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Summary 

The bacterial MscL channel normally functions as an emergency release valve discharging 

cytoplasmic solutes upon osmotic stress. The channel opens and passes molecules up to 30 

Å and its pore is the largest of any gated channel. Opening the MscL pore inappropriately is 

detrimental to the bacterial cell, suggesting MscL as a potential novel drug target. A small-

molecule compound, 011A, has been shown to increase sensitivity of the Escherichia coli 

MscL channel, slow growth, and even decrease viability of quiescent cultures. The mscL 

gene is highly conserved and found in the vast majority of bacterial species, including 

pathogens. Here we test the hypothesis that 011A can influence the growth and viability of 

other bacterial species, specifically Staphylococcus aureus and Mycobacterium smegmatis, 

in a MscL-dependent manner. Furthermore, we demonstrate that the 011A compound can 

increase potency of other antibiotics, presumably by permeabilizing the membrane and 

allowing easier access of the antibiotic into the cytoplasm. Thus, MscL activators have 

potential as novel broad-spectrum antibiotics or adjuvants that work with antibiotics to 

selectively allow passage across bacterial membranes. 

 

Introduction:  

Mechanosensitive (MS) channels serve the physiological role of biological emergency-

release valves for bacteria, relieving high cell turgor caused by sudden extracellular 

decreases in osmolarity (Booth & Blount, 2012). When exposed to high osmolarity, bacteria 

transport several select molecules such as K+, glutamate, proline, betaine and other 

polyamines, and synthesize others such as glutamate, trehalose and proline to keep their 
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cell turgor high, a requisite for cell growth and division (Walter, 1924, Christian & Scott, 

1953, Scott, 1953). When the osmotic environment acutely decreases, water rushes in, 

turgor increases, and the cell integrity is threatened. Bacteria avoid such catastrophe by 

activation of membrane-tension-gated MS channels. There are two families of bacterial MS 

channels, MscS and MscL, and of these, MscL (mechanosensitive channel of large 

conductance) is the most conserved, the least sensitive to membrane tension, and is the 

last-ditch effort for bacterial survival. MscL has the largest gated pore of any known channel, 

about 30 Å in diameter (Cruickshank et al., 1997). MscL is found in the vast majority of 

bacteria, and a few fungi, but not in mammals. While this channel is primarily selective for 

size, it has a slight preference for anions (Yang & Blount, 2011) and is expressed in tens to 

over a thousand copies per cell depending upon the cell conditions and the assay used for 

the measurements (Bialecka-Fornal et al., 2012). MscL is truly the ultimate release valve – 

studies in E. coli have demonstrated it effects osmotic-dependent permeability to K+, amino 

acids, and even some select proteins (Blount et al., 1997, Ou et al., 1998, Ajouz et al., 

1998a, Ajouz et al., 1998b, Berrier et al., 2000).  

Early studies by us and others demonstrated that if the E. coli MscL channel gates 

inappropriately, it is detrimental to cell growth (Blount et al., 1996, Maurer & Dougherty, 

2003, Ou et al., 1998). These and other findings suggested that MscL could be a drug target 

to generate new antibacterial compounds. More recently, we have found that some common 

antibiotics appear to use MscL as a major pathway for entry into the bacterial cell (Iscla et 

al., 2014); the best studied of these is dihydrostreptomycin (DHS), for which the binding site 

within the pore of the MscL channel has been defined (Wray et al., 2016). These findings 

further suggested that MscL agonists could increase the potency of antibiotics by 

permeabilizing the bacterial cell membrane and thus allow easier entry, thus serving as an 

adjuvant.  

Our knowledge of the physiology of the MscL channel leads to predictions for the 

properties of activators of this channel. Because of the conserved nature of the MscL 
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protein, we predicted that an agonist of MscL should not be specific for E. coli, but also affect 

other bacterial species, including gram positive organisms. This would include not only 

decreasing cell growth, but also decreasing viability of stationary/quiescent cultures. 

However, given differences in bacterial cell walls and membranes, this would need to be 

tested empirically. In addition, because of its pore size, MscL activators would be predicted 

to allow a diverse array of antibiotics access to the cytoplasm by permeabilizing the 

membrane, thus increasing their potency. To date, only one specific MscL modulator that 

directly binds to and modulates the MscL protein has been found, coined 011A (Wray et al., 

2019). This compound gives us a unique tool for assessing the validity of these hypotheses. 

Here, using 011A we find that other bacterial species are sensitive to the compound in a 

MscL-dependent manner – showing slowed growth and decreased viability when quiescent 

cells are treated. In addition, 011A does increase the potency of common antibiotics (see 

Fig. S1 for structure of 011A and antibiotics used in this study). These data suggest that 

MscL is indeed a viable drug target, and compounds that specifically modulate the channel 

at high potency and efficacy could be candidates for novel antibiotics or adjuvants for 

increasing potency of other antibiotics. 

 

Results: 

Two model Gram-positive organisms, Staphylococcus aureus and Mycobacterium 

smegmatis show slowed growth when exposed to the 011A compound 

Since MscL is a very conserved protein one of the predictions of an agonist to MscL is that it 

should work across species, including pathogens and Gram-positive organisms (see (Maurer 

et al., 2000, Iscla et al., 2008, Iscla et al., 2007) for discussions of domain conservation and 

see Fig. S2). To test this, we initially used a previously characterized strain of 

Staphylococcus aureus (S. aureus), R4220, in which a MscL-null strain had been generated 

and characterized (Kouwen et al., 2009). Beyond availability, we chose this organism 
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because methicillin-resistant S. aureus (MRSA) is a chronic problem in hospital infections 

and results in almost half of all deaths caused by antibiotic resistant organisms (Siddiqui & 

Koirala, 2018). As seen in Fig 1A, a decrease in overnight growth of cultures treated with 

011A was observed in the parental R4220 strain, but not in the MscL-null strain. The efficacy 

for decreasing growth with expression of endogenous levels of S. aureus MscL protein (Sau-

MscL) is reminiscent of over-expression of gain-of-function (GOF) mutations of the E. coli 

MscL protein (Eco-MscL) channel in E. coli (Ou et al., 1998), and slightly better than that 

previously published for 011A treatment of an E. coli strain overexpressing wild type Eco-

MscL (Wray et al., 2018).  

We next investigated, Mycobacterium smegmatis (M. smegmatis), which is within the 

same genus, and is a model system for, M. tuberculosis (Shiloh & Champion, 2010). We 

thus generated a MscL null strain of the M. smegmatis MC2155 strain for these experiments, 

MC2155 ∆mscL. As with the S. aureus strain, and as seen in Fig 1B, after treatment with 

011A, a decrease in growth was observed in the parental MC2155 strain, but not in the 

MscL-null strain. This decrease was larger than that observed for most Eco-MscL GOF 

mutations (Ou et al., 1998), that previously published for 011A treatment of an E. coli strain 

overexpressing Eco-MscL (Wray et al., 2018), and even for the S. aureus R4220 strain 

above. These results strongly suggesting that the mechanism of 011A is through MscL 

activation and that it is effective in different species. 

 

The 011A compound decreases viability of quiescent cells for both S. aureus and M. 

smegmatis  

The ability to kill quiescent cells could have medical relevance. Essentially all current 

antibiotics require the cells to be metabolically active to be effective, thus making biofilms 

like those seen with S. aureus infections (Moormeier & Bayles, 2017) and “dormant” 

infections as seen with M. tuberculosis (Russell et al., 2010, Bacon et al., 2014) difficult to 
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treat. However, MscL is expressed in all phases of growth, and even upregulated in 

stationary cells (Stokes et al., 2003), and because MscL is a channel, not a pump, it does 

not require an energy source or metabolic activity to gate – only a stimulus. In a previous 

study, we demonstrated that 011A decreased the viability of stationary E. coli cells 

expressing Eco-MscL (Wray et al., 2019). We therefore tested the viability of both S. aureus 

and M. smegmatis when treated with compound 011A after the cultures achieved a 

stationary/quiescent phase. As seen in Fig 2, both species were sensitive to 011A even after 

growth ceased. This sensitivity was MscL specific; cells null for MscL were not sensitive to 

011A treatment. Consistent with findings for E. coli (Wray et al., 2019), re-expression in the 

null cell re-instated sensitivity to 011A for the M. smegmatis strain (Fig. S3). Collectively, 

these data suggest that McsL agonists can be cidal for quiescent cells. 

 

Compound 011A facilitates the entry of dihydrostreptomycin (DHS) into the E. coli 

cytoplasm 

MscL opens a very large channel upon activation, and in theory could allow cytoplasmic 

access for common antibiotics by essentially permeabilizing the membrane. As a first assay 

to determine if 011A could accelerate the passage of known antibiotics into the cytoplasm, 

we tested if it could enhance DHS entry into the cell. A sub-threshold concentration (just 

below the MIC) of DHS was used in the presence of increasing concentrations of 011A; a 

small but measurable amount of decreased growth was observed (Fig S4). 

Encouraged by this result, we further tested for the 011A-dependent increased passage 

of DHS through the MscL pore using molecular dynamic (MD) simulations. We modified a 

previously used assay (Wray et al., 2019) by reducing the external electric field strength 

(EEF) by 50% to slow down the process and approach a more physiological condition. We 

positioned the 011A ligand at its best docking pose, while DHS was positioned in its binding 

location (Wray et al., 2016). As shown in Fig. S5A, the distance between the coordinate 
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center of DHS and the coordinate center of five K106 residues are applied to describe the 

passing through process. When distance becomes zero, we assume that DHS passes 

through the channel. In total, we performed 36 sets of simulations, with and without the 011A 

ligand bound to Eco-MscL. The distance versus simulation time for a representative MD run 

is shown in Fig. S5B, and the dynamics of the radius of the cycle formed by the five K106 

residues along the MD simulation is illustrated in Fig. S5C. The radius between these 

lysines becomes smaller when the MscL channel is partially open, consistent with the tilting 

of the transmembrane domains and the proposed iris-like opening of the channel (Perozo et 

al., 2002). We performed statistics on the four outcomes of the virtual passage experiment. 

As shown in Fig. 3, the presence of 011A increased the probability of DHS passing through 

the pore 3-fold. We also calculated the mean distances of the 36 MD simulation runs as a 

function of simulation time for both the 011A bound and 011A absent scenarios. The shorter 

the distance, the closer DHS passes through the channel. As shown in Fig. S6, the 

distances between the coordinate centers of DHS and the five K106 residues decrease 

faster for the 011A bound scenario (the red curve). Overall, these data strongly suggest 

011A enhances passage of DHS through the MscL channel. 

Finally, we studied the ability of 011A to stabilize a partially-open Eco-MscL channel. For 

each scenario (with and without 011A) one MD snapshot was randomly selected as DHS 

was about to exit the Eco-MscL channel. We then ran 120 nanosecond MD simulations for 

both cases. The plots of the root mean square deviation (RMSD) of the main chain atoms 

versus the simulation time are presented in Fig. S7, where it is shown that 011A stabilizes 

the partially open Eco-MscL channel. 

Together, these data suggest that the binding of 011A to MscL can increase the 

probability of DHS entering the E. coli cell in an Eco-MscL-dependent manner and predicts 

that this may be true for other common antibiotics and for other bacterial species. 
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Compound 011A can be used as an adjuvant to increase the potency of common 

antibiotics by specifically permeabilizing the bacterial membrane 

The MscL channel is one of the primary pathways for entrance of DHS to the bacterial 

cell; i.e. DHS can open the Eco-MscL channel (Wray et al., 2016), thus complicating the 

experiments discussed above and shown in Fig S4. However, the Hemophilus influenza 

MscL (Hin-MscL) does not bind well to DHS (Wray et al., 2016), thus allowing us to use a 

higher sub-threshold concentration of DHS (2.25 rather than 0.5 µM) in the experiment. As 

seen in Fig 4A, combinatorial treatment (2.25 µM DHS and varying concentrations of 

compound 011A) of E. coli cells expressing Hin-MscL led to much larger decreases in 

growth than that observed with treatment of compound 011A alone. Viability was also tested 

of three conditions: 011A (80 µM), DHS (2.25 µM) and a combination of the two at these 

concentrations, for both empty plasmid and Hin-MscL. There was no reduction in viability 

with DHS alone, and a significant but modest reduction for 011A alone. However, the 

combination of the two showed a greater than 90% reduction in viability for the Hin-MscL 

expressing bacteria (Fig S8).  

We next tested to see if 011A could increase the potency of a sub-threshold 

concentration of the antibiotic kanamycin (Kan) (Fig 4B). Again, when 011A was used in 

combination with Kan, a much larger reduction in growth was observed in a MscL-dependent 

manner. Since both DHS and Kan are in the aminoglycoside family of antibiotics, we 

therefore assayed antibiotics of different classes to evaluate if MscL could grant access to 

the cell to various types of antibiotics. As seen in Fig 4C, a sub-threshold concentration of 

tetracycline (Tet) also showed increase in efficacy with 011A in this assay. Together, these 

data suggest that 011A can be used as an adjuvant, permeabilizing the membrane and 

allowing antibiotics access to the E. coli cytoplasm.  

Ampicillin (Amp) does not require cytoplasmic access but compromises the cell wall 

integrity, and thus we speculated that even subthreshold concentrations of Amp could 

potentially increase 011A efficacy, and we wanted to test this. Since our plasmid, pB10d, 
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confers resistance to ampicillin (Amp), in order to test this antibiotic, we modified our assay 

by utilizing null strains, and the endogenously-expressing parental strain. We have 

previously shown that either expression in trans or endogenous expression of Eco-MscL is 

necessary and sufficient to observe 011A effects (Wray et al., 2018). Indeed, 011A efficacy 

was increased, even for endogenous levels of MscL (Fig 4D).  

Finally, we also looked at whether interactions between 011A and other antibiotics would 

be plausible with other species by using the S. aureus and M. smegmatis strains described. 

Because Tet appeared to be the most tractable of the drugs explored above, we determined 

appropriate threshold concentrations of Tet for these species and used it in combination with 

the optimal concentration of 011A (see Fig 1). As seen in Fig 5, both species showed 

interactions between compounds, with S. aureus showing the best adjuvant properties for 

the 011A compound. The finding that M. smegmatis did not show as much interaction 

between 011A with Tet may be because of the slow-growth nature of this species. 

Regardless, collectively, the data demonstrate interactions between the 011A compound 

MscL-specific compound and common antibiotics for multiple species.   

This permeabilization of the cytoplasmic membrane appears to be specific for bacterial 

strains expressing MscL. The MscL channel is not found in mammals, so unless 011A works 

through alternative modes of action, it should not be toxic for mammalian cells. As a first test 

of this, we assayed toxicity of the mammalian cell line HEK293, which showed no indication 

of decreased viability or membrane permeabilization even with concentrations as high as 

100 µM for as long as 48 hours, as assayed using trypan blue (Fig S9). Hence, the plasma 

membrane permeabilization appears to be bacterial-specific, and thus far no secondary or 

unwanted mechanisms of action have been found, giving promise that obtaining specificity of 

MscL-modulating compounds is achievable. 
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Discussion 

The gene encoding the MscL channel, mscL, has been observed in the vast majority of 

bacterial species. In addition, when looked for electrophysiologically, either by heterologous 

expression in E. coli (Moe et al., 1998, Folgering et al., 2005, Moe et al., 2000) or in their 

native environment (Cetiner et al., 2017, Rowe et al., 2013, Szabo et al., 1992, Szabo et al., 

1993), MscL activity is invariantly observed. Given the highly conserved nature of the MscL 

protein and its activity, it seems likely that the newly discovered 011A compound would 

effect changes in MscL activity in various bacterial species when bound. Indeed, we have 

previously shown that a variety of MscL orthologues heterologously expressed in a ΔEco-

MscL E. coli strain effected a 011A-specific slowed growth similar to that observed with Eco-

MscL expression. However, different bacterial species have diversity in their membranes, 

cell walls and compensatory mechanisms that could conceivably lead to resistance to the 

011A compound. Here we show that two other unrelated species also show sensitivity to 

011A in a MscL-dependent manner, both in their growth rate and their viability when treated 

in stationary phase. It thus seems likely that 011A, and compounds that may be related, will 

affect much of the Monera Kingdom, including several pathogens.  

While the potency of the 011A compound is not too unreasonable, the efficacy is low for 

a stand-alone antibiotic. Perhaps this is not too surprising given that previous studies have 

shown that the bulk of gain-of-function mutations and post-translational modifications of 

MscL effect relatively weak slow-growth phenotypes (Bartlett et al., 2004, Iscla et al., 2015, 

Ou et al., 1998). Thus, while it is a worthwhile endeavor to obtain a MscL agonist that is both 

potent and high efficacy, it may be difficult to perform. On the other hand, while the 011A 

compound appears to be largely static in growing E. coli cells, it has cidal activity when 

quiescent cells are treated (Wray et al., 2019). We suspect this is because metabolizing cells 

quickly accommodate cytoplasmic losses, while quiescent cells accumulate these losses to 

the point where, when environmental conditions are appropriate, they are no longer able to 

recover to a growth state. In addition to potentially treating non-growing biofilms or nodules, 
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another viable medical use of MscL agonists could potentially be to serve as adjuvants for 

conventional antibiotics. 

The use of adjuvants is considered a fundamental tool in the mitigation of the antibiotic 

resistance crises (Wright, 2016, Gill et al., 2015). Interestingly adjuvants have also been 

shown to reduce the resistance mechanism itself (Gill et al., 2015). Several mechanisms are 

known including inhibiting the pumping-out or degradation of the antibiotic, interfering with 

the virulence or host responses, or as in the case of 011A, increasing permeability to allow 

antibiotics to more easily pass into the bacterial cell.  

The MscL channel opens the largest gated pore presently known, serving as an osmotic 

emergency release valve that normally jettisons osmoprotectants including potassium, 

glutamate, polyamines, as well as other compounds from the cell (Booth & Blount, 2012). 

Because of its relative lack of selectivity, except for size, it seemed likely that when open, it 

could pass non-physiological compounds as well. Indeed, researchers have speculated and 

studied its potential to be used to generate “smart” contrast agents for MRI, drug delivery 

devices, and even a way to get compounds or drugs into eukaryotic cells (Yang et al., 2018, 

Iscla et al., 2013, Kocer, 2010, Pacheco-Torres et al., 2015, Doerner et al., 2012). Thus, in 

addition to the potential as a new class of antibiotics, compounds that gate MscL may 

specifically permeabilize bacterial cells, and thus allow compounds, such as conventional 

antibiotics, to more easily cross the membrane. The data presented here demonstrating 

interactions between 011A and several conventional antibiotics support such a prospect. 

Permeabilization of bacterial membranes by MscL agonists could potentially help with 

the growing bacterial pathogen drug-resistance crisis. Resistance due to multidrug efflux 

pumps may be shunted by 011A-like compounds that allow free passage to the cytoplasm. 

In addition, MscL-modifying compounds could be used with potential antibiotics – e.g. 

bacterial metabolic inhibitors or activators - that are effective in in vitro assays, but do not 

effectively cross the membrane. On the other hand, antibiotics that cross the membrane 
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easily but cause significant side effects could be modified so they no longer cross the 

membrane (e.g. addition of a charge), and used alongside a MscL-opening compound like 

011A, and the modified antibiotic would have cytoplasmic access to only bacterial cells, thus 

potentially decreasing or eliminating side effects. Finally, the observation that they work on 

quiescent/stationary cells gives promise for treatment of hard-to-treat infections including 

tuberculosis and biofilms. In summary, MscL agonists are not only potential novel 

antimicrobials, but they may also serve as adjuvants that work in combination with other 

antibiotics and be advantageous in otherwise intractable infections. 

 

Experimental Procedures:  

Strains and Cell Growth  

The M. smegmatis MC2155 ΔmscL strain was generated from Mycobacterium smegmatis 

MC2155 (ATCC® 700084). Mycobacterial recombineering (van Kessel & Hatfull, 2007) 

approaches were used to create this strain, with a few modifications. Galactokinase (galK) 

from plasmid pDB88 (Barkan et al., 2011), was inserted 66bp upstream of the levansucrase 

gene (SacB) in plasmid pYUB1471 (Jain et al., 2014) using primers pGK_F and pGK_R to 

amplfy galK and primers pNH01GK_F and pNH01GK_R to PCR amplify the vector 

backbone, the plasmid was assembled using the Clontech In-Fusion HD kit.  

To create the targeting plasmid 600bp regions encoding sequences upstream and 

downstream of the mscL gene in M. smegmatis MC2155 were amplified from M. smegmatis 

MC2155 genomic DNA. Using primers pMscLU_F and pMscLU_R to amplify the upstream 

region and primers pMscLD_F and pMscLD_R to amplify the downstream region (see Table 

S1 for list of primers used). The targeting plasmid was constructed in two steps: 1) Insertion 

of the upstream region by digesting the plasmid with NdeI and XhoI and using the Clontech 

In-Fusion HD kit, 2) Insertion of the downstream region by digesting the result from step 1 

with NdeI and BamHI and using the Clontech In-Fusion kit to ligate the plasmid. Linearized 
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DNA for recombineering was made by digesting the final plasmid with NdeI/NcoI and gel 

purifying the targeting DNA.  

100 ng of targeting DNA were electroporated into M. smegmatis MC2155 expressing Che 

60 and 61 proteins in the pJV53 plasmid (van Kessel & Hatfull, 2007). The reaction was 

plated on 7H10 agar containing 150 µg/mL hygromycin. Resulting colonies were plated onto 

7H10 agar containing either 150 µg/mL hygromycin (hyg) or 0.25 % 2-deoxy-galactose (dog) 

+ 10 % sucrose (suc). Colonies surviving on hyg plates but not dog + suc were selected for 

unmarking. Unmarking was completed using bacteriophage pHAe 280 (Jain et al., 2014).  

After bacteriophage infections, unmarked knockouts survived on dog + suc but not hyg. 

Colonies were confirmed by colony pCR using primers pCPCR_F and pCPCR_R. 

M. smegmatis MscL was expressed in the ∆mscL MC2155 strain using plasmid pNH02. 

pNH02 was built using the pMyNT plasmid backbone (Addgene plasmid #42191), a 

mycobacterial expression vector with a hygromycin selection cassette an acetamidase 

promoter. In brief, pMyNT was digested with NcoI at 37 °C for 4 hours and gel purified. M. 

smegmatis mscL was amplified from genomic DNA by PCR using primers MsMscL_F and 

MsMscL_R, the reactions were gel purified. Following gel purification, the insert was ligated 

to the plasmid backbone using the Clontech In-Fusion HD kit.  

S. aureus R4220 and R4220 ΔmscL (Kouwen et al., 2009), M. smegmatis MC2155 and 

MC2155 ΔmscL, along with E. coli MJF367 (ΔmscL::Cam), MJF451 (ΔmscS) (Levina et al., 

1999) were used; note that only endogenous expression levels (not overexpression) was 

studied in these strains. E. coli MJF455 (ΔmscL::Cam, ΔmscS) (Levina et al., 1999) cell line 

was either used alone for endogenous expression or to host the pb10 expression constructs, 

as noted in text. E. coli strains were inoculated from a single colony and were grown in 

citrate-phosphate-defined media (CphM) pH 7.0, consisting of per liter: 8.57 g of Na2HPO4, 

0.87 g of K2HPO4, 1.34 g of citric acid, 1.0 g NH4SO4, 0.001 g of thiamine, 0.1 g of 

MgSO47H2O, 0.002 g of (NH4) 2SO4.FeSO4.H2O, in a shaker incubator at 37 °C, rotated at 
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250 cycles per minute. Ampicillin was added for strains carrying plasmid constructs (100 

μg/ml) and induced by addition of 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) 

(Anatrace, Maumee, OH). S. aureus strains inoculated from a single colony were grown in 

Lennox Broth medium (LB) (Fisher Scientific, Pittsburgh, PA) at 37 °C, and rotated at 250 

cycles per minute. M. smegmatis strains were grown on 7H10 plates (BD Bioscience, 

Sparks, MD), made per manufacture instructions, for four days at 37 °C, A pre-culture was 

then started from a single colony into 7H9 media consisting per liter: of 4.7 g 7H9 Difco 

Middlebrook powder (BD Bioscience, Sparks, MD), 4ml 50% glycerol and 0.05% tween 80, 

and grown for 72 hours at 37 °C, rotated at 125 cycles per minute. Cultures were then 

diluted 1:40 and grown overnight for 12-14 hours, in the same media and experiments 

performed the next day. 

 

In Vivo Assays  

Minimal inhibitory concentration curves were performed as previously described (Wray et 

al., 2018). Briefly, overnight cultures of constructs in MJF455’s were diluted 1:50 in CphM 

and grown until an OD600 of 0.2 was reached they were then induced by the addition of 1 mM 

isopropyl-β-D-thiogalactopyranoside (IPTG) for 30 minutes. Cultures were diluted 1:200 in 

pre-warmed CphM, 100 µg/ml ampicillin, 2 mM IPTG and 100 µl added to wells of 96 well 

plate (Greiner bio-one, Monroe, NC) containing 100ul of CphM with 011A at two times its 

final concentration solubilized in sterile dimethyl sulfoxide (DMSO) (Sigma,-Aldrich, St. 

Louis, MO), with a final concentration of DMSO at 0.9%. For endogenous expression of 

MscL MJF367, MJF451, MJF455, R4220 and MC2155 strains were used without the 

addition of antibiotics until an OD600 of about 0.35 was reached. Cultures were then diluted in 

the same growth media 1:200 for all strains except M. smegmatis MC2155 which was diluted 

1:2, with or without the antibiotic being tested at two times their final concentrations. Final 

concentrations were: Dihydrostreptomycin sesquisulfate at 2.25 µM or 0.5 uM (Sigma 
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Aldrich St. Louis, MO), kanamycin A at 1 µM (Sigma Aldrich St. Louis, MO), Tetracycline 

Hydrochloride at 0.5 µM (Thermo Fisher Scientific Waltham, MA) and Ampicillin Sodium Salt 

at 2 µM (Thermo Fisher Scientific Waltham, MA). 100 µL of these mixtures were immediately 

added to 100 µL of media with or without compound 011A (2X final concentration), diluted at 

varying concentrations, and placed in a 96 well plate as described above. Note that 

antibiotics were added prior to the 011A compound; in the few experiments where this order 

was reversed with the positively charged DHS or Kan we found that 011A was less effective, 

possibly because 011A permeated the cells, decreased the membrane potential, and thus 

also decreased the local concentration of these antibiotics close to the membrane capacitor. 

The above plates were sealed with a sterile breathable film to prevent evaporation (Axygen, 

Union City, CA), wrapped in aluminum foil and placed in a 37 °C shaker, rotated at 110 

Cycles per minute for 16-17 hours and OD620 was then taken with a Multiskan Ascent 354 

(Thermo Fisher Scientific Waltham, MA) plate reader.  

Growth inhibition at Stationary Phase. For the S. aureus R4220 and R4220 ΔmscL 

strains a single colony was picked for each and grown in LB with an argon gas overlay, 

capped sealed and grown for 24 hours. For the M. smegmatis MC2155 and MC2155 ΔmscL 

strains, pre-cultures were grown and diluted 1:40 as described above. After 24 hours, argon 

was added and tubes were capped and sealed for another 48 hours. All cultures were then 

divided, and either compound 011A at 40 µM or DMSO only (mock), was added to the tubes, 

with a final DMSO concentration of 0.9%. The argon overlay was then replaced, capped and 

sealed in a 1.5 ml tube for 6 hours in a 37 °C shaker. Final OD600 was then taken and 

cultures were diluted 1:20, and then serially diluted six times 1:10 into the same pre-warmed 

growth media. Liquid drops of 5 µl for each dilution were placed on pre-warmed plates of 

either LB (S. aureus Strains) or 7H10 (M. smegmatis strains) and placed in a 37 °C 

incubator. Colony-forming units were then calculated as soon as colonies could be counted 

to determine cell viability.  
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Molecular dynamic (MD) simulations for the passage of DHS through the MscL pore: 

“Passing through” competition. Molecular docking was conducted with a representative 

structure of a 150-ns molecular dynamics trajectory of Eco-MscL with a DHS molecule within 

the pocket formed by the periplasmic loops, as previously described (Wray et al., 2016). The 

binding pocket for 011A was identified by the SiteID module of the Sybyl-X2.11 software 

package and flexible-ligand docking was performed with the Glide module of the 

Schrodinger software package; the sites were as previous (Wray et al., 2016, Wray et al., 

2019). To study how well 011A achieves its adjuvant effect by accelerating the passage of 

known antibiotics into the cytoplasm, we conducted a “passing through” competition with two 

scenarios considered: the passages of DHS through the unbound and 011A-bound Eco-

MscLs. To guarantee the “games” finished within a reasonable time frame, an external 

electric field (0.1 Volt/Å) was applied along the principal axis of the POPC lipid bilayer (Z-

axis) and felt only by DHS. All the simulations started from the same conformation (Fig. 

S5A), the homology model of Eco-MscL, but with different random number seeds for 

assigning initial velocities. For Scenario 2, 011A was bound at the same binding pocket with 

the same binding mode of the best docking pose. The competition rules were listed as the 

follows: (1) the total passing through phase is equally divided into eight sections and each 

section lasts 5 nanoseconds; (2) the competition is over at the end of a section if the 

passage of DHS occurs for either of the two scenarios during this section. The passage of 

DHS through the Eco-MscL was recognized by measuring the distance between the 

coordinate centers of DHS and five Lys residues (106, 242, 378, 514, 650). Those five Lys 

residues are in the loops linking the transmembrane domain and the C-terminal domain 

which forms a cytoplasmic helical bundle. There are four outcomes of each run of 

competition: (1) Outcome 1 (DHS passing through an Eco-MscL without 011A) wins; (2) 

Outcome 2 (DHS passing through a 011A bound Eco-MscL) wins; (3) both win and (4) both 

lose. In total, 36 runs of competition were held to achieve a statistically meaningful result. 
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Figure Legends 

Fig 1. MscL-dependent effects of compound 011A in two pathogenic bacterial models; 

percentage of decreased growth (OD600), relative to non-treated are shown.  

A. Bacterial strain Staphylococcus aureus R4220 WT is shown in red expressing 

endogenous levels of MscL protein while R4220 ΔmscL is shown in black. n=3. 

B. Bacterial strain Mycobacterium smegmatis MC2155 WT is shown in green expressing 

endogenous levels of MscL protein while MC2155 ΔmscL is shown in black. n=4. 

 

Fig 2. Compound 011A decreases viability of pathogenic bacterial models in stationary 

phase in a MscL-dependent manner.  

The percent reduction in CFU’s after treatment with 80 µM of compound 011A after cultures 

have reached stationary phase. Bacterial strains S. aureus R4220 WT and ΔmscL R4220 

are shown in red, M. smegmatis MC2155 WT and MC2155 ΔmscL are shown in green as 

indicated. In the presence of 011A viability decreased in S. aureus WT by ≥40%, while M. 

smegmatis WT showed a ≥50% reduction in viability. Note that WT stains are expressing 
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endogenous levels of MscL. n=3-4, ** p<0.005, ****p <0.00005 as indicated, 2-tailed, paired 

T test.   

 

Fig 3. 011A increases the probability of DHS passing through the channel in MD 

simulations.  

36 sets of simulations were performed, and the number of each result plotted. Paired 

outcome 1 reflects the times when DHS passed through the channel only under the 

condition where compound 011A was bound, while in outcome 2 DHS passage was 

observed independent of 011A binding. In a small percentage of sets, DHS passed under 

both conditions (outcome 3), and under the conditions used, several negatives, where DHS 

did not pass under either condition, were recorded (outcome 4). 

 

Fig 4. Compound 011A can be used as an adjuvant to increase the potency of antibiotics 

when MscL is present; values are expressed as a percentage of growth (OD600), relative to 

non-treated.  

A. Curves for Hin-MscL in the MJF455 strain grown in the presence or the absence of 2.25 

µM DHS.  

B. Curves for Eco-MscL with1 µM kanamycin  

C. Curves for Eco-MscL with 0.5 µM tetracycline.  

D Curves for Eco-MscL with 2 µM ampicillin; note that MscL channels are expressed at 

endogenous protein levels using the null mutants indicated. 

 

Fig 5. Compound 011A can be used as an adjuvant to increase the potency of antibiotics for 

S. aureus and M. smegmatis. Values are expressed as the percentage of decreased growth 

(OD600) in the presence of (i) compound 011A (ii) Tetracycline (Tet) (iii) or a combination of 

both 011A and Tetracycline (011A + Tet); relative to non-treated. A. Bacterial strain S. 

aureus R4220 WT and ΔmscL R4220 are shown in the presence of 011A 80 µm, Tet 0.3 µm 

or the combination of both at the same concentrations as indicated. n=4. ***p< .0005 as 
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indicated, 2-tailed, paired T test. B. Bacterial strain M. smegmatis MC2155 WT and MC2155 

∆mscL are shown in the presence of 011A 40 µm, Tet 0.3 µm or the combination of both at 

the same concentrations as indicated. n=4, *p< .05 as indicated, 2-tailed, paired T test. 
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