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Absfracf-This paper describes an experimental modular 
distributed manipulation system upon which one can imple- 
ment a variety of control schemes. We have shown elsewhere 
that when oue includes the nonsmooth effects of friction into 
a model of distributed manipulation, nonsmwth feedback 
laws must generally be used to contml distributed manipu- 
lators. We summarize results obtained with this experimental 
system that confirm the validity of control schemes proposed 
by the authors in recent papers (see [13, 141). We describe 
the control algorithms in some detail and include specifics 
of the experimental set-up and experimental results. 

I. Introduction 

Distributed manipulators usually consist of an m a y  of 
similar or identical actuators combined together with a 
control strategy to create net movement of an object or ob- 
jects. The goal of many distributed manipulation systems 
is to allow precise positioning of planar objects from all 
possible starting configurations. Such “smart conveyors” 
can be used for separating and precisely positioning parts 
for the purpose of assembly. Distributed manipulator ac- 
tuation methods ranges from air jets, rotating wheels, and 
electrostatics on the macroscale, to MEMS and flexible 
scilia at the microscale. 

As reviewed below, a number of strategies have been 
proposed for controlling distributed manipulation systems. 
In this paper we describe an experimental test-bed that was 
designed to evaluate and validate such control systems. 
Our modular system can emulate a reasonably large class 
of distributed manipulators that generate motion through 
rolling and sliding frictional contact between the moving 
object and actuator surfaces. In such cases friction forces 
and intermittent contact play an important role in the 
overall system dynamics, leading to non-smooth dynami- 
cal system behavior. In previous work we presented non- 
smooth dynamical models for describing such systems 
[ill, and non-smooth control laws 113, 141 that provably 
stabilize these systems. We have applied these techniques 
to our experimental system, and experimental resuits pre- 
sented in this paper validite these methods. 

Methods to design distributed manipulation control 
systems have been proposed in several works, including 
[3, 5 ,  61. A common approach is based on the notion of 
programmable vector fields [Z, 41. In this methodology. 
one makes the possibly unrealistic assumption that the 
array’s control capability can be idealized as a continuous 
distribution of forces across the m a y  surface. In this 
abstraction, the manipulated object moves under the influ- 
ence of these forces. The control design problem reduces 
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Fig. i 
THE FADM SYSTEM 

to the selection of a continuous force field distribution that 
will locally transport the object to a prescribed position, 
and then stabilize it at that configuration. To implement 
the control strategy on the real may, one must adapt the 
continuous vector field control to the real (and discrete) 
actuator may. 

The programmable vector field approach has been ex- 
perimentally shown to work in MEMS-fabricated actuator 
mays,  where the array elements are “small” and “close” 
together relative to the size of the object being manip- 
ulated [2,  91. This approach is additionally well suited 
to distributed air jets, where the aerodynamics effectively 
“smooth out” the resulting forces on the object. However, 
in cases where only a small number of actuators are in 
contact with the manipulated object (i.e., the continuous 
actuation approximation is poor) or the coefficient of 
friction p is very high, the continuous approximation 
has been shown experimentally not to work as well [SI. 
In these cases, the continuous approximation does not 
adequately incorporate the physics of the actual m a y  and 
the objecttarray interface. 

These experimental observations previously led us to 
explicitly incorporate frictional and discontinuous contact 
effects into the analysis and control of distributed manip- 
ulation (and the related case of overconstrained wheeled 
vehicles [ l l ] ) .  We showed that under very simple and gen- 
eral assumptions on the friction model, the PFF approach 
leads to unstable systems when implemented on actual 
distributed manipulation mays  that have frictional contact 
[13]. The instability arises in the object’s orientation at 
the equilibrium configuration. In Ref. [12] we presented a 
nonsmooth control law that locally stabilizes this instabil- 
ity in a provably correct way. In [14] we showed how to 
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combine the programmable vector field approach and the 
local control law of 1121 to obtain a globally exponentially 
controllable distributed manipulation control system. 

In this paper, we briefly review these theories (Section 
111, present the design of an experimental distributed 
manipulation test-bed (Section Ill), develop explicity non- 
smooth control laws for this system (Section IV), and 
demonstrate these prior theoretical results on our prototype 
via detailed experiments (Section V). 

11. Background 

Many actual or proposed distributed manipulator im- 
plementations rely upon physical contact between the 
manipulated object and the driving elements. Examples 
include driving wheels, fingers, cilia, or flaps. To explicity 
investigate, incorporate, and control the complex frictional 
contact phenomena inherent in such systems, one needs to 
develop general modelling schemes that can capture these 
phenomena. One could reson to a general Lagrangian 
modelling approach that accounts for the contact effects 
through Lagrange multipliers. Instead, we sought to de- 
velop a general modelling scheme that captures the salient 
physical features, while also leading to equations that are 
amenable to control analysis. 

To realize this goal, we use a “power dissipation model” 
(PDM) approach to model the governing dynamics of 
a distributed manipulation system involving a discrete 
number of frictional contacts. One can show that this 
method almost always produces unique models [ I l l  that 
are relatively easy to compute, and to which one can 
apply control system analysis methods. Since the method 
is a quasi-static modeling method, it produces first-order 
governing equations, instead of second order equations 
that are associated with Lagrange’s equations. 

We assume that the moving body and actuator elemknts 
that contact the object can be modelled as rigid bodies 
making point contacts that are governed by the Coulomb 
friction law at each contact point. Let q denote the 
configuration of the arraylobject system, consisting of the 
object’s planar location, and the variables that describe the 
state of each actuator element, Under these conditions, the 
relative motion of each contact between the object and 
an actuator array element can be modeled in the form 
w(q)Q. If w ( q ) q  = 0, the contact is not slipping, while if 
w(q)q # 0, then w(q)q describes the slipping velocity. 

In general, the moving object will be in contact with 
the actuator array at many points. From kinematic con- 
siderations, one or more of the contact points must be in 
a slipping state, thereby dissipating energy. The power 
dissipation function measures the object’s total energy 
dissipation due to contact slippage. 

Definition 11.1. The Dissipation or Friction Functional 
for an n-contact state is defined to be 

with U; and N. being the Coulomb friction coefficient and 
normal force at the ith contact, which are assumed known. 

Since there will generally not exist a motion where all of 
the contacts can be simultaneously slipless, we are lead to 
the following concept for finding the governing motions. 
Power Dissipation Principle: With q small, an object’s 
motion at any given instant is the one that minimizes ’D. 
Assuming that the motion of the actuator may’s variables 
are known, the power dissipation method assumes that 
the object’s motion at each instant is the one that in- 
stantaneously minimizes power dissipation due to contact 
slippage. This method is adapted from the work of [I]  on 
wheeled vehicles, and more details can be found in [ I l l .  
For a greater discussion of the formal characteristics of 
the PDM, and a discussion of the relationship between 
the PDM and Lagrangian approaches for such a system, 
see [Ill.  

When one applies the PDM method, the governing 
equations that result take the following form: 

Definition 11.2. A system is a multiple model drifless 
affine system (MMDA) if it can be expressed in the form 

(11.2) 

where for any x and t ,  f,,,(x) E { g a , ( x ) l a i  E Ii}, with 
Ii an index set and f, measurable in ( x ,  t )  and g, analytic 
in (z, t )  for all i .  0 

An MMDA is a driftless affine nonlinear control system 
where each control vector field may “switch back and 
fonh between different elements of a finite set. In our 
case, this switching corresponds to the switching between 
different contact states between the object and the array 
surface elements (i.e., different sets of slipping contacts) 
due to variations in contact geometry, surface friction 
properties, and normal loading. In [ll] it was shown 
that the PDM generically leads to MMDA systems as in 
Definition 11.2. 

A. Equations of Motion 

i = ( x ) w  + f 0 , ( 5 ) U 2  + ’ .  ’ + fm, (Z)Un 

This section sketches the application of the power dis- 
sipation method to the example of a planar array of driven 
wheels. The i t h  actuator is located at (xi, si), has an 
orientation with respect to the origin of 0,. and the velocity 
input at that actuator is U,. Le., the ith wheel is spinning 
at speed U ; .  Moreover, let gi be the transformation in 
SE(2)  (the special euclidean group) from the origin to 
a reference frame associated with the i th actuator. The 
relative velocity of each contact point between the wheel 
and moving object can he expressed as Cl(q)q. where q is 
the configuration of the object in SE(2)  and 

(11.3) 
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is the homogeneous representation of the iih actuator 
node's configuration relative to a fixed reference frame, 
A d ( . )  is the adjoint transformation which transforms ve- 
locities from one coordinate frame to another, and R(.) E 
SO(2) (that is, R is a member of the special orthogonal 

We now consider, through an intuitive discussion that 
can be hacked up by analysis, the application of the PDM 
to this problem. 

First note that the minimum of the power dissipation 
function only occnrs when three of the contact constraints 
are satisfied (i.e. n;(q)q = 0 for three choices of the index 
i). The constraints satisfied are precisely those which 
would otherwise dissipate the most energy if they were 
violated. The contact states that dissipate the most energy 
are those associated with the potential constraints having 
the largest three normal forces ai = Nip<. Based on these 
observations, if the center of mass determines the normal 
forces (based on assumptions about surface uniformity, 
etc.), and if p(x, y)  is uniform, then the object's motion 
satisfies whichever constraints are closest to its center of 
mass. That is, the particular region in which the center 
of mass lies determines the first two actively satisfied 
constraints. The third actively satisfied constraint is de- 
termined by the friction model. The system equations are 
found by solving for the annihilator of the constraint n(q). 
If the coefficient of friction for sideways slipping, ps, is 
less than the coefficient of friction for rolling slipping, 
UR, and if the nearest actuator to the center of mass is 
indexed by i and the second nearest is indexed by j ,  then 
the governing equations are: 

group). 

where c, = cos(&), si = sin(&), etc. It should be 
noted that here the index notation should be thought of 
as mapping (i,j) pairs to equations of motion in some 
neighborhood (not necessarily small) around the it" and 
j t k  actuator. The transition between the equations of 
motion determined by actuators i and j to equations of 
motion determined by actuators 12 and 1 will in general 
he determined by the location of center of mass. This in 
tum leads to the state space being divided up by transition 
boundaries between different sets of equations of motion. 
To write this as an MMDA system, we may rewrite the 
above system as 

As the trajectoly q( t )  crosses a boundaty between one 
region where the equations of motion are determined by 
actuators i and j to a region where the equations of motion 
are determined by actuators k and 1,  we mnst allow fi 
and to be multivalued (hence the inclusion E instead 
of equality in Equation (US)). 

B. Review of Relevant Theory 

This section briefly describes three previous results 
that form the basis of the experiments in Section V. An 
elliptic vector velocityjeld is one of the form P(x, y)  = 
( - a x ,  -by) (these are common structures in the open loop 
theory). The first result states that although elliptic vector 
fields cannot stabilize (IIS), with full state feedback the 
equations can he stabilized (see [13]). 

Theomn 11.1. The system (11.5) is unstable using an 
elliptic vector velocity field q ( x ,  y) : Rz i R2. bur is 
locally srabilizable through a discontinuous feedback law. 

We should comment that the instability in Theorem 11.1 
is only true for this subset of open loop strategies, and is 
not necessarily true for all open loop strategies. It nev- 
ertheless motivates our work in closed loop control, both 
in this paper and elsewhere. This result only guarantees 
local stability, however, so a more global theory must be 
established for purposes of implementation. In this case, 
it is possible to use elements of the open loop theory of 
programmable vector fields to do so. In particular, the 
major goal of [14] was to combine the programmable 
vector field approach with our local feedback law implied 
by Theorem 11.1. We use a programmable vector field 

Fig 2 

A LASALLE INVARIANCE THEOREM 
to govern the object's gross motions far away from the 
equilibrium point, and a locally stabilizing feedback law 
in the vicinity of the equilibrium configuration. Consider 
Fig. 2. The intuition behind this approach is that if we can 
move a package from one point a E R2 to an equilibrium 
point b t P2, and if we have feedback in a closed 
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neighborhood M of point b, we can wait to reorient the 
package until it has entered M .  

To effect this blending, we developed a variation of the 
classical LaSalle Invariance Principle which we then used 
as the basis for the following theorem (see [14]). 

Theorem 11.2. Given a discrete planar urray geometry, 
an elliptic vector velocityfield X'(z,y) : 8' + R2 outside 
of M = B, x Si (where B, E R2 is a ball of radius e )  
fo r  some e > 0. and a locally .stabilizing feedback law 
(which we know exists by Theorem 11.1) :he solutions to 
the governing equations given by the PDM are globally 
stable. 

111. The Experimental Setup 

An experimental prototype has been developed for test- 
ing the results in Section I1 and other proposed algorithms. 
A photograph of the system can be seen in Fig. 1, and a 
schematic of the system in Fig. 3. Our modular design is 
based on a cell concept. Each cell contains two actuators. 
One actuator drives a wheel that contacts the moving 
object, while the other actuator orients the wheel axis, 
(see Figure 4). Note that the orienting axis of each cell can 
he fixed so that the system can simulate simpler systems 
with a fixed driving wheel orientation. The driving wheel 
has a four-inch radius, and is made of soft foam rubber to 
accentuate the friction reaction force. These wheels satisfy 
the preferred friction distribution rule described in [13]. 

These cells can be easily repositioned into different 
configurations in the supporting structure so as to simulate 
different types of systems. As seen in Fig. 1, the Fully 
Actuated Distributed Manipulation (FADM) system is 
deployed with a total of nine cells. More cells can be 
added as needed. 

Both actuators consist of Pittman brushless 12V motors, 
which are connected to JR-Kerr Pic-Servo-3PH motor 
controller boards. All 18 motor boards are connected 
through a daisy chain configuration to a central computer 
through one of its serial ports. 

The position of the manipulated object is obtained 
and tracked visually. A Sony XC-73 monochrome CCD 
camera with a Cosmicar C60607 6 mm lens is used for 
the vision system. Images are captured by an Imagena- 
tion PXC-200 framegrabber card. For position acquistion 
and tracking, a rght triangle is affixed to the moving 
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Fig. 4 
PHOTOGRAPH OF CELL. ACTUATED MOTIONS ARE MARKED IN BLUE 

object. Feature tracking software (written in C) developed 
at Caltechs Computational Vision Laboratory (see [7]) 
is used to find and track this triangle. Because of the 
communication delays required to send control signals 
to all motor controller hoards in the daisy chain system, 
only six to seven iterations per second can be realized at 
present. 

IV. Feedback Algorithms 

This section presents in detail the algorithm used in the 
underactuated distributed manipulation experiment found 
in Section V. For a more rigorous treatment of the design 
of this control law, see [lo]. The discontinous feedback 
law is based on designing control laws for each model in 
the governing multiple model system. Then, a supervisory 
controller switches between control law depending upon 
the current system state. The control laws and switching 
scheme are chosen to guarantee stability. This methodol- 
ogy allows the control design to he relatively simple, even 
for relatively complex systems. 

n c  
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ALGORITHM FOR NONSMOOTH FEEDBACK 
Consider Figure 5 ,  which might represent a portion 
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of a distributed manipulator near a desired equilibrium 
point. This region has four actuators (corresponding to the 
inputs U , ,  . . . , uq and represented in the figure by arrows) 
located at (+ l ,zk l ) ,  all pointed towards the origin. An 
analysis of this system using the PDM method shows that 
the region can be divided into 16 distinct regions. In the 
eight open regions, labeled I - VIII, one contact state 
holds. The other 8 boundary regions, labeled 0 - 2a in 
increments of 2 denote the boundaries between contact 
stares. Depending on which one of these 16 regions the 
center of mass of the object resides in, the algorithm 
chooses a different appropriate control law. In each one of 
these regions a control law calculated from the Lyapunov 
function k(x2+yz+02) by solving V = -1 for u., where 
k is some constant to be chosen during implementation. 
These control laws can he found in Table I. The “Region” 
Column shows the region of applicability, and the “Control 
Law” section shows the explicit control law for each 
actuator. For regions I-VIII, u3 = u1 and uq = u2. For 
regions 0 - 77114 whichever control satisfies ui = k0,  the 
control of the same parity (i.e. even or odd index) satisfies 
uj  = -k0, while the other two controls are equal. 

The globally stabilizing control law in Theorem 11.2 
is actually quite simple. For our purposes, we chose a 
radius around the origin of .25 meters to he the “feedback” 
region, M .  Outside of M we defined the vector field qb to 
he $ = ( - x ,  -y) and inside of M we used feedback to 
stabilize the object to the desired position and orientation. 

V. Experiments 
Here we summarize experimental results that illustrate 

the theory reviewed in the previous sections ’. The goal of 
the experiment was to stabilize an object from a random 
initial condition to the final configuration ( X I ,  211, 01) = 

(0 m, 0 m, 0 rad). For these experiments, the manipulated 
object is a piece of plexiglass. This choice allows us to 
view the actuator actions during manipulation while still 
ensuring reasonable amounts of friction. The plexiglass 
has a white piece of paper with a black triangle on it 
(which is identified by the tracking software) as can be 
Seen in the movie snapshots in Figures 9 and 11. We 
should note that the plexiglass covers the majority of 
the viewable area. These snapshots also include outlines 
of the “goal” triangle position. The following paragraphs 
summarize each experimental effort and result. 

4. Programmable Vector Field 

This experiment uses our 9 cell experiment to imple- 
ment an open loop elliptic vector velocity field. The main 
point to notice here is that the object did not renrient 
vey much despite the fact that we were trying to get it 
to reorient by approximately H radians. Nevertheless, the 
open loop method did successfully stabilize the x and y 
coordinates of the object’s location. We should also make 

‘Movies of these and other enpenmcnrs chn be found at 
http://www.cds calrech. edcd-murphey/experimmeni/ 
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Fig. I 
OPEN LOOP MOVIE SNAPSHOTS 

0 value is very near the desired one, the controls naturally 
"push" the system away from the origin of Rz until the 
orientation is close to the desired value. 

C. Global Invariance 

This experiment used nine FADM actuators arranged 
in a regular array (see Fig. 1 I ) .  We defined a feedback 

Fig. 9 
UNDER-ACTUATED MOVIE SNAPSHOTS 

region consisting of a 0.25 meter radius circle centered on 
the goal position, Outside of this region, object motions 
are governed by a programmable vector field. Inside of 
this region, we use a locally stabilizing feedback law 
that takes advantage of the fact that all of the wheels 
can he individually steered. This leads to exceptional 
performance in M .  See the companion paper [15] for 
details of this locally stabilizing control law. 
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Fig. 10 
COMBINING THE PROGRAMMABLE VECTOR FIELD WITH LOCAL 

Fig. I1 
GLOBAL STABILIZATION MOVIE SNAPSHOTS 

VI. Summary 

The experimental results presented here confirm that 
the modeling and control methodologies in [13, 141 are 
valid. This indicates several important facts. First, it means 
that the effects of friction and intermittent contact are 
important to understanding many distributed manipulation 

problems. Second, the control algorithms relevant to this 
class of systems are typically nonsmooth, but still rela- 
tively simple. Basic Lyapunov techniques adapted to the 
nonsmooth setting proved to be more than sufficient for 
designing and implementing controllers for our dismbuted 
manipulation system. A next important step will be to im- 
plement the theory demonstrated here on the micro-scale, 
where friction and limited actuation are very important 
factors in control. In the future, these methods will be 
adapted to account for more realistic conditions at the 
MEMS level, making micro assembly and other micro 
tasks more feasible. 
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