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Abstract:
The processes that transform gas and dust in circumstellar disks into diverse exoplanets remain
poorly understood. One key pathway is to study exoplanets as they form in their young
(∼few Myr) natal disks. Extremely Large Telescopes (ELTs) such as GMT, TMT, or ELT, can be
used to establish the initial chemical conditions, locations, and timescales of planet formation, via
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(1) measuring the physical and chemical conditions in protoplanetary disks using infrared
spectroscopy and (2) studying planet-disk interactions using imaging and spectro-astrometry. Our
current knowledge is based on a limited sample of targets, representing the brightest, most
extreme cases, and thus almost certainly represents an incomplete understanding. ELTs will play
a transformational role in this arena, thanks to the high spatial and spectral resolution data they
will deliver. We recommend a key science program to conduct a volume-limited survey of
high-resolution spectroscopy and high-contrast imaging of the nearest protoplanetary disks that
would result in an unbiased, holistic picture of planet formation as it occurs.
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1 Introduction
The processes that transform gas and dust in circumstellar disks into diverse exoplanets are poorly
understood. Existing theories of disk chemistry invoke different assumptions (about grain sizes,
heating and cooling processes, molecular formation and destruction rates), and few models have
been validated observationally to determine whether the assumptions are correct. Similarly,
imaging observations of disks are not yet of high enough spatial resolution to provide good
constraints to models of planet/disk interaction. A unified theory of planet formation requires
information on conditions within the progenitor disks and studies of newly formed planets at the
same scale (< 10AU) of current exoplanet surveys.

To date, protoplanetary disks have only been probed in detail in their outer regions, whereas
exoplanet discoveries are mostly inside those radii (Fig. 1). Transformational studies of planet
formation will require studying protoplanetary disks at the very high spatial and spectral
resolution provided by 20-m to 30-m telescopes such as the Giant Magellan Telescope (GMT),
the Thirty Meter Telescope (TMT), and the European Extremely Large Telescope (ELT). These
Extremely Large Telescopes (ELTs) have both the sensitivity (due to the large collecting area) and
angular resolution to reveal new details about protoplanetary disks at unprecedented scales. Such
work will establish the chemical initial conditions, locations, and timescales of planet formation.
In this white paper, we focus specifically on the science cases to: (1) probe physical and chemical
conditions in protoplanetary disks at the scale of planet formation using infrared spectroscopy,
and (2) study planet-disk interactions through imaging and spectro-astrometry.

2 Physical and Chemical Conditions of Planet Formation
Whether a planet is wet or dry, icy or rocky, depends on how and how fast material is processed
through a disk. The compositions of the feeding zone for planets that eventually populate the
habitable zone of low-mass stars (<1 M�) span scales of a few tenths to 10 AU. The temperatures

Figure 1: Mass vs. orbital distance diagram of exoplanets and putative protoplanets in disks with
gaps (� symbols) or spiral arms (spiral symbols), adopted from Bae et al. (2018). The two inset
images show example disks with gaps and spirals: HL Tau (ALMA Partnership et al., 2015) and
SAO 206462 (Garufi et al., 2013). Putative protoplanets are located outside of the parameter space
in which current exoplanet detection techniques are capable of finding exoplanets. With ELTs, we
will be able to peer into the innermost regions of planet-forming disks.
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Figure 2: Near-infrared spectra of TW Hydrae, the nearest classical T Tauri star. Here, a low
resolution spectrum in blue (Vacca & Sandell, 2011) is overlayed with a subset of the interesting
spectral features available for young stars, and circumstellar disks. Hydrogen emission line pro-
files and strengths probe disk accretion physics (Najita et al., 1996), spectral shape and atomic
line widths indicate age (Allers & Liu, 2013), Zeeman splitting measures stellar magnetic fields
(Yang et al., 2008), molecular emission lines reveal disk kinematics, abundances, and temperature
structure (Banzatti et al., 2017; Gibb & Horne, 2013a; Salyk et al., 2007). Regions of strong tel-
luric absorption are not plotted. The ELTs will enable the more typical young stars at ∼140 pc to
be studied with the same fidelity and also with spatial resolution. Credit: A. Weinberger.

of interest will be .500 K, so that refractory solids are condensed throughout the region while
volatile condensation fronts exist at the outer edges (low temperatures). Here, disks typically have
high gas column densities and optical depths and only the upper disk atmosphere can be observed
in the optical/near-IR (see Fig. 2). However, given short timescales for vertical mixing, this region
should be closely linked to the larger molecule-rich disk interior. Line widths and velocities for
kinematic measurements of circulation (turbulence) and accretion in the disk surface are
necessary to make that connection quantitative. JWST will make strides on the warm molecular
layer and optically thin holes, but lacks high spectral resolution for determining gas kinematics.
ALMA is making outstanding progress on the cool, outer disk and disk midplane. The role of the
ELTs will be to provide higher spatial and spectral resolution than JWST such that <10 AU scales
are reachable for more than just the most extreme disks accessible with existing 8-m class
facilities (see Fig. 3).

Carbon-bearing species and water are of particular interest. Measurements of the major
carbon-carrying molecules (CO, C2H2, CH4) and atomic carbon, simultaneously, will help us
understand the carbon depletion of terrestrial planets (Gail & Trieloff, 2017), and predict the
carbon abundance of terrestrial exoplanets. Spectroscopy of H2O will allow us to understand the
role of water ice in the formation of gas giants, and to measure the profile of C/O in the natal disk.
Mid-IR spectra can provide the abundance of H2O within the so-called “snow line”, and, with
sufficient coverage at long wavelengths, also provide the snow line location (e.g. Zhang et al.,
2013; Blevins et al., 2016). Observations of OH can also provide insight into the chemical
formation and destruction of water vapor in terrestrial planet forming regions, including
measuring how much ultraviolet is penetrating the disk’s upper layers to drive chemistry (e.g.
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Figure 3: Abundance of the primary molecular gas phase species in disks (Najita & Ádámkovics,
2017). The color lines plot the vertical column density of the species as a function of stellocentric
radius. The gray solid line reflects the abundance in the absence of mechanical heating in the
disk. The gray dashed line reflects the abundance in the absence of Ly-α emission in the disk. The
shaded boxes indicate the measured abundance of each molecule. ELTs will provide more sensitive
measures of the composition of the inner disk for an unbiased sample of sources.

Najita et al., 2010). The increased sensitivity provided by ELTs will make it possible to study the
detailed distribution of gas species with distance from the star for low-mass host stars in nearby
(<200 pc) star-forming regions. The C/O ratio sets the oxidation state of a planet and may change
drastically based on where a planet or its constituents form (e.g. Öberg et al., 2011). Derived
temperatures and gas column densities will test models of disk thermal structure and chemistry,
revealing the chemical and physical initial conditions for planet formation.

Few disks currently have direct measures of their turbulence, but this is a fundamental
property of disks that influences the growth and settling of grains, the vertical thermal profiles and
chemical mixing between the midplane and surface, and rate of accretion of grains and pebbles
into the star. The relative opacities of closely spaced optically thick emission lines can reveal the
“microscopic” turbulence of the gas. This method has been applied to infer the turbulence at the
inner rim of disks (Hartmann et al., 2004; Carr et al., 2004). ALMA observations of outer disks
have found surprisingly low levels of turbulence, and it has yet to be fully understood how these
can be consistent with observed rates of stellar accretion (e.g. Hughes et al., 2011; Flaherty et al.,
2017). With ELTs and very high spectral resolution, it may also be possible to use the abundant
3µm water lines in the L-band. The sensitivity and large spectral grasp of high resolution
spectrographs on ELTs will enable the study of inner disk turbulence that will bridge the gap
between what has been learned about the inner rim of disks and the outer disk.

3 Planet-disk Interactions
Substantial feedback occurs between forming planets and disks that affects disk structure the
incorporation of disk material into planets. Planet-disk interactions may be very important for
setting planetary compositions; for example, pressure bumps generated by young planets could
cause a pile-up of volatile-rich grains from the outer disk that are then prevented from reaching
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Figure 4: Observed structure in HD 163296 compared with a disk model with a 70 Earth mass
planet at 10 au inclined at 45◦. The (a) polarized J-band image taken with GPI (Monnier et
al. 2017) and the (b) ALMA image at 1.3 mm (Isella et al. 2016) can be compared to the model
disk as viewed in (c) polarized intensity at 1 µm (Jang-Condell, 2017) and at (d) 1 mm (Jang-
Condell & Turner, 2013), respectively. The images on the right show the disk model viewed at
(e) 1 and (f) 10 micron total intensity (Jang-Condell & Turner, 2013). An ELT operating in the
mid-infrared could probe thermal emission from the disk surface, as shown in the 10 micron image.

inner rocky planets. While the outer regions of bright disks have been imaged in the optical to
near-IR, ELTs will enable us to probe structures in fainter disks and structures much closer to the
star where most planets appear to reside (Fig. 1). Direct observations of disk-planet interactions
are needed to tease out the essential physics behind planet formation.

Resolved imaging of young, gas-dominated protoplanetary disks reveal structures such as
gaps (e.g., HL Tau [Fig. 1], HD 163296 [Fig. 4]), spiral arms (e.g., SAO 206462 [Fig. 1]), warps
(Loomis et al., 2017; Mayama et al., 2018; Benisty et al., 2018a), and inner holes (van der Marel
et al., 2015). Hydrodynamic simulations predict that gaps and spiral arms can be caused by
planets embedded in and interacting with the disk (Dong et al., 2015b,a). The appearance of gaps
and spiral arms can also reveal planet properties (Debes et al., 2013; Dong et al., 2015a) or
indicate gravitational instability (Dong et al., 2018). Other simulations have shown that a close-in
stellar or planetary companion can break up the inner and outer disk and excite a misaligned inner
disk, or warp (Facchini et al., 2013; Nealon et al., 2018). All these large scale disk structures are
illuminated by the central star and may also cast shadows in disks: features that can be seen in
resolved imaging with ELTs either in scattered light in optical to near-IR or in thermal emission at
10− 20 µm (see Fig. 4). For example, shadows cast by warps could produce apparent spiral arms
in the outer disk (Benisty et al., 2017, 2018b; Min et al., 2017).

Multiwavelength imaging can be particularly useful for interpreting disk structure. For
example, a gap at 50 au has been imaged in HD 163296 in both polarized scattered light and 1.3
mm continuum emission (Fig. 4). By combining these datasets, the near side/far side degeneracy
can resolved and the disk scale height estimated. As ALMA continues to reveal more gaps, rings,
and spirals in disks (e.g. Andrews et al., 2018), synergy with imaging from ELTs at similar
angular scales can give us greater insight into planets forming in them.

4 Survey Strategy
We recommend an unbiased imaging and spectroscopy survey of disk-bearing (Class II) stars in
the nearby young (1–10 Myr) star-forming regions of Taurus, Ophiuchus, Lupus, and
Scorpius-Centaurus. Likewise, the ability to combine both spectroscopic dissection of the
physical and chemical properties of disks along with high-contrast imaging of the same disks and
their protoplanets will provide an unbiased, holistic view of planet formation as it occurs.
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Low spectral resolution Spitzer-IRS observations demonstrate that molecular detections will
be nearly ubiquitous for young disks with sufficient S/N (Pontoppidan et al., 2010). The addition
of high spectral and spatial resolution will be crucial for disentangling modeling degeneracies and
determining inner disk chemical abundance structures. Most of these molecules have been
detected at high spectral resolution in only a handful of the brightest disks (e.g. Mandell et al.,
2012; Gibb & Horne, 2013b; Najita et al., 2018). ELTs will enable the observation of a more
representative sample of disks, revealing the more “typical” conditions of planet formation.

The sensitivity required is a function of both the continuum brightness and the need to detect
small line:continuum ratios. As an example, the median Taurus Class II star has J=9.5 mag and
W1 (3.4 µm)=7.2 mag. We can scale this down to stars with M<0.5 M�, which are the most
interesting targets because because of their high fraction of low-mass planets, but the least
explored by the current generation of telescopes at high spectral resolution (e.g., only two
low-mass stars were studied in the sample of 55 stars in Banzatti et al. (2017)). The low mass
stars in Taurus have J∼14.8 mag. We can use J-[W1] to estimate the disk brightness, or, more
realistically, the fact that disk mass is roughly proportional to stellar mass (Andrews et al., 2013),
and assume the disks around low mass stars will be somewhat fainter, with W1 ∼ 13 mag. This
sensitivity can be achieved with GMTNIRS and TMT-MODHIS at S/N∼50 in 1 hr. This same
sensitivity can detect a line:continuum ratio of 0.06, comparable to what is achieved presently on
bright targets with current generation telescopes.

With these spectra we will be able to compare the chemistry of disks relative to system
parameters such as stellar spectral type, stellar accretion rate, disk geometry, and x-ray
luminosity. One of the principal outcomes of this survey will be the testing of thermochemical
models of disks (Fig. 3). In addition to using the spectra to study the chemistry of disks, the line
profiles will be analyzed spectro-astrometrically (or possibly with an IFU) to identify signatures
of disk winds (e.g. Pontoppidan et al. 2011), planet-disk interactions, and possibly emission from
a circumplanetary disk itself (e.g., Brittain et al. 2014). The indirect signatures of disks inferred
from the spectra will then be validated by direct imagery of forming planets.

Disks with known well-resolved substructure from ALMA will naturally be higher priority
targets for high-contrast imaging (e.g., Figure 4). While there are a few dozen such
ALMA-resolved disks known now (e.g. ALMA Partnership et al., 2015; Andrews et al., 2016,
2018), we can anticipate many more by the time the ELTs are conducting science observations.
The challenge for the ELTs will be to find structures, such as spirals, rings, and warps, in the inner
regions of disks, where the strongest disk-planet interactions are expected and where they have
the most impact on the composition and architectures of planetary systems. At the distance to the
nearest clusters of on-going star formation, at ∼140 pc, the diffraction-limited resolution of 30 m
class telescopes is essential to resolving the important scales: resolving 1 AU at 140 pc requires
an angular resolution of 7 mas, which is the diffraction limit of a 30 m telescope at a wavelength
of 1 µm. An inner working angle of 2-3 λ/D, provides a view from just inside to outside the
putative water ice line. At visible and near-infrared wavelengths, photons are efficiently scattered
off of dust in the disk surface and in imaging observations can reveal warps and spirals in the dust
distribution. Using spectroastrometry, the gas motions in the vicinity of such structures can be
measured and indicate whether a planet is truly modifying the trajectories of disk material. In one
hour, the point source sensitivity for coronagraphic imaging is 15.6 magnitudes at L-band, or
about 0.05 Jy/asec2. As shown in Fig. 4, a planet at 10 au around a solar mass star can create
structures that are as bright as ∼ 0.1 Jy/asec2, which is easily seen with this sensitivity.
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