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A dark force can impact the cosmological history of dark matter (DM), both explaining observed

cores in dwarf galaxies and setting the DM relic density through annihilation to dark force bosons.

For GeV–TeV DM mass, DM self-scattering in dwarf galaxy halos exhibits quantum mechanical

resonances, analogous to a Sommerfeld enhancement for annihilation. We show that a simple model of

DM with a dark force can accommodate all astrophysical bounds on self-interactions in halos and explain

the observed relic density, through a single coupling constant.
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Introduction.—The paradigm of cold collisionless dark
matter (DM) has been extraordinarily successful in
explaining astrophysical observations of structure, from
the recombination epoch to the present large scale structure
of the Universe. Although all evidence for DM is from its
gravitational influence, it is expected that DM possesses
some type of interactions beyond gravity. Nongravitational
interactions are required to produce DM particles in the
early Universe and ultimately determine the DM density
observed today.

Despite its great success, it is unclear whether cold
collisionless DM can successfully account for the small
scale structure of the Universe, which may indicate that
other interactions besides gravity play a role in structure
formation. Precision observations of dwarf galaxies by The
HI Nearby Galaxy Survey show DM mass distributions
with flat cores, compared to steep cusps predicted by
collisionless DM simulations [1]. The gravitational effect
of massive baryonic outflows from supernovae can poten-
tially flatten central DM cusps [2], but it is unknown
whether this effect can explain the observed cores in other
less luminous (more DM-dominated) dwarf galaxies [3].
Another discrepancy is the apparent underabundance of
Milky Way (MW) satellite dwarf galaxies, compared to
predictions from collisionless DM simulations [4]. The
missing low-mass satellites may simply be fainter than
expected if energy injection from astrophysical processes
strips away interstellar gas and suppresses star formation
[5]. However, this mechanism cannot explain the apparent
absence of the most massive subhalos predicted by simu-
lations [6] that are ‘‘too big to fail’’ in star formation and
are too dense to host any observed MW satellite, according
to their predicted stellar circular velocities [7]. The tension
can be reduced when the appropriate scatter in the subhalo
population of halos is taken into account [8], though this
may raise the question why the Milky Way halo should be
statistically special.

These small scale structure anomalies can be explained
if DM, denoted X, is self-interacting [9]. Recent N-body

simulations have shown that a DM self-interaction cross
section per unit mass �T=mX � 0:1–10 cm2=g can flatten
the central density within dwarf galaxies and subhalos to
solve the core/cusp problem [10,11]. Moreover, the most
massive subhalos can be reconciled with the observed MW
satellites since stellar circular velocities are reduced in
their central cores [10,11]. At the same time, a variety of
constraints from larger scales (e.g., halo shapes of elliptical
galaxy and cluster halos [12], the Bullet cluster [13], sub-
halo evaporation [14]) have suggested that �T=mX must be
smaller on these scales, motivating a velocity-dependent
force [15,16] that gives �T=mX � 10 cm2=g on dwarf
scales [10], but is suppressed on larger scales. However,
simulations with a constant cross section have shown that
the aforementioned constraints are in fact much weaker
than previously thought, and a constant of �T=mX �
0:1 cm2=g is sufficient to solve small scale structure
anomalies while evading other bounds [11].
Given these results, it is important to explore the particle

physics nature of DM self-interactions. For typical weakly
interacting DM models, self-scattering has a weak-scale
cross section �T � 10�36 cm2, far too small to play a
role in galactic dynamics. An MeV-scale dark force
mediator (denoted �) is needed to give a much larger
scattering cross section, �T � 1 cm2ðmX=gÞ �
2� 10�24 cm2ðmX=GeVÞ, required to leave observable
signatures on DM halos [15–19]. A perturbative calcula-
tion for �T from � exchange gives �T � 4��2
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in the desired range. However, this calculation breaks
down for m� & �XmX, and nonperturbative effects

become important. These effects have not been studied in
general and yet are crucial for connecting dark forces to
small scale structure. In particular, DM self-scattering
exhibits quantum mechanical resonances, analogous to
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resonant Sommerfeld enhancement for annihilation, as we
show below.

In this Letter, we present a simple model where a dark
force can simultaneously set the DM abundance and solve
small scale structure anomalies. In the early Universe,
X �X ! �� provides an efficient annihilation channel for
obtaining the relic density during freeze-out. This same
coupling resolves structure problems through scattering on
small scales while remaining consistent with bounds on
MW and cluster scales. We consider both symmetric and
asymmetric DM models that involve attractive and repul-
sive DM self-interactions. In calculating the scattering
cross section, we take a numerical approach and cover
the full parameter space including the nonperturbative
quantum mechanical regime, which has not been explored
before. We show that resonances can arise for a wide range
of DM mass, mX � GeV–TeV. Furthermore, our numeri-
cal calculation confirms analytical formulas widely used in
the literature for computing �T in the classical and Born
limits.

DM annihilation and elastic scattering.—We consider a
Dirac fermion DM particle X, coupled to a dark force
vector boson � with mass m� via

L int ¼ gX �X��X��; (2)

where gX is the coupling constant. We assume that X is
weakly coupled to the standard model [e.g., through kinetic
mixing of�withUð1ÞY hypercharge] so that X thermalizes
with the visible sector in the early Universe [20].

DM freeze-out is governed by the velocity-weighted
annihilation cross section for X �X ! ��, given by
h�vian � ��2

X=m
2
X, where �X � g2X=ð4�Þ. For symmetric

DM, where DM consists of equal densities of X and �X, we
require h�vian � 6� 10�26 cm3=s to obtain the observed
relic density. For asymmetric DM, the present DM density
is determined by a primordial asymmetry between X and
�X, in analogy to the baryon asymmetry. In this case, we
require larger h�vian to deplete the symmetric X, �X den-
sity, leaving behind only the residual asymmetric X density
as DM. Thus, we have �X * 4� 10�5ðmX=GeVÞ [21],
with the lower bound saturated for symmetric DM.
Asymmetric DM allows for a broader region of parameter
space, since annihilation X �X ! �� sufficient to set the
relic density only places a lower bound on �X, rather than
fixing it to a particular value as a function of mX.

In our model, the same dark force carrier � also medi-
ates DM self-interactions. Here, the relevant quantity is the
scattering cross section weighted by the momentum trans-
fer �T ¼ R

d�ð1� cos�Þd�=d�, where d�=d� is the
usual differential cross section. The nonrelativistic inter-
action between two DM particles mediated by � is
described by a Yukawa potential

VðrÞ ¼ ��X

r
e�m�r: (3)

Since � is a vector, XX ! XX scattering is repulsive (þ),
while X �X ! X �X is attractive (�). For symmetric DM,
both attractive (X- �X) and repulsive (X-X or �X- �X) interac-
tions are present; for asymmetric DM, where DM consists
of only X after the freeze-out, self-interactions are only
repulsive.
Since both scattering and annihilation occur through a

common interaction, the cross sections are related. When
� is massless, the scattering cross section scales roughly
as �T � h�vian=v4. If this relation holds to dwarf scales
(v� 10 km=s), the transfer cross section is �T=mX �
103 cm2=g ðTeV=mXÞ, which is too large compared to
that preferred by the simulation results [10,11] unless
the DM mass is larger than 100 TeV. Therefore, a
nonzerom� is essential, softening the velocity dependence

of �T at small v values due to the finite range of the dark
force.
The calculation of �T for a Yukawa potential with

m� � 0 is nontrivial. We collect analytical results, where

applicable, in the Appendix. Within the Born approxima-
tion (valid for �XmX=m� � 1), �T can be computed

perturbatively. Outside the Born regime, multiple � scat-
terings lead to a nonperturbative modification of the DM
two-body wave function, and an analytical approximation
has been obtained only within the classical limit
(mXv=m� � 1). However, outside the Born and classical

regimes, no analytic description is possible, and one must
compute �T by solving the Schrödinger equation numeri-
cally using a partial wave analysis [17,22]. Within this
‘‘resonant’’ regime,�T exhibits a rich structure of quantum
mechanical resonances (for the attractive potential case)
[23]. Computing�T within this regime is crucial for under-
standing for what parameters a dark force can simulta-
neously explain small scale structure problems and the
DM relic density.
To illustrate the different regimes and behaviors of DM

self-scattering, Fig. 1 shows �T=mX as a function of v for
an attractive potential, for several parameter choices. The
blue (green) line shows the analytic result for �T for a
parameter point within the Born (classical) regime (see
Appendix); these formulas are in excellent agreement
with our numerical results, shown by the blue dots (green
stars). The red (solid, dot-dashed, and dashed) lines corre-
spond to three parameter points within the resonant regime.
The solid red line shows an s-wave resonance, with �T

growing as v�2 at small velocity. The dot-dashed line
shows a p-wave resonance, where �T shows a resonant
peak at finite v. These two cases illustrate how �T may be
enhanced at dwarf scales due to resonances. The dashed
line shows an example with an antiresonance (the
Ramsauer-Townsend effect), which can suppress �T at
small v values. All of these parameters have been chosen
to give the correct DM relic density and �T=mX �
0:1–10 cm2=g to solve structure problems on dwarf scales
(except for the antiresonance case).
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Results.—We show the complete parameter space where
a dark force can account for DM small scale structure and
relic density. For scattering, to compare with astrophysical
bounds, we consider the velocity-averaged cross section

h�Ti ¼
R
d3v�Te

�ð1=2Þv2=v2
0=ð2�v2

0Þ3=2, where v0 is the

most probable velocity for a DM particle. Figure 2 shows

contour plots of h�Ti for two cases, symmetric and asym-
metric DM, in the mX-m� parameter space.

For symmetric DM (Fig. 2, left), we take the average of
attractive and repulsive cross sections, �T ¼ ð�att

T þ
�

rep
T Þ=2, with �X chosen to reproduce the observed DM

relic density at each point. The blue shaded contour regions
show h�Ti=mX on dwarf scales (v0 ¼ 10 km=s) in the
ranges 0:1–1 cm2=g (light) and 1–10 cm2=g (dark) to solve
small scale structure problems. The lower range is preferred
for a constant cross section; Ref. [11] found 0:1 cm2=g
matched small scale structure observations, whereas
1 cm2=g caused too low central densities in dwarf spher-
oidals. Simulationswith av-dependent classical (attractive-
only) force preferred the upper range (or larger) [10].
The red (green) contour lines show h�Ti=mX ¼ 0:1
and 1 cm2=g on MW (cluster) scales with v0 ¼
200 ð1000Þ km=s, showing the approximate upper limits
from observations. Reference [11] found that 1 cm2=g pro-
duced a too-small central DMdensity in galaxy clusters and
is only marginally consistent with MW-scale halo shape
ellipticity constraints, whereas 0:1 cm2=g is consistent with
these constraints [11]. In the resonant regime, we have
computed �T numerically. This region shows a pattern of
resonances formX � 10 GeV–TeV, where�att

T is enhanced,
allowing for greater mX values for fixed h�Ti=mX. The
dashed lines indicate where we use analytic formulas to
extrapolate our results into the Born (mX � m�=�X) and

classical (mX � m�=v) regimes. Our numerical calcula-

tionmaps smoothly into these regions, again confirming our
agreement with the analytic formulas [24]. The crosses
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FIG. 2 (color online). Symmetric (left) and asymmetric (right) DM parameter space in mX-m� plane. Blue shaded regions show
where DM self-scattering solves dwarf-scale structure anomalies, whereas red (green) lines show bounds from Milky Way (cluster)
scales. Numerical values indicate h�Ti=mX in cm2=g on dwarf (‘‘dw’’), Milky Way (‘‘MW’’), and cluster (‘‘cl’’) scales. For symmetric
DM, �X is fixed to obtain the observed relic density; for asymmetric DM, �X ¼ 10�2 is fixed to deplete X, �X density for mX &
300 GeV (dotted line). Dashed lines show extrapolation using analytic formulas, whereas the ‘‘x’’ marks indicate the parameter points
utilized in Fig. 1.

dwarf Milky Way cluster

Bornresonant

classical

10 100 1000
10 5

10 4

10 3

10 2

0.1

1

10

100

v km s

T
m

X
cm

2
g

at
tr

ac
tiv

e
on

ly

FIG. 1 (color online). Velocity-dependence of �T for sample
parameters within different regimes. Blue line shows Born
formula (A1), in agreement with numerical results (blue dots),
formX ¼ 4 GeV,m� ¼ 7:2 MeV, �X ¼ 1:8� 10�4. Green line

shows classical formula (A2), in agreement with numerical
results (stars), for mX ¼ 2 TeV, m� ¼ 1 MeV, �X ¼ 0:05.

Red lines show �T in the resonant regime for mX ¼ 100 GeV,
�X ¼ 3:4� 10�3, illustrating s-wave resonance (solid, m� ¼
205 MeV), p-wave resonance (dot-dashed, m� ¼ 20 MeV), and

s-wave antiresonance (dashed, m� ¼ 77 MeV).
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show the example parameters from Fig. 1 for the resonant
(mX ¼ 100 GeV), Born (mX ¼ 4 GeV), and classical
(mX ¼ 2 TeV) regimes.

Most of these resonant features correspond to s-wave
resonances, and their location in parameter space is given
analytically by mX � �2n2m�=ð6�XÞ, where n ¼ 1, 2, 3,

etc. This condition was derived for Sommerfeld enhance-
ments in annihilation [25], but the same bound state
formation arises in scattering as well. Taking �X ’ 4�
10�5ðmX=GeVÞ to fix the relic density, we obtain mX �
6:4 GeVðm�=MeVÞ1=2n. This condition matches the loca-

tions of resonances in our numerical results.
For asymmetric DM (Fig. 2, right), we take a repulsive-

only cross section�T ¼ �rep
T , and no resonances occur. We

fix �X ¼ 10�2, which provides sufficient depletion of the
symmetric X, �X density for mX & 300 GeV (dotted line);
above this line, asymmetric DM freeze-out would require
an additional annihilation channel or a larger �X (which
changes the h�Ti contours). Numerical and analytic results
for h�Ti=mX are indicated as in the symmetric case.

From sub-GeV to multi-TeV DMmass, our results show
that a dark force can successfully explain both DM struc-
ture and the DM relic density, for m� � 100 keV� GeV.

ThemX & GeV region corresponds to the Born limit; here,
contours at different v0 values converge, indicating that�T

is approximately constant in v. At larger mX, �T is more
suppressed at larger v0. Therefore, possible evidence for
DM self-interactions on cluster scales [26] may point
toward light DM.

Conclusions.—Dark forces may play an important role
in the dynamics of DM, analogous to electromagnetic or
nuclear forces in the visible sector. We have shown that a
simple generic model with a dark force can simultaneously
explain the DM relic abundance during freeze-out and
solve small scale structure anomalies in dwarf galaxies
and subhalos, while satisfying constraints on larger galaxy
and cluster scales. We have presented a comprehensive
picture of the parameter space of our model, considering
both symmetric and asymmetric DM, with attractive or
repulsive dark forces. Within the full parameter space
spanning these different cases, we have shown that the
DM relic density and self-scattering can accommodate a
wide range of DM and mediator masses. Importantly for
narrowing this range, future astrophysical data favoring or
more strongly excluding self-interactions on larger scales
would prefer mX & GeV or mX * GeV, respectively.
However, N-body simulations over a larger parameter
region, including within the resonant regime, would be
necessary for detailed comparison with observations.
Experimental tests may also detect the dark force directly,
depending on its coupling to visible matter [27].
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Appendix.—We collect analytic formulas for �T used in

the literature. In the Born regime (�XmX=m� � 1), for

both attractive and repulsive forces, a perturbative calcu-
lation gives [15]

�Born
T ¼ 8��2

X

m2
Xv

4
½logð1þ R2Þ � R2=ð1þ R2Þ	; (A1)

where R � mXv=m�. In the classical regime (mXv=m� �
1), a solution to the classical equations of motion gives for
an attractive potential [15,28]

�clas
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8>>><
>>>:
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�2 lnð1þ ��1Þ; � & 10�1
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2 ln
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; � * 103;

(A2)

where� � 2�Xm�=ðmXv
2Þ, and for the repulsive case [29]
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