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Searches for continuous gravitational waves from rapidly spinning neutron stars normally assume that
the star rotates about one of its principal axes of moment of inertia, and hence the gravitational radiation
emits only at twice the spin frequency of the star, 2f⋆. The superfluid interior of a star pinned to the crust
along an axis nonaligned with any of its principal axes allows the star to emit gravitational waves at both f⋆
and 2f⋆, even without free precession, a phenomenon not clearly observed in known pulsars. The dual-
harmonic emission mechanism motivates searches combining the two frequency components of a signal to
improve signal-to-noise ratio. We describe an economical, semicoherent, dual-harmonic search method,
combined with a maximum likelihood coherent matched filter, F -statistic, and improved from an existing
hidden Markov model (HMM) tracking scheme to track two frequency components simultaneously. We
validate the method and demonstrate its performance through Monte Carlo simulations. We find that for
sources emitting gravitational waves at both f⋆ and 2f⋆, the rate of correctly recovering synthetic signals
(i.e., detection efficiency), at a given false alarm probability, can be improved by ∼10%–70% by tracking
two frequencies simultaneously compared to tracking a single component only. For sources emitting at 2f⋆
only, dual-harmonic tracking only leads to minor sensitivity loss, producing ≲10% lower detection
efficiency than tracking a single component. In directed continuous-wave searches where f⋆ is unknown
and hence the full frequency band is searched, the computationally efficient HMM tracking algorithm
provides an option of conducting both the dual-harmonic search and the conventional single frequency
tracking to obtain optimal sensitivity, with a typical run time of ∼103 core-hr for one year’s observation.
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I. INTRODUCTION

Continuous waves, produced by rapidly rotating neutron
stars, including isolated stars and the ones in binary
systems, are persistent, quasimonochromatic gravita-
tional-wave signals detectable by ground-based interfer-
ometers such as the Laser Interferometer Gravitational
Wave Observatory (LIGO) and the Virgo detector [1–3].
Depending on the generation mechanisms, the neutron stars
are expected to emit gravitational radiation at specific
multiples of the star’s spin frequency, f⋆ [3,4]. A persistent
thermoelastic or magnetic mass quadrupole produces
emission at f⋆ and/or 2f⋆ [5–9]. An r-mode current
quadrupole produces emission roughly at 4f⋆=3 [10–13].
A current quadrupole due to nonaxisymmetric circulation
in the superfluid interior pinned to the crust emits at f⋆
[14–17]. The emission spectrum of a triaxial star may
contain peaks at more frequencies, depending on the source
orientation.

In most of the continuous-wave searches to date, an
optimal scenario of a perpendicular rotor spinning about
one of its principal axes of moment of inertia is considered,
and hence the gravitational waves are only emitted at 2f⋆
[3]. More generally, when the star’s rotation axis and its
principal axis of the moment of inertia do not coincide,
spanning an angle θ, a nonaligned rotor freely precesses,
and emits gravitational waves mainly at f⋆ and 2f⋆,
and weakly at a number of other frequencies [9,18–21].
However, there is no clear observational evidence of
free precession in the population of known pulsars
(although see Refs. [22–27]), which is one of the reasons
that a perpendicular rotor is generally considered in most
continuous-wave searches.
Jones [28] considered a model that a neutron star

contains a superfluid interior pinned to the solid crust
along an axis that is not aligned with any of the star’s
principal axes of moment of inertia. The pinned superfluid
inside the crust adds extra angular momentum to the
system, such that the star’s total angular moment vector
coincides with its rotation axis. Hence the star can steadily*lssun@caltech.edu
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rotate without free precession, even though none of its
crustal principal axes is aligned with its rotation axis. In this
case, the gravitational-wave emission is at both f⋆ and 2f⋆.
Unlike a triaxial precessing star, the gravitational-wave
spectrum of a triaxial star with pinned superfluid interior
does not involve weak emission at frequencies in addition
to f⋆ and 2f⋆. In a special case, when the star is a
nonperpendicular biaxial rotor, the signal waveform pro-
posed by Ref. [28], composed of two frequency compo-
nents, is identical to that from a biaxial precessing star [18].
The pinned superfluid model has been adopted in

targeted searches for known pulsars [29,30], using eph-
emerides measured electromagnetically from absolute
pulse numbering. In the data collected by the initial
LIGO in the fifth science run (S5), searches were carried
out for 43 known pulsars at both f⋆ and 2f⋆, and the first
upper limits on the gravitational-wave strain amplitude at
two frequencies were set [30]. Recently, searches have been
conducted for 222 known pulsars at both f⋆ and 2f⋆, using
the most sensitive data from the first two observing runs of
Advanced LIGO (O1 and O2), and new upper limits have
been placed on the gravitational-wave strain amplitude,
mass quadrupole moment, and fiducial ellipticity [31].
However, in directed continuous-wave searches, search
methods scan templates without guidance from an electro-
magnetically measured ephemeris due to the lack of timing
data, although the sky position of the source can be known
precisely from photon astronomy. Hence directed searches
are generally more expensive than targeted searches. All of
the existing directed searches assume the 2f⋆ only emis-
sion for simplicity [3,32–34].
In this paper, we introduce an approach based on a

hidden Markov model (HMM) [35], which provides an
economical solution to track both f⋆ and 2f⋆ simulta-
neously in a stack-slide-based semicoherent directed
search. A HMM tracks unobservable, time-varying signal
parameters (hidden states) by relating them to the observed
data through a likelihood statistic in a Markov chain. The
Viterbi algorithm [36] provides a computationally efficient
HMM solution, finding the most probable sequence of
hidden states. The technique was applied to a search for
continuous waves from the most luminous low-mass x-ray
binary, Scorpius X-1, in the Advanced LIGO O1 run
[37,38], and a search for long-transient signals from a
postmerger remnant of the binary neutron star merger
GW170817 in O2 [39,40]. The technique is also proposed
as an economical alternative to other stack-slide-based
semicoherent methods in young neutron star searches
[41]. Here we extend the algorithm to dual-harmonic
tracking, which takes into consideration the model of a
nonperpendicular biaxial rotor in addition to the conven-
tional perpendicular biaxial rotor model in directed continu-
ous-wave searches, without introducing much additional
computing cost.Wedemonstrate the sensitivity improvement
through systematic simulations.

The structure of the paper is as follows. In Sec. II, we
review the signal model of gravitational waves from a
neutron star emitting at both f⋆ and 2f⋆. We briefly
describe a frequency domain maximum likelihood matched
filter F -statistic in Sec. III. In Sec. IV, we formulate the
dual-harmonic HMM tracking scheme, implement a semi-
coherent search strategy, and discuss the analytic path
probability distribution. In Sec. V, we quantify the sensi-
tivity improvement of tracking two frequency components
compared to tracking a single component only through
Monte Carlo simulations. The computing cost and potential
applications of the method are discussed in Sec. VI.
A summary of the conclusions is given in Sec. VII.

II. SIGNAL MODEL

In this section, we review the phase of the continuous
wave signal observed at the detector on Earth (II A),
and describe three signal models: a perpendicular biaxial
rotor (II B), a nonperpendicular biaxial rotor (II C), and a
triaxial nonaligned rotor (II D).

A. Signal phase

Taking into consideration the Doppler modulation of the
observed signal frequency due to the motion of both the
Earth and the neutron star with respect to the solar system
barycenter (SSB), the signal phase observed at the detector
is given by [42]

ΦðtÞ ¼ Φ0 þ 2π
Xs
k¼0

fðkÞ⋆ tkþ1

ðkþ 1Þ!þ
2π

c
n̂ · r⃗ðtÞ

Xs
k¼0

fðkÞ⋆ tk

k!
; ð1Þ

where Φ0 is the initial phase at reference time t ¼ 0, fðkÞ⋆ is
the kth time derivative of the spin frequency of the neutron
star at t ¼ 0, n̂ is the unit vector pointing from the SSB to
the star, r⃗ðtÞ is the position vector of the detector relative to
the SSB, and c is the speed of light.

B. Perpendicular biaxial rotor

Let I1, I2, and I3 be the three principal moments of
inertia of the star, the simplest model is a perpendicular
biaxial rotor with I1 ¼ I2, equivalent to a triaxial rotor
spinning about one of the principal axes. The dimensionless
amplitude of the gravitational-wave signal is

h0 ¼
16π2f2⋆ðI3 − I1Þ

r
; ð2Þ

where r is the distance from the Earth to the star. The
gravitational-wave emission is at 2f⋆ only, with plus and
cross polarized amplitudes,

h2þ ¼ 1

2
h0ð1þ cos2ιÞ cos 2Φ; ð3Þ
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h2× ¼ h0 cos ι sin 2Φ; ð4Þ

where ι is the inclination angle of the source. The signal can
be written in the form

hðtÞ ¼
X4
m¼1

AmhmðtÞ; ð5Þ

where Am denotes the amplitudes, depending on h0, Φ0, ι,
and the wave polarization angle ψpol. They are associated
with the linearly independent components,

h1ðtÞ ¼ aðtÞ cosΦðtÞ; ð6Þ

h2ðtÞ ¼ bðtÞ cosΦðtÞ; ð7Þ

h3ðtÞ ¼ aðtÞ sinΦðtÞ; ð8Þ

h4ðtÞ ¼ bðtÞ sinΦðtÞ; ð9Þ

where aðtÞ and bðtÞ are the antenna-pattern functions
defined by Eqs. (12) and (13) in Ref. [42], and ΦðtÞ is
the signal phase given by Eq. (1). The four-component
model is generally applied in directed continuous-wave
searches [3].

C. Nonperpendicular biaxial rotor

We now consider a nonperpendicular biaxial rotor, when
θ ≠ π=2. The gravitational-wave emission is at both f⋆ and
2f⋆, and the waveform is given by [42]

h2þ ¼ 1

2
h0ð1þ cos2 ιÞ sin2 θ cos 2Φ; ð10Þ

h2× ¼ h0 cos ι sin2 θ sin 2Φ ð11Þ

h1þ ¼ 1

8
h0 sin 2ι sin 2θ sinΦ; ð12Þ

h1× ¼ 1

4
h0 sin ι sin 2θ cosΦ: ð13Þ

The four components in Eqs. (6)–(9) become eight,

hðtÞ ¼
X2
l¼1

X4
m¼1

AlmhlmðtÞ: ð14Þ

The amplitudes Alm, depending on h0, Φ0, ι, ψpol, and θ,
are associated with the eight linearly independent compo-
nents at both f⋆ and 2f⋆,

hl1ðtÞ ¼ aðtÞ cos lΦðtÞ; ð15Þ

hl2ðtÞ ¼ bðtÞ cos lΦðtÞ; ð16Þ

hl3ðtÞ ¼ aðtÞ sin lΦðtÞ; ð17Þ

hl4ðtÞ ¼ bðtÞ sin lΦðtÞ: ð18Þ

D. General triaxial nonaligned model

A general gravitational-wave signal model for a triaxial
star (I1 ≠ I2 ≠ I3), whose spin axis is not aligned with any
principal axis, consists of one additional dimensionless
amplitude in addition to Eq. (2):

h00 ¼
16π2f2⋆ðI2 − I1Þ

r
: ð19Þ

The components of the gravitational-wave signal are in a
more complicated form [43]:

h2þ ¼ 1

2
ð1þ cos2ιÞf½h00ðsin2ψ − cos2ψcos2θÞ

− h0sin2θ� cos 2Φþ h00 sin 2ψ cos θ sin 2Φg; ð20Þ

h2× ¼ − cos ιfh00 sin 2ψ cos θ cos 2Φ

− ½h00ðsin2ψ − cos2ψcos2θÞ
− h0sin2θ� sin 2Φg; ð21Þ

h1þ ¼ 1

4
sin ι cos ι½h00 sin 2ψ sin θ cosΦ

þ ðh00cos2ψ − h0Þ sin 2θ sinΦ�; ð22Þ

h1× ¼ −
1

4
sin ι½ðh00cos2ψ − h0Þ sin 2θ cosΦ

− h00 sin 2ψ sin θ sinΦ�; ð23Þ

where ψ is the other orientation angle of the triaxial rotor in
the frame of the principal axes in addition to θ.
This triaxial nonaligned model can be regarded as a

superposition of two signals from two nonperpendicular
biaxial rotors (Sec. II C). Reference [30] demonstrates that
it is difficult to distinguish between two signals described
by Eqs. (10)–(13) and Eqs. (20)–(23), even with high
signal-to-noise ratio (SNR). We note that Eqs. (20)–(23) are
only valid for the pinned superfluid model proposed by
Ref. [28] without free precession. More generally, the hþ
and h× signal components from a star involving free
precession can be written in the form [19]

hþ ¼ −
1

r
½ðRyμ cos ι −Rzμ sin ιÞ

× ðRyν cos ι −Rzν sin ιÞ −RxμRxν�Aμν; ð24Þ

h× ¼ 2

r
ðRyμ cos ι −Rzμ sin ιÞRxνAμν; ð25Þ
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where amplitudes Aμν are functions of angular velocity components in the star’s body frame and the three principal
moments of inertia, defined by Eq. (21) in Ref. [19]. The amplitudesAμν are associated with the rotation matrixR in terms
of the Euler angles θ, ψ , and φ, given by [19]

R ¼

0
B@

cosψ cosφ − cos θ sinψ sinφ − sinψ cosφ − cos θ cosψ sinφ sin θ sinφ

cosψ sinφþ cos θ sinψ cosφ − sinψ sinφþ cos θ cosψ cosφ − sin θ cosφ

sin θ sinψ sin θ cosψ cos θ

1
CA: ð26Þ

By substituting R into Eqs. (24) and (25), the resulting
gravitational-wave emission spectrum contains peaks in
addition to f⋆ and 2f⋆ [9,19–21]. In the case of small θ,
small oblateness, and weak nonaxisymmetry, the first-order
contribution peaks are at 2f⋆ and f⋆ þ fprec ≈ f⋆, where
fprec is the star’s precessing frequency [19]. The second-
order contribution peaks appear to be sidelobes of the first-
order peaks, e.g., at 2f⋆ þ 2fprec [21].
In this paper, we focus on comparing a nonperpendicular

biaxial rotor (Sec. II C) to a perpendicular biaxial rotor or a
triaxial aligned rotor (Sec. II B; the conventional model
adopted in continuous-wave searches). We parametrize the
signal waveforms using Eqs. (3) and (4), and (10)–(13),
as described in Ref. [42].1

III. COHERENT MATCHED FILTER:
F -STATISTIC

The time-domain data collected by a detector takes the
form

xðtÞ ¼ hðtÞ þ nðtÞ; ð27Þ

where nðtÞ stands for stationary, additive noise. We define a
scalar product ð·j·Þ as a sum over single-detector inner
products,

ðxjyÞ ¼
X
X

ðxXjyXÞ ð28Þ

¼
X
X

4ℜ
Z

∞

0

df
x̃XðfÞỹX�ðfÞ

SXh ðfÞ
; ð29Þ

where X indexes the detector, SXh ðfÞ is the single-sided
power spectral density (PSD) of detector X, the tilde
denotes a Fourier transform, and ℜ returns the real part
of a complex number [44]. The likelihood function of
detecting a signal in data xðtÞ is given by [42]

lnΛ ¼ ðxjhÞ − 1

2
ðhjhÞ: ð30Þ

The two frequency components of a gravitational-wave
signal given by Eq. (14) are in narrow bands around f⋆ and
2f⋆. Hence to a good approximation, we can write [42]

lnΛ ≈ ðxjh1Þ −
1

2
ðh1jh1Þ þ ðxjh2Þ −

1

2
ðh2jh2Þ: ð31Þ

The F -statistic is a frequency-domain estimator maximiz-
ing lnΛ with respect to Alm.
Usually in F -statistic-based searches, it is assumed that

the gravitational-wave emission is only at 2f⋆ (Sec. II B).
The F -statistic is expressed in the form

F 2 ¼
1

2
xμMμνxν; ð32Þ

where we write xμ ¼ ðxjh2μÞ, and Mμν denotes the matrix
inverse of Mμν ¼ ðh2μjh2νÞ. Assuming the noise nðtÞ is
Gaussian, the random variable 2F 2 follows a central chi-
squared distribution with 4 degrees of freedom (d.o.f.)
without a signal, whose probability density function
(PDF) is

pð2F 2Þ ¼ χ2ð2F 2; 4; 0Þ: ð33Þ

With a signal present in Gaussian noise, the chi-squared
distribution of 2F 2 is noncentral, viz.

pð2F 2Þ ¼ χ2ð2F 2; 4; ρ22Þ; ð34Þ

with noncentrality parameter [42]

ρ22 ¼
K2h20Tcoh

Shð2f⋆Þ
; ð35Þ

where the constant K2 depends on ι, the sky location of the
source, and the number of detectors, and Tcoh is the
coherent time interval over which F 2 is computed. Here
we assume the same single-sided PSD, ShðfÞ, in all
detectors. The optimal SNR equals ρ2.
To consider a dual-harmonic signal at both f⋆ and 2f⋆

with eight nonindependent amplitudes Alm, the optimal
matched filter maximizing Eq. (31) needs to be obtained
through prohibitively expensive numerical calculation,
taking into consideration the five parameters (h0, Φ0, ι,
ψpol, and θ) that Alm depend on. To make a search

1A reformulation of the waveform parameters is given by
Ref. [43], which is adopted in some of the targeted known pulsar
searches [30,31]. The two sets of parameters can be transformed
interchangeably for comparison purposes.
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computationally feasible, a reduced likelihood function is
used to compute the F -statistic, assuming that Alm are
independent with respect to h0, Φ0, ι, ψpol, and θ. The two
terms in Eq. (31), ðxjh1Þ − 1

2
ðh1jh1Þ and ðxjh2Þ − 1

2
ðh2jh2Þ,

are maximized independently with respect to Alm in two
separate narrow bands, giving the total F -statistic [42]

F ¼ F 1 þ F 2; ð36Þ

where F 1 is computed in the same way as (32) but by
replacing the h2 component with h1. With a dual-harmonic
signal present in Gaussian noise and assuming the same
ShðfÞ in all detectors, the random variable 2F follows a
noncentral chi-squared distribution with 8 d.o.f., and the
noncentrality parameter is given by [42]

ρ20 ¼ ρ21 þ ρ22; ð37Þ

where

ρ21 ¼
K1h20Tcoh sin2 2θ

Shðf⋆Þ
; ð38Þ

and

ρ22 ¼
K2h20Tcoh sin4 θ

Shð2f⋆Þ
: ð39Þ

In Eqs. (38) and (39), K1 and K2 both depend on ι, the sky
location of the source, and the number of detectors.
In this paper, we leverage the existing, fully tested

F -statistic software infrastructure in the LSC Algorithm
Library Applications (LALApps)2 to compute F as a
function of frequency over Tcoh [45]. The software operates
on the raw data collected by the interferometers in the form
of short Fourier transforms (SFTs), usually with length
TSFT ¼ 30 min for each SFT.

IV. DUAL-HARMONIC CONTINUOUS-WAVE
SIGNAL TRACKING

A. HMM formulation

A HMM is a memoryless automaton composed of a
hidden (unobservable) state variable qðtÞ ∈ fq1;…; qNQ

g
and a measurement (observable) variable oðtÞ ∈
fo1;…; oNO

g sampled at time t ∈ ft0;…; tNT
g. We use

NQ, NO, and NT to denote the total number of hidden
states, observable states, and discrete time steps, respec-
tively. The most probable sequence of hidden states given
the observations over total observing time Tobs is computed
by the classic Viterbi algorithm [36]. A full description can
be found in Refs. [37,41].

In a HMM, the emission probability at discrete time tn is
defined as the likelihood of hidden state qi being observed
in state oj, given by [37]

Lojqi ¼ P½oðtnÞ ¼ ojjqðtnÞ ¼ qi�: ð40Þ

We set the one-dimensional hidden state variable qðtÞ ¼
f⋆ðtÞ. The discrete hidden states are mapped one to one to
the frequency bins in the output of a frequency-domain
estimator computed over coherent time interval Tcoh.
We choose Tcoh to satisfy

����
Z

tþTcoh

t
dt0 _f⋆ðt0Þ

���� < Δf⋆ ð41Þ

for 0 < t < Tcoh, where Δf⋆ is the frequency bin size in
the estimator. At twice the spin frequency of the star, we
have

����
Z

tþTcoh

t
dt02 _f⋆ðt0Þ

���� < 2Δf⋆: ð42Þ

Here we leverage the existing frequency domain estimator
F -statistic described in Sec. III, and define log emission
probability computed over each interval [t; tþ Tcoh], given
by [37,42,45]

lnLoðtÞqi ¼ lnP½oðtÞjf⋆i ≤ f⋆ðtÞ ≤ f⋆i þ Δf⋆� ð43Þ

¼ F 1ðf⋆iÞ þ F 2ð2f⋆iÞ; ð44Þ

where f⋆i is the frequency value in the ith bin. We use
Δf⋆ ¼ 1=ð4TcohÞ and 2Δf⋆ ¼ 1=ð2TcohÞ as frequency bin
sizes when computing F 1 and F 2, respectively, such that
both the f⋆ and 2f⋆ signal components stay in one bin for
each time interval Tcoh.
The transition probability of the hidden state from

discrete time tn to tnþ1 is defined as [37]

Aqjqi ¼ P½qðtnþ1Þ ¼ qjjqðtnÞ ¼ qi�: ð45Þ

The choice of Aqjqi depends on the frequency evolution
characteristics of the source. If we consider a scenario that
f⋆ walks randomly due to timing noise, which is dominant
compared to the star’s secular spin down or spin up, Aqjqi

takes the form [37]

Aqiþ1qi ¼ Aqiqi ¼ Aqi−1qi ¼
1

3
; ð46Þ

with all other entries being zero. If the timescale of timing
noise is much longer than the star’s secular spin-down
timescale, Aqjqi is given by [41]2https://lscsoft.docs.ligo.org/lalsuite/lalapps/index.html.
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Aqi−1qi ¼ Aqiqi ¼
1

2
; ð47Þ

with all other entries vanishing.
We choose a uniform prior,

Πqi ¼ P½qðt0Þ ¼ qi� ¼ N−1
Q : ð48Þ

The probability that the hidden state path Q ¼
fqðt0Þ;…; qðtNT

Þg gives rise to the observed sequenceO ¼
foðt0Þ;…; oðtNT

Þg via a Markov chain equals

PðQjOÞ ¼ LoðtNT
ÞqðtNT

ÞAqðtNT
ÞqðtNT−1Þ � � �Loðt1Þqðt1Þ

× Aqðt1Þqðt0ÞΠqðt0Þ: ð49Þ

The most probable path maximizes PðQjOÞ, denoted by

Q�ðOÞ ¼ argmaxPðQjOÞ; ð50Þ

where argmaxð� � �Þ returns the argument that maximizes
the function ð� � �Þ. Q�ðOÞ gives the best estimate of qðtÞ
over the total observation Tobs ¼ NTTcoh.

B. Path probability distribution versus SNR

We now compare the distributions of path probabilities
between tracking 2f⋆ only and tracking f⋆ and 2f⋆
simultaneously, when a dual-harmonic signal is present.
For simplicity, we assume stationary, Gaussian noise,
and hence F -statistic is independently and identically
distributed. For F ¼ F 2, the random variable 2F com-
puted over each block of Tcoh is chi-squared distributed
with 4 d.o.f. If Q�ðOÞ does not intersect the true signal
path anywhere, the PDF of z ¼ lnPðQjOÞ is given by
[41,42]

pðzÞ ¼ χ2ðz; 4NT; 0Þ: ð51Þ

If Q�ðOÞ coincides exactly with the true signal path, we
have [41,42]

pðzÞ ¼ χ2
�
z; 4NT;

K2h20Tobssin4θ
Shð2f⋆Þ

�
: ð52Þ

If both f⋆ and 2f⋆ components are tracked, the variable
2F ¼ 2F 1 þ 2F 2 computed over each block of Tcoh is chi-
squared distributed with eight d.o.f. The PDFs in Eqs. (51)
and (52) become [41,42]

pðzÞ ¼ χ2ðz; 8NT; 0Þ; ð53Þ

and

pðzÞ ¼ χ2
�
z; 8NT;

K1h20Tobssin22θ
Shðf⋆Þ

þ K2h20Tobssin4θ
Shð2f⋆Þ

�
:

ð54Þ
Figure 1 shows distributions of path probabilities for

tracking single component (F ¼ F 2; red curves) and both
components (F ¼ F 1 þ F 2; blue curves). The blue dashed
and solid curves display pðzÞ ¼ χ2ðz; 8NT; 0Þ (pure noise
path) and pðzÞ ¼ χ2ðz; 8NT;NTρ

2
0Þ (true signal path),

respectively. Similarly, the red dashed and solid curves
display pðzÞ ¼ χ2ðz; 4NT; 0Þ and pðzÞ ¼ χ2ðz; 4NT;
NTρ

2
2Þ, respectively. The thin and thick curves indicate

NT ¼ 1 and NT ¼ 10, respectively. In this example, we
show an optimal scenario with ρ21 ¼ ρ22. The figure dem-
onstrates that it is much easier to distinguish a signal from
noise by tracking both components. Increasing NT can
always make the distribution of signal paths more signifi-
cantly differ from that of noise paths, for both methods.
Note that in reality, the number of steps that the optimal
Viterbi path intersects the true signal path depends on SNR,
which is always between 0 and NT . Hence the distribution
of path probabilities in fact lies somewhere between the
dashed and solid curves. The true PDF of Viterbi paths is

FIG. 1. Probability density function pðzÞ for log likelihood z ¼
lnPðQjOÞ along path Q. The red and blue curves indicate
tracking 2f⋆ only and tracking both f⋆ and 2f⋆, respectively.
The thin and thick curves indicate the number of tracking steps
NT ¼ 1 and NT ¼ 10, respectively. The solid and dashed curves
indicate that Q intersects perfectly and not at all with the true
signal path, respectively. The optimal Viterbi path obtained can
overlap partly with the true signal path, yielding a distribution in
between the solid and dashed curves. A signal is more distin-
guishable from noise by tracking both f⋆ and 2f⋆ than tracking
2f⋆ only. As more steps NT are taken, it is progressively easier to
distinguish a signal from noise. The search cost increases
approximately ∝ NT for both methods (see Sec. VI). Parameters
ρ21 ¼ ρ22 ¼ 3.
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difficult to compute mathematically. An analytic approxi-
mation of the true PDF is discussed in Ref. [46]. The search
cost increases approximately ∝ NT for both methods. A
detailed discussion about computing cost is provided
in Sec. VI.

V. SIMULATION AND SENSITIVITY

In this section, we begin with a detailed example,
demonstrating the sensitivity improvement obtained from
dual-harmonic tracking (Sec. VA). We define detection
statistics and calculate the threshold in Sec. V B. In Sec. V C,
we adopt the threshold for a given false alarm probability,
carry out Monte Carlo simulations, and study the rates of
correctly recovering injected signals, i.e., detection effi-
ciency, for various h0, θ and cos ι values.

A. Tracking example

We start by showing one representative example of dual-
harmonic tracking. We first generate a set of synthetic data
for Tobs ¼ 50 d at two detectors (the LIGO Hanford and
Livingston observatories) using MAKEFAKEDATA version 4
from LALApps, containing a dual-harmonic signal from a
nonperpendicular biaxial rotor (Sec. II C). The source sky
position, detector PSD, and initial f⋆ are shown in the top
half of Table I. In this example, we set h0 ¼ 8 × 10−26,
θ ¼ 30°, and cos ι ¼ 0.75, corresponding to h2þ ¼ 1.56×
10−26, h2×¼1.50×10−26, h1þ ¼ 8.59 × 10−27, and h1× ¼
1.15 × 10−26 using Eqs. (10)–(13), and randomly choose
ψpol ¼ 0.93 rad and Φ0 ¼ 1.19 rad. Here we assume a
scenario where the signal frequency wanders stochastically
due to timing noise. We approximate the spin wandering
by an unbiased random walk or Wiener process, and let f⋆
jump randomly anywhere within �Δf⋆¼5.787×10−7Hz
with uniform probability every five days (following the
strategy described in Ref. [37]). The search is conducted
by tracking NT ¼ 10 consecutive coherent intervals, with
each lasting for Tcoh ¼ 5 d (see the bottom half of Table I),
in three ways: (a) tracking f⋆ only, (b) tracking 2f⋆ only,
and (c) tracking both f⋆ and 2f⋆ simultaneously.

TABLE I. Injection parameters used to create the synthetic data
and search parameters.

Injection parameters Symbol Value

Right ascension α 23 h 23 m 26.0 s
Declination δ 58°4800.000
Detector PSD ShðfÞ1=2 4 × 10−24 Hz−1=2

Initial spin frequency f⋆ 100.1 Hz

Search parameters Symbol Value

Total observing time Tobs 50 d
Coherent time Tcoh 5 d
Number of steps NT 10

(a)

(b)

(c)

FIG. 2. Injected signal paths f⋆ðtÞ (blue curves) and optimal
Viterbi paths (red curves). Panels (a)–(c) display the results for
tracking f⋆ only, tracking 2f⋆ only, and tracking both f⋆ and 2f⋆,
respectively. The injection cannot be recovered in either (a) or (b).
A good match is obtained in (c), with RMSE ¼ 1.6 × 10−7 Hz,
corresponding to 0.28Δf⋆. The fluctuation of the signal frequency
is too small to be seen in (a) and (b).
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Figure 2 displays the tracking results. The blue and red
curves indicate the injected signal paths and optimal Viterbi
paths returned from the tracking, respectively. Panels
(a)–(c) correspond to the above tracking methods (a)–(c),
respectively. It is demonstrated that only by tracking both
f⋆ and 2f⋆, the injection can be recovered accurately.
The root-mean-square error (RMSE) between the optimal
Viterbi path and injected signal path in (c) is 1.6 × 10−7 Hz
(i.e., 0.28Δf⋆). The error is introduced mainly because the
HMM takes discrete values of f⋆ with Δf⋆ as the smallest
step size, while the injected f⋆ðtÞ can take any value within
a bin. Note that the frequency fluctuations are too small to
be seen in panels (a) and (b). The three blue curves in
(a)–(c) are in the same shape. The red curves in (a)
and (b) also fluctuate.

B. Viterbi score and threshold

In order to quantify the improvement in detection
efficiency, 1 − Pd, where Pd is the false dismissal proba-
bility, we define the Viterbi score and derive a detection
threshold for a given false alarm probability, Pa. We adopt
the definition of Viterbi score in [41], given by

S ¼ ln δq� ðtNT
Þ − μln δðtNT

Þ
σln δðtNT

Þ ð55Þ

with

μln δðtNT
Þ ¼ N−1

Q

XNQ

i¼1

ln δqiðtNT
Þ ð56Þ

and

σln δðtNT
Þ2 ¼ N−1

Q

XNQ

i¼1

½ln δqiðtNT
Þ − μln δðtNT

Þ�2; ð57Þ

where δqiðtNT
Þ denotes the maximum probability of the

path ending in state qi (1 ≤ i ≤ NQ) at step NT , and
δq�ðtNT

Þ is the likelihood of the optimal Viterbi path,
i.e., P½Q�ðOÞjO�. In other words, Viterbi score S is defined,
such that the log likelihood of the optimal Viterbi path
equals the mean log likelihood of all paths plus S standard
deviations at the final step NT .
Given a choice of Pa, the detection is deemed successful

if S exceeds a threshold Sth. The value of Sth varies with
NT , NQ, the entries in Aqjqi , and weakly depends on the
distribution of Lojqi . Systematic Monte Carlo simulations
are always required in practice to calculate Sth for each
HMM implementation. We normally divide the full fre-
quency band into multiple 1-Hz subbands to allow paral-
lelized computing in a real search [38,41]. In this section,
we compare the performance of three methods: tracking f⋆
only, tracking 2f⋆ only, and tracking both f⋆ and 2f⋆.

Since we use bin sizes Δf⋆ and 2Δf⋆ for f⋆ and 2f⋆
components, respectively (see Sec. IVA), we consider a
sample 1-Hz subband (200–201 Hz) for 2f⋆ and a half-Hz
subband (100–100.5 Hz) for f⋆, such that the total number
of hidden states NQ remains the same for three methods.
We set Pa ¼ 1% and determine Sth for each of the three

methods by conducting searches on data sets containing
pure Gaussian noise. The procedure is as follows. We
generate 103 noise realizations for two LIGO detectors with
ShðfÞ1=2 ¼ 4 × 10−24 Hz−1=2 for Tobs ¼ 50 d, set Tcoh ¼ 5
d, adopt Aqjqi in Eq. (46) assuming a random walk model,
and conduct (a) f⋆ only tracking in band 100–100.5 Hz,
(b) 2f⋆ only tracking in band 200–201 Hz, and (c) dual-
harmonic tracking combining both subbands. For each
method, the value of S yielding a fraction Pa of positive
detections is Sth. We obtain Sth ¼ 7.6663, 7.8798, and
7.2301 for (a), (b), and (c) respectively. Theoretically
speaking, Sth values for (a) and (b) should be identical,
because we have the same NT , NQ, and Aqjqi , and the noise
only F -statistic follows a central chi-squared distribution
with 4 d.o.f. in both (a) and (b). Empirically, the F -statistic
output can be weakly impacted by frequency and noise
normalization using different bin sizes [45]. Hence we see a
small difference between thresholds of (a) and (b), with an
error < 3%.

C. Detection efficiency

We now inject synthetic signals in Gaussian noise to study
the detection efficiencies of the three tracking methods with
Sth obtained in Sec. V B. In a real search, since we normally
run the tracking in 1-Hz subbands, where the interferometric
noise PSD can be regarded as flat, the threshold in real
interferometric noise does not vary much from Gaussian
noise. The subbands containing loud instrumental artifacts
will be eventually vetoed. A study has been conducted in
Ref. [38], comparing the thresholds obtained from Gaussian
noise and real O1 data. The resulting Sth values match each
other with an error ≲3%. The study, however, indicates that
the search sensitivity degrades in real interferometric data
due to duty cycles and non-Gaussianity, increasing the stain
amplitude required for yielding 95% detection efficiency by
a factor of < 2 [38]. In addition, ShðfÞ is a function of
frequency in real interferometric data, and hence impacts the
SNR in the two frequency bands searched simultaneously
using dual-harmonic tracking. Studies of the interferometric
ShðfÞ and its impact on search sensitivity are needed in a real
search. In this paper, we assume the detector PSD to be
identical in the frequency bands tested. We continue using
the injection parameters and search configurations in Table I.
In the first set of simulations, we set h0 ¼ 1 × 10−25, and

calculate h2þ, h2×, h1þ, and h1× using Eqs. (10)–(13) on a
grid of θ and j cos ιj. For each combination of θ ∈
f0; 15; 30; 45; 60; 75; 90g deg and j cos ιj ∈ f0; 0.25; 0.5;
0.75; 1g, we inject 200 signals with both ψpol and Φ0
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randomly chosen with a uniform distribution within the
range ½0; 2π� rad. The injected f⋆ðtÞ jumps randomly
within �Δf⋆ ¼ 5.787 × 10−7 Hz for every five days.
Figure 3 displays the detection efficiency contours of the
three methods on the plane of ðθ; j cos ιjÞ. Panels (a)–(c)
represent results from tracking f⋆ only, tracking 2f⋆ only,

and tracking both frequencies, respectively. Darker color
stands for higher detection efficiency. The 2f⋆ component
dominates at higher θ values, and hence the f⋆ component
contributes little to the sensitivity there. However, at lower
θ values where the 2f⋆ emission gets weaker, the f⋆
component, although generally too weak to be detectable

(a) (b) (c)

(d)

FIG. 3. Detection efficiency contours as a function of j cos ιj and θ by tracking (a) f⋆ only, (b) 2f⋆ only, and (c) both f⋆ and 2f⋆
simultaneously. Panel (d) displays the difference between (b) and (c), i.e., the improvement of tracking two frequencies compared to
tracking 2f⋆ only. Parameters h0 ¼ 1 × 10−25, ShðfÞ1=2 ¼ 4 × 10−24 Hz−1=2, Tcoh ¼ 5 d, and Tobs ¼ 50 d.

(a) (b) (c)

FIG. 4. Detection efficiency contours as a function of j cos ιj and θ by tracking (a) f⋆ only, (b) 2f⋆ only, and (c) both f⋆ and 2f⋆
simultaneously. Parameters h0 ¼ 2 × 10−25, ShðfÞ1=2 ¼ 4 × 10−24 Hz−1=2, Tcoh ¼ 5 d, and Tobs ¼ 50 d.
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on its own [Fig. 3(a)], significantly improves the detect-
ability when combined with the 2f⋆ component. To clearly
show the contribution of the weak f⋆ component, we plot
the improvement from (b) to (c) in panel (d), i.e., the gain
by including f⋆ component in the tracking. The most
significant gain occurs at 20°≲ θ ≲ 60°, improving the
detection efficiency by ∼10% to 70%. At θ ≈ 45°, the
detection efficiency can be improved from 19% to 91%.
In the second set of simulations, we probe the parameter

space where the f⋆ component dominates, i.e., lower θ
values. For each combination of θ ∈ f0; 10; 20; 30g deg
and j cos ιj ∈ f0; 0.25; 0.5; 0.75; 1g, we run 200 injections
with h0 ¼ 2 × 10−25. The other parameters and configu-
rations are the same as the first set. The results are shown in
Fig. 4. When θ → 0°, the strain amplitudes of f⋆ and 2f⋆
components, scaling as θ and θ2, respectively, are both too
small to be detectable. For 10°≲ θ ≲ 30°, the f⋆ only
tracking and 2f⋆ only tracking perform well (≳90%
detection efficiency) at lower and higher j cos ιj values,
respectively, while the dual-harmonic tracking can gener-
ally produce detection efficiency better than or similar to
any of the single frequency tracking methods. The best
improvement from dual-harmonic tracking is achieved
for j cos ιj ∼ 0.75, increasing the detection efficiency by
∼10%–30% compared to either of the single frequency
tracking methods.
The above simulations demonstrate that the dual-

harmonic tracking performs significantly better in the
parameter space where the strain amplitudes of f⋆ and 2f⋆
are comparable, e.g., at the same order of magnitude.
In other parameter space where one component is dom-
inant, either f⋆ or 2f⋆, the dual-harmonic tracking still
performs generally as good as the single frequency
tracking. However, when one frequency component van-
ishes, e.g., j cos ιj → 1 or θ → π=2, and the other is at low
SNR, we find that dual-harmonic tracking performs
slightly worse than tracking a single frequency compo-
nent, losing ∼10% detection efficiency at most (e.g., see
the parameter space j cos ιj ≈ 1 in Figs. 3 and 4). This is
because by tracking two frequency bands simultaneously
at low SNR, while the signal only exists in one band, pure
noise is introduced from the band corresponding to the
vanishing component. In this case, the conventional single
frequency tracking remains a better method. The combi-
nation of single frequency tracking and dual-harmonic
tracking is necessary in order to obtain the optimal
sensitivity in the whole parameter space. Here we study
the optimal choice of tracking methods as a function of
j cos ιj and θ. Note that in a real directed search without
prior knowledge of f⋆, we do not differentiate 2f⋆
tracking and f⋆ tracking. In other words, they are both
covered in the conventional single component tracking
over the full frequency band. Hence we only compare
between the conventional single component tracking and
dual-harmonic tracking. Without knowing the intrinsic

parameters of the source, j cos ιj and θ, we discuss the
cost of conducting two searches using both methods in
Sec. VI.
We carry out a third set of simulations to determine the

optimal tracking method over the whole ðθ; j cos ιjÞ plane.
For each j cos ιj ∈ f0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8;
0.9; 1g, we run Monte Carlo simulations by injecting
signals with various h0 and θ values. The other parameters
and configurations are kept the same as the first and second
sets. For each choice of j cos ιj, we find out two θ values
when h0 is near the detection limit: one yields the same
detection efficiency between the 2f⋆ tracking and dual-
harmonic tracking; the other yields the same detection
efficiency between the f⋆ tracking and dual-harmonic
tracking. By connecting these resulting ðj cos ιj; θÞ points,
the two curves correspond to two boundaries: (1) between
where the 2f⋆ component dominates and where both f⋆
and 2f⋆ components contribute, and (2) between where
both f⋆ and 2f⋆ components contribute and where the f⋆
component dominates. The results are shown in Fig. 5.
The regions marked by lines, solid gray color, and dots
indicate the parameter space where the optimal method is
single component tracking (2f⋆ dominates), dual-harmonic
tracking, and single component tracking (f⋆ dominates),
respectively. Generally speaking, for about 1=3 of the
whole ðj cos ιj; θÞ parameter space (gray region), dual-
harmonic tracking performs much better than single
frequency tracking, improving detection efficiency by up
to ∼70%.

FIG. 5. Optimal choice of methods as a function of j cos ιj and
θ. The regions marked by lines, solid gray color, and dots indicate
the parameter space where the best sensitivity can be obtained
by single component tracking (2f⋆ dominates), dual-
harmonic tracking, and single component tracking (f⋆ dominates),
respectively.
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VI. DISCUSSION

In this section, we discuss the computing cost of dual-
harmonic HMM tracking, and the justifications of applying
it to upcoming directed continuous-wave searches. Without
prior knowledge of the intrinsic parameters of the source,
which determine if the gravitational-wave emission is
dominated by a single frequency component, or the
combination of both components, the optimal sensitivity
can be obtained over the whole (j cos ιj, θ) parameter space
by conducting both the conventional single component
tracking and the dual-harmonic tracking. Here we quantify
the computing cost of conducting both ways of tracking in a
directed search.
The Viterbi algorithm uses dynamic programming3 and

reduces the total number of comparisons required to
calculate Q�ðOÞ from NNTþ1

Q to ðNT þ 1ÞN2
Q [35,37].

As an example, if we take NQ ¼ 106 frequency bins,
NT ¼ 50 tracking steps, and Aqjqi with only three nonzero
terms along the diagonal, the total number of comparison
is reduced from 1030 to 108. The cost of computing Q�ðOÞ
(e.g., ≲1 min) is generally negligible compared to that o
f computing F -statistic values over NT blocks of Tcoh
(e.g., ∼1 hr), in a subband. Hence the computing time of a
conventional single component tracking over Tobs ¼
NTTcoh in a frequency band from fmin to fmax is mainly
dominated by calculating NT blocks of F -statistic, given
by [41]

T ¼ 10d
�
fmax − fmin

1 kHz

��
Tcoh

5d

�
2
�
NT

50

��
1

Ncore

�
; ð58Þ

where Ncore is the number of cores running in parallel.
Given the NT blocks of F -statistic calculated already for
the full frequency band, conducting a dual-harmonic
tracking using the same set of F -statistic data barely
introduces additional cost, i.e., the total computing time of
conducting both ways of tracking can be approximated by
Eq. (58), yielding a typical run-time of ∼103 core-hr for
one year’s observation.
In addition to improving search sensitivity, dual-har-

monic HMM tracking can be used as a candidate follow-up
tool in both directed and all-sky continuous-wave searches.
When we have a list of above-threshold candidates for
further scrutiny as the output from existing directed or all-
sky search methods, we can conduct a follow-up procedure
as follows. For each candidate at frequency f0, we conduct
(a) a HMM tracking in a narrow band around f0 only, and
(b) a dual-harmonic HMM tracking in narrow bands around

frequencies (1) f0 and 2f0, and (2) f0 and 0.5f0 (because
we have no knowledge if f0 is corresponding to f⋆ or 2f⋆).
Seeing a more significant detection statistic in (b) than
(a) increases the probability of a true dual-harmonic
astrophysical signal.
One interesting question is how likely there is a f⋆

component in the signal with an amplitude that could
benefit the search by taking it into consideration. In other
words, is it physically likely that the source parameters lie
in the gray region in Fig. 5? For a freely precessing star, the
wobble angle is believed to damp (for oblate deformations)
or increase towards π=2 (for prolate deformations) on an
internal dissipation timescale [7,20,50,51], making a dual-
harmonic search less interesting. However, in the model
proposed by Ref. [28], the nonprecessing solution indicates
that the star’s rotation axis lies closely to the superfluid
pinning axis, allowing 0 ≤ θ ≤ π=2.4 It motives conducting
dual-harmonic HMM tracking in future directed searches
or candidate follow-ups. More interestingly, detecting or
confirming a signal using this method would provide
important information for probing the neutron star structure
and emission mechanism, e.g., a pinned superfluid interior.

VII. CONCLUSION

In this paper, we describe an economical dual-harmonic
tracking scheme based on a HMM and combined with the
coherent F -statistic, which provides a semicoherent search
strategy taking into consideration a model that gravita-
tional-wave emission from a neutron star is at both f⋆
and 2f⋆. We review the signal waveforms and frequency
domain estimator, formulate the problem with an extended
HMM, discuss the performance analytically based on the
distribution of path probabilities, and demonstrate the
advantages of the method through Monte Carlo simulations.
We find that for sources emitting at both f⋆ and 2f⋆,

we can improve the detection efficiency by ∼10%–70%
for 20°≲ θ ≲ 60° by tracking both frequencies simulta-
neously, compared to a conventional single component
search. While at low SNR, dual-harmonic tracking can
lead to minor sensitivity loss, reducing detection effi-
ciency by ≲10%, if the source emits at 2f⋆ only. To
achieve the optimal sensitivity in a directed search, we can
add the dual-harmonic tracking as a complementary
procedure to the conventional single frequency tracking
in the full band. The economical HMM tracking algorithm
allows conducting both the dual-harmonic tracking and
the conventional search at almost no additional cost.
The method also serves as a useful candidate follow-up

tool in the near future when more candidates will be
considered for further scrutiny in directed or all-sky
continuous-wave searches. Upon detection, the resulting

3Dynamic programming, a technique based on Bellman’s
principle of optimality, is used to solve an optimization problem
by breaking down the problem into subproblems of optimization,
and making intermediate decisions for subproblems to recon-
struct the final decision in a recursive manner [47–49]. A detailed
description is given in Ref. [37].

4We do not discuss the full range 0 ≤ θ ≤ π in Sec. V, because
Φ0 and θ are degenerate. We have 0 ≤ θ ≤ π=2 and 0 ≤ Φ0 ≤ 2π,
or 0 ≤ θ ≤ π and 0 ≤ Φ0 ≤ π [43].
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statistics from dual-harmonic tracking and single frequency
tracking can shed light on the structure and emission
mechanism of a neutron star. In addition, when a better
understood model is available in the future for a postmerger
remnant from a binary neutron star coalescence, we can
apply a similar dual-harmonic tracking scheme to improve
the sensitivity in searches for signals from the remnant,
considering the possibility that the remnant is freely
precessing.
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