertainty S,
Surface reflectance 425x 425 Empirical Figs. 2-3
Atmospheric H,O 1 >10gem™?
Aerosol AOT550 3 0.05
Observation noise S,
Measurement noise S, 425 Varies See caption
Unknown variables S;
H,0 absorption 1 1% See caption
In situ reflectance
Temporal variability 425 Varies Empirical
Systematic (calibration) 1 1% Manufacturer

between the PRISM overpass and the spectrum acquisition at this lo-
cation, so the uncertainty budget probably underestimates its temporal
variability. Unmodeled spatial variability and localization uncertainty
may also contribute, since localization error is outside our model. This
exception aside, discrepancies are not excessive and most spectrum
matches lie well within confidence bounds achieving a consistent closed
account of the observation system uncertainty.

Both bio-optical and statistical surface models offer different bene-
fits for coastal aquatic studies. The statistical model consistently
achieves the best shape fidelity, with close matches to reference re-
flectances measured at the surface. It can retrieve features that were not
originally incorporated in the source libraries, including subtle mod-
ulations of known absorption features by particulate matter and other
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absorption and packetization that would possibly indicate phyto-
plankton taxa. It retains the ability to estimate smooth atmospheric
parameters using statistical properties of the water-leaving reflectance
at long wavelengths. It also permits a unified treatment of terrestrial
and aquatic spectra, and — as demonstrated in the AVIRIS-NG flightline
— can exploit statistical properties of both to recover spectrally-broad
signals. Modelers can apply the degree of regularization which is most
appropriate to their application, freely channeling measurement in-
formation into atmospheric or surface fidelity. A final benefit is that pps
is nearly linear with respect to the surface state vector, promoting a
stable inversion with few local minima. In contrast, the bio-optical
model provides direct physical interpretability, automatically inter-
preting CDOM, chlorophyll-a and fluorescence line height contribu-
tions. This may obviate certain downstream analyses and presages more
sophisticated parameterizations capable of representing complex water
columns. Performing these retrievals in conjunction with atmospheric
correction provides a consistent, principled estimate. As an alternative,
water leaving reflectance could be propagated to downstream analyses
with suitable uncertainty representations (Thompson et al., 2018a,
2018c). These constrained bio-optical surface parameterizations may be
more appropriate for low-SNR observations by less capable instru-
ments.

As noted in prior study, different surface types provide varying in-
formation with respect to atmospheric phenomena. The entire VSWIR
interval proves informative, and AVIRIS-NG exploits shortwave shapes
to disambiguate similar sources of interference. Conventional atmo-
spheric correction separates atmosphere and surface heuristically: by
bifurcating scenes into land and water areas, further subsetting to dark
water and/or dark vegetation, and performing ad hoc tests or optimi-
zations based on slope and magnitude constraints on specific spectral
regions. While this can often work well on single flightlines, it requires
a large and potentially fragile flowchart of rules that is often tuned
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Table 5
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Validation performance for OE and Sequential retrievals, for reflectance Root Mean Squared Error (RMSE) and Spectral Angle (SA). Columns show optimal estimation
with MODTRAN and 6SV radiative transfer engines, and a third tect sequential column showing the standard AVIRIS-NG atmospheric correction approach (Thompson
et al., 2015b). The final columns show the fraction of OE MODTRAN residuals exceeding the posterior 50% and 95% Confidence intervals, combining both in situ and

remote posterior uncertainties, and the associated p value.

Trial MODTRAN 6SV Conventional > 50% > 95% p
RMSE SA RMSE SA RMSE SA CI CI
17-Atch12 0.0042 0.088 0.0046 0.088 0.0074 0.154 38.1 0.0 1.00
17-AtchDown 0.0078 0.055 0.0124 0.076 0.0079 0.095 19.0 0.0 1.00
17-Atchl 0.0058 0.071 0.0115 0.082 0.0092 0.164 3.8 0.0 1.00
17-WLS5Apex 0.0039 0.034 0.0123 0.151 0.0041 0.099 20.0 0.0 1.00
17-WL2 0.0034 0.026 0.0157 0.137 0.0044 0.079 20.0 0.0 1.00
18-Atchl 0.0041 0.074 0.0105 0.103 0.0117 0.234 33.3 0.0 1.00
18-Atch2 0.0065 0.093 0.0038 0.061 0.0069 0.130 26.7 0.0 1.00
18-Atch12 0.0068 0.134 0.0073 0.090 0.0065 0.122 27.6 0.0 1.00
18-Atch4 0.0087 0.157 0.0104 0.121 0.0135 0.323 32.4 9.5 0.99
18-WL16 0.0076 0.247 0.0103 0.229 0.0045 0.533 21.9 2.9 1.00
01 Radiance Residual, 17-WL2 Reflectance, 17-WL2
' MODTRAN MODTRAN
0.08 |
6SV 6SV
0.06 Conventional
TV = 0.04
0.02
3 -0.1 1 L 1 L L 1 0 L L L L L i
400 500 600 700 800 900 400 500 600 700 800 900

Radiance Residual, 18-Atch1

Reflectance, 18-Atchl

I 0.1 L L L L | 0 L L L L 1
400 500 600 700 800 900 400 500 600 700 800 900
o1 Radiance Residual, 18-WL16 Reflectance, 18-WL16
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Wavelength (nm) Wavelength (nm)

Fig. 13. Example AVIRIS-NG validation spectra. The right panel shows the residual of best-fit radiances vis a vis the instrument measurement. The right panel
compares remote AVIRIS-NG surface reflectance retrievals to the in situ measurements. The blue “Conventional” spectra refer to the current AVIRIS-NG standard
atmospheric correction accomplished by sequential estimation; it inverts the radiance algebraically rather than fitting the measurement data. Error bars show
posterior marginal standard deviations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

manually to the specific environment . In contrast, OE automatically
captures these constraints through statistics of the surface. It draws
appropriate information from all parts of the spectrum without the need
for the operators to specify rules in advance. Finally, OE provides a
unified framework for land and ocean spectra, enabling complementary
information from these different spectra to be combined in a scene-wide
atmospheric estimate (Thompson et al., 2018c). Geostatistical techni-
ques, like Gaussian process priors on atmospheric parameters, are a
possibility.

There are several other avenues for future study. Neither RTM
considered in this experiment is a universal solution for coastal spec-
troscopy; the 6SV band model carries limited spectral resolution and
the MODTRAN code ignores polarization effects. Both decouple the
surface and atmosphere estimation, ignoring directional effects of
multiple-scattering events from the surface. These simplifications suf-
fice for our experimental demonstration where polarization effects are
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minimized due to the lack of strong absorption features in the shortest
Rayleigh-dominated wavelengths (Natraj et al., 2008), near-nadir ob-
serving geometry (Wang, 2006), and instruments designed for polar-
ization insensitivity (Mouroulis et al., 2014). The near-nadir observing
angles and low AOD also minimize view-dependent directionality of
multiple-scattering from the surface. While these conditions will not
always hold, the OE formalism is general enough to accommodate more
sophisticated forward models that become available in the future in-
cluding vector codes with high spectral resolution. One could also
couple surface and atmosphere with an RTM that includes both water
column and atmosphere simultaneously, resulting in a combined state
vector that feeds a new forward model run for each MAP iteration (Fan
et al., 2017). Emulation methods (Verrelst et al., 2017; Verrelst et al.,
2016) can make this computationally tractable, and it is an area of
active ongoing research (Bue et al., 2019).

Future work could also apply the same model to ocean observations.
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Fig. 14. Retrieval information content. Top row: retrieved reflectances for two validation cases. Middle row: uncertainty decomposition for the statistical surface
model. Bottom row: rows of the gain matrix G for several elements of the atmospheric state vector. See text for explanation of annotations. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)

NASA missions like PACE will provide visible/near infrared spectra at
coarser spatial resolution over large areas of the open ocean. The
Surface Biology and Geology investigation (ESAS, 2018) could cover
the entire visible to shortwave infrared interval, through it is likely to
focus on terrestrial and coastal areas. In both cases, full-spectrum at-
mospheric correction algorithms can fully utilize the information pre-
sent. Global datasets present opportunities for validating OE ap-
proaches using large validation networks imaged multiple times under
different atmospheric conditions. New surface models may enable more
advanced applications like estimating phytoplankton functional types
or discriminating subpixel foam, sea ice, and sea vegetation fractions.

In summary, this study demonstrates that Optimal Estimation
methods are applicable to coastal imaging spectroscopy, and hold nu-
merous potential advantages for surface reflectance and atmospheric
estimation. We present surface models for clear and turbid water,
comparing multiple parameterizations and characterizing the balance
in fidelity between surface and atmosphere. An experiment evaluates
the methods using NASA's Portable Remote Imaging SpectroMeter
(PRISM) over a well-studied wastewater diversion event in Santa
Monica, and the Next Generation Airborne Visible Infrared Imaging
Spectrometer (AVIRIS-NG) over the Wax Lake Delta and lower
Atchafalaya River. The experiments demonstrate the potential of OE
approaches in future coastal spectroscopy studies.

Appendix A. PRISM instrument noise model
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PRISM is a pushbroom design with a two-dimensional Focal Plane Array (FPA) observing linear segment of the surface. Each cross-track location
is essentially a separate spectrometer, and can have slightly different response characteristics. Minor changes in elements' radiometry and spectral
responses over the course of a campaign can induce spatially-dependent calibration error manifesting as “striping” in the downtrack spatial di-
mension. The PRISM optics are designed for high spectral uniformity (Mouroulis et al., 2014) and we assume that wavelength calibration is
effectively stable. However, our instrument model does account for variable radiometric response by both a change in the multiplicative correction ¢;
for each column extiti and noise properties expressed as a column-specific covariance matrix S,;. The radiance £, relates to the true radiance £,;" by:

st = (ci_lo obs) + Syi

(A1)
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Fig. A.15. Left: Actual estimate for S,; at position 100. Right: matrix comprised of all flat field correction estimates c;.

Table A.6
Pushbroom uniformity. q are the quality scores for different retrieval methods.
Smaller values are better.

Method q

Original retrieval with nadir view assumption 0.003458
Columnwise instrument noise model 0.002499
Columnwise radiometry correction 0.001617
Columnwise radiometry and noise 0.001583
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Fig. A.16. The pushbroom instrument model significantly reduces striping effects.

The gain term c; is a vector describing the radiometric response for every channel relative to the other elements; it is a “flat field” value very close
to unity. While we always derive initial values for ¢; and S,; using pre-campaign laboratory calibration measurements, there are inevitably tiny
changes in each element based on the current thermal and electronic state of the instrument. We exploit the structure of a uniform scene to estimate
the values observed in flight. There the instrument flat field contribution is constant within a single column but different across neighboring columns,
while the noise contribution is realized independently in each cross-track location and timestep of the acquisition. Any correlated signal likely arises
from scene structure rather than the instrument.

These principles allow us to fully decompose the observation variance into the three components of Abbott and Letelier (1999) scene, Adler-
Golden et al. (1999) flat field variability, and Amin et al. (2014) instrument noise. Following Thompson et al. (2017), we extract a rectangular region
consisting of 100 downtrack pixels and the entire width of the focal plane array. We then apply a simple Gaussian spatial smoothing in the downtrack
dimension with a standard deviation of 4 pixels, an operation equivalent to a spatial low pass filter. Subtracting this scene signal from the original
acts as a high pass filter leaving the uncorrelated instrument noise. A similar high pass operation in the cross-track dimension reveals the difference
in the nominal spectral response of each detector element relative to its neighbors. We express any discrepancy between observed and nominal
radiance as a multiplicative gain, and average them downtrack to improve counting statistics. This estimates the gain spectrum ¢; for each
pushbroom column. Fig. A.15 shows the result: a flat field measurement indicating c; at all pixels, and a typical covariance matrix S,;. We perform
this operation once, before the retrieval. The rate at which updates are required — whether per-flightline, per-day, or per-season — depends on the
specifics of the instrument, campaign, and the accuracy needs of the investigation.

We evaluate cross-track uniformity using a performance score q:
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1

q= Z 1 z (0 = Pus1)?

bands ToWs fows Meolumns columns (A.2)
where pg; and py; 1 1 refer to the surface reflectance of column i and its immediate neighboring column, respectively. The score q estimates the distance
between neighboring cross-track locations. This value should be small and average out over long downtrack intervals. Consequently, averaging
differences in the downtrack dimension estimates the systematic differences FPA radiometric response. Over large areas, the quality score indicates
striping performance. We compare four different accounts of spatial variability: a simple nadir viewing perspective assumption; a model with the
viewing geometry of each element; a model with viewing geometry and scene-based instrument noise estimates S,;; and the most sophisticated model
with geometry, element-wise noise estimates S;, and element-wise gain adjustments c;.

Results indicate that more sophisticated instrument models improve cross track uniformity. Table A.6 reports striping quality scores q. Tracking
geometry, radiometry and noise independently for each column improves neighbor discrepancies by a factor two relative to the conventional result.
Intermediate instrument models incorporating radiometry and noise effects alone achieve partial benefits. Fig. A.16 portrays this improvement,
showing the two extreme cases at a representative 550 nm reflectance channel. The image intentionally stretches visual contrast to emphasize
striping effects. Some pathological electronic effects remain in specific columns, but there is a visible reduction in striping.
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