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Abstract: W e  show how motion planning and con- 
trol ideas for smooth nonholonomic systems can be 
extended to legged quasi-static locomotion via the no- 
tion of “stratified” configuration spaces and “stratified” 
control theory. W e  particularly consider “minimalist ” 
legged systems, which are not well handled by conven- 
tional theories based o n  foot placement. W e  briefly dis- 
cuss controllability issues, and then present a motion 
planning algorithm for stratified systems. The method 
does not depend upon the number of legs, nor is it based 
on foot placement concepts. 

1 Introduction 
This paper’s first goal is to show how motion plan- 

ning and control concepts that have been developed 
for wheeled nonholonomic vehicles can be formally ex- 
tended to quasi-static legged robots. This is done via 
the use of a “stratified” configuration space concept 
and “stratified control theory.” Hence, quasi-static 
legged locomotors can be considered as extended non- 
holonomic systems. The paper’s second goal is to ex- 
plore this theory in the context of “minimalist” legged 
robots--ones whose legs incorporate fewer than the 
typical number of degrees-of-freedom (DOF). 

Figure 1: Schematic of minimalist hexapod robot. 

The hexapod shown in Fig. 1 and explored in Sec- 
tion 6 is an example of minimalist legged robot. Each 
leg has only two DOF-the robot can only lift its legs 
up and down and move them forward and backward. 
Hexapods are conventionally designed with three in- 
dependent DOF per leg. This design’s limited control 
authority may be practically desirable because it de- 
creases the robot’s mechanical complexity. This leg ge- 
ometry can also probably be implemented a t  very small 
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size scales using MEMS technology. However, such 
decreased kinematic complexity comes at the cost of 
requiring more sophisticated control and motion plan- 
ning theory. Note that it is not immediately clear if 
this robot can move L L ~ i d e ~ a y ~ . ”  The issue of this 
mechanism’s ability to  move sideways is the control- 
lability problem. We review the controllability theory 
for such systems that we developed in Refs [l, 21. We 
then consider how to plan the robot’s joint movements 
so that it can follow a given trajectory. A conventional 
“foot-placement” approach, where the foot must be 
placed as necessary to implement vehicle motion, will 
clearly not work for the robot in Fig. 1, as sideways 
leg placement is impossible. This paper summarizes 
a “stratified motion planning theory which handles 
both minimalist and conventional quasi-static legged 
locomotors in a unified way. While we do not explore 
this issue here, the method can also be applied to many 
kinematic models of multi-fingered manipulation. 

Our motion planning method is independent of the 
number of legs and many other aspects of a robot’s 
morphology, and is not based on foot placement con- 
cepts. Our approach, which focuses on control inputs, 
is motivated by the trajectory generation method of 
Lafferriere and Sussmann [3] for a class of smooth 
nonlinear kinematic systems. However, the equations 
of motion of legged robots are not smooth since they 
cyclically make and break contact. Hence, the method 
of Ref. [3] can not be directly applied. We extend 
the approach of Ref. [3] by using a stratified c-space 
structure in a novel way. It is likely that other meth- 
ods for steering smooth systems (such as Ref. [4]) can 
be similarly extended via our framework. A main con- 
tribution of this work is the geometric framework that 
supports the extension of nonholonomic motion plan- 
ning techniques to these systems. 

For a given quasi-static legged robot, one might de- 
velop a specific motion planner that would perform as 
well, or possibly better, than the our technique. The 
key advantage of this approach is its generality. It is 
particularly useful for quickly roughing out a planner 
during the preliminary stages of legged robot system 
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design. More importantly, for minimalist systems, it 
is the only general planner of which we are aware. 

There is a vast literature on legged robotic locomo- 
tion. Prior efforts have often focused on a particu- 
lar morphology (e.g. biped [5], quadruped [6, 71, or 
hexaped [8]) or on a particular locomotion modality 
(e.g. quasi-static [8] or hopping [9]). Less effort has 
been devoted to  uncovering principles that span all 
morphologies and assumptions. This work uses the ge- 
ometry of stratified c-spaces to formulate results which 
span morphologies. Our work also makes a novel con- 
nection with nonlinear geometric control theory. We 
believe that this connection is a useful step towards 
establishing a solid basis for locomotion engineering. 

2 Background 
We assume that the reader is familiar with the ba- 

sic ideas of differential geometry and nonlinear control 
theory, as in Ref. [lo]. Recall that the equations of mo- 
tion for smooth kinematic nonholonomic systems take 
the form of a driftless nonlinear affine control system 
evolving on a configuration manifold, M :  

X = ~ I ( X ) U ~  + . . . + g  m( X ) U ~  X E  M. (1) 

Since we restrict our analysis to  quasi-static locomo- 
tion, the governing equations of motion will piecewise 
take the form of Eq. The Lie 
bracket between two vector fields, g1(x) and g2(x), is 

(1) on each strata. 

and can be interpreted as the leading order term that  
results from the sequence of flows 

4;g2  0 4;g1 0 4y 0 4z1 (2) = €2[g1,g2](z) + 0 ( E 3 ) ,  

where 4z1 (20) represents the solution of the differential 
equation j. = g1(x) a t  time E starting from XO. 

The flow along the vector field gz can be considered 
by its formal exponential of g,, denoted by 

t 2  

2 4:’ (x) := etgl (x) = (I + tg, + -9: + . . . ) (2) 

where terms of the form g: are partial differential op- 
erators. In Eq. (2), composition occurs from left to 
right, e.g. 4:; o 4:; = egltlegzt2. Both sides of this 
equation mean “flow along g1 for time t l ,  then flow 
along g2 for time t2.” The relationship between the 
flow along vector fields sequentially is given by the 
Campbell-Baker-Hausdorff formula [ll]. 

Theorem 1. Given two smooth vector fields 91, g2 the 
composition of their exponentials is given by 

e91 e92 = e91+92+~[91 ,921+~( [91 . [91~9211- [92~[91?9211)~~~  . 
(3) 

2.1 Trajectory generation for smooth sys- 
tems 

Here we review the motion planning method of 
Ref. [3] for smooth systems which are governed by an 
equation of the form Eq. (1). A nonholonomic sys- 
tem often does not have enough controls to  directly 
drive each state variable along a given trajectory, i.e., 
the number m in Eq. (1) is less than the c-space di- 
mension. In the approach of Ref. [3], this deficit is 
managed by introducing an extended system, where 
fictitious controls, corresponding to  higher order Lie 
bracket motions, are added to the original system of 
Eq. (I)? 

X = blv’ + . . . bmvm + bm+1Vm+’ + . . . + bsVS (4) 

where b, = g, for 2 = 1 , .  . . , m, and the bm+l,. . . , b, 
correspond to  higher order Lie brackets of the g,, cho- 
sen so that dim(span(b1,. . . , b,}) = dim(T,M). The 
vz’s are called fictztious inputs since they may not cor- 
respond with any actual system inputs. The higher 
order Lie brackets must belong to  the Philip Hall ba- 
sis for the Lie algebra. The control inputs v 2  which 
steer the extended system can be found as follows. To 
go from a point p to  a point q, define a curve, y(t) 
connecting p and q. Using y( t ) ,  solve 

?(t) = gl(y(t))vl + . . . + gs(r(t))v” ( 5 )  

for the fictitious controls U,. This will involve inverting 
a square matrix or determining a pseudo-inverse. 

To find the actual control inputs, first determine 
the Philip Hall basis for the Lie algebra generated by 
91,. . . ,gm, and denote it by B1, B2,. . . , B,. All flows 
of Eq. (1) can be represented in the form 

s(t) = eh-(t)Byeh,-i(t)Bs-l . . . ehz(t)Bzeh~(t)B1 (6) 

for some functions hl ,  hz, . . . , h,, called the (back- 
ward) Philip Hall coordinates. Furthermore, S( t )  sat- 
isfies the formal differential equation 

S(t)  = S(t)(BlVl + . . . + B,v,); S(0)  = 1. (7 )  

If we define the adjoint mapping 



for some polynomials p,,k (h) .  Equating coefficients 
of Eq. (7) with the derivative of Eq. (6), and using 
Eq. (8), yields differential equations having the form 

A = A(h)v h ( 0 )  = 0. (9) 

These equations specify the evolution of the backward 
Philip Hall coordinates in response to the fictitious in- 
puts, which were found via Eq. (5). 

Next one determines the real inputs using the Philip 
Hall coordinates. It is easier to  determine the inputs 
using the forward rather than backward Philip Hall co- 
ordinates. The backward to forward coordinate trans- 
formation is an algebraic operation [3]. For systems 
which are nilpotent of order two, or which are approx- 
imated as nilpotent of order two, the forward to back- 
ward transform can be avoided. In these cases, the 
controls can be obtained from the fictitious controls 
by use of Lie-bracket-like motions as needed. This will 
often be the case in practice, as physical systems that 
require Lie bracket motions of order greater than two 
are difficult to control. For this reason, and for clarity 
of presentation, we limit our attention to second order 
brackets. However, there is no theoretical limitation 
on the order of brackets. 

For nilpotent systems, this method exactly steers 
the system to the desired final state. Else, the system 
is steered to a point that is, a t  worst, half the distance 
to the desired state [3]. The algorithm can be iterated 
to arbitrary precision. This method also includes the 
notion of a “critical” step length which is estimated in 
Ref. [3], and is often best found by simulation. 

3 Stratified Configuration Spaces 
The method reviewed above can not be used for 

legged robots because their equations of motion are 
not smooth. To adapt this and similar nonholonomic 
motion planning methods to these systems, we use the 
notion of a stratified c-space. Let SO denote a robot’s 
c-space, which describes the robot’s position, orienta- 
tion, and joint variables. The robot’s possible con- 
figurations will be subjected to constraints if one or 
more feet are in ground contact. The set of configu- 
rations corresponding to the ith foot contact is generi- 
cally a codimension one submanifold of SO, denoted by 
Sa c SO. We assume that Sa, is locally defined by the 
level set of a function Q a ( x )  : So + R. 

When both the ith and j t h  feet are on the ground, 
the corresponding set of states is a codimension 2 sub- 
manifold of So that is formed by the intersection of 
the two single contact submanifolds: S,, = S, n S,. 
The c-space structure for a biped is abstractly il- 
lustrated in Fig. 2 .  For greater numbers of legs, 
further intersections, corresponding to more complex 

contact states, can be defined in a recursive fashion: 
SZJk = St n S, n SI, = Sa n s , k ,  etc. We denote an arbi- 
trary intersection set (or “stratum”) by SI = Sala, ,,,, 
I = ( i l i 2 . .  . zn}, whose codimension is n, the length 
of the multi-index subscript. We assume that SI is a 
regular submanifold of So. This is generically true for 
rigid body mechanisms, and implies that the functions 
Qal  , . . . , Q Z k  are independent. This functional in- 
dependence will be satisfied if the functions QI corre- 
spond to foot heights. 

M Neither Foot , in Contact n 

Left Foot 
in Contact 

Right Foot 
in Contact 

in Contact 

Figure 2: Abstract depiction of the stratified structure 
of a biped robot c-space. 

We say that the robot c-space is stratified. Clas- 
sically, a regularly stratzfied set X is a set X C R” 
decomposed into a finite union of disjoint smooth man- 
ifolds, called strata, satisfying the Whitney condition. 
The strata dimension varies between zero (points) and 
m (open subsets of R”). The Whitney condition 
requires that the tangent spaces of two neighboring 
strata “meet nicely.” This condition is generically 
satisfied for our case (see Ref. [13] for details). De- 
parting slightly from the classical stratification defini- 
tion [13], we will refer to submanifolds s,, s,j,sijk, 

etc, as strata. We term the highest codimension stra- 
tum containing the point x as the bottom stratum, and 
any other submanifolds containing x as higher strata. 
When making comparisons among strata, we will refer 
to higher codimension strata as lower strata, and lower 
codimension strata as higher strata. 

The equations of motion at x E SI are written as 

x = g1,1(x)uIJ  +. . . g I , n l ( x ) u I J y  (10) 

where nI depends upon the codimension of SI .  When 
an additional foot contacts the ground, the robot is 
subjected to additional constraints, and its equations 
of motion will change in a non-smooth manner. Oth- 
erwise, the equations of motion are smooth, though 
generally different in each strata. Hence, the discon- 
tinuities are localized to regions of transition between 
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siliZ...i ,,,, = @;‘(o) n G ; ~ ( O )  n . . n @;,:(o), m 5 n, is 
also a regular submanifold of SO. Then So and the 
functions CP, define a stratified c-space. 

4 Controllability 

the span of the control vector fields active on SI is: 
For a given strata, S I ,  the distribution defined by 

As, = span {gsI,l 9.. . 1 gs,,,LI ). 

The involutive closure of As,, denoted by &,, is 
the closure of A,, under Lie bracketing. The con- 
trollability of a given gait, Eq. (ll), can be deter- 
mined as follows. Let V I  =  XI^. If s ~ ~ - ~  C SI ; ,  
then Vi = Di-1 + h~,. Else, if Sli c SI,-,, then 
Vi = (Di-1 n TSr,)  +h~,  In Ref. [2] it s shown that if 
dim(D,) = dim(T,,S~) the system is gait control- 
lable from xo (i.e., the system can reach an open nbhd 
of 20 in the bottom strata). This is the extension of 
the classical Chow’s theorem for the small time local 
controllability of nonholonomic systms to  the strati- 
fied case. For a more rigorous discussion of stratified 
system controllability, see Refs [ 1, 21. 

5 Legged Trajectory Generation 
This section extends the procedure of Section 2 to  

kinematic systems having a stratified c-space. Assume 
that  the robot starts a t  a configuration p and seeks to  
reach configuration q. We assume that both p and q 
lie in the same bottom stratum, denoted by SB. This 
corresponds to the robot starting and stopping with 
the same set of feet in ground contact. Eliminating 
this requirement is a simple extension of this work. 
We extend the method of Section 2.1 to  legged and 
fingered robotic systems via the notion of a stratified 
extended system on SB. 
5.1 The Stratified Extended System 

Usually, the goal q can not be reached by remain- 
ing in Sg- some switching amongst the strata will be 
necessary. While the equations of motion in SB will 
generally be different than those in higher strata, the 
equations of motion in the higher strata are valid at 
points arbitrarily close to  SB since SB is defined by 
the intersection of higher strata, As shown in the ex- 
ample below, it is possible to consider the vector fields 
associated with each stratum in one common space 
(additional examples that deal with more subtle issues 
can be found in Ref. [14].). In this case, the common 
space is SB.  This concept leads to the definition of a 
“stratified extended system.” 

Example 1. Consider the conceptual biped c-space 
shown in Fig. 2. Assume that on  stratum S12, the 

S 

O O  Level 0 

Level I 

Level 2 

Level 3 

0 
,234 

Level 4 

Figure 3: Four Level Stratification 

strata. We assume that the control vector fields for 
any given stratum are well defined a t  all points in that 
stratum, including points contained in any substrata 
of that  stratum. They do not however represent the 
system’s equations of motion in the substrata, but, 
nonetheless, are still well defined as vector fields. 

Fig. 3 illustrates, via a graph-like structure, a strati- 
fication corresponding to a four-legged walker. A node 
corresponds to  a stratum, and the presence of an edge 
indicates that  it is possible to  move between the edge- 
connected strata. The ability to move between two 
strata depends upon the mechanics of a given prob- 
lem, and will generally be obvious in a given situation. 
See Ref. [2] for more details. 

We specify a gait as an ordered sequence of strata: 

The first and last element of the sequence are identical, 
indicating that the gait is a closed loop in the strata 
graph. We further assume that the specified gait sat- 
isfies the controllability conditions of Ref. [2] so that 
arbitrary trajectories can be tracked. 

Summarizing, we assume that the only discontinu- 
ities present in the equations of motion are due to tran- 
sitions on and off of the strata. We similarly assume 
that the control vector fields restricted to any stratum 
are smooth away from points contained in intersections 
with other strata. When a configuration manifold is 
consistent with the above description, we will refer to  
it as a stratified configuration space. 

Definition 1. Let SO be a manifold, and n functions 
@i : So ++ R, i = 1,. . . , n be such that the level sets 
Si = CPT’(0) c SO are regular submanifolds of SO, for 
each i, and the intersection of any number of level sets, 
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s, 

Figure 4: Sequence of Flows 

vector field 91.1 moves the system off of S12 and onto 
5’1, and correspondingly, 92,1 moves the system off of 
S12 onto S2. Also, we consider the vector fields g1,2 
and g2,2, defined on SI  and S2 respectively. Consider 
the following sequence of flows, starting from xo E S12 

Xf = 4‘92,1 4z,l 4t-“91,1 
w w v -  
s12+sz on s2 s2+-s12 sl2+-s1 
4& O 4& (20). (12)  
w v  
o n  s1 s1+s12 

See Fig. 4. The notation ‘ S 1 2  t SI  ” means that the 
f low takes the system from SI t o  S12 and “on 5’1” 
means that the flow lies entirely in S I .  

From Eq. (3), i f  the Lie bracket between two vector 
fields is  zero, their flows commute. Thus, i f  

[91,1,91,21 = 0 and [92,1,92,21 = 0, (13 )  

we can reorder the above sequence of flows, by inter- 
changing the f low along g1,1 and g1,2 and the flows 
along g2,1 and g2,2 as follows 

X f  = 42,2 O 4?gz,l 04& O 4x,2 O 4t-“gl,l 04:l,l (20)  

= 4z,2 0 4&(xo) ,  (14 )  

- - 
interchanged interchanged - 

on s12 

if tl = t 3  and t 4  = t 6 .  Note that g1,2 and g2,2 are 
vector fields in the equations of motion for strata S1 
and S2, respectively, but not on stratum S12. However, 
the sequence of flows in (12) occurs on different strata, 
where the flows are governed by vector fields associated 
with each stratum. This flow yields the same net result 
as the net flow in Eq. (14), where the vector fields are 
evaluated on the bottom stratum, even though they are 

not part of the equations of motion there. Furthermore, 
we note that if g1,2 and g2,2 are tangent t o  S12, the 
resulting flow in Eq. (14) will remain in 5’12. In fact,  
it is  implicitly required in the above argument that at 
least g1,2 is  tangent to S12. 

If the bottom stratum is described by the level set 
of a function, @ g ,  and i f  g1,2 i s  not tangent t o  S B ,  
then, (d@g,g1,2)  = f l ( x )  # 0. Also, since the vector 
field g1,1 moues the foot out of contact, we similarly 
have ( d @ g , g l , l )  = f 2 ( 2 )  # 0. Then, the vector field, 
3 1 ~  = g1,2 - M g 1 . 1 ,  is  tangent to Sg because 

f 1 (x) 
f 2 (x) 

(d@B,31,2) = (daBtg l .2 )  - - (d@B,gl , l )  = 0. 

Henceforth, we assume that a vector field on the 
higher stratum is tangent to the lower stratum, other- 
wise we can modify it to be so in the above manner. 

In Example 1 and similar examples in [14, 151, cer- 
tain Lie brackets must be zero. While one could check 
that these conditions are met in a given problem, the 
following assumption guarantees this condition. 

Assumption 2. If a foot must be lifted from the 
ground during a gait, we assume that the robot can 
control, (via a single control, or a combination of con- 
trols), the height of that foot relative to the ground. 
We further assume that for each stratum comprising a 
gait, the system’s equations of motion are independent 
of foot height. In this case, the Lie bracket of the vector 
field controlling foot height with any other vector field 
is zero, so that the decoupling requirement is satisfied. 
Additionally, the tangency requirements for cancelling 
the flows associated with raising and lowering the foot 
will automatically be satisfied. 

This is arguably a strict assumption. However, for 
kinematic, legged robots this assumption will almost 
always be satisfied (see Section 6 for an example). 

The example above and others in [14, 151 show that 
vector fields in higher strata can be effectively consid- 
ered as part of the equations of motion for the system 
on the bottom stratum. Based on this observation, we 
introduce the following. 

Definition 3. The extended stratified system on Sg is 
the driftless affine system comprised of the vector fields 
on Sg, chosen vector fields from the higher strata, and 
Lie brackets of vector fields from SB and higher strata. 
I.e., it is a system taking the form: 

i = b l (x )v l  + . . . b,(x)v, + bm+lum+l . . . + bnvn 
P 

from higher strata 
+ bn+lVn+l + . . . + bpvp, 

.9 

any Lie brackets 
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where the { b l ,  . . . , b p }  span T,&. 

With this definition, we have effectively increased 
the class of vector fields that we may employ when 
using the algorithm presented in Section 2. 

5.2 The Motion Planning Algorithm 
Our trajectory planning method is based on the use 

of the method of Section 2.1 with the stratified ex- 
tended system. The stratified extended system is used 
to plan motions in the bottom stratum, thereby ob- 
taining fictitious inputs. The actual inputs are found 
by the method in Section 2.1, with the modification 
that when the system must flow along a vector field in 
a higher stratum, it switches to  that stratum by lifting 
the appropriate feet, flowing along the vector field, and 
then replacing the appropriate feet, as in Example 1. 
Specifically, the algorithm to generate trajectories that 
move the robot from p to q follows. 

1. 

2. 

3. 

4. 

5. 

Construct the extended strutzfied system, Eq. (15), 
on the bottom strata, SB.  

Find a nominal trajectory, y(t), that connects p 
and q. Given y(t), solve 

for the fictitious inputs, vi. It may be desirable (or 
necessary for gait stability [14, 151) to decompose 
the trajectory into subtrajectories. 

Solve the stratified extended system for the ficti- 
tious control inputs. 

For each path segment in each strata, compute 
the real inputs that  steer the robot along y(t). 

Flow along each first order vector field, and ap- 
proximate higher order vector fields as illustrated 
in Example 1. In general, it will be necessary to 
switch strata between some of these flows. 

The straight-forward application of this adaption 
of Section 2.1 may result in an inordinate number of 
&rata switches because the sequence of flows in Eq. (6) 
are arranged by order. From a gait efficiency point of 
view, it is desirable to have them arranged by strata. I t  
i s  possible to regroup the flow sequence by strata if the 
Lie bracket between vector fields from different strata 
are zero. Flows corresponding to the same stratum can 
be grouped together, thereby reducing the number of 
contact transit ions. 

There is not an inherent mechanism in the appli- 
cation of the method of Section 2.1 to guarantee gait 

stability. Recall that the fictitious inputs are deter- 
mined from an extended system trajectory, y(t). The 
realized trajectory will generally not be y(t). Thus, it 
is not sufficient to pick an initial trajectory y(t) which 
is always stable. One also must guarantee that the 
method’s inherent deviations from the initial trajec- 
tory lie within the stability bounds. This issue is dis- 
cussed in more detail in [14, 151, where it is shown that 
modifications of the algorithm’s step length can insure 
stability, as well as obstacle avoidance. 

6 Example 
We illustrate our approach by steering the hexa- 

pod of Fig. 1 to  walk over flat terrain. The key dif- 
ficulty is the fact that the legs are kinematically in- 
sufficient, making sideways motion difficult. Assume 
that the robot walks with a tripod gait ’, alternat- 
ing movements of legs 1-4-5 with movements of legs 
2-3-6. With the tripod gait, this robot has four con- 
trol inputs: inputs u1 and u2 respectively control the 
forward/backward angular leg displacements of legs 1- 
4-5 and legs 2-3-6, while inputs 213 and u4 respectively 
control the height of legs 1-4-5 and 2-3-6. 

The equations of motion can be written as follows. 

where ( a ,  y, 6) represents the body’s configuration, 41 
(42)  is the angle of legs 1-4-5 (legs 2-3-6), 1 is the leg 
length, and hi is the leg’s height off the ground. The 
functions a(h1) and Pfhz) are defined by 

1 if hl = 0 
a(h1)= { 0 if hl  > 0 

1 if hz = 0 
0 if h2 > 0 

Stability is ensured in the tripod gait if the robot’s 
center of mass remains above the triangle defined by 
the feet which are in groun3contact. For the motion of 
legs 1-4-5, the robot’s center of mass must be at least 
b = 4 + 1 sin41 from the robot’s front to ensure sta- 
bility, where lb denotes the body’s length. See Fig. 5. 
Alternatively, if the center of mass is located a distance 
b from the robot’s front, stability is ensured during the 
motion if both of these constraints are satisfied 

lRef.  [l] shows that the hexapod is small time locally gait 
controllable when a tripod gait is used. 
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Figure 5: Stability Margin 
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or Hexapod Tripod Gait 

Denote the stratum when all the feet are in contact 
(a = p = 1) by ,912, the stratum when tripod one is 
in contact (a  = 1 , p  = 0), by SI, the stratum when 
tripod two is in contact (a  = 0, p = l ) ,  by S 2  and the 
stratum when no legs are in contact (a = ,B = 0), by 
So. Note that this system satisfies the requirements of 
Assumption 2 since, regardless of the values of a and 
p, the vector fields moving the foot out of contact with 
the ground are of the form { &}, and the equations 
of motion are independent of the foot heights, hi. 

The equations of motion in the bottom strata, Sl2 

(where all the feet maintain ground contact), are: 

( ;l 
4 2  

cos0 cos0 

= ( ‘71 ( :: ) (16) 

The variables u3 and u4 are both 0 since the legs main- 
tain ground contact. Let g12,1 and g12,2 represent the 
first and second columns in Eq. (16). If legs 1-4-5 are 
in contact with the ground, but legs 2-3-6 are not in 
contact, the equations of motion are 

0 

0 i ]  ( m )  
1 

where u g  is constrained to be 0. Label columns one, 
two and three in Eq. (17) g1,1,g1,2 and g1,3, respec- 
tively. If legs 2-3-6 are in ground contact and legs 

1-4-5 are not, the equations of motion are 

x o case o [ 1 = [ ‘7 ] ( ::) U3 (18) 

4 2  
AI 0 0  

where u4 is constrained to be 0. The columns in Eq. 

For motion planning, we must select enough 
vector fields to span TxS12. It can be shown 

TxS12 for all x E S12. Note that [g12,1,912,2] = 
(-21 sin 8,21 cos 8, 0, 0, O ) T .  This Lie algebra is not 
nilpotent. Thus the extended system is only a nilpo- 
tent approximation. 

The strutzfied extended system is constructed from 
vector fields from all strata. 

(18) are denoted 92,1, ~ 2 ~ 2 ,  and g2,3. 

that the set {912,1,912,2,91,2,92,1, [912,1,912,21) spans 

or, in greater detail, 

cos0 cos0 0 0 -21sinB 

1 0 0 1  0 
0 1 1 0  0 

Let the starting and ending configurations be: 

P = (z, Y, 8, b1, 42, hl ,  h2) = (o,o, o,o, o,o,o) 
= (Z,Y,0,41,42,hl,h2) = (LL0 ,0 ,0 ,0 ,0 )  . p 

A path that connects p to q is y(t) = (t , t ,  O , O ,  O ,O,O) .  
Solving for the fictitious controls yields 

 COS 8 + sin 8) 
(cos 8 - sin 8) 

or, since e( t )  = 0, and if we let 1 = 1, (U’ w2 v3 u4 w5) = 

For a nilpotent order 2 system, we have from Eq. 
(8) (where the g’s from Eq. (19) are substituted for 
the B’s in Eq. (8)) 

$(l 1 -1  -1  1) 

h1 = ul,  h 2  = U 2 ,  

h3 = u3, h 4  = u4, h g  = u5 + hlv2 
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which yields. 

hl(1) = 1/2 h 2 ( l )  = 1/2 
h3( l )  = -1/2 h4( l )  = -1/2 h5(1) = 3/4. 

Since the nilpotent approximation is of order two, 
there is no need to transform to forward Philip Hall 
coordinates. Let o denote concatenation of control in- 
puts. For example, u 1  o u 2  denotes that u 1  = 1 for 
time hl(1) followed by u 2  = 1 for time h z ( 1 ) .  The 
system must flow along g12,1 ,g12 ,2  for i seconds, and 
we must construct a piecewise approximation to  the 
flow along [g12,1,g12,2] for seconds. The sequence 
that approximately moves the system in this bracket 
direction is 

Y 

U1 0 U2 0 -U1 0 -U2 

where each control input equals one for fi seconds. 
To flow along g11,1,  u 1  = 1 for f seconds. Similarly to 
flow along g12,1,  U:! = 1 for f seconds. 

On the higher strata, to flow along g l , l ,  u 1  = -1 
for f seconds and to flow along g2,1 ,  u 1  = -1 for i 
seconds. To execute these flows, the robot must switch 
from S, to  a higher strata when executing a control 
input associated with a fictitious input for the higher 
strata. Thus, the total control sequence is 

(20) 

@(Ul 0 U2 0 -U1 0 -212) 

o f u 2  0 $ 4 1  0 €U4 0 ( - f u 2 )  0 (-€U4) 

O E U ~  o -($ui) o (-6213). 

The first four terms approximate the Lie bracket mo- 
tion on S 1 2 .  The 6 term denotes the length of time 
each control input is The next two terms are the 
contribution of the u 1  and u 2  terms individually on 
S 1 2 .  The next term represents a small flow associated 
with legs 2-3-6 breaking ground contact, and the fol- 
lowing term corresponds to legs 2-3-6 moving back to 
their initial position. Since the legs are not in ground 
contact, this motion does not cause the robot’s body to 
move. The next input corresponds to legs 2-3-6 mak- 
ing ground contact. The next three inputs correspond 
to legs 1-4-5 performing an analogous motion. 

Fig. 6 shows the path of the robot’s center as it 
follows a straight line trajectory, which is broken into 
four equal segments. Due to  the nilpotent approxima- 
tion, there is some final error. Better accuracy can be 
obtained by use of a higher order nilpotent approxima- 
tion or a second algorithm iteration from the robot’s 
ending position. Note that the body is oriented along 
the z-axis in this example. Since the legs can not move 

0.2 O+- - 

Figure 6: Straight Trajectory 
Y 

X 

Figure 7: Elliptical Trajectory with Smaller Steps 

immediately sideways, the robot’s motion must include 
“parallel-parking-like” behavior. 

There is no inherent need to  break the trajectory 
into subsegments, however, there are reasons to do so. 
First, since the method is based upon decomposing a 
desired trajectory into flows along the Philip Hall basis 
vector fields, the final trajectory is only related to  the 
desired trajectory in that  the end points are the same 
(or approximately the same for nilpotent approxima- 
tions). Breaking the path into segments leads to better 
overall tracking. Second, robot stability requirements 
may also demand smaller steps. 

The approach is general enough to  enable approx- 
imate tracking of arbitrary trajectories. Fig. 7 shows 
the hexapod following an ellipse while maintaining a 
constant angular orientation. In the simulation, the 
elliptical trajectory is broken into 60 segments. In this 
example, part of the trajectory tracking error is due to 
the nilpotent approximation, but another contribution 
to  the error is the simplicity of the model. Some di- 
rections are more “difficult” for the system to execute 
than others due to  the kinematic limitations of the leg 
design. It can be shown that  the stability criteria is 
satisfied along this path. 

Fig. 8 depicts the footprints left by the hexapod 
as it follows a straight line diagonal path while simul- 
taneously rotating at a constant rate. The complex 
footfall pattern suggests that techniques based on foot 
placement would be difficult to  apply to  this system. 

Finally, we consider an obstacle avoidance example 
(Fig. 9). A set of walls are indicated by dark grey 
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6 - 2  Figure 8: Hexapod leaving footprints. 

regions. The lighter grey regions correspond to loca- 
tions of the vehicle's center where some vehicle orien- 
tations may cause the hexapod to intersect the walls. 
To make the problem more challenging, the robot must 
uniformly rotate as it follows the nominal trajectory. 
While the nominal initial trajectory y(t) must a priori 
avoid any obstacles, this constraint alone will not guar- 
antee that the actual motion avoids obstacles. Since 
the path of the center of mass intersects the lighter 
grey regions during portions of its motion, the robot 
would realistically bump into the walls in this example. 
However, a minor further subdivision of the trajectory 
according to the method outlined in Refs [14, 151 re- 
sults in a wall avoiding trajectory. 

Figure 9: Obstacle avoidance example 

7 Conclusions 
Using stratified c-space notions, we are able to show 

that quasi-static legged locomotors can be analyzed 
and guided by extensions of methods that were orig- 
inally developed for nonholonomic wheeled vehicles. 
The general motion planning scheme which arises from 
this approach works for many types of legged robotic 
systems independently of the number of legs or leg 
morphology. The simulations indicate that the ap- 
proach is rather simple to apply. More importantly, 
we believe that our approach provides an evolutionary 
path for future research and generalizations. 
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