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We present the discovery of an optical transient (OT) in Messier 51, designated M51 OT2019-1 (also
ZTF 19aadyppr, AT 2019abn, ATLAS19bzl), by the Zwicky Transient Facility (ZTF). The OT rose over
15 days to an observed plateau luminosity of Mr = −13 (νLν = 9× 106 L�), in the luminosity gap between
novae and supernovae (SNe). The spectral sequence shows a red continuum, prominent Balmer emission
with a velocity width of ≈ 400 km s−1, Ca II and [Ca II] emission, and absorption features (Ca II H+K, Na I
D, O I 7773 Å blend) characteristic of an F-type supergiant spectrum. The properties of spectra and multi-
band light curves are similar in many ways to the so-called “SN impostors” and intermediate-luminosity red
transients (ILRTs). We directly identify the likely progenitor in archival Spitzer Space Telescope imaging
with a 4.5 µm luminosity of M[4.5] ≈ −12.2 mag and a [3.6] − [4.5] color redder than 0.74 mag, similar to
those of the prototype ILRTs SN 2008S and NGC 300 OT2008-1. Intensive monitoring of M51 with Spitzer
further reveals evidence for significant variability of the progenitor candidate at [4.5] in the years before
the OT. There is no identifiable counterpart at the location of the OT in archival Hubble Space Telescope
imaging. The optical colors combined with spectroscopic temperature constraints imply a higher reddening
of E(B − V ) ≈ 0.7 mag and higher intrinsic luminosity of Mr ≈ −14.9 mag (νLν = 5.3× 107 L�) on the
plateau than seen in previous ILRT candidates. Moreover, the extinction estimate is higher on the rise than
on the plateau, suggestive of an extended phase of circumstellar dust destruction. These results, enabled by
the early discovery of M51 OT2019-1 and extensive pre-outburst archival coverage, offer new clues about
the debated origins of ILRTs and may challenge the hypothesis that they arise from the electron-capture
induced collapse of extreme asymptotic-giant-branch stars.

Keywords: galaxies: individual (M51), stars: supernovae: individual (M51 OT2019-1), stars:
variables: general, stars: evolution, stars: circumstellar matter, stars: winds, out-
flows
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1. INTRODUCTION

Searches for transients in the nearby universe have uncovered a diverse array of hydrogen-rich stel-
lar events occupying the luminosity range between that of novae and supernovae (SNe). As more well-
characterized events have been found, some defined classes are beginning to emerge. Distinguishing among
these classes, however, can be challenging as there is significant overlap in their observed properties.
These include events often associated with luminous blue variables (LBVs; Humphreys & Davidson 1994;
Smith & Owocki 2006) variably referred to as “SN impostors,” “η Carinae variables,” or “giant eruptions”
(Humphreys et al. 1999; Van Dyk et al. 2000; Smith et al. 2010; Pastorello et al. 2010; Smith 2014). The
“luminous red novae” (LRNe) are believed to be associated with stellar mergers or common-envelope ejec-
tions, including the 1–3 M� contact-binary merger V1309 Sco (Tylenda et al. 2011) and the B-type stellar
merger V838 Mon (Bond et al. 2003; Sparks et al. 2008). Several extragalactic events are also suggested to
be members of this class, e.g., M31 RV (Rich et al. 1989; Bond & Siegel 2006; Bond 2011), M85 OT2006-1
(Kulkarni et al. 2007), NGC 4490 OT2011-1 (Smith et al. 2016), and M101 OT2015-1 (Blagorodnova et al.
2017).

We adopt the term “intermediate-luminosity red transient” (ILRT), originally suggested by Bond et al.
(2009), to refer to the class of SN impostors similar to two well-characterized prototypes: SN 2008S (Prieto
et al. 2008; Botticella et al. 2009; Smith et al. 2009) and the 2008 optical transient (OT) in NGC 300
(NGC 300 OT2008-1; Bond et al. 2009; Berger et al. 2009; Humphreys et al. 2011). As the name suggests,
these events reach peak luminosities (Mr/R≈ −13 to −14) fainter than those of typical core-collapse SNe, but
comparable to those of other impostors. The peak is followed by the monotonic decline of their optical light
curves, and they also show reddened spectra suggestive of strong internal extinction from the immediate
circumburst environment. Their spectra are similar to some LBV-related transients and LRNe, showing
strong H, Ca II, and rare [Ca II] emission features superimposed on an absorption spectrum characteristic
of an F-type supergiant. The intermediate-width H features indicate relatively low ejection velocities of
a few× 100 km s−1. Both NGC 300 OT2008-1 and SN 2008S had densely self-obscured progenitor stars
detected in archival imaging with the Spitzer Space Telescope, whose luminosities and inferred masses
(M ≈ 9–15 M�; Prieto 2008; Prieto et al. 2008; Thompson et al. 2009; Kochanek 2011) are lower than
those of classical LBVs. Both events have now faded below their pre-explosion luminosities in the IR
(Adams et al. 2016), suggesting that the explosions may have been terminal. Other proposed members of
this class discovered in the last decade include PTF 10fqs (Kasliwal et al. 2011), SN 2010dn (Smith et al.
2011), and AT 2017be (Cai et al. 2018), although their larger distances prevented the direct identification of
progenitors.

We present the discovery by the Zwicky Transient Facility (ZTF) of an OT in M51 with similar properties
to those of previously observed ILRTs and other SN impostors. At a distance of only 8.6 Mpc (McQuinn
et al. 2016, 2017), this is the closest such event in over a decade, allowing us to identify and characterize a
candidate progenitor star in archival Spitzer images. In this letter, we describe the discovery and early obser-
vations (Section 2), our analysis of the available archival imaging and identification of the likely progenitor
(Section 3.1), the early photometric (Section 3.2) and spectroscopic (Section 3.3) evolution. In Section 4,
we discuss the properties of the OT and its progenitor in the context of similar transients, and suggest it is a
member of the ILRT class offering new insights on their origins.

2. DISCOVERY AND DATA COLLECTION

2.1. Discovery in M51
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On UT 2019 January 22.6 (MJD = 58505.6), ZTF 19aadyppr was detected as a new OT source in the
nearby galaxy M51 by the Zwicky Transient Facility (ZTF; Bellm et al. 2019; Graham et al. 2019) with the
48-inch Samual Oschin Telescope (P48) at Palomar Observatory as part of the public ZTF 3-day cadence
survey of the visible Northern Sky. The detection passed significance (Masci et al. 2019) and machine-
learning thresholds (Mahabal et al. 2019; Tachibana & Miller 2018), and was released as a public alert
(Patterson et al. 2019). We refer to the phase, t, as the number of days since the first ZTF detection through-
out this work. Located at a right ascension and declination of 13h29m42.s41,+47◦11′16.′′6 (J2000.0), the
source had an r-band AB magnitude at first detection of 19.6± 0.2. The source was not detected in an
earlier image taken on 2019 January 19.6, to a limiting magnitude of r > 20.5, at t = −3 days. After a
second detection on 2019 January 25.5 (MJD = 58508.5), ZTF 19aadyppr was autonomously selected as a
high-quality transient by the AMPEL analysis framework (Nordin et al. 2019b). The discovery was submit-
ted to the Transient Name Server and provided the IAU designation AT 2019abn (Nordin et al. 2019a). The
source passed several ZTF science-program filters and was saved by human scanners for follow-up on the
GROWTH Marshal (Kasliwal et al. 2019). Early spectroscopic observations reported by De et al. (2019)
on 2019 January 26 were characterized by a red continuum and strong, intermediate-width (≈ 600 km s−1)
Hα emission, consistent with a classification of SN impostor or young ILRT. An independent detection was
reported to TNS on 2019 January 26 by the the ATLAS survey (Tonry et al. 2018), and the Las Cumbres
Observatory (LCO) Global SN Project reported an additional spectrum taken on 2019 March 2 (Burke et al.
2019) and ILRT classification. We use the name M51 OT2019-1 for this event hereafter.

As shown in Figure 1, the transient was located in a star-forming spiral arm of M51, 108.′′2 from the
galaxy’s center. There is a prominent dust lane at the site, indicating the source may be subject to significant
host extinction. Notably, M51 has a high rate of core-collpase SNe, with 3 known events discovered in
the last 25 years: SN 1994I (type Ic; Schmidt et al. 1994), SN 2005cs (type II; Modjaz et al. 2005), and
SN 2011dh (type IIb; Silverman et al. 2011). The NASA/IPAC Extragalactic Database1 (NED) lists 50
individual distance measurements to M51, with a median value in distance modulus of 29.5 mag and a large
standard deviation of 0.9 mag. Throughout this work we assume a distance modulus for M51 from McQuinn
et al. (2016, 2017) of m − M = 29.67±0.02 (statistical) ±0.07 (systematic; Rizzi et al. 2007) mag based on
the luminosity of the tip of the red-giant branch (TRGB) method, and that the systematic uncertainties
associated with calibrating this method dominate over the statistical measurement uncertainties. We adopt
the value from NED for the Galactic extinction towards M51 of E(B −V ) = 0.03 mag, based on the Schlafly
& Finkbeiner (2011) recalibration of Schlegel et al. (1998), and assuming a standard (Fitzpatrick 1999)
reddening law with RV = 3.1.

2.2. Imaging observations

The field containing M51 OT2019-1 was regularly observed at several epochs with the ZTF camera on
P48 in the g, r, and i bands. The P48 images were reduced with the ZTF Science Data System pipelines
(Masci et al. 2019), which performs point-spread-function (PSF) photometry on the reference-subtracted
images. We utilize this photometry for data from the public ZTF survey. For images taken as part of the
ZTF Collaboration surveys and the Caltech surveys (Bellm et al 2019b, PASP in press), we subsequently
performed forced PSF-fitting photometry at the location of M51 OT2019-1, adopting a linear model for
pixel values in the difference images as a function of the normalized PSF-model image values and use

1 NED is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.
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Figure 1. Pre-explosion HST and Spitzer imaging of M51 OT2019-1. In the leftmost panel, we show the color-
composite HST ACS/WFC mosaics of the M51 system from 2005 in three filters (F435W in blue, F555W in green,
and F814W in red; PID: GO-10451; PI: S. Beckwith). The location of M51 OT2019-1 in a prominent dust lane along
a spiral arm is indicated by the white cross-hairs and shown in more detail in the 30′′× 30′′ bottom-center zoom-in
panel. Above in the center column, we show the archival HST coverage of the site in 2015 with ACS/WFC in F814W
(center row) and in 2012 with WFC3/IR in F110W (top row). The 3-σ error ellipses on the precise position of the
transient from new HST/WFC3 (solid) and Keck/NIRC2 (dashed) imaging are shown in white at the center of these
panels. The nearest star-like object in the F814W image, labeled S1 in blue, is firmly outside the HST error ellipse.
In the rightmost column, we show the Spitzer/IRAC archival [4.5] Super Mosaic (top), the most recent pre-explosion
[4.5] image (center), and the subtraction of the two (bottom), clearly showing the variability of the coincident IR
precursor source.

a Markov Chain Monte Carlo simulation to estimate the photometric uncertainties (Yao et al., in prep.).
Measurements for a given filter taken the same night were then averaged.

Follow-up images in the g′, r′, i′, and Y bands were obtained with the Sinistro cameras on the Las
Cumbres Observatory (LCO; Brown et al. 2013) 1-m telescopes under the program NOAO2019A-011 (PI:
N. Blagorodnova). The data were reduced at LCO using the Beautiful Algorithms to Normalize Zillions
of Astronomical Images (BANZAI) pipeline (McCully et al. 2018). Photometry from the LCO g′r′i′-band
images were computed with the image-subtraction pipeline described in Fremling et al. (2016), with tem-
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plate images from the Sloan Digital Sky Survey (SDSS; Ahn et al. 2014). The pipeline performs PSF-
fitting photometry calibrated against several SDSS stars in the field. We performed aperture photometry on
M51 OT2019-1 in the LCO Y -band, with the aperture radius set by the typical full width at half maximum
(FWHM) of stars in the images, calibrated against several stars in the Pan-STARRS1 (PS1; Chambers et al.
2016) DR2 catalog (Flewelling et al. 2016).

Additional ground-based follow-up images were obtained in the optical and near-IR at several epochs us-
ing the Astrophysical Research Consortium Telescope Imaging Camera (ARCTIC; Huehnerhoff et al. 2016)
and Near-Infrared Camera & Fabry-Perot Spectrometer (NICFPS; Vincent et al. 2003) on the Astrophysical
Research Consortium (ARC) 3.5-m Telescope at Apache Point Observatory (APO), and the Wide Field In-
frared Camera (WIRC; Wilson et al. 2003) on the 200-inch Hale Telescope (P200) at Palomar Observatory.
Imaging of M51 at APO were obtained as part of a program to monitor 24 galaxies in the SPitzer Infrared
Intensive Transients Survey (SPIRITS; PI M. Kasliwal; PIDs 10136, 11063, 13053). Optical g′r′i′ images
were reduced in the standard fashion using bias, dark, and twilight flat-field frames. Our near-IR JHKs

imaging employed large dithers alternating between the target and a blank sky field approximately every
minute to allow for accurate subtraction of the bright near-IR sky background, and individual frames were
flat-fielded, background-subtracted, astrometrically aligned with a catalog of Two Micron All Sky Survey
(2MASS; Skrutskie et al. 2006) sources, and stacked. We performed aperture photometry at the location of
the transient, and used the g′r′i′ or JHKs magnitudes of several isolated stars in SDSS or 2MASS to measure
the photometric zero points in the optical and near-IR images, respectively.

Our photometry of M51 OT2019-1 is shown in Figure 2 on the AB magnitude system, corrected for
Galactic extinction. Where appropriate we have converted V RIJHKs magnitudes on the Vega system to AB
magnitudes using the conversions of Blanton & Roweis (2007).

We also obtained high-resolution, adaptive-optics J-band imaging of the transient on 2019 February 16.6,
using the near-IR camera (NIRC2; PI K. Matthews) on the 10-m Keck II Telescope on Mauna Kea. Further
high-resolution imaging was obtained on 2019 March 5.0 with the Hubble Space Telescope (HST) WFC3
camera in the F275W, F336W, and F814W filters as the first target in a test program proposing a new method
of HST observing (PI A. Fruchter, PID SNAP-15675). This new method, called “Rolling Snapshots,” allows
fairly rapid response by updating a list of snapshot targets weekly; however, due to present limitations in
the Astronomer’s Proposal Tool (APT), the observing is done in a custom sub-array mode. Data were
reduced using the standard pipelines at STScI, adding a charge-transfer-efficiency (CTE) correction (which
was not done by the pipeline due to the use of the custom sub-array). CTE-corrected frames were then
combined into image mosaics for each filter using AstroDrizzle within PyRAF to attempt to flag cosmic-ray
hits. We performed PSF-fitting photometry for the transient using DOLPHOT (Dolphin 2000, 2016) and
obtain 23.32± 0.17, 20.47± 0.03, and 15.754± 0.002 mag (Vega scale) for F275W, F336W, and F814W,
respectively.

2.3. Spectroscopic observations

We obtained a sequence of optical spectra of M51 OT2019-1 using several instruments covering phases
from t = 4 to 53 days. This includes four spectra with the Alhambra Faint Object Spectrograph and Camera
(ALFOSC) on the 2.56-m Nordic Optical Telescope (NOT) at the Spanish Observatorio del Roque de los
Muchachos on La Palma, including two low-resolution spectra with the 300 lines/mm grism (Gr4) and
an epoch of intermediate-resolution spectra using two 600 lines/mm grisms (Gr7 & Gr8), three spectra
with the Double Beam Spectrograph (DBSP; Oke & Gunn 1982) on P200, one spectrum with the Gemini
Multi-Object Spectrograph (GMOS; Hook et al. 2004) on the Gemini North Telescope through our Target
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Figure 2. Left: Multi-band light curves of M51 OT2019-1 are shown as large filled symbols, and unfilled points
with downward arrows represent upper limits from non-detections. Time on the x-axis is measured in days since the
first detection by ZTF on 2019 January 22.6. We also show the V RI measurements reported by Pessev et al. (2019).
Measurements have been corrected for Galactic extinction to M51 only, and V RIJHKs measurements have been
converted from Johnson-Cousins/2MASS Vega magnitudes to AB magnitudes adopting Blanton & Roweis (2007)
conversions. Absolute magnitudes at the assumed distance to M51 and assuming no host extinction are given on the
y-axis to the right. For comparison, we show gri light curves of PTF10fqs (solid lines; Kasliwal et al. 2011), and
the V RI light curves of SN 2008S (dotted lines; Botticella et al. 2009) and NGC300 OT2008-1 (dash-dotted lines,
Humphreys et al. 2011). The comparison light curves have been corrected for Galactic extinction to their respective
hosts from NED, then reddened to match the g − r or V − R colors of M51 OT2019-1 on the plateau and offset in
absolute magnitude by the ∆M values indicated on the figure to match the vertical level of the M51 OT2019-1 light
curves. Right: r-band light curves of M51 OT2019-1 are shown as the black stars, and corrected for our estimate
of the total host/CSM extinction near peak with E(B −V ) = 0.7 mag as lighter gray stars. The r or R light curves of
the comparison ILRTs are shown as yellow squares, also corrected with an estimate for the total extinction near peak
as described in the text. We compare to the r or R-band light curves of other hydrogen-rich transients including the
Type IIP SN 2004et (Maguire et al. 2010), low-luminosity Type IIP SN 2005cs (Pastorello et al. 2006), and the LRN
M101 OT2015-1 (Blagorodnova et al. 2017).

of Opportunity program (PI: A. Miller; PID GN-2018B-Q-132), three spectra with the Spectral Energy
Distribution Machine (SEDM; Blagorodnova et al. 2018) on the Palomar 60-in. Telescope (P60), and one
spectrum with the Low Resolution Imaging Spectrometer (LRIS; Goodrich & Cohen 2003) on the Keck
I Telescope. The spectra were reduced using standard techniques including wavelength calibration with
arc-lamp spectra and flux calibration using spectrophotometric standard stars. In particular, we made use
of a custom PyRAF-based reduction pipeline2 (Bellm & Sesar 2016) for DBSP spectra, the IDL-based
reduction and pipeline LPipe3 (Perley 2019) for the LRIS spectrum, the fully automated Python-based
reduction pipeline pysedm4 (Rigault et al. 2019) for the SEDM spectra, and standard tasks in Gemini IRAF
package5 for the GMOS spectrum following procedures provided in the GMOS Data Reduction Cookbook6.

2 https://github.com/ebellm/pyraf-dbsp
3 http://www.astro.caltech.edu/~dperley/programs/lpipe.html
4 https://github.com/MickaelRigault/pysedm
5 http://www.gemini.edu/sciops/data-and-results/processing-software
6 http://ast.noao.edu/sites/default/files/GMOS_Cookbook/

https://github.com/ebellm/pyraf-dbsp
http://www.astro.caltech.edu/~dperley/programs/lpipe.html
https://github.com/MickaelRigault/pysedm
http://www.gemini.edu/sciops/data-and-results/processing-software
http://ast.noao.edu/sites/default/files/GMOS_Cookbook/
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We also obtained an epoch of near-IR spectroscopy of M51 OT2019-1 with the TripleSpec spectrograph
(Herter et al. 2008) on P200. We obtained four exposures of the transient (300 s each) while nodding the
transient along the slit between exposures to allow sky subtraction. The data were reduced with a modified
version of the IDL-based data reduction package Spextool7 (Cushing et al. 2004) for P200/TripleSpec.
Corrections for the strong near-IR telluric absorption features and flux calibrations were performed with
observations of the A0 V standard star HIP 61471, using the method developed by Vacca et al. (2003)
implemented in the IDL tool xtellcor as part of Spextool.

A representative set of our spectral sequence is shown in Figure 3. All of our spectra will be made publicly
available at the Weizmann Interactive Supernova Data Repository8 (WISeREP; Yaron & Gal-Yam 2012).

3. ANALYSIS

3.1. Archival imaging and progenitor constraints
3.1.1. Progenitor candidate identification

We searched for the presence of a candidate progenitor star in archival imaging taken with HST and
Spitzer/IRAC imaging. To determine the precise position of the transient in the archival HST imaging, we
registered the NIRC2 J-band image of the transient with the 2015 ACS/WFC F814W image (PID: GO-
13804, PI: K. McQuinn) and 2012 WFC3/IR F110W image (PID: 12490, PI: J. Koda). Using several
stars and compact background galaxies in common between the new and archival frames, we achieved rms
astrometric uncertainties on the position of the transient of 0.44 ACS pixels (0.′′022) in the F814W image
and 0.12 WFC3/IR pixels (0.′′015) in the F110W image. We identified an apparent point source at the edge
of our 3-σ error circle in the F814W image (object S1 in Figure 1), but the precision of our registration
was insufficient to establish or rule out coincidence with the transient. We thus triggered the new HST
observations with WFC3/UVIS, described above in Section 2.2, in order to obtain a more precise position.

We repeated the registrations as above, now using the new WFC3/UVIS F814W image and obtained
improved rms astrometric uncertainties on the (x,y) position of the transient of (0.13,0.20) ACS pixels or
(0.′′007,0.′′01) in the archival F814W image and 0.1 WFC3/IR pixels (0.′′01) in the F110W image. We show
the 3-σ error ellipses on the position of the transient in each of these images in Figure 1. We performed
PSF-fitting photometry on the archival HST images used for registration using DOLPHOT. The nearest star
detected in the 2015 F814W frame (object S1; 0.′′06 from the transient location) is firmly outside the 3-σ
error ellipse. We note that there is an apparent source at the location of the transient in the archival F110W
images, but it appears spatially extended and was not detected by DOLPHOT. Furthermore, the precise
position of the transient is offset from the apparent centroid of this source. We thus find it is unlikely
that the emission at the location is primarily due to the progenitor, and is more likely a blend of nearby,
contaminating sources.

We then used DOLPHOT to obtain limits on the progenitor flux in the extensive archival coverage of the
site with HST, including the images from 2005 with ACS/WFC in F435W, F555W, F814W, and F658N
(PID: GO-10452; PI: S. Beckwith), 2012 with WFC3/UVIS in F689M and F673N (PID: GO-12762; PI: K.
Kuntz), 2012 with WFC3/IR in F110W and F128N (PID: GO-12490; PI: J. Koda), 2014 with WFC3/UVIS
in F275W and F336W (PID:GO-13340; PI: S. van Dyk), and 2015 with ACS/WFC in F606W and F814W
(PID: GO-13804, PI: K. McQuinn). We adopt 5-σ limiting magnitudes based on the detection significance
of the faintest sources from DOLPHOT within a 100-pixel radius of the transient position. Our full set limits

7 http://irtfweb.ifa.hawaii.edu/~cushing/spextool.html
8 https://wiserep.weizmann.ac.il

http://irtfweb.ifa.hawaii.edu/~cushing/spextool.html
https://wiserep.weizmann.ac.il
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Figure 3. In the left panel, we show the optical spectral sequence of M51 OT2019-1 in black with the phase of
each spectrum indicated along the right side of the panel. We show spectra of other ILRTs in yellow (SN 2008S from
Botticella et al. 2009 and PTF 10fqs from Kasliwal et al. 2011), the M101 LRN (Blagorodnova et al. 2017) in green,
and the 2008 LBV outburst in NGC 3432 (Pastorello et al. 2010) in blue for comparison. Each spectrum has been
normalized to the continuum flux level around 7000 Å, and shifted vertically by an arbitrary constant for clarity. In
the upper-right panel, we show the near-IR spectrum of M51 OT2019-1 from t = 29 days normalized to the continuum
level around 16000 Å. We indicate the locations of several spectral features with gray, dashed vertical lines as labeled
along the top of each panel. In the bottom right panel, we show the continuum-subtracted Hα velocity profiles for
three representative epochs in the early evolution of the transient. The apparent absorption component in the t = 5 day
spectrum is an artifact of the background subtraction.

on the progenitor from HST are shown in Figure 4, converted to band-luminosities (νLν) at the assumed
distance to M51 and correcting for foreground Galactic extinction.

Utilizing the extensive archival coverage in the four imaging channels of the Infrared Array Camera
(IRAC; Fazio et al. 2004) aboard Spitzer (Werner et al. 2004; Gehrz et al. 2007), we created deep stacks of
all available images and registered them to the new HST imaging with an astrometric rms of 0.′′4. A source
consistent with the position of M51 OT2019-1 (0.′′6 away) is clearly detected in the [4.5] stack. We do not
see a clear point source at the location in the other channel stacks. Based on aperture photometry the source
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has a [4.5] flux of 0.0177± 0.0048 mJy and 3-σ limiting fluxes of < 0.014, < 0.073, and < 0.31 mJy in
[3.6], [5.8], and [8.0], respectively.

Using zero-magnitude fluxes (Vega system) given in the Spitzer/IRAC Handbook9, we find this source
to have M[4.5] = −12.2 mag and [3.6] − [4.5] > 0.74 mag. If the [4.5] flux is indeed from the progeni-
tor, the SED of M51 OT2019-1 may be similar to those of the self-obscured progenitors of SN 2008S and
NGC 300 OT2008-1 (see Figure 4). The best-fit blackbody, incorporating the [4.5] detection and [3.6], [5.8],
and [8.0] limits, has a temperature of T ≈ 510 K and luminosity of L ≈ 6.3× 104 L�. There is significant
uncertainty in these parameters, however, and without constraints at longer wavelengths > 10 µm, we are
unable to rule out emission from cooler circumstellar dust that would indicate a more luminous (and hence
more massive) progenitor.

3.1.2. Pre-explosion variability

We examined the considerable archival coverage of the location with Spitzer/IRAC at [3.6] and [4.5] for
historical variability of the progenitor, including regular monitoring since 2014 as part of SPIRITS. The
post-basic calibrated data (PBCD) level images were downloaded from the Spitzer Heritage Archive10 and
Spitzer Early Release Data Service11 and processed through an automated image subtraction pipeline (for
details see Kasliwal et al. 2017). For reference images, we used the available Super Mosaics12 consisting of
stacks of images obtained between 2004 May 18 and 2006 January 29.

Aperture photometry was performed at the location of M51 OT2019-1 in the difference images, and our
resulting differential light curves are shown in Figure 5, converted to band-luminosities in νLν . During the
years 2006–2008 (≈ 3900–4400 days before discovery), our measurements are consistent with no change
compared to the reference level within |∆(νLν)| . 104 L�. In 2012 (≈ 2400 days before discovery), we
detect a significant, 4σ-level increase of ∆(νLν) = (3.2±0.8)×104 L�. Following this, in the time between
2014–2017 (≈ 1600–500 days before discovery), we note a consistently elevated [4.5] flux at the location at
∆(νLν)≈ 1.3×104 L�, although no individual epoch is detected at > 3σ significance. In the final 2 epochs
of Spitzer coverage, we detect a significant pre-explosion brightening starting sometime between≈ 500 and
300 days before discovery, and rising to the level of ∆(νLν) = (3.7± 0.7)× 104 L� at t = −162.3 days. At
[3.6], the same trends in pre-explosion variability are evident, but at a lower level of significance.

We obtained constraints on pre-explosion optical variability at the location using the available coverage
by the Palomar Transient Factory (Law et al. 2009; Rau et al. 2009) and its successor, the intermediate
Palomar Transient Factory (i)PTF (Cao et al. 2016), and ZTF on P48. For (i)PTF g and Mould-R band
data taken between 2009-2016 we utilized forced PSF-fitting photometry at the transient location on the
reference-subtracted difference images (Masci et al. 2017). The same procedure as described in Section 2.2
was used to obtain photometry from ZTF difference images for the entire set of g and r-band coverage of the
site in the Caltech and Partnership surveys since the start of full operations in March 2018. To obtain deeper
limits, we stacked our measurements from (i)PTF and ZTF within 10-day windows, and show the resulting
differential optical light curves along with the IR constraints in Figure 5. We see no evidence for significant
optical variability at the location in any of the archival P48 coverage at the level of |∆(νLν)| . 2× 104

and 3× 104 L� in the R or r, and g-bands, respectively, including during the 2012 and 2017–2018 [4.5]
brightening episodes.

9 https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/iracinstrumenthandbook/
10 https://sha.ipac.caltech.edu/applications/Spitzer/SHA/
11 http://ssc.spitzer.caltech.edu/warmmission/sus/mlist/archive/2015/msg007.txt
12 Super Mosaics are available as Spitzer Enhanced Imaging Products through the NASA/IPAC Infrared Science Archive:

https://irsa.ipac.caltech.edu/data/SPITZER/Enhanced/SEIP/overview.html

https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/iracinstrumenthandbook/
https://sha.ipac.caltech.edu/applications/Spitzer/SHA/
http://ssc.spitzer.caltech.edu/warmmission/sus/mlist/archive/2015/msg007.txt
https://irsa.ipac.caltech.edu/data/SPITZER/Enhanced/SEIP/overview.html
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Figure 4. SEDs from photometry are shown in black for the M51 OT2019-1 progenitor (diamonds), and at multiple
phases in the evolution of the transient (t = −6, 6, 29, and 41 days as “X”-symbols, squares, circles, and “+”-symbols,
respectively). Upper limits from non-detections are indicated with downward arrows. Blackbody approximations to
the data are shown for the progenitor (dashed curve), t = 6 day SED on the rise (dotted) and t = 29 day SED on the
plateau with radii and temperatures given in the legend. For post-discovery SEDs of the transient, the curves shown
have been reddened by the amount listed. The corresponding de-reddened data and blackbody curves are shown in
gray. For comparison, the progenitor SED data are shown for NGC 300 OT2008-1 (open blue diamonds; Prieto 2008)
and SN 2008S (open orange diamonds; Prieto et al. 2008).

3.2. Photometric properties

The multi-band optical and near-IR light curves of M51 OT2019-1 are shown in Figure 2. We observe
a rise in the optical light curves over a time of ≈ 15 days after the first detection by ZTF, after which the
source exhibits a relatively flat plateau in the g,r, i and Y band to at least t = 40 days. In the r band, the source
is observed to peak at Mr = −13.0 (Galactic extinction correction only). The optical colors are remarkably
red, with values on the rise of g−r = 1.3±0.2, g− i = 1.9±0.2, and g−Y = 2.6±0.2 mag at t = 5.9 days. On
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Figure 5. Constraints on pre-explosion variability based on image subtraction at the location of the transient in the IR
with Spitzer/IRAC and optical with (i)PTF and ZTF. From top to bottom we show the differential light curves at the
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of the progenitor at > 3σ significance.
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the plateau at t = 25.9 days, we observe bluer optical colors of g − r = 0.97± 0.05, g − i = 1.53± 0.06, and
g −Y = 1.8±0.1 mag. In the near-IR, the source was detected 6.5 days before the earliest ZTF detection at
Ks = 18.2±0.3, before rising to Ks = 15.66±0.06 at t = 28.9 days.

Given its red optical colors and location in a dark dust lane, it is likely that M51 OT2019-1 is subject
to significant extinction. High amounts of optical extinction have also been inferred for similar transients
of the ILRT class, but even among these, M51 OT2019-1 is exceptionally red. As shown in Figure 2, we
estimate the excess reddening present in M51 OT2019-1 by comparing its optical light curves to those of
the well studied ILRTs SN 2008S (Botticella et al. 2009), NGC 300 OT2008-1 (Humphreys et al. 2011),
PTF 10fqs (Kasliwal et al. 2011), and AT 2017be (Cai et al. 2018). After correcting the light curves for
Galactic extinction, we require excess reddening of E(B −V )≈ 0.7, 0.5, 0.4, and 0.6 mag for each of those
objects, respectively, to match the optical colors of M51 OT2019-1 near peak on the plateau.

The total extinction to M51 OT2019-1 at a given phase is likely due to a combination of attenuation by
foreground dust in the host interstellar medium (ISM) as well as internal extinction by dust in the circum-
stellar medium (CSM). For NGC 300 OT2008-1, Humphreys et al. (2011) estimated the total extinction
near the peak of the transient as E(B−V )≈ 0.4 mag based on comparing its optical colors to those expected
for a temperature T ≈ 7500 K inferred from the presence of F-type absorption features in the spectrum. A
similar argument was made by Smith et al. (2009) to estimate a total host/CSM extinction to SN 2008S of
E(B −V ) = 0.28 mag.

As described below in Section 3.3, we observe similar absorption features in the spectra of M51 OT2019-
1 throughout its evolution, and thus infer a similar temperature for the continuum emission. Our analysis
of the spectral energy distribution (SED) derived from photometry at several phases in the evolution of the
transient is shown in Figure 4. We observed an early brightening at t = −6 days in the near-IR Ks-band to
νLν ≈ 4× 105 L� with a constraining r-band non-detection a few days later that suggests the explosion is
heavily obscured at early times. At t = 6 days as the transient rises in the optical, comparing the SED to
a reddened blackbody spectrum with T = 7500 K provides a good approximation to the data and suggests
E(B −V ) = 1.0 mag. Near the optical peak on the plateau at t = 29 days, the SED appears less reddened,
and can be approximated by T = 7500 K with E(B −V ) = 0.7 mag. While some amount of extinction can
likely be attributed to foreground host extinction, the variable extinction estimate from evolution of the SED
indicates a significant contribution from internal CSM dust. In particular, we suggest the color evolution
of the SED from rise to peak may be attributed to the continued destruction of CSM dust as the explosion
emerges from the dense obscuring wind of the progenitor.

The luminosity of the corresponding unreddened blackbody is L = 8.3× 107 L�, which we adopt as a
crude estimate of the intrinsic bolometric luminosity of the explosion at peak. In comparison, the most
luminous classical novae reached peak luminosities from ≈ 3–8× 105 L� (Gallagher & Ney 1976; Gehrz
et al. 2015), while typical CCSNe reach 5×108 to & 1010 L� (e.g., Valenti et al. 2016). We note however,
the reddened blackbody model significantly over-predicts the observed Y -band flux at this epoch. We also
see evidence for an IR excess in the near-IR Ks-band measurement, suggesting emission from dust is an
important component of the SED. Finally, in the SED at t = 41 days from our HST observations (“+”-
symbols in Figure 4), the measurement in F814W lies near the expectation from the reddened blackbody
approximation to the t = 29 day SED, consistent with the flat evolution of the i′-band light curves between
these epochs; however, the F336W and F275W points are significantly below this expectation, suggesting
that there may be additional suppression of the flux in the blue and UV (e.g., line blanketing) and/or that
the assumed Fitzpatrick (1999) RV = 3.1 extinction law for the diffuse Milky Way ISM may not applicable
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for heavy internal extinction by circumstellar dust, especially at bluer wavelengths. The addition of longer
wavelength measurements and self-consistent modelling of the time evolution of the SED will be necessary
to better constrain the intrinsic properties of the explosion and the surrounding CSM dust.

In the right panel of Figure 2, we compare the r-band light curve of M51 OT2019-1 to other hydrogen-rich
transients. For the sample of ILRTs, we correct for an estimate of the total extinction based on the SED near
peak as described above. Assuming E(B −V ) = 0.7 mag for M51 OT2019-1, the peak absolute magnitude
is Mr ≈ −15. This is notably more luminous than the other proposed members of this class, which fall
between Mr/R ≈ −13 to −14, and is near the range more typical of Type II core-collapse SNe. In fact, with
our assumed extinction, M51 OT2019-1 is even more luminous than some low-luminosity Type IIP SNe,
e.g., SN 2005cs (Pastorello et al. 2006).

3.3. Spectroscopic properties

Our optical spectral sequence of M51 OT2019-1 from t = 4 to 53 days is shown in Figure 3. The spectra
are characterized by a very red continuum, and display prominent Hα emission along with emission features
of the Ca II IR triplet (λλ 8498,8542,8662) and [Ca II] (λλ 7291,7324). We detect the Ca II H and K lines
(λλ 3968,3934), the Na I D doublet (λλ 5889,5895), and a strong O I blend near 7773 Å in absorption.
Superimposed on the broader emission features, we also detect a narrower absorption component for each
of the lines of the Ca II triplet. In the near-IR spectrum at t = 29 days (upper-right panel of Figure 3), we
see additional recombination lines of H in emission including Paβ and weaker Paγ.

These features indicate a wide range of densities in the gas producing the spectrum—reminiscent of a wind
or ejected envelope with large inhomogeneities. The observed [Ca II] λλ 7291, 7324 lines have a critical
density of ncr ∼ 107 cm−3 (Ferland & Persson 1989) and are strongly suppressed at higher densities. On the
other hand, the O I λ7773 transition, a quintet frequently observed in transients, is normally populated by
collisional transfer from the O I 3p 3P level, which is itself strongly excited by a wavelength coincidence
between the H I Ly-β and O I λ1026 transitions (Bowen 1947). The triplet-to-quintet collisional transfer is
only effective at densities n & 1011 cm−3 (Williams 2012), thus demonstrating a wide range of densities in
the gas ejected by the outburst.

The Hα velocity profiles (bottom-right panel of Figure 3) appear symmetric about their peaks, which are
consistent with zero-velocity in the rest frame of M51. The profiles are characterized by a FWHM velocity
of ≈ 400 km s−1 with broader electron-scattering wings extending to ≈ 2000 km s−1. The t = 5 day GMOS
spectrum shows an apparent absorption feature near ≈ −180 km s−1, but we attribute this to a data reduction
artifact from over-subtraction of unrelated, background Hα emission and difficultly in finding a suitably
clean region for background subtraction along the slit. We do not see any evidence for significant evolution
in the line profile shape or width for the duration of the observations presented here.

The observed absorption spectrum is reminiscent of an F-supergiant. This is expected for an eruption that
produces an extended, optically-thick wind (Davidson 1987), and is seen in LBVs/S Doradus variables in
their cool, outburst state at maximum (Humphreys & Davidson 1994), some SN impostors and LBV giant
eruptions (e.g. Smith et al. 2011), and is very similar to that of NGC 300 OT2008-1 (Bond et al. 2009;
Humphreys et al. 2011) and SN 2008S (Smith et al. 2009). This suggests a temperature of ≈ 7500 K. The
red continuum is therefore suggestive of significant extinction, and we apply this temperature estimate to our
SED analysis in Section 3.2 to obtain E(B −V ) = 0.7 mag near the peak at t = 29 days. Overall, the spectral
features described above are generally similar to some previously observed SN impostors and ILRTs.

4. DISCUSSION AND CONCLUSIONS
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From our early observations of M51 OT2019-1 in the first ≈ 60 days of its evolution, we find that the
transient is characterized by a ≈ 15 day rise in the optical to an observed plateau luminosity of Mr = −13
(Galactic extinction correction only). Its spectrum shows strong Hα emission with FWHM velocities of
≈ 400 km s−1. These basic properties are similar to those of multiple classes of transients with luminosities
intermediate between those of novae and supernovae, including ILRTs, LRNe, and giant eruptions of LBVs.
The photometric evolution of M51 OT2019-1 has transitioned smoothly from the rise to a plateau lasting
through at least t ≈ 50 days, consistent with ILRTs and also similar to some SN impostors. It is more dissim-
ilar to LRNe whose light curves are typically irregular and multi-peaked (Smith et al. 2016; Blagorodnova
et al. 2017) and some other LBV eruptions that may how multiple outbursts or erratic variability (Pastorello
et al. 2010; Smith et al. 2010). Our optical spectra show several additional features, including Ca II and
[Ca II] in emission, F-type absorption features indicating the light is escaping an optically thick wind at
≈ 7500 K, and a red continuum indicative of significant extinction. These features are characteristic of IL-
RTs, but may also be seen in LRNe and giant LBV eruptions. For example, while some LBV eruptions show
bluer continua and H lines with strong P Cygni profiles (e.g., NGC 3432 OT; Pastorello et al. 2010), others
are indistinguishable from ILRTs (Smith et al. 2010, 2011; Rest et al. 2012; Prieto et al. 2014). We identify
a likely progenitor star in archival Spitzer imaging with M[4.5] = −12.2 mag and [3.6] − [4.5] > 0.74 mag,
but there is no identifiable optical counterpart in archival HST imaging. This is reminiscent of properties of
the obscured progenitors of SN 2008S and NGC 300 OT2008-1, and notably, stars with these IR properties
are exceptionally rare (Thompson et al. 2009; Khan et al. 2010). We thus suggest M51 OT2019-1 is an
ILRT. Without longer wavelength archival constraints, though, we cannot rule out that the progenitor of
M51 OT2019-1 is more luminous and massive than the 9–15 M� stars inferred for the ILRT prototypes.

The nature of ILRTs, the mechanism behind their outbursts, and their relation to other impostors and
LBV-related transients are debated. One proposed physical scenario involves a weak explosion, possibly
the electron-capture-induced collapse of an extreme asymptotic-giant-branch star. In this scenario, an initial
flash rapidly destroys the enshrouding circumstellar dust, which later reforms and re-obscures the optical
transient (Thompson et al. 2009; Kochanek 2011; Szczygieł et al. 2012). Thanks to the early discovery
of M51 2019OT-1, we find evidence for continued dust destruction during the rise of the transient as our
estimate of the reddening evolves from E(B −V ) = 1.0 to 0.7 mag between t = 6 and 29 days, posing a chal-
lenge to such interpretations for this event. Adopting E(B −V ) = 0.7 mag at peak, the intrinsic luminosity is
Mr = −15 mag, higher than previously observed ILRTs, though not unusual for some SN impostors (Smith
et al. 2011). The observed variability of the likely progenitor may also hint at eruptive, self-obscuring
episodes occurring in the years before the explosion. A full picture of the event awaits continued monitor-
ing, including planned Spitzer observations, to characterize the full SED, dust properties, and energetics.
Longer term, mid-IR spectroscopic observations with the James Webb Space Telescope will disentangle the
chemistry, and late-time imaging after the explosion fades away will provide definitive evidence on whether
the explosion was terminal.
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lowship under Grant No. DGE-1144469. H.E.B. acknowledges support from program numbers GO-14258
and AR-15005, provided by NASA through grants from the Space Telescope Science Institute, which is
operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract
NAS5-26555. This work is part of the research programme VENI, with project number 016.192.277, which
is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). A.G.-Y. is supported
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http://www.gemini.edu/sciops/data-and-results/processing-software
http://www.stsci.edu/institute/software_hardware/pyraf
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https://github.com/ebellm/pyraf-dbsp


TRANSIENT IN M51 17
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