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Abstract  

This paper introduces a generalized framework, termed 
“stochastic cloning,” for processing relative state mea- 
surements within a Kalman filter estimator. The main 
motivation and application for this methodology is the 
problem of fusing displacement measurements with po- 
sition estimates for mobile robot localization. Previous 
approaches have ignored the developed interdependencies 
(cross-correlation terms) between state estimates of the 
same quantities a t  different time instants. By directly 
expressing relative state measurements in terms of previ- 
ous and current state estimates, the effect of these cross- 
correlation terms on the estimation process is analyzed 
and considered during updates. Simulation and. experi- 
mental results validate this approach. 

1 Introduction 
In order for a mobile robot to autonomously navigate, it 
must be able to localize itself [l], i.e. to know its posi- 
tion and orientation (pose). Different types of sensors [Z] 
and techniques have been employed to address this issue 
(e.g. 131, 141, 151, IS]). Most current localization systems 
combine measurements from proprioceptive sensors that 
monitor the vehicle’s motion with information collected 
by exteroceptive sensors that provide information about 
the robot’s neighboring environment. Examples of propri- 
oceptive sensors include wheel encoders, accelerometers, 
gyroscopes, etc. By applying appropriate integration of 
the measured quantities, the robot’s displacement can be 
estimated. However, the integration of noise contaminat- 
ing these signals, causes the position estimate to drift from 
its real value [7], [SI. The exteroceptive sensors extract 
information about the robot‘s configuration by measur- 
ing the unique characteristics of the robot’s surroundings. 
Exteroceptive sensors can also be used to derive direct es- 
timates of a vehicle’s motion (motion from structure). For 
example, laser scan matching and vision based correlation 
techniques (9, 10, 11, 121 can be employed to estimate a 
robot’s displacement between successive sensor samples. 
This estimate is computed by minimizing some function 
of the distance between the corresponding locations within 
a set of laser scans or image frames where a set of features 
appear. 
Once a displacement measurement is derived from an ex- 
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teroceptive sensor, in most cases it must be combined with 
other position estimates derived from onboard propriocep 
tive sensors. An appealing solution to this problem is to  
convert the relative pose measurements to absolute posi- 
tion pseudo-measurements using the previous position es- 
timates and treat them as such [13]. A different approach 
would be to process the displacement information as an 
(average) velocity measurement during the time interval 
between consecutive images [14]. Both these methodolo- 
gies are approximate solutions founded on certain assump- 
tions. The first approach is correct only when the ori- 
entation of the vehicle is precisely known. The second 
approach is valid only when the frequency of the displace- 
ment measurements is higher or at least equal to the f r e  
quency of any other velocity measurements available to 
the estimator. If both odometry and the relative pose 
measurements are available at the same rate, an exact 
solution would be to combine them as two independent 
measurements of the same displacement between two con- 
secutive time steps. In most practical situations relative 
pose measurements are obtained at  a significantly lower 
rate compared to odometric data. Application of this last 
methodology cannot provide state estimates between rel- 
ative pose measurements unless two different estimators 
are involved; one for state estimation (absolute pose) and 
one for odometry integration. 
A more formal approach to this problem is to treat the 
relative displacement estimates as differences between the 
previous and current estimates of the position of the robot. 
In this paper we present a generalized framework, which 
we term stochastic cloning’ for processing such relative 
state (pose in this case) measurements within a Kalman 
filter (KF) estimator. To our knowledge, this paper repre- 
sents the first thorough investigation of how to fuse such 
relative displacement measurements with proprioceptive 
measurements in order to provide improved position esti- 
mates. 
Section 3 presents the proposed methodology. Section 4 
applies this approach to the case of a mobile robot moving 
on flat terrain. Section 5 presents simulation and exper- 
imental results. We derive our conclusions in Section 6, 
and suggest possible directions of future work. 
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2 Background 

We first recall the classical Extended Kalman Filter 
(EKF) framework, so that we may motivate the need for 
our stochastic cloning approach. The time evolution of the 
state of an observed system can generally be described as: 

2 = f(Z, 6, G, t )  (1) 

where f is a possibly non-linear time-varying function of 
the state Z(t),  the control inputs G(t)  and the unmodeled 
disturbances (system noise) G(t) .  The analogous equation 
in discrete time is: 

z ( t k + l )  = f k + l ( z ( t k ) ,  .'(tk), G ( t k ) >  (2) 

In order to derive the (propagation) equations of a EKF 
observer that estimates the system state, the previous 
equations are linearized 

s ( t k + l )  = F k + l z ( t k )  -k G k + i G ( t k )  (3) 
I 

where ?( tk) ,  Z ( t k + l )  are the errors in the state estimate 
before and after the propagation. Assume that measure- 
ments z ( t k + m )  of the state z ( t k + m )  are available at some 
time t k + m  

z ( t k + m )  = h k + m ( z ( t k + m ) )  + z ( t k + m )  (4) 

where hk+m is, in general, a non-linear time-varying func- 
tion of the current state z ( t k + m ) ,  and the noise z ( t k + m )  
associated with this measurement. Linearization of Eq. 
(4) yields 

- 
s ( t k + m )  = H k + m z ( t k + m )  + G(tk+m)  ( 5 )  

H k + m  = V%k+m/khk+m(zk+m/k)  (6) 
where A 

- - 
and &+m/k, .i?(tk+m) are the errors in state estimate and 
measurement, and f&+m/k is an estimate of the state Z at 
time k+m given measurements up to  time k. The Kalman 
filter ([15] pg. 217) can be used to compute an updated 
estimate of the system state &+m/k+m using the (prop- 
agated) previous state estimate Zk+m/k and the current 
measurement &+n = Z( tk+m) .  The implicit assumption 
made here is that the measurements zk+m depend only on 
the current state of the system. In cases when the mea- 
surement vector reflects changes in the state of the system 
during a certain time interval instead of the state itself, 
the previous formulation has to  be modified. Such mod- 
ifications are necessary when relative displacement mea- 
surements, as the ones produced by range scan matching 
algorithms, must be processed. 

n 

h 

- 

3 Approach 

Often, proprioceptive measurements, necessary to propa- 
gate the state estimates, will be available at each integer 

time step, while relative state measurements will occur at 
some lower rate, say every m time steps. If the measured 
quantities depend on the current Z ( t k + m )  as well as the 
previous z ( t k )  state of the system then the measurement 
equation is: 

In this case the error in this measurement will depend on 
both previous and current state of the system and there- 
fore Eq. (5) must be written as: 

where 

(9) 
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- - 
and &/k ,  &+m/k,  are the errors in the previous and 
current estimates and Z'((tk+m) is the measurement error. 
As evident from Eqs. (8), (9), the previous state esti- 
mate &/k is necessary in order to evaluate the current 
measurement uncertainty. Even though, based on the 
Markovian assumption, all the information from previous 
estimates is included in Jhe current state estimate and 
both the previous state &/k and covariance P k / k  (with 
P k / k  = E{&,k &/kT} )  estimates are available, there is 
no direct way in the classical EKF framework to deter- 
mine the cross-correlation between the current and the 
previous state estimates. 
In order to appropriately derive the interdependencies be- 
tween estimates of the state at different time instants, we 
augment the state of the Kalman filter to include two 
identical copies of the state estimate-hence the name 
stochastic cloning. At time t k  the state vector for the 
augmented system is: 

- 
A 

- - 
where z ( t k ) s  and z ( t k )  are the stationary and evolving 
clone of the same state vector at time t k .  The first state 
corresponds to the system state, with respect to  which the 
relative state measurement (e.g., displacement estimate) 
was derived. This clone does not evolve any further with 
time (it is a static quantity) while the second state is prop- 
agated according to the time evolution equations of the 
system described in Eqs. (1) and (2). We now summarize 
the EKF for the stochastic cloned system. 

3.1 Propagation 
Since these two estimates in Eq. (10) are identical at time 
t k ,  the covariance matrix for the augmented system will 
be: 



where P k / k  is the covariance of the original (uncloned) 
system at time t k .  Eq. ( 3 )  for the augmented KF will be: 

The covariance of the augmented system is propagated as: 

and after m steps is: 
U [ 3 p k k  Pkk P k + m / k  p k k p  1 P k + m / k  = 

where T = nZl F k + , ,  and P k + m / k  is the propagated co- 
variance of the evolving state at time t k + m .  

3.2 Update 
When the relative state measurement is acquired, the CO- 
variance matrix for the residual is given by: 

= k * k + m / k H T  + & (15) 

fi = [ H k / k  H k + m / k  ] (16) 

where R, is the covariance of the relative state measure- 
ment and 

For example, in (9, IO], & is constructed as a by-product 
of the relative displacement measurement obtained from 
matching laser range scans. By substituting from Eqs. 
(14), (16) in Eq. (15) we have: 

3 = & + H k / k p k / k H t / k  + H k + m / k 3 P k / k H : / k  (17) 

-k H k / k p k / k 3 H ? + m / k  + H k + m / k P k + m / k H ? + m / k  

The updated covariance matrix for the augmented system 
is computed by: 

' T  - 1 "  - 
P k + m / k f m  = P k + m / k  - P k + m / k H  3 H P k + m / k  (18) 

[ H k  j k p k k  + H k + m / k F P k k  H k / k p k k r T  f H k + m / k P k + m / k ]  

while the covariance of the evolving state at  time t k + m  is 
(lower-right diagonal submatrix): 

P k + m / k + m  = P k + m / k  - ( r p k k H ; / k  + P k + m / k H : + m / k ) S - I  x 

( H k / k p k k F T  + H k + m / k P k + m / k )  

The Kalman gain is calculated by: 

k = [ 2 ] = P k + m / k f i T S - '  (19) 

with 

Finally, the updated augmented state is: 
= (Fpk /kHkT/k  -k P k + m / k H z + m / k ) S - '  (20) 

2 k + m / k + m  = s k + m / k  + k r k + m  (21) 

where r k + m  = Z ( t k + m )  - &+m is the measurement resid- 
ual and - h 

z k k f m / k + m  = ?k+m/k  + K T k + m  (22) 
is the updated estimate of the evolving state. 

4 Example: Fusion of Odometry and Weighted 
Laser Scan Matching 

This section presents the equations of the modified 
Kalman filter (SC-KF) that fuses odometric data with rel- 
ative 2D pose measurements. We apply the equations to 
both simulated and real data. Our experiments use a par- 
ticular weighted laser scan matching (WLSM) algorithm 
[lo] to estimate the robot's displacement between two lo- 
cations via the matching of two consecutive laser scans. 
However, any algorithm (such as [9]) that estimates rela- 
tive displmement and yields an estimate of R, is suitable. 

4.1 Propagation 
First we describe the propagation equations for the KF 
using the velocity measurements from the odometric sen- 
sors. The estimated state vector consists of the robot's 
pose with respect to a fixed reference frame: Z = [z y 41 . 
For the vehicle's odometry, we use a generic set of equa- 
tions. However, the method can be easily adapted to a 
specific vehicle. The continuous time equations for the 
motion expressed in local coordinates are: 

T 

Lj.=V,L$=O, & = w  (23) 
where V and w are the linear and angular velocity of the 
robot as measured by the wheel-encoders' signals. Based 
on Eq. (23), the linearized discretetime error-state p rop  
agation equation in global coordinates is: 

1 0 -VStsin4 
0 1 VStcosf$ [i] t k + l  = [ 0 0  1 

or 

where 6t = t k + l  - t k  and w' = [n: n,] is the system 
noise due to the errors in the linear and rotational velocity 
measurements with covariance Q k  = E(GGT}. The co- 
variance propagation equation for this system is obtained 
by direct application of Eq. (13). 

4.2 Relative Pose Measurements 
In what follows, we assume that a t  time t k  the vehicle is at  
position Gp'(( tk)  = G ~ l  with orientation GI#J( tk )  = G 4 1  and 
after m steps it has moved to position Gp'((tk+,) = '6  
with orientation G 4 ( t k + m )  = G&. names  {G}, {I}, and 
(2) are the inertial frames of reference attached to the 
vehicle at  times t o ,  t k  and t k + m  correspondingly. 
If the robot registers two consecutive laser scans at loca- 
tions G& and G&, the displacement measurement from 
the WLSM algorithm is: 

?( , ,+I> = F k + l 2 ( t k )  + G k + i c ( t k )  (25) 
T 
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where v' is the relative pose measurement noise assumed 
to be a zero-mean white Gaussian process with covariance 
R, = E(Gw7) and 

In the previous equation, the measurement vector is ex- 
pressed in terms of both corresponding poses of the robot 
when the two laser scans were recorded. As aforemen- 
tioned, in order to compute the dependence of the rela- 
tive pose measurement on the accuracy of the pose esti- 
mates at times t k  and tk+m we have to augment the state 
vector so as to contain both states G.'(tk) = G& and 
Gl( tk+m)  = G&. The measurement matrix would be 

where 

and GA51,2 = G52 - G p i .  

4.3 State Interdependencies 
We now carefully account for the state estimate interde- 
pendencies for the case that the state vector contains only 
the pose of the robot 2 = [z y 4IT. The displacement mea- 
surement conveys information regarding the pose of t he 
robot at time tk+m with respect to the pose at some previ- 
ous time t k .  Since the displacement measurement provides 
no new information about the previous state z ( t k )  (pose of 
the robot), the uncertainty of its estimate at t k  will not be 
reduced and therefore the corresponding covariance ma- 
trix (the upper-left diagonal submatrix of Pk+m/k+m in 
Eq. (18)) must remain the same. Inerder for this to hold 
true for every selection of matrices S and Pkkz2 

Hk/k + Hk+m/kF = (HT/k + FTHkT+m/k)T = 0 

or 

By substituting Eq. (28) in Eq. (8) the estimated (ex- 
pected) measurement error is: 

Hk/k = -Hk+m/kF (28) 

I - 
Z(tk+m) = Hk+m/k(lk+m/k - F z k / k )  + G(tk+m) (29) 

where &+m/k is the expected error in the current pose 
and F 2 k / k  is the expected error in the pose of the robot 
at time tk propagated to time tk+m. We have proven the 
following: 

Lemma 1 The error in  the relative state measurement of 
the current system state - containing only pose estimates 
- at tame tk+m with respect t o  a previous state at t ime t k  
i s  proportional t o  the difference between the current error 
in  the system state at tk+m and the previous error at time 
tk ,  propagated t o  t ime tk+m. 

2For this 2-dimensional example case, by substituting Fk+l from 
(24) in 3 = n:, Fk+, it can be shown that D = 3 and Eq. 

therefore &. (28) is satisfied. 

The following remarks clarify the properties and effects of 
the interdependencies. 

Note 1: In practice, Eq. (28) may not always hold true 
for all matrices Hk/k and -Hk+m/kF because of the lin- 
ear appreximations required to derive the measurement 
matrix H in Eq. (27). Nevertheless, Eq. (28) has to be 
enforced otherwise the relative pose measurement update 
will affect the estimates at time t k  even though no abso- 
lute state measurement became available between tk and 
tk+m. 
Substituting Eq. (28) in Eq. (18), the updated covari- 
ance matrix for the new system state will be (lower-right 
diagonal submatrix): 

Pk+m/k+m = Pk+m/k - (Pk+m/k - rPkkFT)H?+m/k 

xs- lHk+m/k(Pk+m/k - FpkkFT) (30) 

where the covariance of the residual from Eq. (17) is now 
written as: 

3 = Hk+m/k(Pk+m/k - 3 p k / k 3 T ) H k T + m / k  + % (3l) 

Note 2: Note that 3 is a positive definite matrix. From 
Eq. (13): 

m m 

m i  i 

+ c((n Fk+j )Gk+iQk+iGr+i (n  Fk+jlT) 
i=o j =o  j = O  

or 

where AP,$Lm is a positive definite matrix which corre- 
sponds to the influx of uncertainty in th,e system during 
the time interval [ t k  tk+m]. Therefore s in Eq. (31) is 
also a positive definite matrix. 
Note 3: By subtracting FPk/kfl  from both sides of Eq. 
(30), and reducing the results, one obtains: 

Pk+m/k = FPk/kFT + Ap$,',m (32) 

Pk+m/k+m = 3 p k / k F T  + AP$$',m (33) 

where AP$:Lm is the covariance matrix that corresponds 
to the influx of uncertainty in the system during the time 
interval [ t k ,  tk+m], after it has been updated using the rela- 
tive state measurement. By invoking the matrix inversion 
lemma: 

Ap(+) - 1  E Ap( - )  - 1  
k,k+m k,k+m + HF+m/kRF1 H k + m / k  

This last relation expresses the fact that the information 
available to the system between tk and tk+m is increased 
by the projection of the information pertinent to the sys- 
tem due to the relative state meas~rement.~ Finally, Eq. 

3Note also that the influx of uncertainty APiyiim during 
[ t k , t k + m ]  is reduced to Api:'k'+, which is lower that either of 

Or H:+m/k%lHk+m/k. 
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(33) denotes that the uncertainty after the update at t k+m 

is equal to the uncertainty at t k  propagated to time t k+m 

and increased by the updated influx of uncertainty during 
this time interval. 

4.4 Update equations 
The equations for the residual covariance, state covariance 
update, and Kalman gain axe obtained from Eqs. (31), 
(30), and (20) respectively, by direct substitution from 
Eqs. (27), (28): 

where by multiplying both sidzs of the previous equa- 
tion with rT = l?' we define S as the covariance of the 
pseudo-residual Fk+m = r T r k + m  expressed in global co- 
ordinates: 

and 

The upper submatrix of the Kalman gain matrix in Eq. 
(19) is zero, as expected (no correction takes place regard- 
ing the previous pose estimate). The pseudo-residual is: 

Finally, the updated pose estimate is given by: 

From thisjast equation it is evident that the updated pose 
estimate i&+m/k+m at time t k+m is the weighted aver- 
age of the propagated (through odometry) pose estimate 
&+m/k and the absolute pose pseudo-measurement Ek+m 

- which is computed by appropriately combining the pose 
estimate & / k  at time t k  with the relative pose measure- 
ment Z( t k + m ) .  
The same process is repeated every time a new 
relative pose measurement Z ( t k + m , )  becomes avail- 
able. The previous treatment makes the assumption 
that the measurements Z ( t k + m , )  are independent, i.e. 
E { Z ( t k + m , ) Z T ( t k + m , ) }  = 0. If the WLSM algorithm uses 
the same set of features from an intermediate laser scan 

to track the pose of the vehicle through two consecutive 
steps then these measurements are loosely correlated: 

E { z ( t k + m ; ) Z T ( t k + m ; + i ) }  # 0 
E { Z ( t k + m ; ) Z  ( t k + m ; + l ) )  << E { Z ( t k + m ; ) Z T ( t k + m ; ) }  

In this case the correlations have to be explicitly addressed 
by the estimation algorithm. The interested reader is re- 
ferred to [l6] for a detailed treatment of this case. 

5 Results 

T 

5.1 Simulation results 

.a- u d s ~ ~ e a a  

30 -?-- t 
o i o ~ 3 0 ~ 0 5 0 ~ ~ m  

x (m) 

Figure 1: Trajectory (2-y): The solid l i e  represents the real 
path, the dashed-dotted (-.) line is the deadreck- 
oned path computed by integrating the odometric 
data, the dotted (:) line is the path calculated 
by combining the relative pose measurements (x), 
and the dashed (-) line is the estimated path by 
the SC-KF. 
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We first tested the SC variant of the Kalman filter in sim- 
ulation. As it was described before, during most of the 
time the pose estimate of the robot is propagated using 
odometric data (linear and rotational velocity measure- 
ments). Since relative pose measurements are available 
at a lower rate, updates occur only intermittently (here 
every 3 sec). Three different estimates were considered 
for comparison purposes: (i) the deadreckoned estimates, 
computed by integrating the odometric data, (ii) the pose 
estimates by combining the successive (intermittent) dis- 
placement measurements, and (iii) the estimates from the 
SC-KF that fuses odometric data with the relative state 
information. As it will be evident from the results pre- 
sented here, the SC-KF estimates are, on the average, of 
higher accuracy compared to those from any of the other 
two methods. In addition, the rate of increase of the esti- 
mation uncertainty due to the odometric or relative pose 
measurement errors is significantly reduced when these 
are combined within the SC-KF. 
An example trajectory is shown in Fig. 1. At the be- 
ginning the odometry data are trusted more by the filter 
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Figure 2: Orientation estimates: The solid line represents 
the real values of 4, the dashed-dotted (-.) de- 
picts the deadreckoned estimates computed by in- 
tegrating the odometric data, the dotted (:) line 
is calculated by combining the relative pose mea- 
surements (x), and the dashed (-) line represents 

. the estimates by the SC-KF. 

while later on the SC-KF values more the relative displace- 
ment information, Fig. 2 presents the corresponding ori- 
entation estimates during the same time. For the simula- 
tion results presented here the relative pose measurements 
had accuracy 64.5' for the orientation and f0.8m for the 
position for every 9 meters of actual displacement. The 
standard deviation for the odometric noise components 
was IYV = O.S(m/sec)/flHz) for the linear velocity and 
ow = 3('/sec)/flHz) for the rotational velocity. Note 
that during every time interval bounded by two consecu- 
tive relative pose measurements, the filter relies solely on 
the odometric information in order to propagate the state 
estimates. Therefore the influx of uncertainty inbetween 
the intermittent updates is the same as that during dead- 
reckoning. 
This is evident in Fig. 3 which depicts the time evolution 
of the covariances for the x and 4 estimates. When only 
odometric data are considered (dead-reckoning), the un- 
certainty for these estimates grows monotonically reflect- 
ing the deterioration in positioning accuracy. By appro- 
priately incorporating relative pose information, the SC- 
KF in effect reduces the estimation uncertainty every time 
a displacement measurement becomes available. The re- 
sult of processing this additional positioning information, 
within the SC-KF, manifests itself as a saw-tooth pattern 
in the covariance estimates (Fig. 3). The magnitude of 
the intermittent covariance reductions is determined by 
the quality of the relative pose measurements. 
The orientation uncertainty depends only on the orienta- 
tion information available to the SC-KF. Therefore (Fig. 
3-b), the rate of increase (slope) of the orientation covari- 
ance, in the SC-KF, between two updates is exactly the 

4 
--sew I 

Mry I , 3 I ij -.-.-. _.._.- 
-, - . - . -. _.-. _._.- - _.-. 

0 
5 30 25 15 20 10 

x loa 
- SC-KF 
.- odometly -.-.- _.-. 

6 .- 

t i  (6%) 

Figure 3: (a) Covariance of z computed by dead-reckoning 
(dashed-dotted line) and the SC-KF (solid line). 
(b) Covariance of 4 computed by dead-reckoning 
(dashed-dotted line) and the SC-KF (solid line). 

same as in dead-reckoning. This is not the case for the 
position covariance (Fig. 3-a). The position uncertainty 
depends on both the available positioning information and 
on the quality of the previous and current orientation esti- 
mates. Thus, right after every relative pose measurement 
not only the magnitude of the positioning uncertainty is 
reduced, but also the rate of increase of the position co- 
variance is lower compared to the corresponding interval 
of dead-reckoning. This is due to the fact that the up- 
dated orientation estimates allow for increased accuracy 
in the position estimates. 
Statistical evaluation of the SC-KF based on simulation 
results from 100 trials are presented in Fig. 4. These 
plots depict the standard deviation of the errors in posi- 
tion x, y and orientation I$ during 10 consecutive updates. 
As before, 30 steps of propagation (not shown in this fig- 
ure) were encountered between these updates. The stan- 
dard deviation of the odometric errors had similar values 
with those of the estimation errors when only relative pose 
measurements were processed to compute the pose of the 
robot. The SC-KF estimation errors are lower compared 
to either odometry or relative pose data. In particular for 
the orientation, the standard deviation for the SC-KF is 
as,-K, = aoodom, +urel, as two independent sources 
of information are linearly combined within the filter. 
Finally, as evident from Figs. 3, 4, the covariance of the 
pose estimates even within the SC-KF will continue to 
grow, albeit at a lower rate. Absolute positioning in- 
formation is necessary periodically in order to limit the 
maximum uncertainty in the system. Nevertheless, by re- 
ducing the rate of covariance increase, the SC-KF is able 
to extend the period that the robot can operate within 
acceptable levels of uncertainty before a global update is 
required. 

-1 -1 -1 
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Figure 4: Monte Carlo simulation tests (100 runs): Standard 
deviation of the errors in 2, y, and 4 during 10 
consecutive updates. 

5.2 Experimental results 

11 Location (1  Odometry 1 WLSM I SC-KF 

Table 1: Position errors: Distance between estimated and 
actual position (in mm). 

In order to validate the SC-KF experimentally we fused 
odometry data from a Nomad 200 mobile robot with the 
relative displacement measurements from the Weighted 
Laser Scan Matching (WLSM) algorithm described in de- 
tail in [lo]. 
The robot moved between 15 designated locations follow- 
ing 14 consecutive straight-line segments in a closed loop 
path that brought it to the same starting position (Fig. 5). 
At each location the robot stopped and rotated its upper 
portion allowing the laser sensor to measure distances to 
the surroundings at increments of 0.5" from a 360" field of 
view. The WLSM algorithm incorporates detailed mod- 
els of the various sources of noise and uncertainty in the 
laser scanner data and computes estimates of the position 

x $osibbn (m) 

Figure 5: Trajectory (z - y): The solid line connects the 
reference points tha t  the robot went through. The 
coordinates of these locations were measured man- 
ually. The dashed-dotted (-.) line connects the 
deadreckoned positions computed by integrating 
the odometric data, the dotted (:) line connects 
the positions calculated by combining the relative 
pose measurements (+), and the dashed line (- -) 
connects the positions estimated by the SC-KF. 

and orientation displacement of the robot as well as the 
covariance matrices associated with these estimates. 
In the path depicted in Fig. 5, the robot traveled a total 
distance of 22.25 meters. The SC-KF tracks the position 
of the robot using odometric data and provides updates 
every time a relative pose measurement becomes available. 
Three different estimates were computed for comparison 
purposes: (i) Odometry, (ii) WLSM estimates, and (iii) 
SC-KF estimates. The actual position of the robot was 
measured manually and the errors in the position esti- 
mates from the three different estimation processes are 
capsulated in Table 1. These errors are computed as the 
distance (in mm) between the estimated and the actual 
position of the robot at 14 locations along its path. 
As evident from Table I, the errors in the position esti- 
mates computed by the SC-KF were on average (last row) 
smaller compared to either the errors in the corresponding 
odometry estimates, or the errors in the position estimates 
derived by directly combining the relative displacements. 
This increased accuracy results from the optimal fusion 
of two independent sources of information within the SC- 
KF. 

6 Extensions and Future Work 

In this paper we presented a generalized framework for 
processing relative state measurements within a Kalman 
filter estimator. We derived the equations for the SC-KF 
when two state estimates, corresponding to different time 
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instants, had to be considered for estimating the errors in 
the relative state measurements. The same methodology 
can be extended to describe the time-correlation between 
any number of states that a relative state measurement 
depends on. 
The motivation and application for this new approach was 
the problem of mobile robot localization. We showed that 
the SC-KF is optimally combining odometric data (from 
wheel encoders) with relative displacement measurements 
computed by the WLSM algorithm. The SC-KF can also 
be modified to fuse other forms of kinetic information, 
such as linear accelerations and angular velocities mea- 
sured by an IMU, with a combination of relative posi- 
tion and attitude measurements from a variety of sens- 
ing modalities (e.g. vision-based feature tracking [12, 111, 
laser scan matching [9, lo], etc). 
Another potential application for the SC-KF is to incor- 
porate measurements of (higher order) states that are not 
estimated within the filter. For example, since the Indi- 
rect form of the Kalman filter, commonly used in iner- 
tial navigation [15, 171, is based on sensor modeling and 
processes directly linear accelerations and angular veloc- 
ities measured by an IMU, the errors in these quantities 
do not appear in the state vector. Therefore there is no 
clear way to incorporate additional measurements of rota- 
tional velocity and linear acceleration into the filter. An 
example would be the case when the rotational velocity 
of a vehicle can be calculated from the signals of the en- 
coders attached on its wheels. These measurements can 
be transformed (through integration) to  relative orienta- 
tion measurements and processed as such by exploiting 
the stochastic cloning-based variant of the Kalman filter. 
Finally, as we described in Section 5, the relative pose 
measurements are usually available at a lower frequency 
than the kinetic (from the encoders) measurements and 
produce sharp decreases in the uncertainty of the es- 
timates (especially for the orientation). This reduc- 
tion in uncertainty incurring at time t k + m  can be back- 
propagated to all time instants between t k  and t k + m  by 
employing a smoother [5]. Improved attitude estimates 
throughout this time interval will also improve the po- 
sition estimates. This is within the scope of our future 
work. 
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