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Sodium chloride on the surface of Europa
Samantha K. Trumbo1*, Michael E. Brown1, Kevin P. Hand2

The potential habitability of Europa’s subsurface ocean depends on its chemical composition, which may be 
reflected in that of Europa’s geologically young surface. Investigations using Galileo Near-Infrared Mapping Spec-
trometer data led to the prevailing view that Europa’s endogenous units are rich in sulfate salts. However, recent 
ground-based infrared observations have suggested that, while regions experiencing sulfur radiolysis may contain 
sulfate salts, Europa’s more pristine endogenous material may reflect a chloride-dominated composition. Chlo-
rides have no identifying spectral features at infrared wavelengths, but develop distinct visible-wavelength 
absorptions under irradiation, like that experienced on the surface of Europa. Using spectra obtained with the 
Hubble Space Telescope, we present the detection of a 450-nm absorption indicative of irradiated sodium chloride 
on the surface. The feature correlates with geologically disrupted chaos terrain, suggesting an interior source. The 
presence of endogenous sodium chloride on the surface of Europa has important implications for our under-
standing of its subsurface chemistry.

INTRODUCTION
Beneath its icy crust, Europa hosts a salty, liquid-water ocean in 
contact with a rocky seafloor (1–3), making it an exciting place to 
explore habitability in the solar system. However, the ocean’s poten-
tial to support life relies heavily on its composition and chemical 
energy budget (4, 5), which remain largely unconstrained. Currently, 
our best window to understanding Europa’s ocean chemistry is to 
study the composition of its geologically young and active surface. 
Prevailing interpretation of spectra from the Galileo Near-Infrared 
Mapping Spectrometer (NIMS) suggests a surface dominated by 
three chemical terrains: water ice, sulfuric acid hydrate, and an addi-
tional non-ice material, which, since the time of the Galileo mission, 
has been interpreted as endogenous sulfate salts from the interior 
ocean (6–9). However, while the likely presence of sulfuric acid hydrate 
is predicted as a result of radiolytic chemistry occurring on the heavily 
irradiated and sulfur-bombarded trailing hemisphere (10–12), the 
composition of non-ice material elsewhere is not well constrained 
by the NIMS data. The enduring concept of a native composition 
rich in sulfate salts is largely facilitated by the low spectral resolution of 
NIMS, at which distinct sulfate absorptions are unresolved [e.g., (13)].

Recent ground-based infrared observations, with ~40 times higher 
spectral resolution than NIMS, have revealed an absorption feature 
consistent with magnesium sulfate (14). However, this feature is 
constrained to the sulfur-bombarded trailing hemisphere and spa-
tially coincident with the proposed sulfuric acid hydrate, suggesting 
a radiolytic, rather than endogenous, origin. Furthermore, the same 
observations have shown no evidence of sulfate absorptions in regions 
interpreted to contain endogenous material that has been sheltered 
from sulfur radiolysis (15). In fact, they revealed that the leading 
hemisphere chaos regions are spectroscopically distinct, indicating 
a composition different from both the spectrally icy high latitudes 
of the leading hemisphere and the exogenously altered terrain of the 
trailing hemisphere (15). As chaos terrain is geologically young, 
extensively disrupted, and potentially indicative of locations of sub-
surface upwelling or melt-through [e.g., (16–18)], and as the leading 

hemisphere chaos regions are shielded from the sulfur implantation 
of the trailing hemisphere, the composition of these regions may 
best represent that of Europa’s endogenous material. However, their 
spectra are categorically smooth at higher spectral resolution, lack-
ing any identifiable infrared spectral features other than those of 
water ice. Nevertheless, the unique geology and 1.5- to 4-m spectra 
(15, 19) of leading hemisphere chaos terrain suggest a salty compo-
sition. Chloride salts provide a potential explanation (15), as they are 
among the few salts that are spectrally smooth at infrared wave-
lengths. For the same reason, however, they cannot be confirmed by 
currently available data.

Although spectrally bland in the infrared, alkali chlorides develop 
distinct spectral features at visible wavelengths under particle irra-
diation. The bombarding particles lead to the growth of  “color centers” 
by creating anion vacancies in the crystal structures, which trap free 
electrons and cause compositionally diagnostic absorptions [e.g., 
(20–22)]. Laboratory experiments have demonstrated that color 
centers can form in sodium chloride (NaCl) and NaCl brine evapo-
rites under Europa-like surface conditions (23, 24), producing colors 
in laboratory samples that appear visually similar to those captured 
in Galileo images of Europa’s surface [e.g., (25)]. Spectrally, these colors 
largely result from two distinct absorptions caused by two types of 
color centers—a strong F-center absorption near 460 nm due to indi-
vidual electrons trapped within single Cl− vacancies, and a weaker 
M-center (or F2-center) absorption near 720 nm due to binary 
aggregates of F-centers. To investigate the hypothesis that Europa’s 
endogenous units contain chloride salts, we used the Hubble Space 
Telescope (HST) to search for signatures of these color centers on 
the surface.

RESULTS AND DISCUSSION
Using the Space Telescope Imaging Spectrograph (STIS), we observed 
Europa across four HST visits (Table 1), obtaining the first spatially 
resolved spectral dataset of the entire surface at wavelengths of 300 
to 1000 nm. We observe a broad absorption near 450 nm (Fig. 1A), 
which corresponds well to the F-center absorption of irradiated 
NaCl (23, 24). This feature is located exclusively on the leading 
hemisphere and correlates with chaos terrain (Fig. 2). The deepest 
absorptions fall within the large-scale chaos region Tara Regio, 
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presumably contributing to its distinct yellow color in Galileo 
images of Europa. Clear absorptions are also associated with eastern 
Powys Regio, lenticulated terrain northwest of Tara Regio, and, to a 
much lesser extent, somewhat older terrains of the leading hemisphere. 
This marked correlation with geologically young chaos regions sug-
gests an interior source. Chlorides emplaced onto the surface in these 
locations would be subjected to irradiation by high-energy (greater 
than ~20 MeV) electrons, which, in contrast to most of the imping-
ing sulfur ions and lower-energy electrons [e.g., (9, 26)], primarily 
impact the leading hemisphere (27), thereby providing the necessary 
energy for color center formation. As Tara Regio is the most irradiated 
leading hemisphere chaos region (27), the observed distribution of 
the potential NaCl F-center feature is consistent with a chloride-rich 
composition for the endogenous material identified in infrared 
spectra of all leading hemisphere chaos terrain (15, 19).

Unlike the laboratory spectra, our data show no evidence for an 
NaCl M-center absorption near 720 nm (Fig. 1B and fig. S1). By 
averaging all of the spectra from locations that exhibit the 450-nm 
absorption, weighted by the strength of the feature in each location, 
we conservatively rule out a band strength greater than 0.5%. This 
lack of an M-center absorption is perhaps expected, as the laboratory 
experiments in which the M-center was observed (23, 24) used radia-
tion fluxes 104 to 105 times the true flux experienced on Europa. 
While such high fluxes can accurately simulate many aspects of Europa’s 
radiation chemistry and can achieve doses equivalent to hundreds 

of years on the surface in hours to days of real time, they inaccurately 
reflect kinetic effects controlling the formation and decay of color 
centers. Single-vacancy F-centers appeared immediately under such 
conditions, but binary M-centers took the rough equivalent of 1 year 
on Europa to form (24). Yet, when the radiation was halted, both 
F- and M-centers decayed substantially on time scales of hours (24). 
Some NaCl irradiation experiments, performed under different 
conditions, have observed only F-center production (28, 29). This 
behavior suggests that M-centers would likely never form under the 
low radiation flux at Europa, reflecting competition between their 
slow growth and the contributions of decay processes, such as photo-
bleaching [e.g., (30, 31)], which can influence the relative abundance 
of NaCl color centers. Last, this behavior may also explain the band 
center of the observed 450-nm feature. After the laboratory radia-
tion was halted, the F-center absorption shifted to shorter wave-
lengths as it decayed (24). Thus, as the radiation experienced at 
Europa is negligible relative to the fluxes applied in the laboratory, 
we may expect F-center absorptions on Europa to appear shortward 
of 460 nm. The F-center absorption of irradiated NaCl that was 
allowed to evolve at 100 K without further irradiation (24) corre-
sponds remarkably well to our observed feature (Fig. 1A), although 
it is worth noting that this laboratory spectrum corresponds to irra-
diated anhydrous NaCl crystals in the absence of water ice (24). One 
might instead expect that the low temperatures and icy environment 
of Europa’s surface result in hydrohalite (NaCl⋅2H2O), for which 
color center formation has not been studied in the same way. However, 
laboratory evidence for the rapid dehydration of hydrohalite under 
Europa-like conditions (32) and the formation of F- and M-centers 
at the same band positions in NaCl brine evaporites (23) support 
the applicability of experiments involving anhydrous NaCl.

NaCl provides an elegant explanation for the observed 450-nm 
feature, its geographic distribution, and previous infrared spectra 
interpreted to reflect endogenous material (15, 19). However, alter-
native candidates warrant discussion. The 450-nm feature was 
weakly visible in disk-integrated spectra of Europa’s leading hemisphere 
taken in the 1990s, but was attributed to sulfur-bearing species, despite 

Table 1. HST STIS G430L/G750L observations of Europa.  

Date 
(universal 
time)

Time 
(start/end)

Sub-
observer 

longitude

Sub-
observer 
latitude

Angular size 
of Europa 

(arcseconds)

2017 May 23 00:20/01:41 224 −3.06 0.91

2017 Jun 29 08:19/08:55 47 −2.91 0.82

2017 Aug 1 04:43/05:20 133 −2.91 0.75

2017 Aug 6 12:27/13:47 314 −2.92 0.74

A B

Fig. 1. HST/STIS spectra showing a distinct 450nm spectral feature, consistent with an NaCl F-center absorption, and a clear lack of a 720nm NaCl M-center 
absorption. (A) Single spectrum from within Tara Regio, which exhibits a particularly strong 450-nm absorption. The dashed line is a third-order polynomial continuum 
fit. The continuum-removed feature is included underneath the spectrum. Overlain in red is a continuum-removed laboratory spectrum of irradiated NaCl at 100 K, taken 
from figure 2 of (24). This spectrum corresponds to an NaCl F-center absorption that has evolved in the absence of unrealistic laboratory radiation fluxes. The laboratory 
F-center absorption has been scaled to match the depth of the observed feature. (B) High signal-to-noise spectrum produced by averaging all spectra from locations 
exhibiting a 450-nm feature, weighted by the strength of that feature in each location. The weighted average is divided by the average of all spectra from locations in 
which the 450-nm feature is absent and rescaled to approximate the known Europa continuum. A continuum-removed version is shown underneath the spectrum, where 
the vertical dashed line indicates the anticipated band center at 720 nm.
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poor fits (33). Our dataset, however, shows that the feature is con-
centrated in chaos and separate from the geography of sulfur radiolysis, 
necessitating a separate explanation. Instead, we examine the spectra 
of several other irradiated salts (fig. S2), including magnesium chlo-
ride, potassium chloride, and multiple sulfate and carbonate species 
(23, 29, 34, 35). Of these spectra, only NaCl is consistent with our 
observed feature.

The presence of NaCl on Europa has important implications for 
our understanding of the internal chemistry and its geochemical evolu-
tion through time. Whereas aqueous differentiation of chondritic 
material and long-term leaching from a chondritic seafloor can result 
in a system rich in sulfates (36, 37), more extensive hydrothermal circu-
lation, as on Earth, may lead to an NaCl-rich ocean (38). The plume 
chemistry of Enceladus, which is perhaps the best analog to Europa, 
suggests an NaCl-dominated ocean (39) and a hydrothermally active 
seafloor (40). However, the compositional relationship between Europa’s 
ocean and its endogenous material is unknown, and the surface may 
simply represent the end result of a compositional stratification within 
the ice shell [e.g., (41)]. Regardless of whether the observed NaCl 
directly relates to the ocean composition, its presence warrants a re-
evaluation of our understanding of the geochemistry of Europa.

MATERIALS AND METHODS
We observed Europa with HST/STIS across four visits, the dates, times, 
and geometries of which are given in Table 1. During each visit, we 
stepped the 52″ × 0.1″ slit across the full disk of Europa in both the 
G430L and G750L first-order spectroscopy modes (R ~ 500). Together, 
these settings provided spectra spanning wavelengths of ~300 to 
1000 nm. We acquired spectra at each slit position over 9-s (G750L) 
or 10-s (G430L) integration times. Flux- and wavelength-calibrated 
spectral data products were then delivered after standard reduction 
via the STIS calibration pipeline (calstis). We reprocessed the G750L 
data using the same pipeline but included the calstis defringing pro-
cedures to remove substantial fringes from the longest wavelength 
data. We obtained individual spectra by extracting single rows 
of the two-dimensional spectral images, corresponding to the 
0.05″ pixel-scale (~150-km diffraction-limited spatial resolution at 

450-nm wavelengths). We then divided the ASTM E-490 solar refer-
ence spectrum (42) into the extracted spectra to convert each to 
reflectance and search for absorption features.

To isolate the 450-nm absorption, we performed continuum fit-
ting and removal on each extracted spectrum. We then calculated 
absorption band strengths across the surface. For most spectra, we 
fit a third-order polynomial between 310 and 550 nm, excluding the 
region corresponding to the F-center absorption (350 to 530 nm). 
Small variations on these parameters were made when necessary to 
achieve a satisfactory continuum fit. We then divided each spec-
trum by its continuum fit and integrated the residual absorption to 
calculate the equivalent width (i.e., the width of a 100% absorption 
with the same integrated area). We chose to use a third-order poly-
nomial for the fitting because it better matched the continuum shape, 
particularly for the transition between the trailing and leading 
hemispheres. However, mapping using second-order continua pro-
duced qualitatively identical results. In mapping the calculated band 
strengths, we averaged the values in overlapping regions. We left 
out data very near the limb of Europa, as the spectra are of poorer 
quality and make quantifying weak absorptions difficult.

We attempted to place limits on the absence of a 720-nm M-center 
absorption in our data. To achieve a high signal-to-noise spectrum 
that represents material interpreted to contain NaCl, we averaged 
all spectra from locations where we observed a 450-nm absorption, 
weighted by the strength of the feature in each location. However, 
while the noise in this resulting average was reduced, residual solar lines 
persisted due to the somewhat lower spectral resolution of the solar 
reference spectrum (42). In addition, residual artifacts of the defringing 
process remained. To remove these effects and achieve the highest 
possible quality spectrum, we then divided by the average of all 
spectra from regions where the 450-nm feature is absent. Last, for 
illustration purposes, we scaled the resultant spectrum to approxi-
mate the known continuum level of Europa’s leading hemisphere 
using ground-based data over the same wavelength range (33, 43). 
The result is shown in Fig. 1B. To place a conservative upper 
limit on the presence of a 720-nm absorption, we fit a third-order 
polynomial continuum between 600 and 870 nm, excluding the 
range anticipated for the M-center absorption (640 to 830 nm). We 

Fig. 2. A map of the strength of the 450nm absorption. The observed feature maps solely to the leading hemisphere. Black outlines correspond to large-scale chaos 
regions, mapped approximately from (44). The largest absorptions fall within the chaos region Tara Regio (~85°W), with additional concentration in eastern Powys Regio 
(~125°W). This distribution is separate from the geography of sulfur radiolysis and suggests a subsurface source, consistent with the chloride hypothesis for Europa’s en-
dogenous material. The spatial resolution of the mapped data is ~150 km at the sub-observer point. Background image credit: NASA/JPL/Björn Jónsson/Steve Albers.
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then removed this continuum and displayed the result beneath the 
spectrum in Fig. 1B. We estimated an upper limit of a 0.5% band 
strength based on qualitative uncertainties in the continuum shape.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/6/eaaw7123/DC1
Fig. S1. Representative HST/STIS spectra of the three chemical terrains on the surface of Europa.
Fig. S2. Laboratory spectra of select irradiated salts.
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