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Mobile Robot Navigation: 
Issues in Implementating the Generalized Voronoi Graph in the Plane 

Howie Choset* and Ilhan Konukseven** and Joel Burdick*** 

Abstract Th,is paper describes th,e procedures that 
are required to implem,en,t, on, a conven,tion,al m,obile 
robot, a, scn,sor based motion, plan,n,in,g algorith,m, hnsed 
on th,e generalized Voronoi graph (G VG).  Th,e G V G  
is a roadm?ap of a s 
blow to in,crem,en,tall h a p  u,sintg ondy 
ran,ge informationj in, an, unhown ,  en,vironment. Th,e 
GVG ma,y then, be used to guide futu,re excursions in,to 
th,e ed enwironment. Experim,e 
th,e 

1 Introduct ion 
Sensor based phn,n,in,g integrates sensor information 

into the planning process as opposed to classical plan,- 
n,in,g, which requires that full knowledge of the world 
be available to the robot prior to the planning event. 
Sensor based planning is a necessary component for the 
realistic deployment of mobile robot.. In this paper, we 
show how a mobile robot effects sensor based planning 
using raw sensor readings from sonar sensors. 

We describe the experimental implementation of a 
sensor based planner that is based on the Generalized 
Voronwi Gmph (GVG) whose definitions and properties 
are found in [4], [5] and [GI (and are reviewed in Sec- 
tion 5). The computational aspects required to imple- 
ment the GVG-based planning scheme was described in 
[GI (and is reviewed in Section 6) , where it was assumed 
that only information within line of sight of the robot 
can he detected. We term this style of planning Inwe- 
men,tal Path, Planmin,g. For the incremental construction 
of the GVG [GI, the robot need only know the distance 
and direction to the m, closest objects in m. dimensions 
(in the planar case, m. = 2) .  The implementation of the 
incremental technique using realistic sensors is described 
in this work. Experiments show that raw sensor read- 
ings from realistic sensors can be used to implement the 
GVG-based niotion planning scheme without perform- 
ing complicated obstacle segmentation. 

2 Relation to  Previous Work 
There have been many works in sensor based plan- 

ning in two dimensions. Some are based on heuristic 
algorithms. That is, they work very well under a va- 
riety of conditions, but, these methods do not have any 
proofs of correctness that guarantee a path can be found. 
Moreover, there does not exist well established thresh- 
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olds for when these heuristic algorithms fail. One class 
of heuristic algorithms is a behavioral based approach in 
which the robot is armed with simple behaviors such as 
following a wall [2]. A hierarchy of cooperating behav- 
iors forms more complicated behaviors such as explo- 
ration. An extension of this type of approach is called 
sequencing [7]. Since there are strong experimental re- 
sults indicating the utility of these approaches (such as 
[7]), some of these algorithms may provide a fiit,ure basis 
for provably correct sensor based planners. 

Another type of heuristic approach involves discretiz- 
ing the planar world into pixels of some resolution. Typ- 
ically, this is used when approximating errors in sonar 
sensing readings, where each pixel is a assigned a value 
indicating the likelihood that it overlaps an obstacle [l]. 
This method lends itself very nicely to implementation 
with real sensors, but discretizing the world may require 
a large amount of computer memory and may lead to 
an inaccurate representation of the world. 

There are many non-heuristic algorithms for which 
provably correct solutions exist in the plane (see [ll] for 
an overview). For example, Lumelsky's "bug" algorithm 
[9] is an example of one of the first provably correct sen- 
sor based schemes to work in the plane. However, this 
algorithm (like many described in [ll]) requires knowl- 
edge of the goal's location during the planning process. 
Furthermore, this algorithm simply returns a path from 
the start to the goal. The resulting path does not re- 
flect the topology of the free space and thus, it cannot 
he used to guide future robot excursions. 

Our approach is to adapt the structure of a prov- 
ably correct classical motion planning scheme to a sen- 
sor based implementation. One such approach is based 
on a roadmap, a one-dimensional subset of a robot's 
free space which captures all of its important topologi- 
cal properties. A roadmap (sometimes called a retract- 
like structure) has the following properties: a 
i t y ,  conmectivity, and departah y. These properties im- 
ply that the planner can construct a path between any 
two points in a connected component of the robot's free 
space by first finding a path onto the roadmap (acces- 
sibility), traversing the roadmap to the vicinity of the 
goal (connectivity), and then constructing a path from 
the roadmap to the goal (departability). These methods 
are iisefiil in higher dimensions because the hiilk of the 
motion planning is done in a one-dimensional space. 

An example of a complete roadmap scheme is Canny 
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and Lin’s Opportunistic Path Planner [3]. Rimon 
adapted this motion planning scheme for sensor based 
use [12]. Unfortunately, connectivity of the roadmap 
in [12] cannot be  guaranteed without active perception. 
Furthermore, from a practical point of view, there are 
two detractions to Rimon’s method. First, to construct 
the roadmap, the robot must contain “interesting criti- 
cal point” and “interesting saddle point” sensors, whose 
implementation is not well described. Second, a robust 
and detailed procediire for constructing the roadmap 
fragments from sensor data is not presented. 

Finally, an example of a method that has a provably 
correct solution, uses realistic sensor assumptions, and 
need not require prior knowledge of the goal’s location 
is described in [13]. In this method, the robot forms a 
graph of a bounded freespace by circumnavigating each 
of tlie obstacles, and then creating an adjacency rela- 
tionship between obstacles within line of sight of each 
other. However, this method requires landmarks in con- 
structing its map and is limited to the planar case. 

3 Contributions 
The genmxlized Vorom?: gra,ph, (GVG) is a new type 

of roadmap-like structure that is a generalization of 
tlie generalized Voronmi diagro,m, (GVD) [lo] into higher 
dimensions. Recall that the GVD is the (m, - 1)- 
diinensional locus of points equidistant to two obsta- 
cles in m.-dimensions, whereas the GVG is the one- 
dimensional locus of points equidistant to m, obstacles 
in m, dimensions. 

Since the GVG is one-dimensional in an m,- 
dimensional space, it is a concise representation of its 
workspace or multi-dimensional configuration space and 
thus allows for motion planning of robots with many de- 
grees of articulation. The GVG is also concise because 
it bypasses the need for the robot to store a detailed 
pixel representation of the environment. 

An important feature of the GVG is its incremental 
construction procedure that relies on line of sight infor- 
mation. This procedure is guaranteed to be complete, 
i.e., it has been rigorously shown that given only line of 
sight distance data, the incremental construction proce- 
d i m  will generate the GVG. thereby creating a repre- 
sentation that captures every detail of the environment. 
This incremental construction procedure does not rely 
on the existence of landmarks, nor does it need to per- 
form any obstacle segmentation while constructing the 
GVG. Furthermore, this procedure does not use any ab- 
stract sensors, but instead uses raw sensor readings to 
construct its roadmap. 

4 Distance Function 
Model the robot as a point operating in a work 

space, W ,  which is a subset of an m,-dimensional Eli- 

Fig. 1. The ticked line segments are the planar GVG for thc 
bounded environment. The ticks point, at the nearest, point 
on an obstacle. and are thus the negated gradients. 

clidean space, R”. W is populated by convex obstacles 
Cl,. . . , C,. Non-convex obstacles are modeled as the 
union of convex shapes. The GVG and its properties 
are based on the following workspace distance function 
definitions: 

where (1) d; is the distance t,o obstacle C; from a point 
2 ,  and (2) the vector V d , ( z )  is a unit vector in the 
direction from to x ,  where CO is the nearest point to 
z in Ci. 

Typically, the environment is populated with niulti- 
ple obstacles, and thus we define a multi-object distance 
function as D ( z )  = mini d ; (z ) .  An, i,m,portan,t ch,amc- 
teristic of d i ( z ) ,  Vd;(z), and D ( z )  i s  y can, he 
com,pu,ted from, sen,sor data.  

5 The Generalized Voronoi Graph 
The basic building block of the GVG is the set of 

points equidistant to  two sets C,; and Cj such that 
each point in this set is closer to the obj 
Cj than any other object. We term this structure the 
two-equidistant face, 

yij {X E R“L 0 5 d;(X) = d j ( X )  5 d tL(2 )  Vh # i , j  
and V d ; ( z )  # V d j ( x ) } .  (2) 

A two-equidistant face has co-dimension one in the am- 
bient space, and thus in the plane, a two-equidistant 
face is one dimensional [SI. 

The Pre-image Theorem asserts that tlie union of 
the two-equidistant faces, i.e., the GVD, is (m, - 1)- 
dimensional [5]. The GVD does reduce the motion plan- 
ning problem by a dimension, but a one-dimensional 
roadmap is required. Observe that the two-equidistant 
faces, Yij, Y;A:, and Yjjk intersect to form an (m. - 2)- 
dimensional manifold that is equidistant to three obsta- 
cles. Such a striicture is termed a t h r e e - e q u i d , ~ , ~ t a ~ , ~  face 
and is denoted Y i j k .  That is, 
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This intersection procedure is repeated until a one- 
dimensional structure is formed; such a structure is an 
m-equidistant face, Yil...,,,, and is a one-dimensional set 
of points equidistant to m. objects in m, dimensions. 
(Also note, an m + 1-equidistant face is formed in a 
similar way and is always a point.)[5] 

The g e n m d i z e d  Voron,oi graph (GVG) is the collec- 
tion of m,-equidistant faces and m, + 1-equidistant faces. 
Later, the m,-equidistant faces are termed genxralized 
Voronmi edges and m, + 1-equidistant faces are termed 
m,eet poinh. Note that the GVD is 7n. - 1-dimensional 
whereas the GVG one-dimensional. Also, the GVD is 
the locus of points equidistant to two obstacles whereas 
the GVG is the locus of points equidistant to m. obsta- 
cles. In the planar case, the GVG and GVD coincide. 

In [ 5 ] ,  it was shown that the GVG possesses the prop- 
erties of accessibility and departability. Nevertheless, 
connectivity is only guaranteed in planar case. In higher 
dimensions, higher order generalized Voronoi graphs 
must be constructed to connect the GVG components 
[5]. The results of this paper generalize to the higher 
order generalized Voronoi graphs, but for the purposes 
of explanation, we focus discussion in this paper to the 
GVG (which applies to all mobile robots). 

6 Incremental Construction of the GVG 
A key feature of the GVG is that it can be incre- 

mentally constructed using line of sight range informa- 
tion. In the scenario in which the robot has no a pri- 
ori information about the environment, the robot must 
construct a roadmap in an incremental manner hecaiise 
most environments do not contain one vantage point 
from which a robot can “see” the entire world, and 
thereby allow a robot to construct a roadmap from such 
a single vantage point. The incremental construction 
techniques described in this section provide a rigorous 
approach to constructing the GVG using only line of 
sight sensory information. 

As described in [ 5 ] ,  
[lo], gradient ascent applied to the distance function to 
the nearest object can be used to trace a path from any 
point in the free space to the planar GVG. See Fig. 2. 

Traceability. In an incremental context, the p r o p  
erty of connectivity is interpreted as traceah 
specifically, traceability implies that using only local 
data, the robot can: (1) “trace” the GVG edges; (2) 
determine when to terminate the edge tracing process, 
and (3) determine when to start new edge tracing pro- 
cedures. 

The GVG incremental approach to edge construction 
borrows ideas from numerical continuation methods [SI. 
Continuation methods trace the roots of the expression 
G(y, A) = 0 as the parameter X is varied. For the case of 

Incremental Accessibility. 

C. 
J 

Path traced GVG edge 

gradient. 

1 

‘i I 
Fig. 2. Accessibility is achicved by following the gradient of the 

distance function tco t,he nearest obstacle. 

the GVG, the tracing function G:  R””-’ x R -+ IWrrr-’ 
is 

r (dl - d2)(y, A) 1 
( 3 )  

L(dl - d“ A)] 
The explicit edge construction procedure has two 

steps: a predictor step and a corrector step. The predic- 
tor step moves the robot for a small distance along the 
tangent of the GVG. This tangent is the vector orthog- 
onal to the m closest points in the m, closest obstacles 
[6]; this can be readily computed with line of sight infor- 
mation. Typically, the prediction step takes the robot 
off of a GVG edge, so a correction procedure is required 
to bring the robot back to the GVG. If step size along 
the tangent is “small,” then the graph intersects a “cor- 
recting plane” (Figure 3 ) ,  which is a plane orthogonal 
to the tangent. The correction step finds the location 
where the GVG intersects the correcting plane (Figure 
3 )  and is achieved via a iterative Newton’s Method. If 
y k  and A’ are the kth estimates of y and A, the k + 1st 
iteration is defined as 

(4) 
y E i l -  - k - (D~,G)- ’G(&A~)  

where V,G is evaluated at  (yk,A’). It is shown in [6] 
that D,G is invertible and thus Equation (4) is well 
posed. Practically speaking, this result states that the 
numerical procedure defined by Equation (4) will be ro- 
bust for reasonable errors in robot position, sensor er- 
rors, and numerical round off. 

Terminating Conditions. The explicit terminat- 
ing conditions for edge tracing are described in [6], but 
in the planar case there are two terminating conditions: 
a meet point, where three GVG edges join, and a bound- 
ary point, where a GVG edge intersects the boundary 
of the environment. 

Finding the meet points is essential to proper con- 
struction of the graph. While a meet point occurs when 
the robot is equidistant to m, + 1 objects, it is unrea- 
sonable to expect that a robot can exactly detect such 
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Fig. 3. Sketch of‘ Coritinuat~iori Method 

]en& 

.................................................................. 
‘k 

...................... I 
Fig. 4. Meet Point Detec- Fig. 5. Boundary Point. 
t,ion. The arrows delineat,e the 

path a robot woiild follow 
while constriictiori the 
GVG. 

points because of sensor error. Furthermore, since the 
robot is taking finite sized steps while tracing an edge, 
it is unlikely that the robot will pass exactly through an 
(m, + 1)-equidistant point. However, as shown in Fig- 
ure 4, meet points can be robustly detected by watching 
for an abrupt change in the direction of the (negated) 
gradients to the m. closest obstacles. Such a change will 
occur in the vicinity of a meet point. 

Recall that a t  a meet point, the robot is equidistant 
to m, + 1 objects. Furthermore, at a meet point, m. + 1 
GVG edges join (three in the planar case), and thus 
after the robot reaches a meet point, m. new tangents, 
each corresponding to a new GVG edge, need be coin- 
p t e d .  Each new tangent is determined from an m-wise 
combination of the m, + 1 obstacles that define the meet 
point [GI. 

At a boundary point, the robot simply back tracks to 
a previous meet point that has unexplored GVG edges 
associated with it. See Figure 5. 

Incremental construction of the GVG is akin to a 
graph search where GVG edges are the “edges” and the 
meet points and boundary points are the “nodes.” Once 
the robot has accessed a point on the GVG, it begins 
tracing an edge. If the robot encounters a meet point, 
it marks off the direction from where it came as ex- 
plored, and then explores one of the other m, edges that 
emanate from the meet point. It also marks off that di- 
rection as being explored. If the robot reaches another 

unvisited meet point, the above procedure is recursively 
repeated. When the robot hits a boundary point, it sim- 
ply turns around and retraces its path to some previous 
meet point with unexplored directions. The robot ter- 
minates exploration of the GVG fragment when there 
are no more unexplored directions associated with any 
meet point. If the robot is looking for a particular des- 
tination whose coordinates are known, then the robot 
can invoke graph searching techniques, such as the A- 
star algorithm, to control the tracing procedure. 

7 Sensor Based Implementation 
lncremental construction of the GVG is based on the 

distance function, d i ,  the distance to the nearest point 
on object Ci. Sensors provide the distance to the near- 
est point from the sensor, without knowing from which 
obstacle the nearest point came. Therefore, the incre- 
mental constriiction of the GVG described in Section 6 
and in [GI has to be adapted for sensor based implemen- 
tation on actiial robots. 

7.1 The Robot 
Experiments were performed on Nomadic Technolo- 

gies mobile robot base, which is a circular platforin that 
has a ring of sixteen sonar sensors radially pointing out- 
ward. (See Fig. 16) Dead reckoning for both systems 
is accomplished by integrating the number of encodei- 
counts on robot’s wheels, for translation, and base, for 
rotation. This procediire does not take into considera- 
tion slippage of the robot’s wheels. 

7.2 Sensor Model 
This mobile robot uses ultrasonic sensors to  iiifer en- 

vironmental information. These sensors determine dis- 
tance by measuring the time of flight of the ultrasound 
pulses that reflect off an object and return to the sen- 
sor. Although these sensors provide accurate distance 
measurements, their readings are not precise in the aa- 
imuth. For this, we develop a simple sonar sensor model 
that is compatible with the incremental construction 
procedure of the GVG. We assiiine that the sensors 
are rigidly attached, pointing radially outward from the 
robot. The sensors measure distance to nearby obsta- 
cles, along a fixed direction termed the senuor 
m,en,t axis. The sensor measurement axis is a fiinction 
of the robot’s position and orientation (See Fig. 6). Fi- 
nally, the distance gradient associated with a particular 
sensor is assumed to he a unit vector pointing along the 
sensor measurement axis away from the robot. Since 
the closest point may occiir anywhere within the sensor 
beam pattern, and it is assumed that the distance gra- 
dient points along the beam pattern centerline; this can 
induce errors in the direction of the gradient. However, 
the accumulated error decreases with increasing number 
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of sensors. 

7.3 Distance Function 
The robot must be able to convert raw sensor read- 

ings into distance function readings while ideally avoid- 
ing a costly obstacle segmentation procedure in order to 

ively perform the incremental construction proce- 
dure. 

It is not sufficient to sample the two smallest sen- 
sor readings to determine the distance to the two clos- 
est obstacles because miiltiple sensors may detect the 
same obstacle. The minimum distance to each of the 
obstacles can be approximated from the local minima 
in the circular array sensor readings. An example is de- 
picted in Fig. 7 where a robot with eight sensors and 
their measurements is drawn. Sensor H has the smallest 
value, 10, and is thus pointing at the nearest obstacle. 
Sensor C is associated with the second closest obstacles 
because its value is the second smallest local minimum 
in the sensor array. Note, Sensor A should not be associ- 
ated with the second closest obstacle hecause it d 
the same object as Sensor H. Nevertheless, the value of 
Sensor A is not a local minima and thus should not be 
considered. The distance gradients are the unit vectors 
pointing along: the respective sensor centerlines. This 
method bypasses a costly obstacle segmentation proce- 
diire and enables construction of the GVG directly from 
range sensor data. 

The above claim that the distance to obstacles is the 

local minima of the sensor array is proven in the Ap- 
pendix. 

’7.4 Incremental Accessibility 
Inremental accessibility is simply gradient ascent ap- 

plied to the distance to the nearest obstacle. Since the 
nearest obstacle is associated with the sensor reading 
with the smallest value, simply moving in a direction 
opposite to which the sensor with the smallest value is 
facing is gradient ascent of the distance to the nearest 
obstacle. 

7.5 Incremental Traceability 
Once the robot has found a GVG edge, it must incre- 

mentally trace the edge and store an internal representa- 
tion of it. The distance measurement method, described 
in Section 7.3 determines the distance and dir 
the two closest obstacles. 

Since there are a finite number of sensors, the robot 
relies upon a lookup table to determine the tangent 
space of the GVG. The orientation of the tangent spaces 
corresponding to each closest sensor pair is stored in 
the lookup table, indexed by the two closest sensor lo- 
cations. Since there are only sixteen sensors, a lookup 
table is a good trade-off between speed and memory 
storage. The robot orients itself into the tangent space 
of the GVG edge and then takes a fixed step along the 
GVG edge’s tangent direction. 

In the current implementation, the correction step 
is an adaptation of the procedure described by Eqiia- 
tion 4, which prescribes the direction and magnitude of 
the robot’s correction course. Upon completion of the 
prediction step, the robot makes a ninety degree turn 
which points the robot in the direction prescribed by 
Equation 4. Instead of moving by the amount speci- 
fied in Equation 4, the robot rolls in a straight line iin- 
til its two smallest sensor readings are equal or within 
a threshold distance of eachother. After reaching the 
GVG, the robot repeats the step-correct procedure un- 
til it encounters a meet point or a boundary point. 
The robot stores a GVG edge as a doubly-linked list 
of points. 

It is worth noting that the sensor associated with the 
nearest reading to an obstacle will change in a “contin- 
iious” fashion as the robot explores a GVG edge. Since 
we have very few sensors and thus a very low resolution, 
a change of the location of a local minima by one sensor 
location constitutes a b‘continuous” change. 

7.6 Meet Point Detection 
Recall, at a meet point, T i j k ,  the robot terminates 

the edge tracing procedure of a GVG edge 3;j, and be- 
gins tracing edge Yik. In order to do this, the robot 
first must determine when it encounters a meet point. 
When there is an “abrupt” change in a sensor associated 
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Fig. 9. Naivc Mcct Point Detection 

with one of the two closest obstacles, then the robot has 
passed by a meet point. Just like a continuous change, 
an “abrupt” change is a function of the resolution of 
the sensor system and robot’s step size. Since the robot 
has few sensors and thus a low resolution, an “abrupt” 
change is indicated by a shift of the local minimum by 
more than one sensor location (Fig. 9). Term this pro- 
cedure the n,ai,ve m,eet poi,n,t detection scheme. 

The naive meet point detection scheme works well in 
environments whose objects can be bounded by poly- 
gons with non-acute angles. For example, in Fig. 10, 
the robot detects the meet point associated with the left- 
most obstacle (Cl), top-most obstacle (Cz), and central- 
protruding obstacle (C,). Note that C, has blunt (not 
sharp) protrusion which forms the meet points. 

Unfortunately, when C3 has a sharp angle (Fig. ll), a 
false meet point is detected because of t,he limited reso- 
lution and the reflective properties of the sonar sensors. 
Figures 1 2  and 13 delineate why a false meet point is 
detected in Fig. 11. In Fig. 12, the two smallest local 
minima are associated with C1 and C3,  and thus the 
robot infers C1 and C3 are the two closest obstacles. In 
Fig. 13, the robot takes one more step, and is not able 
to infer the existence of C, from its sensor readings be- 
cause C3 has sharp angle (that is, C3 is now “invisible” 
to the robot). The perceived absense of C3 results in an 
abrupt change in one of the two smallest local minima 

Fig. 10. Working. 

Fig. 12. Robot has traced 
out, GVG edge fragment. 
The lower left portion dis- 
plays the sonar sensor val- 
lies and the upper-right 
portion contains a closeup 
of the robot and its two lo- 
cal minima. 

Fig. 11. Not Working 

Fig. 13. Robot has two lo- 
cal niirnina whose valiies 
are not close to each other. 

causing a false meet point to be detected. (now, the two 
smallest local minima are associated with C1 and (72) .  

Note that in Fig. 13 the values of the two smallest 
local minima are not the same, nor close to each other. 
This indicates that the two smallest local minima do not 
define a GVG edge. In other words, the robot should 
not have stop tracing Y13 and start tracing F12, i.e., 
it should not infer that there is a meet point Fig. 11. 
Therefore, the naive meet point detection scheme is just 
a necessary and not sufficient condition. 

The correct meet point detection scheme has two 
parts. First, the robot looks for an abrupt change in 
one of the locations of the two smallest local minima. 
When this happens, the robot checks the values of the 
two smallest local minima. If they are not the same nor 
close to each other, the robot assumes no meet point 
is nearby and continues tracing the current GVG edge. 
The robot uses the smallest local minima and the local 
minima associated with the “invisible” obstacle from the 
previous step to continue tracing the GVG edge. Con- 
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Fig. 14. Robot, uses loca- 
tion of previous local min- 
ima. 

Fig. 15. Robot dctects t,he 
correct. meet point. 

tinuity of the distance function asserts that procedure 
generates an edge that is a good approximation of the 
actual GVG edge. Figs. 14 and 15 validate the effective- 
ness of the new meet point detection scheme. 

The meet points are stored as a double linked list of 
meet point structures. Each meet point structure has 
three pointers, each pointing to an GVG edge list ema- 
nating from the meet point. The meet point structure 
also contains three flags, each indicating in which direc- 
tion (forward or backward) its corresponding the GVG 
edge list must be traversed to  get the robot to an adja- 
cent meet point in the GVG. When the robot enters a 
corner (i.e., reaches a boundary point), it simply turns 
around and retraces its steps to a previous meet point 
with unexplored GVG edges. This produces a more con- 
cise and precise representation of the environment in 
contrast to the pixel methods. 

8 Experimental Results 
The results of one experiment can be found in 

Fig. 17. The robot was put into an unknown environ- 
ment bounded by Styrofoam, cardboard, and wooden 
walls. The GVG for this environment is depected as 
line segments in Fig.17. The squares denote the loca- 
tion of meet points in the environment. 

9 Conclusion 
This paper described the implementation of a general 

sensor based planning strategy, based on the generalized 
Voronoi graph, for the special case of a planar environ- 
ment. We showed that using the algorithm of [5], [6], 
a robot equipped with only a ring of sonar sensors can 
explore an a priori unknown environment and produce a 
one-dimensional representation (the GVG) of that static 
environment. With this one-dimensional representation, 
the robot can plan future excursions into the environ- 
ment. 

An important feature of the GVG is that it produces 

Fig. 16. Nomadic Robot Fig. 17. Experiment 

a concise representation of the world. The GVG edge 
is stored as a list of points and the GVG vertices are 
stored as list of pointers, each pointing to a GVG edge 
with which the GVG vertex is associated. This represen- 
tation is a significant savings in storage when compared 
to other world models such as a discrete pixel represen- 
tation. 

A key feature of the GVG is its incremental construc- 
tion procedure which relies on line of sight information. 
This procedure is guaranteed to be complete; that is, it 
will produce a representation the captures the full ge- 
ometry of the environment. Another advantage of this 
approach is that while tracing out the GVG edges, there 
is no need to fully identify each obstacle (i.e., perform 
complicated obstacle segmentation). Therefore, there is 
no need to store a representation of each obstacle. 

In this work, we did not consider all of the implica- 
tions of sensor noise, and limited sensor range on our 
algorithm. Also, we assume that the robot has a rela- 
tively accurate dead reckoning system. The next step 
in our research is to consider the issues of sensor noise, 
limited sensor range, and dead reckoning for the planar 
robot. The strength this work is that it generalizes into 
higher dimensions, and thus to  a more general class of 
robots. 
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Appendix 
A Raw Distance Function 

The following definitions and lemma validate the 
claim that the distance to obstacles is associated with 
the local minima in the sensor array. The raw distance 
function,, defined as 

provides the distance to all the points on the boundary 
of the environment that are with,in, line of sight of the 
robot. See Fig. 18 for an example of the raw distance 
function. 

A key feature of the raw distance function is that it 
can be readily approximated by many realistic sensor 
configurations. The sensor measurement provides an 
approximate value of the distance function p ( x ,  s), and 
the direction to which the sensor is facing corresponds to 
the direction of measurement (s E Sm-'). See Fig. ??. 
In Fig. 18, it can be seen that the raw distance function 
is not continuous. 

DEFINITION A.1 (CONE OF CONTINUITY) The con,e 
of con,tin,uity, Q(Z) at  a point x, is the closure of the 
set of directions for which p ( z , s )  is continuous with 
respect to s E S"-l. 
Note that e(%)  c Sm-'. Typically, at a point z there is 
more than one cone of continuity, so we attach an index, 
cy, to it, and denote e" as the a t h  cones of continuity at 
z. Note that S"-l = U, e"(x). 

Occluded regipns 

Fig. 18. The differently shaded regions each correspond to a cone 
of continuity. The unshaded region corresponds to  the points 
that  are not within line of sight of z. 

In the planar case the cone of continuity is simply a 

Finally, let C;(n:) be the set of points on an object Ci 
closed interval. See Figure 18. 

that are within line of sight of 5 ,  i.e., 

Ci(Z) = { e  E aci : vt E [O, 11, x(1-  t )  + et E 3s). 
With this we can define a visihle d i s t m c e  fun,ction,, 

which, in actuality, is the distance function used in the 
GVG definitions. 

LEMMA A.2 The visihle distan,ce (V-distance) to a,n, oh- 
ject at a poin,t n: i s  a local m,inim,a of th,e ram dis tana  
fmc t ion  in, the in,terior of a con,e of con,tin,u,ity. 
Proof: The a t h  cone of continuity, ~ " ( z ) ,  can be broken 
down into sub-regions, each associated with a particular 
obstacle. The set directions associated with only the 
boundary of Ci (i.e., points in int(C;(n:))) be denoted 
pg(x). Clearly, ,j$(.7:) = ~ " ( z )  where the index 
set I ( z )  corresponds to  each obstacle associated with 
the cone of continuity. 

- 

Since c = n: + p(x, s)s, 

C&) = {.7: + p ( z ,  s)s E 3ci : v s  E e'(.) j. 
Andsincep(x,s) = l l~-c/l ,  c = n:+p(z, s ) s  = .7:+IIz--cI/s 
which implies that s = a. Therefore, there is a 
one to one correspondence between each s E e?(%) and 
c E Ci(z). Hence, 

&(s) = mi-n 11.7: - C I I  
c€int(C,(z))  

- - min 11.7: - .7: - p ( z ,  .)SI1 

min llP(Z, .)sll 

min P ( Z ,  s )  

z+/ , (z ,s)y€int(c , (z))  

z+p( z,s) sEint (e; ( z ) )  

z+p(z,s)s€iiit(l ' ,(z)) 

- - 

- - 
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