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Abstract

The consistency relation for the 3-point function of the CMB is a very powerful observational signa-

ture which is believed to be true for every inflationary model in which there is only one dynamical

degree of freedom. Its importance relies on the fact that deviations from it might be detected in

next generation experiments, allowing us to rule out all single field inflationary models. After mak-

ing more precise the already existing proof of the consistency relation, we use a recently developed

effective field theory for inflationary perturbations to provide an alternative and very explicit proof

valid at leading non trivial order in slow roll parameters.

1 Introduction

In the last few years there has been great progress in understanding the non-Gaussianity of the

primordial spectrum of density fluctuations. Starting from Maldacena’s first full computation of

the non-Gaussian features in single field slow roll inflation [1], several alternative models have been

proposed that produce a large and in principle detectable level of non-Gaussianities [2, 3, 4, 6]

through different mechanisms for generating density fluctuations in the quasi de Sitter inflationary

phase. At the same time, from the experimental side, the WMAP satellite has allowed for a huge

improvement in our measurement of the properties of the CMB. Observations seem to confirm the

generic predictions of standard slow roll inflation [10]. Limits on the primordial non-Gaussianity of

the CMB have been significantly improved [11], but for the moment the data are consistent with a

non-Gaussian signal.

The fact that the CMB seems to be rather Gaussian means that the non-Gaussian component

must be rather small. This makes it clear that the most important observable for non-Gaussianities

will be the 3-point function of density perturbations [12]

〈ζ~k1ζ~k2ζ~k3〉 (1)

where ζ~k1 is the density fluctuation of comoving slices in Fourier space.

As pointed out in [14], due to symmetry reasons, the 3-point function is a real function of two

variables. While on one hand this means that it contains a lot of information about the inflationary

model, on the other hand this also means that there really could be a large number of different
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shapes of the 3-point function. For this reason, model independent characterization of the 3-point

function are very useful.

To this end, it was pointed out in [1, 15] that in all cases in which there is only one dynamical field

that is important during inflation, the three point function is connected to the two point function

and its deviation from scale invariance in a particular geometrical limit . In other words, we have:

lim
k1→0

〈ζ~k1ζ~k2ζ~k3〉 = −(2π)3δ3(
∑

i

~ki)Pk1Pk3

d log k33Pk3

d log k3
, (2)

where

〈ζ~kiζ~kj〉 = (2π)3δ3(~ki + ~kj)Pki . (3)

Let us comment briefly on what this relationship means. Because of translation invariance, the

spatial momenta ~k1, ~k2, ~k3 must form a closed triangle. The consistency relation says that in the

limit in which one of the sides of this triangle (say ~k1) goes to zero – and therefore the other two

sides become equal and opposite (~k1 ≃ −~k2), and the triangle becomes squeezed – the three point

function becomes proportional to the two point function of the long wavelength modes times the

two point function of the short wavelength mode times its deviation from scale invariance. There

are no free parameters: in this limit the three point function can be fully specified in terms of the

two point function. Notice also that, as we will explicitly show later, the consistency relation holds

without any slow roll approximation. We emphasize that our only assumption is that there is only

one relevant single clock field during the cosmological history.

Experimental limits on non-Guassianities are generically given in terms of a scalar variable fNL

[13, 14] which gives an amplitude of the 3-point function in the squeezed limit of the form:

lim
k1→0

〈ζ~k1ζ~k2ζ~k3〉 = (2π)3δ3(
∑

i

~ki) 4fNLPk1Pk3 (4)

In the limit of small deviation from de Sitter, the consistency relation predicts that the level of

fNL in the squeezed configuration should be of order of the slow roll parameters O(1/100). Current

limits from WMAP 3-year data give an fNL . 100 [11], and the Planck satellite is expected to

constrain fNL at the level of a few. We therefore realize that it is probably impossible, at least in

the foreseeable future, to experimentally verify the consistency relation.

This does not mean that the consistency relation is useless. It is instead a very powerful in-

strument in the opposite regime in which it is proven to be experimentally not satisfied. No model

of inflation with only one dynamical degree of freedom (which therefore acts as a physical ’clock’

for exiting the quasi de Sitter phase) can predict a non-Gaussian signal in the squeezed limit of

detectable level, meaning that a detection of a signal in this limit would allow us to rule out all

single field inflationary models.

The assumption of a single ’clock’ is really essential, as we will explain, and in fact there are

inflationary models with more than one field that violate the consistency relation, and predict a

detectable level on non-Gaussianity in the squeezed limit (see for example [5, 6]). Outside of the

inflationay paradigm, the recently proposed new bouncing cosmology [7, 8, 9], though less compelling

than inflation, predicts a potentially detectable non-Gaussian signal that violates the consistency

relation [9]. All of this is somewhat reassuring from the theoretical point of view, as it tells us that

we do have some hope of detecting a deviation from the consistency relation in the near future.
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The available arguments that prove the consistency relation [1, 15] are rigorous, but suffer from

not being very explicit, casting some doubt on their validity whenever some explicit calculation seems

to show that it is violated. The purpose of the present paper is to explicitly verify the consistency

relation for all single clock models at leading non trivial order in slow roll parameters. We can do

this because we can exploit a recently developed effective theory [16, 17] which describes fluctuations

around a FRW cosmology for every single field model. The assumptions behind the validity of this

effective theory are exactly the same for which the consistency relation applies, and this allows us to

verify the consistency relation in full generality. Even if general proofs do exist [1, 15], we consider

such an explicit verification worthwhile for the outlined importance of the consistency relation as

being able to rule out all single field models of inflation.

The paper is structured as follows. In sec. 2 we review and further formalize the generic proof

of the consistency relation. In particular we highlight the fact that it is valid beyond any slow roll

approximation. In sec. 3 we begin the verification of the consistency relation at leading order in

slow roll parameters after having briefly introduced the effective theory we will use. We first study

a very large class of models which includes for example all the models with a Lagrangian for a single

scalar field of the form P (−(∂φ)2, φ), explicitly verifying the consistency relation at first order in

slow roll parameters. Then we go on to study some more ’exotic’ inflationary models that appear

in our effective theory within some simplified assumption. In sec. 4 we summarize and conclude.

2 Formal proof of the consistency relation 1

For simplicity we concentrate on only the scalar fluctuations and neglect tensor modes 2. Using the

ζ variable to describe scalar fluctuations, the metric for fluctuations around a FRW universe takes

the form:

ds2 = −N2dt2 + ĝij(dx
i +N idt)(dxj +N jdt) , (5)

with

ĝij = a(t)2e2ζδij , (6)

where we have used the ADM parameterization. In this gauge the matter is taken to be unperturbed,

fixing the time diffeomorphisms in this way.

Let us introduce two facts that will be proven to be true later. First, when a mode goes outside

the horizon (ω ≪ H), if there is only one degree of freedom, the ADM variable N and N i defined

in the gauge of (5), go to their unperturbed values (respectively 1 and 0) . In this limit the metric

becomes

ds2 = −dt2 + a(t)2e2ζ(x)dxidxi (7)

with ζ constant in time. Since in this limit we can neglect the gradient terms, we can re-absorb the

ζ fluctuation in a ’local’ rescaling of the coordinates x′ = eζ(x)x. In regions of space separated by

large distances, the metric becomes the one of unperturbed FRW universes, each one characterized

1The results of this section are obtained in collaboration with Paolo Creminelli.
2We make this assumption for simplicity’s sake and also because the 3-point function of scalar fluctuations

is at least for the moment the most important from the observational point of view. This assumption is not

necessary for the proof of the consistency relation, as it was previously noted in [1, 18], and more general

fluctuations can be easily included.
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by a different rescaling of the coordinate (or equivalently of the scale factor). This is sometimes

called the parallel universe description of the inflationary perturbation outside of the horizon. There

is a quite intuitive reason why on large scales the metric takes the form (7). Once we can neglect

gradients, each region of the universe evolves exactly in the same way, as the inflationary solution is

an attractor. As a consequence, the metric on large scales has to approach the one of the unperturbed

FRW universe. The only difference among the well separated observers is how much each region has

expanded with respect to the other, and it is this difference that remains constant.

The second fact that is important for us is that once a mode goes outside the horizon, it becomes

classical, in the sense that [ζ~k, ζ̇~k′ ] → 0 exponentially fast. So for measurements which only involve

ζ or ζ̇ we can treat the mode as a classical variable. Proof of this with different approaches can be

found for example in [19, 20].

Let us now concentrate on the three point function of eq. (2). We can imagine going to the limit

where all the three modes are well outside the horizon, so that we can treat them as classical. We

are interested in the regime where k1 ≪ k2, k3. ζ~k1 is therefore a background mode for ζ~k2 and ζ~k3 .

One can therefore compute the three point function in a two step process: first compute the two

point function of ζ ~k2 and ζ ~k3 in a background ζB:

〈ζ~k2ζ~k3〉ζB , (8)

and then correlate this result with the value of the background field ζ~k1 . It is useful to compute

this two point function in real space and so compute 〈ζ~x2
ζ~x3

〉 on the background ζB(~x). The scale

of variation of the background is much larger than |~x2 − ~x3|. From this point of view what we

are computing is the short scale average on a given realization of the background. Then, we will

correlate with the background and average over it. Expanding the short scale two point function in

powers of the background, we obtain:

〈ζζ〉B(~x2, ~x3) ≃ 〈ζζ〉0(|~x2 − ~x3|) + ζB(
~x2 + ~x3

2
)

(

d

dζB
〈ζζ〉B(|~x2 − ~x3|)

)∣

∣

∣

∣

0

, (9)

where the subscript 0 means that the quantity is evaluated on the vacuum, i.e. without the back-

ground wave. On the background the two point function does not depend only on the distance

between the two points, but also on their position on the background. Since the points are very

close with respect to the the typical variation length of the background we can evaluate the back-

ground at the middle point (~x2 + ~x3)/2. Corrections to this are sub-leading in the squeezed limit

expansion. Notice that no slow roll approximation has been done: we have just expanded in powers

of the small background field. The background modulates the amplitude of the two point function;

as ζ is equivalent to a rescaling of the spatial coordinates, we can trade the derivative with respect

to ζB for a derivative with respect to the log-distance between the points:

〈ζζ〉B(~x2, ~x3) ≃ 〈ζζ〉0(|~x2 − ~x3|) +
∫

d3k

(2π)3
ζB(~k)ei

~k·(~x2+~x3)/2 d

d log(|~x2 − ~x3|)
〈ζζ〉0(|~x2 − ~x3|) , (10)

where we have written ζB in Fourier space:

ζB(~x) =

∫

d3k

(2π)3
ζB(~k)ei

~k·~x , (11)
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because this will soon be useful 3. Now, we can do the Fourier transform with respect to ~x2 and ~x3.

The result can be expressed in terms of ~kL = ~k2 + ~k3 and ~kS = (~k2 − ~k3)/2. Here L and S stand for

long and short wavelength. The derivative with respect the log-distance can be integrated by parts

to obtain a derivative with respect to the log kS . After this algebra we obtain:

〈ζζ〉B(~k2, ~k3) = 〈ζζ〉0(kS)− ζB(~kL)
1

k3S

d

d log kS
[k3S〈ζζ〉0(kS)] , (12)

where we have used that ~k2 ≃ −~k3 ≃ ~kS in the squeezed limit up to sub-leading corrections. We

can now multiply by ζ
(B)
~k1

and take the average. The piece which is independent of the background

gives no contribution, and we are left with:

〈ζ(B)(~k1)〈ζζ〉B(~k2, ~k3)〉 = −〈ζ(B)(~k1)ζ
B(~kL)〉

1

k3S

d

d log kS
[k3S〈ζζ〉0(kS)] (13)

= −(2π)3δ3(~k1 + ~kL)Pk1Pk2

d log[k32Pk2 ]

d log k2
(14)

= −(2π)3δ3(~k1 + ~k2 + ~k3)Pk1Pk2

d log[k32Pk2 ]

d log k2
(15)

where we have used eq.(3).

We have thus obtained eq.(2) as we wished. We stress again that no slow roll expansion was

done in this proof (which remains valid for example even if there are sharp features in the potential),

and that the only important assumption was that there is only one clock field. This has allowed us

to expand the short scale 2-point function in powers only of the background field ζB in eq.(9) and

not also in terms of some other field.

We now are going to briefly introduce our effective field theory for one clock inflation, and then

to explicitly verify that the consistency relation holds with a direct calculation.

3 Explicit Verification with the effective theory for in-

flation

3.1 The effective Lagrangian for single field inflation

In this section we briefly introduce the effective action for single clock inflation that we will use to

verify the consistency relation at leading non trivial order in slow roll parameters. This effective

action was developed in [16, 17] and we refer the reader to those papers for a detailed explanation.

The construction of the effective theory is based on the following consideration. In a quasi de

Sitter background with only one relevant degree of freedom, there is a privileged spatial slicing,

given by the physical clock which allows us to smoothly connect to a decelerated hot Big Bang

evolution. The slicing is usually realized by a time evolving scalar φ(t). To describe perturbations

around this solution one can choose a gauge where the privileged slicing coincides with surfaces of

constant t, i.e. δφ(~x, t) = 0. In this gauge there are no explicit scalar perturbations, but only metric

fluctuations. As time diffeomorphisms have been fixed and are not a gauge symmetry anymore,

3Notice that this is our convention for the Fourier transform.
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the graviton now describes three degrees of freedom: the scalar perturbation has been eaten by the

metric. One therefore can build the most generic effective action with operators that are functions

of the metric fluctuations and that are invariant under the linearly realized time dependent spatial

diffeomorphisms. As usual with effective field theories, this can be done in a low energy expansion

in fluctuations of the fields and derivatives. We obtain for the matter Lagrangian [16, 17]:

Smatter =

∫

d4x
√−g

[

−M2
PlḢ

1

N2
−M2

Pl

(

3H2 + Ḣ
)

+ (16)

M(t)4

2!

(

1

N2
− 1

)2

+
c3(t)M(t)4

3!

(

1

N2
− 1

)3

+

+
d1(t)

2
M3(t)δNδEi

i −
d2(t)

2
M(t)2δEi

i
2 − d3(t)

2
M(t)2δEi

jδE
j
i + ...

]

,

where we have used the ADM formalism. We have defined:

δN = N − 1 , (17)

and δEij = Eij − a2Hĝij is the fluctuation in the quantity Eij which is related to the extrinsic

curvature of hypersurfaces of constant t:

Eij ≡ NKij =
1

2
[∂tĝij − ∇̂iNj − ∇̂jNi] . (18)

Here ∇̂i is the derivative with respect to the spatial metric ĝij .

At this point it is useful to reintroduce the full diff. invariance of the theory by reintroducing

the Goldstone boson π of time translation with the so called Stückelberg trick. This amounts to

performing a time diffeomorphism in the Lagrangian of (16) of parameter −π, and then promoting

π to a field which shifts under time-diffeomorphisms:

π → π̃(x̃(x)) = π(x)− ξ0(~x, t) . (19)

This procedure is explained more in detail in [17], and we refer to it for further details. Neglecting

for the moment the terms that involve the extrinsic curvature, we obtain:

Smatter =

∫

d4x
√−g

[

−M2
PlḢ(t+ π)

(

1

N2

(

1 + π̇ −N i∂iπ
)2 − ĝij∂iπ∂jπ

)

(20)

−M2
Pl

(

3H2(t+ π) + Ḣ(t+ π)
)

+

M(t+ π)4

2

(

1

N2

(

1 + π̇ −N i∂iπ
)2 − ĝij∂iπ∂jπ − 1

)2

+

c3(t+ π)M(t+ π)4

6

(

1

N2

(

1 + π̇ −N i∂iπ
)2 − ĝij∂iπ∂jπ − 1

)3

+ ...

]

,

Obviously, there is also the Einstein Hilbert action:

SEH =
1

2
M2

Pl

∫

d4x
√−g R =

1

2
M2

Pl

∫

d3x dt
√

ĝ
[

NR(3) +
1

N
(EijEij − Ei

i
2)
]

. (21)

No π appears explicitly in the Einstein Hilbert action after we perform the Stückelberg trick because

the Einstein Hilbert action is already time diff. invariant.
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The validity of this effective action is very general. It assumes only the presence of one degree

of freedom which spontaneously breaks time translation and acts as a physical clock for the system.

For example it reproduces all known models of single field inflation. We refer to [17] for a more

general discussion of this point.

We are going to verify the consistency relation with our effective Lagrangian. Clearly, for such a

complex Lagrangian, doing it in full generality is a difficult task because of the amount of algebra that

this requires. In order to keep the complexity of the algebra at a minimum, in the next subsections

we will verify it for some particular (and still very general) cases where each time we neglect the

contribution of some specific operators.

3.2 Verification for the Lagrangian of the form P (−(∂φ)2, φ)

The Lagrangian (20) is already very general even though it omits all the operators which in unitary

gauge involve the extrinsic curvature. It in fact reproduces the Lagrangian for all the models of

inflation with a single scalar field and a Lagrangian of the form

S =

∫

d4x
√−g P (−(∂φ)2, φ) , (22)

which are referred to as k-inflation [21]. This is easy to see if we write the Lagrangian in unitary

gauge (which here means φ(~x, t) = φ0(t)):

S =

∫

d4x
√−g P ( φ̇

2
0

N2
, φ0(t)) , (23)

which is of the form of (20). In App. A we explicitly perform the matching between the parameters

in the Lagrangian (20) and the ones in (23).

3.2.1 The Lagrangian at first order in slow roll parameters

With only one scalar degree of freedom, it is necessary to integrate out the ADM variables N and N i

in order to find its effective action. Since these variables do not have kinetic terms, their equations

of motion are algebraic. This is guaranteed to occur because of diff. invariance. Solving for N and

N i in terms of π, we can substitute these back into the Lagrangian. This process has been discussed

extensively in [1, 4], and corresponds to removing gauge degrees of freedom. Indeed, counting all

gauge degrees of freedom, there are exactly four scalars in the metric and one from the matter sector

(namely, π). We shall fix time and space diffeomorphisms by choosing the gauge 4:

ĝij = a2(t)δij . (24)

which removes two scalar degrees of freedom from the metric. Then, we will solve for N and N i

removing two more, yielding one scalar degree of freedom π in the final action.

4From here on we concentrate only on scalar fluctuations. This is enough for verifying the consistency

condition of scalar perturbations at the leading order in slow roll parameters. For higher order calculations,

one should include also tensor modes.
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The equations of motion for N and N i are

∂(LEH + Lmatt)

∂N i
= 0 , (25)

∂(LEH + Lmatt)

∂N
= 0 . (26)

For the general properties of the ADM parameterization, these two equations allow us to express N

and N i in terms of π. As outlined in [1, 4], we need only to solve the constraint equations to first

order in π because we are only interested in cubic interactions in the Lagrangian. Solving for small

fluctuations around the metric δN = N − 1 to first order in π, we find that

δN = ǫHπ, (27)

∂iNi = −ǫHπ̇
c2s

, (28)

where we have defined the slow roll parameter

ǫ = − Ḣ

H2
, (29)

and the speed of sound as:

c−2
s = 1− 2

M4(t)

ḢM2
Pl

. (30)

Plugging these back into the Lagrangian, and concentrating on only up to the next to leading terms

in slow roll parameters we obtain

L = L2 + L3, (31)

L2 = a3M̄4

(

π̇2 − c2s
a2

(∂iπ)
2 + 3ǫH2π2

)

, (32)

L3 = a3
(

Cπ̇3π̇3 +
Cπ̇(∂π)2

a2
π̇(∂iπ)

2 + Cππ̇2ππ̇2 +
Cπ(∂π)2

a2
π(∂iπ)

2 + CNLπ̇∂iπ∂
i 1

∂2
π̇

)

, (33)

where for brevity we defined M̄4 ≡ ǫH2M2
Pl/c

2
s = 2M4/(1 − c2s). The cubic coefficients are

Cπ̇3 = M̄4
(

1− c2s
)

(

1 +
2

3
c3

)

, (34)

Cπ̇(∂π)2 = M̄4
(

−1 + c2s
)

,

Cππ̇2 = M̄4H
(

−6ǫ+ η − 2s + 3ǫc2s − 2ǫc3(1− c2s)
)

,

Cπ(∂π)2 = M̄4H
(

ǫ− ηc2s
)

,

CNL = M̄4H

(

2ǫ

c2s

)

,

where we have defined the other slow roll parameters as:

η =
ǫ̇

ǫH
(35)

s =
ċs
csH

.

Notice that the final term is a non-local interaction term which arises from the fact that we have

written a gauge fixed Lagrangian. Obviously, all gauge invariant observables will be local. At next

to leading order in slow roll parameters we have five distinct cubic operators which give rise to the

five distinct shapes for the three point function.
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3.2.2 2-point function and its tilt

In order to verify the consistency relation at first order in slow roll parameters, we need to compute

the 2-point function (3) for ζ at first order in slow roll. In order to do this, we need to find the

relationship between π and ζ. This is given in App. B at the non linear level. Here we just need

the relationship at linear level. It is rather straightforward to realize that in Fourier space:

ζk = −H∗πk , at linear level . (36)

where the ∗ means that the quantity has to be evaluated at horizon crossing, that is when ω2 =

k2/a(t∗)
2 = H(t∗)

2. This relationship can be understood as follows. At linear level no space

derivative can appear. Then, the relationship can be derived thinking of very long wavelengths. As

we mentioned in sec. 2, on large scales ζ corresponds to the relative expansion between separate

unperturbed FRW universes. Similarly, on large scales, π represents the time-delay between the

same separate unperturbed FRW universes. Therefore, we deduce that ζ = −H∗π, at least at linear

level, as is verified in App. B. The sign depends on our definition of π.

Now, we would need to find the wavefunction for the mode πclk (t) defined by the relationship

πk = πclk âk + πcl−k
∗â†−k. Doing this at first order in slow roll parameters is a rather tedious task,

that we perform in App. C. However, one can easily find the solution in exact de Sitter from the

quadratic Lagrangian (32):

πclk (τ) = i
1

2
√
ǫk3csMPl

(1 + ikcsτ)e
−ikcsτ , (37)

ζclk (τ) = −Hπclk ,

where we have imposed the usual Minkowski vacuum at early times. Here τ is the conformal time.

The power spectrum becomes:

Pk =
H2

∗
4 ǫ cs,∗ M2

Pl

1

k3
. (38)

Here this quantity is evaluated at t∗ in order to minimize the error we introduced in evaluating the

wavefunction in de Sitter. The dependence on t∗ induces an additional momentum dependence. It

is convenient to parameterize it by saying that the total correlation function has the form k−3+ns ,

where

ns =
d log k3Pk

d log k
= k

d

d k
log

(

H4
∗

Ḣ∗cs∗M2
Pl

)

∼ 1

H∗

d

d t∗
log

(

H4
∗

Ḣ∗cs∗M2
Pl

)

= 4
Ḣ∗
H2

∗
− Ḧ∗

Ḣ∗H∗
− ċs∗
cs∗H∗

= −2ǫ− η − s . (39)

In App. C we explicitly verify that this is the correct result. Notice also that, as anticipated,

after horizon crossing the commutator [ζ, ζ̇] → 0 exponentially fast in cosmic time.

3.2.3 3-point function at leading order in slow roll parameters

At leading order in slow-roll, remarkably little work or subtlety is involved, since mixing with gravity,

time-dependence of coefficients, corrections to pure de Sitter wave functions, and corrections to the

evolution of comoving time τ can all be ignored. At this order we have a contribution only from
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two operators: π̇(∂π)2 and π̇3. The calculation of non-Gaussianities in the power spectrum of fields

such as π from their interactions in the Lagrangian is a standard [1] calculation of the expectation

value 〈π3〉.
〈π3(t0)〉 = −i

∫ t0

−∞
dt〈[π3(t0),Hint(t)]〉 (40)

where t0 is some time well after all modes have exited the horizon. At leading order in interaction we

have Hint = −Lint. We will focus first on the interaction Lint = −2M4
∫

d3xa3π̇(∂iπ/a)
2. Equation

(40) is evaluated for the explicit π operators in terms of the interaction picture wavefunctions,

πk = πclk âk + πcl−k
∗â†−k.

〈πk1πk2πk3〉 = i Cπ̇∂π2(2π)3δ3

(

∑

i

~ki

)

πclk1(0)π
cl
k2(0)π

cl
k3(0)

·
∫ 0

−∞

dτ

Hτ

d

dτ
πclk1

∗(τ)πclk2
∗(τ)πclk3

∗(τ)
(

~k2 · ~k3
)

+ permutations + c.c.

(41)

where the sum above includes all symmetric permutations of the three momenta. Inserting the

expression for the wavefunction in eq. (37) into the above expression for the three-point function,

we find

〈πk1πk2πk3〉 = −iM4(2π)3δ3(
∑

i

~ki)
1

32c3sǫ
3HM6

Pl

∏

i k
3
i

×
∫ 0

−∞
dτc2sk

2
1(k2 · k3)(1 − ik2csτ)(1− ik3csτ)e

i
P

i kicsτ

+ permutations + c.c. (42)

The above integral converges if we rotate the path of integration slightly into the complex plane

to pick out the interacting vacuum state in the infinite past, so that τ → −∞(1 − iǫ). We can

use the constraint
∑~ki = 0 to simplify the above expression further. Since

∑~ki = 0, it follows

that k1 · k2 = 1
2(k

2
3 − k21 − k22), and permutations thereof. This makes it easy to eliminate the inner

products in favor of the magnitudes of the ki’s. All the cubic operators contribute to the three-point

function via similar computations to the integral above. It is useful to define a basis of symmetric

products of ki wavevectors. We choose the combinations

K1 = k1 + k2 + k3 (43)

K2 = (k1k2 + k2k3 + k3k1)
1/2 (44)

K3 = (k1k2k3)
1/3 (45)

and any symmetric polynomial in ki’s can be decomposed in terms of these. Equation (42) is now

easy to evaluate and express in terms of the symmetric variables Ki. In general, the contribution

from an operator O in the Lagrangian which is cubic in π’s can be put in the form

〈πk1πk2πk3〉 = i

∫

d3x

∫ 0

−∞
adτ

√−g 〈[πk1(τ)πk2(τ)πk3(τ), COO]〉 ≡ (46)

≡ CO

∣

∣

∣

∣

∣

3
∏

i=1

πcki(0)

∣

∣

∣

∣

∣

2

(2π)3δ3(
∑

i

~ki)
AO(cs,H,K1,K2,K3)

K3
1

10



where in this case the CO are Cπ̇3 and Cπ̇∂π2 evaluated at zeroth order in slow roll parameters .

Regardless of the size of CO, it is straightforward to calculate the leading-order contribution to any

shape AO by using the computational procedure described above. For O = π̇3 and π̇(∂iπ)
2, they are

Aπ̇(∂π)2 =
( cs
H

)

(

24K6
3 − 8K2

2K
3
3K1 − 8K4

2K
2
1 + 22K3

3K
3
1 − 6K2

2K
4
1 + 2K6

1

)

(47)

Aπ̇3 =

(

c3s
H

)

(

24K6
3

)

To leading order in slow roll parameters, then, the π 3-point function is

〈πk1πk2πk3〉 =
∣

∣

∣

∣

∣

3
∏

i=1

πclki(0)

∣

∣

∣

∣

∣

2

(2π)3δ3(
∑

i

~ki)
2M4 (−Aπ̇∂π2 + (1 + 2c3/3)Aπ̇3)

K3
1

(48)

To find the 3-point function for ζ (ζ is constant outside of the horizon, and therefore it is the relevant

quantity for observation), we need the relation between π and ζ. This can be found performing the

diffeomorphism that connects the ζ-gauge (6) and the π-gauge (24). This is given in App. B [1]:

ζ = −Hπ +Hππ̇ + 1
2Ḣπ

2 + α (49)

4α =
1

a2
(

−∂iπ∂iπ + ∂−2∂i∂j(∂iπ∂jπ)
)

(50)

The α term is proportional to spatial derivatives of π, so it vanishes outside the horizon and will

not contribute in the expression for the three-point function. The 1
2Ḣπ

2 in ζ contributes to the

ζ three-point function through 〈ζ3〉 ⊃ 〈H2Ḣπ4〉, which is sub-leading in slow roll expansion with

respect to the terms we are keeping here. Finally, the Hππ̇ in ζ contributes through 〈ζ3〉 ⊃ 〈H3π3π̇〉,
but this also vanishes at this order in slow-roll since in exact de Sitter space π̇ vanishes outside the

horizon. The full three-point function for ζ to leading order in ǫ is therefore

〈ζk1ζk2ζk3〉 = −H3〈πk1πk2πk3〉 = −π3δ3(
∑

i

~ki)
H3M4 (−Aπ̇∂π2 + (1 + 2c3/3)Aπ̇3)

4c3sM
6
Plǫ

3K9
3K

3
1

= π3δ3(
∑

i

~ki)H
3Ḣ(1− c2s)

(−Aπ̇∂π2 + (1 + 2c3/3)Aπ̇3)

8c5sM
4
Plǫ

3K9
3K

3
1

(51)

where in the last step we have used M4 = ḢM2
Pl(1− 1/c2s)/2. In App. D we show using our generic

effective theory (16) that ζ is constant outside of the horizon at fully non linear level.

3.2.4 3-point function at next to leading order in slow roll parameters

At next to leading order in slow-roll, the computation of the non-Gaussianities involves considerably

more work, and much of the computational advantage of using the π field instead of the ζ field is

lost. This is understandable, as the Goldstone boson is advantageous for describing the UV physics,

while here we are also considering some IR effects. At any order in slow roll, the contribution from

an operator O is still exactly given by the general expression (46). The calculation of CO, π
cl
k (0)

and AO/K3
1 should be carried out at the required order, but they are all independent of each other.

We have just calculated the coefficients CO at the next leading order in slow roll parameters. The

next to leading order corrections involve three new operators that were not present at leading order.

11



For these three operators, the contribution to the non-Gaussianities is actually quite easy. Their

coefficients are already suppressed by slow-roll, so we can simply use the leading order contributions

to AO, and be done. The operators π̇3 and π̇(∂π)2 that were present at leading order are more

complicated. In addition to the slow-roll corrections to Cπ̇3 and Cπ̇(∂π)2 , there are several corrections

inside the integral of equation (46). Such corrections have been treated before[4, 23], but we will

not need them in our calculation. We can write the integral to evaluate symbolically as

〈πk1(0)πk2(0)πk3(0)〉 = i

∫

d3x

∫ 0

−∞
[ MEASURE ] [ TIME-DEPENDENCE ]

× [ DERIVATIVES ] [ MODES ] + c.c. + symm. . (52)

It is not very instructive to write the full result, because we cannot put it in closed form in any

case. Instead, we turn directly to verify the consistency relation, as we can do it without many

complication. In fact, there is a nice trick that we can use in the squeezed limit to avoid these

complications. To understand why this is the case, let us first ask which operators contribute in the

squeezed limit if we work in the ζ gauge instead of the π gauge. A key insight is that ζ does not

evolve outsize the horizon, and so operators like ζ̇3 and ζ̇(∂ζ)2, with a derivative on each ζ, do not

contribute in the squeezed limit. If we imagine doing the calculation directly for ζ, we see that the

contribution from the operator ζ̇3 will be proportional to the derivative of ζkL , and therefore will

be negligible in the squeezed limit. However, the same reasoning does not apply to π = −ζ/H + ...,

which evolves outside the horizon, and therefore the operators π̇3 and π̇(∂π)2 still contribute in the

squeezed limit. However, the interaction picture wavefunction, which follows the linear equation of

motion, is almost constant outside the horizon. In particular, using that ζcl = −Hπcl, we can write:

π̇cl = − ζ̇
cl

H
+Hǫπcl (53)

We emphasize that this relation is true for the classical solutions, but not for the π and ζ operators in

general, and that one should only use the above substitution under the integral in the computation

of the 3-point functions (46). But this is enough for us. We have to compute corrections only to

terms that were already present at leading order in slow roll, π̇3 and π̇(∂π)2. Focussing on the latter

of these for the moment, we make the replacement

π̇cl(∂πcl)2 → − 1

H
ζ̇cl(∂πcl)2 +Hǫπcl(∂πcl)2 (54)

The second term on the RHS is now suppressed by ǫ, so its shape can be calculated without any slow-

roll corrections, as we shall soon do. The first term is clearly going to be sub-leading in the squeezed

triangle limit, because there is one derivative on each field, and therefore we expect a suppression of

order kL/kS with respect to the leading behavior. However, since, in the actual computation, this

term is under an integral over τ , it might not be obvious to the reader that this contribution really

vanishes. This last fact can be explicitly verified, recovering the k dependence of the contribution

of the first term on the RHS of (54) in the squeezed limit. Let us see how we can do this. We have

to evaluate the following integral:

〈πk1πk2πk3〉 = −i Cπ̇∂π2(2π)3δ3(
∑

i

~ki)π
cl
k1(0)π

cl
k2(0)π

cl
k3(0)

·
∫ 0

−∞

dτ

H2τ

d

dτ
ζclk1

∗(τ) πclk2
∗(τ)πclk3

∗(τ)
(

~k2 · ~k3
)

+ c.c. + symm. .

(55)
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where we have contracted πk1 with ζ̇k as an illustrative example. We can divide the integral over

conformal time into two regions: “early times”, when kS ≫ kL & aH and the physical wavelengths

are inside the horizon; “late times”, when kL ≪ aH and the long physical wavelength is outside

the horizon. Now, the contribution from early times is negligible due to the rapid oscillations from

the exponential factor eikScsτ 5. In the remainder of the integral, kL can safely be taken as small

as we like. In this limit, then the Hankel function of the field which has the long wavelength mode

can be expanded in the small argument limit. It is clear that this expansion will bring powers of

kL in the numerator, making the contribution of this term negligible in the squeezed limit6. But let

us explicitly see how this works considering the particular case where k1 = kL, and k2 ≃ k3 = kS .

In this case we can expand the wave function of ζ, as done in App. C.1. Considering only the

parametric dependence on momenta, the first term from equation (55) contributes as

〈πkLπksπks〉 ∝ πclkL(0)π
cl
ks(0)π

cl
ks(0) ·

∫ 0

−∞

dτ

τ

1

τ
τ2k

1/2
L k2Sπ

cl∗
ks (τ)π

cl∗
ks (τ)

∝ 1

k
3/2
L

1

k3S
·
∫ 0

−∞

dτ

τ

1

τ
τ2k

1/2
L

(

kS(−τ)3/2H(1)
ν (−cskSτ(1 + s))

)2

∝ 1

k3L

1

k3S

(

kL
kS

)2 ∫ 0

−∞
dy y2(H(1)

ν (−y))2 . (56)

where in the first passage we have used the long wavelength limit of ζ̇ given in App. C.1, in the

second we have used the explicit form for the wave functions at first order in slow roll parameters

given in (131), and in the third we have changed variable of integration to y = cskSτ(1 + s). We

see that the remaining integral is just a numerical factor, and the k dependence of the contribution

is suppressed with respect to the leading one in the consistency relation by a factor of (kL/kS)
2. It

is clear that the same arguments apply to the other terms of eq.(55). We avoid showing the very

similar argument for the operator π̇3 except there is an extra factor of 3, since πkL can be put on

any of the three π̇’s. Notice that this works out so that the terms in c3 coming from (1/N2 − 1)3 do

not contribute in the squeezed limit. This is very important for the consistency relation to be true,

as no term from (1/N2 − 1)3 contributes to the two point function, and therefore to its tilt.

Applying this argument, we find that the π three-point function in the squeezed limit (k1 → 0)

at next to leading order is

〈πk1πk2πk3〉 =

∣

∣

∣

∣

∣

3
∏

i=1

πclki(0)

∣

∣

∣

∣

∣

2

(2π)3δ3(
∑

i

~ki)

×
(Cπ̇33Hǫ+ Cππ̇2)Aππ̇2 + (Cπ̇(∂π)2Hǫ+ Cπ(∂π)2)Aπ∂π2

K3
1

(57)

The shapes Aπ(π̇)2 and Aπ(∂π)2 can be calculated using the method described in section 3.2.3. We

obtain

Aπ(∂π)2 =
( cs
H2

)

(

4K2
2K

3
3K1 + 4K4

2K
2
1 − 2K3

3K
3
1 − 6K2

2K
4
1 + 2K6

1

)

(58)

Aππ̇2 =

(

c3s
H2

)

(

4K2
2K

3
3K1 + 4K4

2K
2
1 − 8K3

3K
3
1

)

5In practice, the oscillatory damping is even more obvious since one analytically continues into the complex

plane where it becomes exponential damping.
6This is the step of the proof that fails for the term π̇(∂π)2 but holds for ζ̇(∂π)2.

13



At next to leading order, ζ = −Hπ +Hππ̇ + 1
2Ḣπ

2 + 4α. Then, in Fourier space, ζ is of the form

ζk = −Hπk + H(π ∗ π̇)k + 1
2Ḣ(π ∗ π)k, where (π ∗ π)k =

∫

d3q πk−qπq/(2π)
3 is a convolution. As

before, π̇ outside the horizon can be replaced by Hǫπ and the terms contained in α are irrelevant,

so outside the horizon we can take ζk = −Hπk − 1
2Ḣ(π ∗π)k. Considering the contribution from the

field redefinition, the full three-point function for ζ in the limit k1 = kL → 0 is

〈ζk1ζk2ζk3〉 = −H3〈πk1πk2πk3〉 −
Ḣ

H2
(2π)3δ3(

∑

i

~ki) (Pk1Pk2 + Pk2Pk3 + Pk1Pk3)

≃ −(2π)3δ3(
∑

i

~ki)PkSPkL (59)

×
(

∣

∣

∣πclkS(0)
∣

∣

∣

2 (Cπ̇33Hǫ+ Cππ̇2)Aππ̇2 + (Cπ̇(∂π)2Hǫ+ Cπ(∂π)2)Aπ(∂π)2

8k3SH
− 2ǫ

)

Here Pk is the power spectrum defined in eq.(3). In the first line, the second term in the right hand

side comes from the field redefinition. In the second line we have taken the squeezed limit, and used

that PkS ≪ PkL .

It is straightforward to check that the last term above in parentheses is equal at next to leading

order to ns. In the squeezed limit we have,

Aπ(∂π)2 =
48csk

6
S

H2
, Aππ̇2 =

16c3sk
6
S

H2
. (60)

From equation (37),

|πclkS(0)|
2 =

1

4ǫk3ScsM
2
Pl

, (61)

and from equation (34) we have

Cπ̇33Hǫ+Cππ̇2 =M2
PlH

3ǫ(−2s− 3ǫ+ η)/c2s , Cπ̇(∂π)2Hǫ+Cπ(∂π)2 =M2
PlH

3ǫ(ǫ− η) . (62)

Substituting these expressions in (59), we find

〈ζk1ζk2ζk3〉 ≃ −(2π)3δ3(
∑

i

~ki)PkSPkL(−2ǫ− s− η) = −(2π)3δ3(
∑

i

~ki)PkSPkLns (63)

which is exactly of the form of eq.(2) if we identify k1 = kL → 0 and k2 ≃ k3 = kS
7 . This ends the

verification of the consistency relation at first order in slow roll parameters for the particular case

we have considered in this section.

3.3 Verification for the Operator δNδEi
i

We now turn to the verification of the consistency relation in the case where the operators which

involve the extrinsic curvature are important. Since these terms are higher derivative, in general

they do not give rise to the leading contribution. However this is not necessarily the case if we are

7The 3-point function produced by a scalar field with Lagrangian of the form P (−(∂φ)2, φ) had already

been studied in [4], where it was originally found that the consistency relation was violated by terms of the

form ǫ/c2
s
. However, after the publication of this paper, the authors of [4] revised their calculations and found

some algebra mistakes. The new results of [4] agree with ours completely.
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near de Sitter. As we explain more in detail in [17], the leading gradient term to the π field is fixed

by the symmetries of FRW to be equal to M2
PlḢ(∂iπ)

2. This term goes to zero as Ḣ vanishes, and

this allows higher derivative terms to become the leading ones. This is the case of the terms in δEi2
i

and δEi
jδE

j
i, which, upon reinsertion of the π, give rise to:

−1

2
d2M

2 δEi
i
2 − 1

2
d3M

2 δEijδEij → −1

2
d̄M2 1

a4
(∂2i π)

2 , (64)

where d̄ = d2 + d3. The situation for the operator δNδEi
i is slightly different. Upon reintroduction

of the π, this term gives a non trivial contribution to the action only either through its mixing

with gravity, or because of the presence of the Hubble constant. Neglecting metric fluctuations and

concentrating only on the π terms, we obtain:

−d1
2
M3π̇

1

a2
∂2π → d1

2
M3 1

2a2
d

dt
(∂iπ)

2 → −Hd1M
3

4

1

a2
(∂iπ)

2 , (65)

where we have performed an integration by parts. Since this two derivative gradient term is sup-

pressed by H it is in general negligible unless Ḣ is very small. This is the reason why, in the

former section, we completely neglected these terms. However, even though by a small amount,

these operator do contribute to the 2-point function and to its tilt, and therefore, if the consistency

relation is true, they must give a contribution to the 3-point function in the squeezed limit. This in

principle should be checked 8. As it should be clear from the study of the former section, the full

study of the three point function in the squeezed limit in the case we include all these operators is

clearly very long and tedious. Furthermore, it is true that these new operators become important

only if we are close to de Sitter. For these reasons, in the rest of this section we decide to make

some simplifying assumptions. First of all, we restrict to de Sitter background, so that we make the

importance of these operators as large as possible. Second, for each operator, we decide to restrict

ourself at verifying the consistency relation for the minimal case which is still non-trivial, setting all

the unnecessary operators to zero. In summary, we consider two separate cases: one where we set

to zero the operators δEi
i
2 and δEi

jδE
j
i, and we keep the operators (1/N2 − 1)2 and δNδEi

i; and

the other where we set to zero δNδEi
i and δE

i
i
2 and we keep (1/N2− 1)2 and δEi

jδE
j
i
9. We then

start by considering the following action:

Smatter =

∫

d4x
√−g

[

M4(t)

2

(

1

N2
− 1

)2

+
d1(t)

2
M3(t)δNδEi

i

]

. (66)

Notice that we have set to zero the operator (1/N2 − 1)3 because it is not strictly necessary for a

non trivial check of the consistency relation. In the squeezed limit, the consistency relation involves

the deviation from scale invariance of the two point function. Even though we are in de Sitter, still

we obtain a scale dependence from the time dependence of the coefficients in (66), which allows us

8At this point one could wonder of the particular regime in which we are close to de Sitter and in which the

coefficients of the extrinsic curvature operators we consider are tuned to be zero. Then other higher derivative

terms can become important. However, as we show in [17], when this is the case, the theory becomes strongly

coupled in the infrared, and our effective field theory description breaks down. We therefore conclude that it

is enough to restrict ourself to study the operators we consider.
9The case where we keep (1/N2 − 1)2 and δEi

i
2 and set the other operators to zero would be very similar

to the second case we consider, and therefore we avoid to explicitly perform the calculation for this case.
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to have a non trivial check. To this purpose, we keep only the first time derivative and drop higher

ones.

As we did in the former section, we need to find the effective action for the relevant scalar degree

of freedom. This involves reinserting the π, writing down the constraint equations, gauge fixing and

solving them in terms of δN and Ni, and finally plugging back into the gauge fixed action. This

part proceeds as in the former section, with just the algebra being a bit more complicated.

Reinsertion of the π in the operators δEi
i leads to (see App. E for a detailed derivation):

δEi
i → δEi

i − 3Hπ̇ + 3Hπ̇2 − 1
2∂t(2∂iπN

i + (∂π)2)

−∂2π − ∂i(2δN∂
iπ + 3N iπ̇ − 2∂iππ̇) . (67)

The constrained equation can be solved in the spatially flat gauge we use (eq. (24)) to give:

δN =
d1(t)M

3(t)

d1(t)M3(t) + 4HM2
Pl

π̇ (68)

∂iN
i = −24d1(t)H

2M2
PlM(t)3 + 32HM2

PlM(t)4 + 3d1(t)
2HM(t)6

(

4HM2
Pl + d1(t)M3(t)

)2 π̇

− d1(t)M
3(t)

4HM2
Pl + d1(t)M3(t)

a−2∂2π (69)

Plugging back in (66) we obtain the final action.

3.3.1 2-point function and its tilt

At quadratic level, the action is:

S2 =
1

2

∫

d3xdτf2(π′2 − c2s(∂iπ)
2) (70)

where we have directly passed to conformal time. f and cs are defined by:

f2τ2 = M2
Pl

64M4M2
Pl + 6d1M

3(8HM2
Pl + d1M

3)

(4HM2
Pl + d1M3)2

, (71)

c2s = −d1M
3(4HM2

Pl + d1M
3) + 4M2

Pl∂t(d1M
3)

(

32M4M2
Pl + 3d1M3(8HM2

Pl + d1M3)
) , (72)

where for brevity we have stopped explicitly showing that M and d1 depend on time. The quadratic

action is the one of a scalar field with a speed of sound different from one. Using the result of the

former section, we can quickly compute the power spectrum and its tilt:

Pk =
H2

2f2τ2c3s

1

k3
, (73)

ns ≃
d log k3Pk

d log k
=

16M2
Pl∂tM

4
∗

H
(

32M2
PlM

4
∗ + 3d1∗M3

∗ (8HM
2
Pl + d1∗M3

∗ )
) (74)

−M2
Pl

(

32M4
∗ (6HM

2
Pl + d1∗M

3
∗ ) + 6Hd1∗M

3
∗ (16HM

2
Pl + 3d1∗M

3
∗ )
)

∂t(d1M
3)∗

Hd1∗M3
∗ (4HM

2
Pl + d1∗M3

∗ )
(

32M2
PlM

4
∗ + 3d1∗M3

∗ (8HM
2
Pl + d1∗M3

∗ )
)

where the subscript ∗ stands for evaluation at horizon crossing ω ≃ H.
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3.3.2 3-point function in the squeezed limit

In the de Sitter limit the computation of the 3-point function in the squeezed limit gets largely

simplified. This comes from the fact that now (see App. B)

ζ = −Hπ +Hπ̇π . (75)

This means that outside the horizon π becomes constant. This simplifies the calculation in two

different ways. On the one hand this means that there are no terms in the 3-point function of ζ

which come from the non linear relationship between ζ and π. On the other hand, by reproducing

the argument we made in sec. 3.2.4, the interaction operators with a derivative acting on each of

the π’s do not contribute in the squeezed limit, and therefore can be neglected. Concentrating on

the interaction Lagrangian with at least one π without derivatives, we are left with:

S3 ⊃
∫

d3xdt
[

aCππ̇∂2πππ̇∂
2π + a3Cππ̇2ππ̇2

]

(76)

where

Cππ̇2 = 16H2M4
Pl

(4HM2
Pl + d1M

3)2∂tM
4 + 2(3H2M2

Pl − 2M4)∂t(d1M
3)

(4HM2
Pl + d1M3)3

, (77)

Cππ̇∂2π = 8H2M4
Pl

∂t(d1M
3)

(4HM2
Pl + d1M3)2

.

In the squeezed limit, we can put the first term in a form we are more familiar with by an integration

by parts:

a Cππ̇∂2π(t)ππ̇∂
2π = −a Cππ̇∂2π(t)(∂ππ̇∂π + π∂π̇∂π)

= −a Cππ̇∂2π(t)(π
1
2∂t(∂π)

2)

= 1
2a π(∂π)

2(HCππ̇∂2π(t) + Ċππ̇∂2π) , (78)

where in the third passage we have neglected operators with one derivative on each π. So in the

squeezed limit we can consider the operator π(∂π)2 instead of ππ̇∂2π upon the definition

Cπ(∂π)2 ≡ 1

2
(HCππ̇∂2π + Ċππ̇∂2π) . (79)

At this point it becomes immediate to obtain the result for the ζ 3-point function using (46) in the

squeezed limit k1 = kL ≪ kS = k2 ≃ k3:

〈ζk1ζk2ζk3〉 = −H3〈πk1πk2πk3〉

≃ −(2π)3δ3(
∑

i

~ki)PkSPkL

(

∣

∣

∣πclkS (0)
∣

∣

∣

2 Cππ̇2Aππ̇2 + Cπ(∂π)2Aπ(∂π)2

8k3SH

)

We have already computed Aπ(∂π)2 and Aππ̇2 in eq.(58). Using this and the fact that

|πkS(0)|2 =
1

2k3Sc
3
s(fτ)

2
(80)

upon substitution of eq.(71) we find a complicated expression which is nothing but:

〈ζk1ζk2ζk3〉 ≃ −(2π)3δ3(
∑

i

~ki)PkSPkLns , k1 = kL ≪ kS = k2 ≃ k3 , (81)

with ns given by eq.(74). This verifies that the consistency relation holds also in this case.
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3.4 Verification for the Operator δEi
jδE

j
i: the Ghost Condensate

Now we turn to the final verification of the consistency relation, and we concentrate on the following

action:

S =

∫

d4x
√−g

[

M4(t)

2

(

1

N2
− 1

)2

− d3(t)

2
M2(t)δEijδE

ij

]

. (82)

in de Sitter space. Notice that this Lagrangian is very similar to the Lagrangian of the Ghost

Condensate [24, 2]. As explained in the former section, the δEi
jδE

j
i term introduces a spatial

kinetic term for π of the form

(∂i∂jπ)
2 . (83)

Already at the level of solving for the 2-point function, this fact makes things rather more compli-

cated, as we will see. Furthermore, the mixing with gravity generates a term of the form [24]

(∂iπ)
2 , (84)

which makes the calculation of the 2-point function even more complicated and probably undoable.

However, there is a simplifying limit we can use. This fact is carefully explained in [17], and we

refer to there for a detailed discussion. Here instead we briefly enunciate the simplifying limit.

In an inflationary background, we need to study the perturbations as they redshift from some

ultraviolet scale Λ to an infrared scale which is given by the Hubble constant H, beneath which

the ζ perturbation does not evolve anymore. Now, the terms which come from the mixing with

gravity (for example a term like δNπ̇, which, upon substitution of the solution to the constraint

equation δN(π) becomes an operator expressible only in terms of π) are less important than the

pure π terms at energies larger than a demixing scale ΛMix ≃ d3M
3/M2

Pl
10. Now, if H ≫ ΛMix,

then the contribution from the mixing operators is always parametrically suppressed. In this limit,

we can therefore reintroduce the π in the action (82) and then put to zero all the metric fluctuations.

The result we will obtain for the 3-point function will be wrong by a small amount parameterized

by ΛMix/H ≪ 1. Therefore, reinserting the π in (82) and setting the metric fluctuations to zero, we

obtain

S =

∫

d4x
√−g

[

2M4(t+ π)π̇2 − 1

2
d3(t+ π)M2(t+ π)

1

a4
(∂i∂jπ)

2

]

(85)

Here we have neglected some higher derivative terms that do not contribute in the squeezed limit

because, as we explained in the former section, π goes to constant outside of the horizon in the de

Sitter limit. We have also neglected a term suppressed by H/M ≪ H/ΛMix. The action can be

written as

S =

∫

d4x
√−g

[

2M4π̇2 − 1

2
d3M

2 1

a4
(∂i∂jπ)

2 − ∂t(d3M
2)

1

2a4
π(∂i∂jπ)

2 + 8ṀM3ππ̇2
]

. (86)

10This is a consequence of the Goldstone equivalence theorem applied to the field π which non linearly

realizes the time diffs.
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3.4.1 2-point function and its tilt

Solving the wave equation we find [2]:

πclk (τ) = −
√

π

8

H

2M2
|τ |3/2H(1)

3

4

(

Hk2
√
d3M

4M2
τ2
)

, (87)

where

πk(τ) = πclk (τ)ak + πcl ∗−k (τ)a
†
−k. (88)

The spectrum of ζ is

Pk =

√
2πH5/2

Γ2(1/4)k3
1

M∗ (d3∗M2
∗ )

3/4
, (89)

and the tilt is

ns ≃
1

H∗

d

dt∗

(

− log(M∗)−
3

4
log(d3∗M

2
∗ )

)

= − Ṁ∗
H∗M∗

− 3∂t(d3∗M
2
∗ )

4H∗d3∗M2
∗
. (90)

3.4.2 3-point function in the squeezed limit

From eq.(86), we see that we have to compute the contribution of two operators in the squeezed

limit (k1 = kL → 0). Let us start with π(∂i∂jπ)
2:

〈πk1πk2πk3〉π(∂i∂jπ)2 = −i∂t(d3M2)(2π)3δ3
(

∑

i

ki
)

πclk1(0)π
cl
k2(0)π

cl
k3(0) (91)

×
∫

dτ πcl∗k1 (τ)π
cl∗
k2 (τ)π

cl∗
k3 (τ)(k2 · k3)2 + c.c.

= −i∂t(d3M2)(2π)3δ3
(

∑

i

ki
) −iH3/4Γ3(3/4)

(d3M2)9/8(
√
2πM)3/2(k1k2k3)3/2

×
∫

dτ πcl∗k1 (τ)π
cl∗
k2 (τ)π

cl∗
k3 (τ)(k2 · k3)2 + c.c.

≃ −i∂t(d3M2)(2π)3δ3
(

∑

i

ki
) −iH3/4Γ3(3/4)kS

(d3M2)9/8(
√
2πM)3/2k

3/2
L

×
∫

dτ
(

πcl∗kS
(τ)
)2



−i 1

2M2

(

8HM3

d
3/2
3

)1/4
Γ(3/4)

k
3/2
L

√
π



+ c.c.

= i∂t(d3M
2)(2π)3δ3

(

∑

i

ki
) HΓ4(3/4)kS

(d3M2)3/22M2π2k3L

∫

dτ
(

πcl∗kS
(τ)
)2

+ c.c. .
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where in the third passage we have used the small argument expansion of the wavefunction (87).

This approximation is justified for the same reason as we argued in sec. 3.2.4. Now the integral is

Iπ(∂i∂jπ)2 =

∫

dτ
(

πcl∗kS
(τ)
)2

=
π

32

H2

M4

[

∫

dτ τ3
(

H
(1)
3/4

(

Hk2S
√
d3M

4M2
τ2
))2

]∗

=
π

32

H2

M4

16M2

d3H2k4S

1

2

[∫

dx x
(

H
(1)
3/4(x)

)2
]∗

=
π

4

1

d3M2k4S

(

− 3

2π
(1− i)

)

= −3

8

1

d3M2k4S
(1− i) (92)

via the substitution x =
Hk2S

√
d3

4M τ2. We have also used that

Γ(3/4) =

√
2π

Γ(1/4)
. (93)

So, the contribution from the operator π(∂i∂jπ)
2 for k1 = kL ≪ kS = k2 ≃ k3 is

〈πk1πk2πk3〉π(∂i∂jπ)2 = −6πδ3
(

∑

i

ki
)

∂t(d3M
2)

HΓ4(3/4)

2M2(d3M2)5/2k3Sk
3
L

, (94)

Next let us compute the contribution from the operator ππ̇2 in the same limit. This is very similar,

we just have a slightly different integral

〈πk1πk2πk3〉ππ̇2 = i16ṀM3(2π)3δ3
(

∑

i

ki
)

πclk1(0)π
cl
k2(0)π

cl
k3(0)

×
∫

dτ

(Hτ)2
πcl∗k1 (τ)∂τπ

cl∗
k2 (τ)∂τπ

cl∗
k3 (τ) + c.c.

≃ −i16ṀM3(2π)3δ3

(

∑

i

ki

)

Γ4(3/4)

2HM2(d3M2)3/2π2k3Lk
3
S

∫

dττ−2
(

∂τπ
cl∗
kS

(τ)
)2

,

(95)

where again we have used the long wavelength expansion for πclk1 in (87). The remaining integral

gives:

Iππ̇2 =

∫

dτ τ−2
(

∂τπ
cl∗
kS

(τ)
)2

=
πH2

16M4

[∫

dx x
(

H−1/4(x)
)2
]∗

=
H2

32M4
(1− i) , (96)

so that the result for this term after adding the complex conjugate is

〈πk1πk2πk3〉ππ̇2 = −4πδ3
(

∑

i

ki
) ṀHΓ4(3/4)

M3(d3M2)3/2k3Lk
3
S

. (97)

20



Thus the full result in the squeezed limit is (k1 = kL ≪ kS = k2 ≃ k3)

〈πk1πk2πk3〉 = −2πδ3
(

∑

i

ki
)

(

3∂t(d3M
2)

d3M2
+ 4

Ṁ

M

)

HΓ4(3/4)

2M2(d3M2)3/2k31k
3
2

, (98)

converting this using ζk = −Hπk gives

〈ζk1ζk2ζk3〉 = 2πδ3
(

∑

i

ki
)

(

4
Ṁ

M
+ 3

∂t(d3M
2)

d3M2

)

H4Γ4(3/4)

2M2(d3M2)3/2k3Lk
3
S

, (99)

where kL = k1 and kS = k2 ≃ k3. The consistency relation is

lim
k1→0

〈ζk1ζk2ζk3〉 = −(2π)3δ3
(

∑

i

ki
)

nsPkLPkS ; (100)

so, in order to verify it, we need to compute the right hand side of this equation using eq.s (89) and

(90):

−(2π)3δ3
(

∑

i

ki
)

nsPkLPkS = (2π)3δ3
(

∑

i

ki
)

(

Ṁ

HM
+

3∂t(d3M
2)

4Hd3M2

)

(2π)2H5

2M2(d3M2)3/2Γ4(1/4)k3Sk
3
L

= 2πδ3
(

∑

i

ki
)

(

4
Ṁ

M
+ 3

∂t(d3M
2)

d3M2

)

H4Γ4(3/4)

2M2(d3M2)3/2k3Sk
3
L

. (101)

We see that the consistency relation is again satisfied.

4 Conclusions

Observation of the non-Gaussian component of the CMB is going to improve rapidly in the next

few years with the launch of the Planck satellite. This will reduce the current limit from WMAP

3yr data [11] by a factor of around 6 [25]. While standard slow roll inflation predicts a level on non-

Gaussianity far beyond current sensitivity, there are many models of inflation which predict a larger

level on non-Gaussianity and that are already beginning to be constrained by current observations.

For this reason, we consider it very important to understand the properties of the non-Gaussian

signal coming from inflation. Along this line of reasoning, in [1, 15] it was pointed out that in all

models of inflation with only one relevant degree of freedom, which acts as the clock of the system,

the 3-point function in a particular geometrical limit, the squeezed triangle limit, should follow a

consistency relation:

lim
k1→0

〈ζ~k1ζ~k2ζ~k3〉 = −(2π)3δ3(
∑

i

~ki)Pk1Pk3

d log k33Pk3

d log k3
, (102)

This consistency relation involves a level of non-Gaussianity too small to be detectable by foreseeable

experiments. However, it is still very important for the following reason: if we detect some signal in

the squeezed triangle configuration, it will mean that all the single clock inflationary model will be

ruled out.

Since this is a very powerful statement, we think it is very important to be sure that the con-

sistency relation (102) is true. The purpose of the present paper has been to further settle this
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issue. In the first part of the paper, we have made more explicit and rigorous the proof that was

already present in [1, 15]. Still this proof turns out to be rather implicit, even though physically

clear. For this reason, we found it useful to prove the consistency relation in a completely orthogonal

way, i.e. through a direct check of all possible single field models. Clearly, this task seems at first

rather difficult and ill defined. However, we have been able to do this because we could exploit a

recently developed effective field theory for inflation [16, 17] which completely describes the fluctu-

ations around an inflationary background under the very general hypothesis that there is only one

dynamical system and that this spontaneously breaks time diffeomorphisms.

The calculations are a bit convoluted, even though we have been able to use some simplifying

tricks, and for some complicated models we have performed the study only in some simple limit.

However, the result is very immediate: the consistency relation of the 3-point function of all single

clock models does hold, and hopefully this will help us learn something new from the upcoming

cosmological experiments.
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Appendix

A Matching our Unitary Gauge Lagrangian to a gen-

eral P (X, φ) Lagrangian

As one should have expected, our effective Lagrangian reproduces the result of the widely used

k-inflation Lagrangian [21], as we are now going to verify.

The Lagrangian of k-inflation can be written in the form:

Sk−inf =

∫

d4x
√−gP (X,φ) , (103)

where X = −gµν∂µφ∂νφ. To match our effective Lagrangian to the k-inflation Lagrangian, we just

write the k-inflation Lagrangian in unitary gauge φ(~x, t) = φ0(t). The X variable becomes:

X =
φ̇0(t)

2

N2
(104)

Obviously, the factor 1/N2 can only enter the unitary gauge Lagrangian in terms with X0(t) = φ̇20.

For this reason, an expansion of Sk−inf in powers of 1/N2 − 1 is the same as an expansion in powers

of X − φ̇20. We obtain:

cn(t)M
4(t) = φ̇0(t)

2n ∂n

∂Xn
P (X,φ)

∣

∣

0
. (105)
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where in our Lagrangian c2(t) ≡ 1, and c1(t) = −M2
PlḢ and c0(t) = −M2

Pl(3H
2 + 2Ḣ).

In particular, we find that the speed of sound is

c−2
s = 1− 2M(t)4

ḢM2
Pl

(106)

= 1 + 2φ̇20
∂2P

∂X2

∣

∣

∣

0

(

∂P

∂X

∣

∣

∣

0

)−1

(107)

In general the use of a polynomial as P (X,φ) is not consistent in a regime of effective field theory,

because the function P involves many non-renormalizable terms. However, it is possible that some

UV complete theory can induce a low energy effective theory with the structure of k-inflation, where

a precise relationship between all the non-renormalizable operators is understood. This is the case

for DBI inflation, a scenario in which the inflaton represents the coordinate of a brane traversing

an extra dimensional warped geometry. Due to the causal speed limit in the extra dimension, the

inflaton cannot roll arbitrarily fast, and in fact experiences a relativistic drag that admits slow roll

behavior despite a steep potential [3]. This effect can also be understood in terms of the purely

four dimensional CFT dual because as the inflaton rolls, new light scalar modes become accessible.

Integrating out these modes induces a frictional force encapsulated by the low energy Lagrangian [3]

SDBI =

∫

d4x
√−g

[

−f−1(φ)
√

1− f(φ)X − V (φ)
]

. (108)

Notice the resemblance of this Lagrangian to that of a relativistic point particle in an external

potential. Indeed, following this analogy we see that without the potential the DBI Lagrangian

possesses a residual 5D spacetime symmetry corresponding to arbitrary “boosts” in the φ direction.

Such a transformation rotates the dφ direction into the dt time direction, and so it acts nonlinearly

on derivatives of the inflaton

φ̇ → φ̇+ η(f−1/2 − f1/2φ̇2), (109)

dt → dt(1 + ηf1/2φ̇), (110)

where η is an infinitesimal boost parameter. In the UV, this symmetry comes from the isometries

of AdS4, or, dually, from superconformal invariance of N = 4 SYM [22].

From the the nonlinear form of this boost, it is clear that coefficients of higher order terms in

φ̇ are uniquely set by those of lower order terms. Consequently, the square root form of the DBI

action is uniquely set by this symmetry, and moreover we find that

cn(t)M
4(t) ∼ φ̇2nc f(φc)

n−1

(1− fφ̇2c)
n−1/2

, n ≥ 2 , (111)

where we have neglected some numerical coefficients. Since the FRW equations set the value of c(t)

and Λ(t), and the speed of sound sets the ratio of M(t)4, as usual we can rewrite φ̇20 and f(φ0) in

terms of H, cs, and slow roll parameters, giving

φ̇20 = 2ǫH2M2
Plcs, (112)

f(φ0) =
cs

2ǫH2M2
Pl

(

1

c2s
− 1

)

. (113)
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where ǫ = −Ḣ/H. Plugging these expressions back into (111), we obtain

cn(t)M(t)4 ∼ ǫH2M2
Pl

(

1

c2s
− 1

)n−1

, n ≥ 2 , (114)

so we see that the symmetries of the DBI action demand a very particular form for the the coefficients

of our effective Lagrangian. In particular, we can also see that, in the limit of cs ≪ 1, the symmetries

impose an hierarchy between the cn’s.

B Non Linear Relation between π and ζ

We will work out the relationship between the π gauge (24) and the ζ gauge (6) using the results

of [1]. Since ζ is the relevant variable which is constant outside the horizon, we need to know ζ in

terms of π in order to determine the observational consequences of our effective Lagrangian. Let us

remind ourselves which gauge properly defines the ζ variable. This is not the spatially flat slicing

we used in deriving the next to leading order Lagrangian in π eq. (24), but it is rather a gauge fixed

version of the unitary gauge we used to build our effective Lagrangian. In ζ gauge time diffs are

fixed by imposing precisely that π = 0, while spatial diffs are fixed by requiring the spatial metric

to be isotropic. In other words, the ζ gauge is defined by the condition:

π = 0 , ĝij = a2e2ζδij . (115)

If we denote by t̃ the time coordinate in the π gauge, and by t the time in the ζ gauge, we have to

perform a time reparametrization of the form t̃ = t+ T (x) to go from π gauge to the ζ gauge. We

have then to solve the following equation:

π(x̃) → πζ(x(x̃)) = π(x̃) + T (x(x̃)) = 0 (116)

where in the second passage we have used the fact that the πζ , i.e. the π in ζ gauge, is zero. This

implies that

T (x) = −π(x) + π̇(x)π(x) (117)

to second order. Maldacena [1] worked out ζ in terms of T (x); to quadratic order he found

ζ = HT +
1

2
ḢT 2 + α(T ) (118)

= −Hπ +Hπ̇π +
1

2
Ḣπ2 + α(T (π)) (119)

where α is determined by solving for the additional spatial diffeomorphism needed to maintain the

ζ gauge condition. Although the α term is of second order in T , it only contains higher derivative

terms that vanish outside the horizon, so it is irrelevant for our calculation.
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C Wave Equation at First Order in Slow Roll for the

case ω2 = c2sk
2

Using the conformal time dτ = dt/a, the quadratic action S2[π] is

S2 =
1

2

∫

d3xdτ(a2f2)

[

π′2

a2
− c2s
a2

(∂π)2 −m2π2
]

+ . . . , (120)

f2 = −2a2ḢM2
Pl

c2s
, (121)

m2 = 3Ḣ, (122)

where dots and primes denote derivatives with respect to t and τ , respectively, and τ runs from −∞
to 0. Applying the field redefinition

π = f−1σ, (123)

and going to Fourier space, we obtain a wave equation for σk(τ),

σ′′k + c2sk
2σk =

(

−a2m2 +
f ′′

f

)

σk (124)

= 2a2H2

(

1− ǫ

2
+

3η

4
− 3s

2

)

σk. (125)

Solving the wave equation, and imposing to be in the Minkowski vacuum at early times, we find

that classically

πclk (τ) ∼ (−τ)3/2H(1)
ν (−cskτ(1 + s)), (126)

ν =
3

2
+ ǫ+

η

2
+
s

2
. (127)

We determine the overall normalization of this function when we quantize π.

We promote πk to a field operator

πk(t) = πclk (t)ak + πcl∗−k(t)a
†
−k, (128)

where πclk satisfies the wave equation and has normalization set by the canonical commutation

relation

[ak, a
†
k′ ] = (2π)3δ(3)(k − k′), (129)

yielding

πclk (τ) = −
√

π

8ǫ

cs
MPl

(−τ)3/2(1− ǫ∗ + s∗/2)e
iπ(ǫ∗/2+η∗/4)H(1)

ν (−cskτ(1 + s)), (130)

ν =
3

2
+ ǫ+

η

2
+
s

2
. (131)

We follow [4], and define ǫ∗, η∗ and s∗ as the slow roll parameters evaluated at the time at which

K1 = k1 + k2 + k3 exits the horizon, so that csK1 = aH. One can explicitly calculate the tilt
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of the power spectrum for ζ by expanding |ζk|2 = |Hπk(τ)|2 in the late time limit, k → 0. In

this regime, the Hankel function behaves as Hν(k) ∝ k−ν , so the two-point correlator behaves as

k−3−2ǫ−η−s ≡ k−3+ns . This shows very explicitly that

ns = −2ǫ− η − s . (132)

Setting to zero the slow roll parameters, we recover the de Sitter mode

πclk (τ) =
i

2MPlk3/2
√
csǫ

(1 + icskτ)e
−icskτ . (133)

C.1 Explicit Long Wavelength Behavior of ζ̇

One of the major advantages of the ζ variable is that it goes exponentially fast to a constant when it

is outside of the horizon. In conformal time, this exponential speed turns into a power law behavior.

This is clearly manifest in the classical ζ modes at leading order in the slow roll parameters, where

ζ = −i H
2MPl

√
ǫcsk3

(1 + icskτ)e
−icskτ , but not at higher orders. However, at next to leading order, in

the long wavelength limit, the classical modes can be written in closed form.

To begin, we expand H
(1)
ν (x) = Jν(x) + iYν(x) around ν = 3/2 and x = 0:

H(1)
ν (x) = −

√

2

π
i
(1− ix)eix

x3/2

(

1− (ν − 3

2
) [γ − 2 + log 2 + log x]

)

(134)

The constant γ = 0.577 . . . is the Euler-Mascheroni constant. Inserting this in our expression for

the classical π modes in equation (131), we obtain, dropping the irrelevant constant phase:

πclk (τ) =
i

2

ǫ−1/2c
−1/2
s

MPlk3/2
(1+

1

2
(cskτ(1+s))

2)(1−ǫ∗+
s∗
2
−3s

2
)(1−(ǫ+

η

2
+
s

2
)(γ−2+log 2+log(−cskτ(1+s))))

(135)

The additional time-dependence that appears at next-to-leading order in slow-roll is the log τ compo-

nent as well as the time-dependence of the parameters cs, ǫ, η, s, themselves. When we differentiate

with respect to time, the derivatives of slow-roll parameters will be present at next to leading order

only for parameters that were already present in the leading order modes. With this in mind, it is

straightforward to calculate that

ζ̇k = i
H2τ2

2MPl

√

c3sk

ǫ

(

1 + (2ǫ− ǫ∗ + η +
s

2
+
s∗
2
) + (ǫ+

η

2
+
s

2
)(−γ − log(−2kτcs))

)

(136)

Individual terms in Hπ̇ or Ḣπ proportional to negative powers of k have cancelled out.

D Proof that ζ is Constant Outside the Horizon

In this Appendix we generalize Maldacena’s proof [1] (see also [26]) that ζ is constant outside the

horizon to a completely general model of inflation with one degree of freedom. The idea of the

proof is simple – we will expand the action to first order in derivatives of the dynamical field ζ,

but to all orders in ζ itself, without any other approximations. We will show that to this order, the

action is a total derivative, so the ζ action must begin at second order in derivatives. Thus ζ̇ = 0 is
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always a solution of the equations of motion when we neglect spatial derivatives. Moreover, we shall

briefly show that the constant solution is an attractor, in the sense that solutions in its neighborhood

approach it exponentially fast in time. As we show in the main text, the solution to the linearized

ζ equation which deep inside the horizon is in the Minkowski vacuum, at late times asymptotes

exponentially to the ζ = const solution 11. Since we are always in the perturbative regime this tells

us that we are in the basin of attraction of the constant solution, and that therefore ζ is constant

outside of the horizon at non linear level.

The first step of the proof is to show self-consistently that δN, ∇̂iNj = O(∂µζ)
12. This makes

sense intuitively – since N and ∇̂jNi are constrained variables, while ζ is the only dynamical degree

of freedom, if derivatives of ζ were to vanish, then we would simply have a pure FRW cosmology up

to a trivial rescaling of the coordinates, and δN and ∇̂iNj would also vanish. Thus they must be

proportional to derivatives of ζ. If we assume that this is the case, then we only need the action to

quadratic order in δN and ∇̂iNj . Thus for our purposes, the relevant piece of the action is

S =

∫

d3xdt
√

ĝ

[

N
M2

Pl

2
R(3) +

1

N

M2
Pl

2

(

EijE
ij − Ei

i
2
)

− 1

N
M2

PlḢ −NM2
Pl(3H

2 + Ḣ)

+
1

2
NM(t)4

(

1

N2
− 1

)2

+
d1
2
M(t)3NδNδEi

i −
d2(t)

2
M(t)2δEi

i
2 − d3(t)

2
M(t)2δEi

jδE
j
i

]

. (141)

Now since N is simply a Lagrange multiplier, we can vary the action with respect to it to obtain its

(algebraic) equation of motion

2δN
(

3M2
PlH

2 +M2
PlḢ − 2M4

)

= ζ̇

(

6M2
PlH +

3

2
d1M

3

)

+ ∇̂iN
i

(

−2M2
PlH − d1

2
M3

)

(142)

where we have used the fact that

EijE
ij − Ei

i
2
= −6

(

H + ζ̇
)2

+ 4
(

H + ζ̇
)

∇̂iN
i +O

(

(∇̂iN
i)2
)

. (143)

Analogously for ∇̂jNi we obtain:

1

2
M2

Pl

[

4∇̂i

(

ζ̇ −HδN
)

+ ∇̂j∇̂jNi + ∇̂j∇̂iN
j − 2∇̂i∇̂jN

j
]

− d1
2
M(t)3∇̂iδN + (144)

d2M(t)2
(

3∇̂iζ̇ − ∇̂i∇̂jN
j
)

+
d3
2
M(t)2

(

2∇̂iζ̇ − ∇̂j∇̂jNi − ∇̂j∇̂iN
j
)

= 0

11The fact that one of the two solutions to the linearized equation is exponentially damped outside of the

horizon is very general: in the π equation, it comes from the friction term 3Hπ̇ where π = −ζ/H at linear

level.
12At linear order the solutions for N and N i in the gauge of ζ are given by:

N − 1 =
A1

C
ζ̇ − B1

C
(∂2ζ/a2) , ∂iN

i =

(

A2

C
ζ̇ +

B2

C
(∂2ζ/a2)

)

, (137)

where, up to small terms suppressed by M/MPl ≪ 1 or H/M ≪ 1, the coefficients are:

A1 = 4M2

Pl

(

d1M
3 − 4M2

PlH
)

, B1 = 8M2

Pl (d2 + d3)M
2 , (138)

A2 = 16M2

Pl

(

−2M4 +M2

PlḢ
)

, B2 = 4M2

Pl

(

d1M
3 + 4M2

PlH
)

, (139)

C =
(

d21 − 16 (d2 + d3)
)

M6 − 16M4

PlH
2 . (140)

The linear solution for ζ vanishes outside of the horizon quickly enough so that δN and N i go to zero in the

same limit.
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We see that it is self-consistent to assume that δN, ∇̂iNj = O(∂µζ), which justifies our neglect of

higher powers of these parameters.

Now let us expand the action to linear order in ∂µζ. For this purpose, note that R(3) is of

quadratic order, so we can neglect it. We find

S =

∫

d3xdt a(t)3e3ζM2
Pl

[

1

2
(1− δN)

(

−6
(

H2 + 2Hζ̇
)

+ 4H∇̂iN
i
)

− (1− δN)Ḣ

−(1 + δN)
(

3H2 + Ḣ
)]

, (145)

if we simplify and integrate the ∇̂iN
i term by parts, we find

S =

∫

d3xdt a(t)3e3ζM2
Pl

[

−6H2 − 2Ḣ − 6Hζ̇
]

=

∫

d3xdt
d

dt

[

−a(t)3e3ζ2HM2
Pl

]

. (146)

Note that the term linear in δN dropped out of the action. This is not surprising – it is due to

the fact that ∂L
∂(δN) = 0 is satisfied to zeroth order in derivatives, simply because the metric satisfies

Einstein’s equations, and we have neglected terms at second order in derivatives.

As claimed, the action for ζ begins at second order in derivatives for all models of inflation based

on a single degree of freedom. This means that ζ = const is always a solution of the equations of

motion when we neglect gradients. However, the solution we are interested in, which asymptotes to

the Minkowski vacuum deep inside the horizon, is not exactly constant. At linear level, the time

dependent component goes to zero exponentially fast in time. We want to verify this at non linear

level, by showing that in fact the ζ = const solution is still an attractor.

This can be done rather quickly by the following reasoning. Let us consider a small perturbation

around a solution ζ = ζ0 = const:

ζ = ζ0 + ψ , (147)

and let us ask what is the linearized equation of motion for ψ. By the same definition of ζ (eq.(115)),

a constant component ζ0 can be reabsorbed in the definition of a(t): ã(t) = a(t) eζ0 . This implies

that the linearized equation of motion of ψ in a ζ0 background has to be the same as the one of ζ,

with a(t) replaced with ã(t). Therefore the solution for ψ is the same as for the linearized ζ: out of

the horizon it either decays exponentially fast in cosmic time, or it goes to a constant (and in this

case it amounts at just a redefinition of ζ0).

We therefore conclude that outside of the horizon the solution for ζ quickly converges to a

constant and N and N i tend to their unperturbed values. At this point, via the argument of Sec.

2, we deduce that the consistency relation between the three point function of ζ and the tilt of the

spectrum must hold for the models with only one relevant degree of freedom.

E Reintroducing the π in δEi
i

Since the reintroduction of the π field in δEi
i is not entirely trivial, in this appendix we perform an

explicit calculation. In the spatially flat gauge (24) in which we are working, the trace of δEij can

be written as:

δEi
i =

1
2 ĝ

ij∂tĝij − ∂iN
i − 3H (148)
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The reintroduction of the π field follows the same steps we illustrate of [17]. What makes this case

slightly more complicated than the case explicitly illustrated in [17] is the fact that the transformation

of ĝij and Ni under time diffeomorphisms are more complicated than the one of N . The following

equations are true:

g0i =
N i

N2

−g00 =
1

N2
. (149)

where gµν is the full 4d metric. Taking variations of g0i, we find

δg0i =
1

N2
δN i +N iδ(

1

N2
) + δN iδ(

1

N2
) . (150)

Solving for δN i, and using 1
N2 = −g00, N i = −g0i/g00, we eventually arrive at a formula for the

variation of N i in terms of only the metric and its variations:

δN i = −(δg0i − g0i

g00
δg00)(g00 + δg00)−1 . (151)

g0i has the transformation law

g0i → gαβ
(

∂(t+ π)

∂xα

)(

∂xi

∂xβ

)

= g0i + g0iπ̇ + gij∂jπ

δg0i =
N i

N2
π̇ + ĝij∂jπ . (152)

We therefore find, to second order in the fields (which is all we need to get the cubic action)

δN i = −(
N i

N2
π̇ +

∂iπ

a2
−N iδg00)(g00 + δg00)−1

= ∂iπ + 2δN∂iπ + 3N iπ̇ − 2∂iππ̇ . (153)

The variation of ĝij∂tĝij also takes some work. It is clear that the “spatial” components of the

4d metric gij do not change under time diffs, but gij = ĝij − N iNj

N2 , so ĝij transforms. Using our

transformation laws for N i and 1/N2, we find to second order in the fields that

N iN j

N2
→ N iN j

N2
+ 2∂(iπN j) + ∂iπ∂jπ , (154)

where round brackets stand for symmetrization. This implies

ĝij → ĝij + 2∂(iπN j) + ∂iπ∂jπ , (155)

Incidentally, for terms at second order in the fields, we can raise and lower spatial indices with the

unvaried ĝij and ĝ
ij , since corrections to this are cubic order in the fields. Also, we could have derived

the above transformation of ĝij by calculating the transformation of the “spatial” components of the

4d metric gij . It is straightforward to see that both methods agree, since

gij → ∂xα

∂x′i
∂xβ

∂x′j
gαβ , (156)
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and ∂xα

∂x′i is the α i component of the inverse of the matrix

∂x′α

∂xβ
=

(

1 + π̇ ∂iπ

0 1

)

αβ

. (157)

Here Greek indexes run from 0 to 3 while Latin indexes run from 1 to 3. Thus, to second order in

the fields,

ĝij∂tĝij → 6H

1 + π̇
− ∂t(2∂iπN

i + (∂π)2) , (158)

and finally, we have

δEi
i → δEi

i − 3Hπ̇ + 3Hπ̇2 − 1
2∂t(2∂iπN

i + (∂π)2)

− ∂2π − ∂i(2δN∂
iπ + 3N iπ̇ − 2∂iππ̇) . (159)
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