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1 In t roduc t ion  

This paper develops new lower bounds on the number of 
frictionless fingers or fixtures which are required to im- 
mobilize planar objects. We study in detail the case of 
objects with smooth boundaries, and polygonal objects. 
Analogous results for the case of piecewise smooth ob- 
jects follow directly from the analysis presented herein. 
These results have obvious applications to fixture plan- 
ning and grasp planning [2, 4, 81, as we show that it is 
possible to  immobilize objects with fewer fingers than 
was previously thought possible. 

The issue of how many frictionless contacts are re- 
quired to  immobilize an object has a lengthy history. 
Reuleaux (1875) [9] found that at least 4 frictionless 
contact points are required for forc,e closure (which is 
one means to immobilize an object) of 2D objects. So- 
moff (1900) [14] found that a t  least 7 frictionless contact 
points are required for force closure of 3D objects. Much 
later, Markenscoff et. a1 (1990 [6] established that 4 or 

most any 2D or 3D object. The inscribed disc used by 
Markenscoff et. a1 will also be used in our derivations. 

Recently, Czyzowicz et. al [5]  showed that generic 2D 
and 3D polygonal objects can be immobilized respec- 
tively by 3 and 4 frictionless point contacts. In this 
paper, we show that generic smooth planar objects, and 
all polygonal objects, can be ininiobilized b y  3 friction- 
less convex fingers. Thus we extend the results of [5] 
to a much larger class of objects. We are also able to 
overcome the limitation of the analysis in [5] to poly- 
gons without parallel edges. Further, if we are allowed 
to choose suitably concave fingers (which still contact 
the object a t  points), we show that generic smooth pla- 
nar objects, and al l  polygonal objects, can be irnmobi- 
lized with 2 frictionless fingers. This possibility, to our 
knowledge, has never appeared in the literature before. 

The new lower bounds are based on the inclusion 
of the curvature of the object and the finger surfaces 
into the analysis of the object’s mobility. We devel- 
oped a mobility theory which includes curvature effects 
in [ lo ,  111. This mobility theory plays a central role in 
this work, and it is reviewed in Section 2. Next we de- 
scribe relevant properties of the maximal inscribed disc. 
Sections 4 and 5 focus on the immobilization of smooth 
objects by 3 convex and 2 concave fingers. The last 
section extends the bounds to polygonal objects. Due 

7 contact points sufice to a c  h ieve force closure of al- 

Joel W. Burdick 
Dept. of Mechanical Engineering 
California Institute of Technology 

to space limitation, several proofs have been omitted or 
reduced. They can be found in [12]. 

2 

The essential components of our mobility theory [IO, 111 
are now reviewed, as these concepts are the basis for 
our derivations. This analysis is concerned with the 
mobility of an object 13 held in point contact by k sta- 
tionary and frictionless finger bodies AI,  . . . , Ak in an 
equilibrium grasp. The bodies are either 2D or 3D. The 
analysis is formulated in B’s configuration space. Let 
q = (d,  0) be a parametrization of B’s c-space in terms of 
hybrid coordinates, where d E R3 directly parametrizes 
translation and d * E R3 parametrizes SO(3) via the ex- 
ponential map. 0 = d / l l B l l  is the axis of rotation and 
l lB l l  is the angle of rotation. We regard h SO(2:) as a 
subgroup of SO(3) with rotation axis B normal to the 
plane. Thus B’s configuration space is parametrized by 
Em,  where m = $ n ( n  + 1) (nz = 3 or 6). 

Consider Fig. 1, where B is an ellipse con,tacted 
by a finger Ai. B’s configuration space (c-space) is 
q = (d?, d,, B ) ,  and the c-space obstacle (c-obstacle) due 
to Ai is the set of configurations where B intersects the 
stationary “obstacle” Ai (Fig. l(b)).  Thus, if qo is B’s 
contact configuration, qo lies on the c-obstacle bound- 
ary, which is denoted Si .  When t? is contacted; by k 
fingers, QO lies on the intersection of Si for i = 1, ..., k. 

C-Space Approach  to Rigid Body Mobiility 

2.1 lSt and order free inotions 

The free motions of B are those local motions of B along 
which it either breaks away from or roll-slides on the 
finger surfaces. Equivalentsly, the free motions of 13 at qo 
are the c-space paths that emanate from yo and locally 
lie in the freespace, which is the complement of the c- 
obstacle interiors. Our mobility theory is based on the 
l S t  and 2nd propert,ies of the free motion curves. In 
the following i i i ( y0 )  denotes the outward pointing unit 
normal to Si at  qo (Fig. l(b)). 

Defini t ion 1 ([lo]) The lS t  order f r ee  motions 
of B at qo is the h.alfspace of Tq,Rm satiisfying 

M)(qo)  = (4 E Tq,Rm : r i i ( q o ) .  4 2 0 ) .  The halfs- 
pace’s boundary, T,,Si = (4 E Tq,Rm : f i i ( q 0 )  . d .  = O}, 
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Figure 1. lst  order approximation to the free motions of B 

is called the set of lSt order roll-slide motions. Its 
interior, { q  E T,,R” : n;(qo). > O}, is termed the set 
of  1” order escape motions. For k fingers, the set 
o f l S ‘  orderfree motions is: ~ t , , , , , ~ ( q o )  = nfZl ~ : ( q o ) ,  

Thus, along escape motions B increases its distance 
from .Ai to first order, which implies that it locally 
breaks away from .Ai. B keeps its distance from Ai zero 
to first order along lSt order roll-slide motions, and it is 
not possible to determine from lSt order considerations 
if B locally breaks away or penetrates A;. As we shall 
see, a l l  the free motions of B a t  an equilibriuni grasp are 
roll-slide t o  l S t  order. This important fact implies that 
the mobility of B at an equilibrium grasp depends on 
the 2nd order properties of its local motions. 

The 2nd-~rder  geometry of the free-motion curves and 
the c-obstacle boundaries is determined by their cur- 
vature and curvature form, respectively. The curua- 
ture f o r m  of Si at  qo E S;  is denoted ~ i ( q o , Q ) ,  where 
t c i ( q 0 ,  q )  = aT[Dni(qo)]4 for 4. E T,,Si. An explicit for- 
mula for the curvature form was derived in [lo]. We 
show in [lo] that the free-motion curves are determined 
to second-order by their velocity and acceleration at qo. 

Definition 2 ( [ lo])  The and order free motions 
of B at  qo  is the subset of ( q , S )  satisfying 

&(no) . q 2 0). Analogous t o  the l S t  order case, pairs 
(q,i) that satisfy n;(qo).q = 0 and qTIDni(qo)]Q+n;(qo). 

= 0 are called znd order roll-slide motions, and the 
other pairs in  h f : ( q o )  are termed Z n d  order escape 

A 

A 
M,z(qo) = {(q,i) : ii;(qo) ’ q = 0 and QTIDni(qo)]q + 

motions. F o r k  fingers, M: ,,,,, k ( q ~ )  = * k  fliZl Mf(q0) .  

Any lSt order escape motion determines a free-motion 
curve. Our definition of Y d  order free motions focuses 
on those curves which are roll-slide to 1’’ order. We 
show in [ l o ]  that if (4, ;i) E M?(qO) is a 2nd order escape 
motion, any c-space path a( t )  with a(0)  = 40, &(O) = q ,  
6(O) = q ,  locally lies in  the freespace for t 2 0. If 
( y ,  S) E M:(qo) is a 2nd order roll-slide motion, it is not 
poss ibk  to determine from and order considerations if 
a( t )  locally lies in the freespace. 

2.2 

This paper focuses 011 2D objectjs, for which the free 
motions have appealing graphical interpretation. 

Interpretation of the Free Motions 

Figure 2 .  (a) M:(qo) (b)M:(qo) as instantaneous rotations 

Graphical Interpretation of the lSt Order Free 
Motions: If qo  is B’s contact configuration with .Ai, 
the lst order roll-slide motions of B are the hyperplane 
tangent to Si at  qo E Si (Fig. 1). Let Ii denote the line 
underlying the ith contact normal, and let p; be the 
distance along li from the ith contact point, such that 
p i  is positive. on B’s side of the contact and negative on 
A i ’ s  side. It can be verified that the l S t  order roll-slide 
motions correspond to the instantaneous rotations of B 
about points of li at a distance p i ,  as p i  sweeps li from 
-00 to 00. Note: Rotation about an axis “at infinity” 
gives pure translation in a direction perpendicular to l i .  

Formula for the curvature of a c-obstacle: In 
[ l o ]  we give a formula for the curvature of Si, t c i ( q 0 ,  i), 
in terms of the curvatures of the boundary curves of 
B and Ai at their contact point. These curvatures are 
respectively denoted by the scalars ngi and K d i .  We 
will need the specialization of the curvature formula for 

which represent instantaneous rotat,ions of B about 
points which lie along the line I ; .  In the hybrid coordi- 
nates, t,angent vectors are denoted 4 = (.,U), where v 
is translational velocity and w angular velocity. Instan- 
taneous rotations of B thus have the form (1 = ( 0 , w ) .  

Lemma 2.1 ([13]) The curvature of Si a t  QO along 
pure instantaneous rotation of B, q = ( 0 , ~ )  such 
that llwll = 1, about an axis a t  distance pi along li as: 

&(!lo, ( 0 , w ) )  = (P iRB i  - l ) (P iKAi  + l ) / ( K d i  + KiBi).  (1) 

Graphical Interpretation of 2nd Order Free Mo- 
tions: Formula (1) yields a graphical interpretation 
of the 2nd order free motions. Let = l / q i  and 
r B i  = l /rc~, be the radii of curvature of Ai and B at 
their contact point. Eq. (1) can be rewritten as: 

The sign of ~ c ; ( q o ,  (0, w ) )  is thus solely a function of the 
relative magnitudes of p i ,  rgi, and r ~ ~ .  Consider Fig. 
2(b) where 8 and Ai are convex at  the contact point, 
hence rgi > 0 and > 0. If pi < vgi then B will 
penetrate .A; if this rotation, which is free to lSt order, 
is attempted. If pi = r B i ,  we get a lSt order roll-slide 
motion that is also a 2nd order roll-slide motion. If 
pi > rgi the bodies separate, and this is a 2nd order 
escape motion. If the rotation axis is on the finger side 
of the cont>act, pi < 0,  and a similar analysis holds 
wit,li the role of TA;  replacing the role of TB;. If one 
of the bodies, U say, is concave at  the contact point, 
then rgi < 0. Also r ~ ;  + rai _< 0, since necessarily 
rdi 5 Irg,I. The 2nd order free axes in this case lie 
between the centers of curvature of the two bodies, in 

K i ( P 0 ,  ( O l w ) )  = (P i  - r B i ) ( P i  + rdi)/(rA; + rB;) (2) 

- J ~ B ; J  5 Pi L- - T A ; .  
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2.3 

The mobility indices are coordinate invariant integer- 
valued functions that measure the mobility, or effective 
number of degrees of freedom, of B when it is held in an 
equilibrium-grasp confi uration qo .  At an equilibrium 
grasp the net wrench pforce and torque) on B must be 
zero. The wrench due to a normal contact force applied 
by di on B is a positive multiple of the finger c-obstacle 
normal ni(q0)  [13]. The equilibrium condition in c-space 
is thus characterized by the requirement that the origin 
be in the convex hull of the finger c-obstacles' normals. 
That  is, there must exist scalars XI, ..., Xk such that 

where A i  2 0 and Cf=lXi = 1. We assume that each 
n i ( q 0 )  in (3) is essentialfor the grasp, meaning that the 
origin cannot be positively spanned with any subcol- 
lection of { n ~ ( q o ) ,  ..., nk(q0)). At a k-finger equilibrium 
grasp M:,,,, ,k(qo) forms a subspace, consisting of all the 
1" order roll-slide motions with respect to each of the 
fingers. The dimension of this subspace is m - k + 1 
(m  = 3 or S), and it is defined as the lSt order mobil- 
ity index of the equilibrium grasp, mio = m - k + 1. 
mio is coordinate invariant [lo]. However, mio is iden- 
tical f o r  all k-fingered grasps. This lack of discriminat- 
ing power is remedied with our novel 2nd order index, 
which is based on the c-space curvature of Si, r c i ( q 0 , i ) .  
Consider the Xi 's  in the equilibrium condition (3). It is 
shown in [ll] that the weighted sum of the c-obstacle 
curvature forms has a coordinate invariant structure 
which characterizes tthe 2nd order mobility of 8. 
Definition 3 ([ll]) Let X I ,  ..., Xk be the coeficients 
of the equilibrium equation (3) .  The c-space rel- 
ative curvature form f o r  the equilibrium grasp is 

Krel(qot  i) = Ci=1 XiKi(q0, i), where 4 E Mll , . . . ,k(q~).  
The 2nd order mobility index of the equilibrium 

grasp, denoted m:o, is the number of non-negative 
eigenvalues of the quadratic form rcrel(qo, i), 
By definition, mifl is an upper bound on the values 
of mto i.e., 0 5 mifl 5 mifl. This inequality has an 
important interpretation: 2nd order effects always re- 
duce the mobility of the grasped object. We will use 
this effect to lower the bounds of the number of fingers 
necessary for immobilization. If mio = 0 ,  the body is 
completely immobilized, and the 2nd order index car- 
ries no useful information. If 8 is not immobilized to 
l S t  order (mio > 0), it may be immobilized to 2nd order 
(m& = 0). A key interpretation of the Y d  order index 
is provided in [ll]: if nz& = 0,  any local motion of 8 is 
either lSt order penetration, or it is l S t  order roll-slide 
and then it is necessarily Znd order penetration. Thus 
m& = 0 implies that B is completely immobilized. 

1" and Z n d  Order Mobility Indices 

0 = X l n l ( q 0 )  + . ' + X k n k ( q O ) ,  (3) 

A 

A k  

3 The Maximally Inscribed Disc 

The locally m a x z m a l  anscribed d isc  will be a key tool in 
the derivations. This sect,ion discusses it,s propert,ies us- 
ing the non-smooth analysis theory of Clarke [3]. This 

theory deals with the derivative of scalar-valued func- 
tions f which are not necessarily differentiable, but ad- 
mit a generalized gradient, denoted af(z). This i3f(z) 
is a set of vectors that reduces to the classical gradient 
where f is differentiable. See 131 for more details. 

Let B c Rn be a compact set with non-empty in- 
terior and smooth boundary, which is denoted bdy(B). 
Consider the minimal distance of a point 2 E B from 
bdy(8)  i.e., the function 6 : B --+ R defined by 

The distance of a point from a set is a continuous func- 
tion. Since L3 is compact, 6 attains at least one max- 
imum on 8. Intuitively, every local maximum 3: of S 
is the center of a maximally inscribed n-disc--a disc 
which lies wholly inside B whose radius is maximal with 
respect to all the disc-centers in a neighborhood of z. 

We now establish that the local maxima of S are fea- 
sible equilibrium grasps. The inward pointing unit nor- 
mal to bdy(L3) at y E bdy(L3) is denoted fi(y). Z 

attains its value i.e., S ( x )  = (12 - yII for all y E Z(z). 

Lemma 3.1 (1121) Let z be a local maximum of S. 
Then al l  the normals f i ( y )  f o r  y E 2(z) point toward 
z. Moreover, the convex hull of these normals, denoted 
CO, contains the origin, o E co{fi(y) : y E ~ ( z ) } .  

Sketch of proof: If 5 is differentiable a t  an inte- 
rior point z, then according to [3 ,  Proposition 2.5.41, 
a: must have a unique closest point y on bdy(B) and 
V6(a:) = (a: - ;y)/IIx - yll. If 6 is not differentiable at 
2, then according to [3, Theorem 2.5.11 the generalized 
gradient, i35(z), is the convex hull of the unit vectors 
(z - y)/llz - yll for all y E Z(z). Next we show in [12] 
that the vectors (z - y)/llz - V I [  for y E Z(z) satisfy 
(z - y)/IIz - yII = N(y). Hence the unit normals point 
toward a: and %(z) is: 

i35(z) = co{fi(y) : for all y E ~ ( z )  } . (4) 
Let, z be now a local maximum of 6. According to [3, 
Proposition 2.3.21, a necessary condition for z to be a 
local maximum of 6 is that zero be in a6(z). This, with 

0 
Next we show that if 2 is a local maximum of 6, the 

points y E 2(a:) determine an equilibrium grasp using 
normal finger forces. We will need CarathBodory's 
tlieorem [I]: if X c R" and p E co{X}, then p E 
CO { y }  for a finite subset y c X of k 5 n + 1 points. 

Corollary 3.2 The local maxima of 6 determine fea- 
sible equilibrium grasps of B. 

Proof: At an equilibrium grasp the net wrench on 8 
is zero. Since z is a local maximum of 6,  we have from 
Lemma 3.1 that, 0 E {$(y) :y E 2(z)}. If Z(z) is infinite, 
the origin lies in the convex hull of a finite subset of unit 
normals according to Carathkodory's theorem. Thus 
there exist k unit normals such that 0 = Alfi(yl)-t-. . .+ 
, i k f i ( y k ) ,  where X i  2 0  and Ci=lXi = 1. Application of 
normal finger forces of magnitudes X I ,  ..., Xk at y1, ..., yk 
yields zero net force. Since the lines underlying each 
fi(yi)  passes through a:, each finger force generates zero 

denotes the set of all points y E bdy(B) at  which1 6 

(4), imply the condition of the lemma. 

k 

t,orque about z. U 
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The following lemma (proven in [12]) asserts that the 
locally maximal inscribed disc generically touches the 
boundary of B at  k = 2 , 3  points when B is 2D. 

L e m m a  3.3 ([12]) Let d: be local maximum of S. 
Then Z(z) is generically f ini te  and of size k 5 n + 1. 

In 2D the lemma can be interpreted in terms of the 
Voronoi diagram of a set S .  The vertices of the Voronoi 
diagram are equidistant from at least 3 points of S. The 
lemma says that for generic sets none of these vertices 
is equidistant from 4 points. The next lemma follows 
froin the fact that the inscribed disc lies inside B. 

L e m m a  3.4 Let B be planar and let x be a local max- 
i m u m  of 6 .  Then the radius of the inscribed disc, S(x), 
is a lower bound on t h e  radius of curvature of bdy(t3) 
at  the points y E Z(z) where bdy(f3) is convex. The 
bound is strict whenever y E Z(x) is an isolated point. 

4 Immobil iz ing Ob jec t s  w i th  3 Convex Fingers  

We consider only generic smooth objects, whose in- 
scribed disc touches b d y ( B )  at k = 2 or 3 points. Special 
objects for which k is finite can be reduced to k = 2 or 
3 using Carathkodory‘s theorem. Research in progress 
suggests that special objects for which t is infinite can 
also be immobilized witjh 3 convex fingers, except when 
their boundary consists of concentric circles. 

We first show that if the maximal inscribed disc 
t30uches b d y ( B )  a t  3 point,s, t,hese points define an im- 
mobilizing equilibrium grasp. Next we show that if the 
maximal inscribed disc touches b d y ( B )  at 2 points, these 
points determine a nearby 3-point immobilizing equilib- 
rium grasp. We will write Mlo for M:, , L ( q o ) .  

Proposition 4.1 ([12]) Let t3 be ZD, smooth, with 
non-empty interior. I f  a locally inaziirial inscribed dzsc 
touches bdy(t3)  a t  three isolated points, B is coin- 
pletely immobil ized b y  placing 3 c o i i u e ~  fingers a t  
these points (Fig. 3 ) .  
Sketch of proof: Acc.ording to Corollary 3 . 2 ,  an equi- 
librium grasp is obtained by placing 3 fingers at the 
three points. Using the mobility theory, mio = 1 for 
the grasp. Thus the ISt  order free motions of 13 lie on 
the one-dimensional subspace, Mio., of instantaneous ro- 
tations of 13 about the inscribed disc center 2. Next we 
show that mi0 = 0,  which implies complete immobility. 
We have to show that K ~ ~ ~ ( Q o ,  4) = x;=lAi~i(q~, q )  < 0 
for all 4 E M i o .  In krms of eq. (2) ,  x is located at 
pi  = S(z) for i = 1 , 2 , 3 .  There arc two  cases to consider. 
If B is convex at the ith contact point, then 6(1) < T B ;  
according to Lemma 3.4. Using (2)) this implies that 
K i ( q o , ( O , w ) )  < 0. If B is concave at the ith contact, 
then according to (2) the interval of 2‘ld order free axes 
lies on Ai ’s side of the contact point. But a: lies on 8 ’ s  

17 
Example: In the 3-finger grasp of Fig. 3, mio = 1. 
However, m;o = 0 for the grasp and the object is com- 
pletely immobilized by the three fingers or fixtures. 

side. Hence ~ i ( g . 0 ,  ( 0 , w ) )  < 0 in this case too. 

A L U  

Figure 3. A 3-finger or 3-fixture immobilizing grasp 

(a) (b) 

Figure 4. 3-finger immobilization starting at two points. 
Solid lines are Z n d  order penetration axes. 

Note that the curvature of the fingers played no role in 
the last proof. Only the contact points location mat- 
tered. However, the fingers’ curvature is important in 
the other generic case, where the inscribed disc touches 
bdy(f3b at two points. In this case our goal is to  show 
that t ere exists a nearby 3-finger immobilizing grasp. 

We begin with a lemma that allows a local “splitting” 
of one of the contact points, y1 say, into a pair yll,  y12 
located on either sides of y1 (Fig. 4). The lemma further 
asserts that the contact point opposing the splitted pair 
can be moved slightly to generate a 3-point equilibrium 
grasp. In the following, the lines underlying $(yll) and 
fi(yl2) are denoted 111 and [ l a .  The center of curvature 
of b d y ( B )  a t  yi is denoted zi. 

Lemiiia 4.2 ([12]) Let a locally maximal inscribed 
disc loi ich b d y ( B )  at two points y1 and y2. I f  the 
circles of curvature of b d y ( B )  a t  y1 and y2 are non- 
concentric’ i.e., 21 # 2 2 ,  there ezist three points 
yll,y12,y3 E bdy(t3)  such that: 1) The lines underly- 
ing ~ ( y l l ) ,  f i (y lz ) ,  fi(y3) are concurren t  at  a point p ,  
and 2) The normals f i (yl’) ,  ~ ( y l a ) ,  N(y3) positively 
span the origin such that no two of them are collinear. 

Thus, placing 3 fingers at y11, y12, y3 gives an equilib- 
rium grasp. However, for immobilization the finger op- 
posing the splitted pair must be sufficiently flat. 

Propos i t ion  4.3 ([12]) Let B be LD, smooth, with 
non-empty interior. Let a locally maximal inscribed disc 
touch bdy(B) at two isolated points y1 and y2. If the 
circles of curvature o f  b d y ( B )  at y1 and y2 are non- 
concentr ic ,  there exist three points on b d y ( B )  such 
that 8 is completely immobil ized b y  placing SUB- 
ciently f l a t  convex Jingers a t  these points. 

Sketch  of proof: Using Lemma 4.2, we split yl into 
y11 and ylz ,  and shift yz to y3. An equilibrium grasp is 

‘Zero curvature at y1 arid y2 is considered as z1 = z2 = {m}, 
a id  is excluded. This special case is considered in Prop. 4.4. 

754 - 



obtained by placing 3 convex fingers d 1 ,  A2, d 3  at the 
points yll, y12, y3. The resulting grasp has mto = 1, and 
Mtn consists of instantaneous rotations of B about the 
concurrency point p .  Next we show that mio = 0, which 
implies complete immobility. To show that K ~ , I ( Q O ,  $) = 
C~=1XiKci(po1 i )  < 0 for all q E Min, we will show that 

K ~ ( Q o , Q )  and ~ 2 ( 4 0 , 4 )  can be made arbitrarily small, 
while K g ( q 0 , Q )  is strictly negative. 

As y11 and y12 approach y1 from both sides, the cen- 
ter of curvature of bdy(B)  at y1j approaches z1, and the 
intersection point of the lines 111 and 112, p ,  also ap- 
proaches z1. Hence the distance of p from y l j ,  denoted 
p j ,  approaches r B I j ,  the radius of curvature of bdy(B) 
at y l j .  As (2) contains a factor (p j  - T B ~ ~ ) ,  ~ j ( q 0 , q )  can 
be made arbitrarily small for a local splitting of y1. 

Next we verify that ~ ( 9 0 ,  q )  is strictly negative for 
instantaneous rotations about p .  Let ~ ( y l )  and Ks(y2) 
be the curvatures of bdy(B) a t  y1 and y2. We may 
always assume that ~ a ( y 1 )  > 0 [12]. Next we invoke 
a continuity argument, which allows us to determine 
the sign of K ~ ( Q O ,  4) for y3 = y2, and for instantaneous 
rotation of B about p = zl. First consider the case 
where ns(y2) 2 0 (Fig. 4(a)). Let a3 be the center of 
curvature of the convex finger d 3 .  According to ( a ) ,  
the interval of and order penetration axes lie between 
22 and u3. According to Lemma 3.4, r g l  > S(z) and 
raZ >, 6(z). Hence z l  lies beyond z 2 .  By choosing A3 
suficaently f l a t  at  y2, u3 lies sufficiently far from y2 so 
that z1 lies between z2 and a3. Using (a), this implies 
that ~ 3 ( ~ 0 , 4 )  < 0 for instantaneous rotation of B about 
p = 31. If ~ ~ ( y 2 )  < 0 (Fig. 4(b)), the interval of 2nd 
order free axes lies between z2 and u3 on the finger 
side of the contact. As z1 # z2 by hypothesis, for a 
sufficiently flat A3 the point z1 lies outside the interval 

U 
The two propositions lead to the following theorem. 

Theorem 1 All  generic smooth 2D bodies can be im- 
mobilized b y  three frictionless convex fingers, provided 
that the fingers are suficiently f i a t  u t  the contact points. 

Sketch a proof: According to Lemma 3.3, a maximally 
inscribed disc generically touches bdy(B) at k = 2 or 3 
isolated points. If t = 3 we invoke Prop. 4.1. If k = 2 
we may invoke Prop. 4.3, provided that the circles of 
curvature of bdy(B)  at y1 and yz are non-concentric. 
The concentricity can be shown to be non-generic. 0 

Special case-Convex 2D Body with Parallel 
Edges: This special case commonly occurs in man- 
made objects. Thus we describe a 3-finger immobiliza- 
tion scheme which starts from two parallel edges. 

Proposition 4.4 ([12]) Lct B be BD, ~ m o o t h ,  wi2h two 
parallel edges e l  a n d  e2.  Let a locally iriazirnal inscribed 
disc touch bdy(B)  at two points y1 and y2 in  the interior 
of el and e2. Then there exist three points on bdy(B)  
such that B is completely iiniiiobilized b y  placing 
suficiently flat convex fingers at these points. 

Sketch of proof: As depicted in Fig. 5, we first shift 
the endpoints of e l  beyond t,he edge's limits, to obtain 
two contact points y11 and y12. Then we locate a third 

[z2, u3]. Hence ~ ~ ( 9 0 ,  i) < O  in this case too. 

Figure 5. 3-finger immobilization starting at parallel edges 

point, y3, along e2 to obtain a 3-point equilibrium grasp. 
The immobilization is obtained by exploiting the flat- 
ness of bdy(B) a t  y3. See [la] for the full details. 0 

5 

We now show that 2 suitably curved frictionless fingers 
suffice to immobilize generic smooth objects. 

Proposition 5.1 ( 121) Lei B be a smooth 2 0  shape, 
and  let y1, y2 E bdy / B) f o r m  a 2-point equilibrium grasp 
o f  B. If the circles o f  curvature of bdy(B) at y1 and y2 
are non-concentric, B is completely immobillzed 
by placing two suitably curved fingers a t  these points.  

The non-concentricity assumption excludes the :possi- 
bility that y1 and y2 lie on two parallel edges of B. 
However, we address this issue in Lemma 5.2 below. 
Sketch of proof: At a %point equilibrium grasp the 
contact normals are antipodal and lie along a com- 
mon line which is denoted 1. The subspace Mio is 2- 
dimensional i.e., m& = 2. Thus Mio consists of instan- 
taneous rotations of B about an axis that sweeps 1 from 
-CO to CO. We will show that suitably curved fiingers 
yield nitn = 0 for the grasp. 

The equilibrium condition ( 3 ) ,  X17i1(qo) + X z f i z ( q o )  = 
0 ,  implies that A 1  = A2 = l /2 .  Hence it suffices to show 
that ~ K , , I ( ~ o ,  4) = K I ( ~ O ,  4.) + nz(qo, 4) < 0 for all q E 
Mtn. We consider here only the case where B hac; non- 
zero curvature a t  both endpoints. We choose a finger 
d; whose curvature a t  yi is €-away from the negated 
curvature of 8 at, y; , for i = 1,2 .  More precisely, when 
0 is strictly coiivex at yi i.e., rai > 0,  we put a concave 
finger a t  yi such that r A i  = (-rai) - E < 0 (Fig. 6(a)). 
When B is strictly concave at yi i.e., rg. < 0, we put a 
conuez finger A; such that rAi = (-rgi) - E > 0 (Fig. 
6(b)). Note that in this case E must satisfy E < 1 1 . ~ ~ 1 .  

Next we express p1 and p2 in terms of a common vari- 
able p. Let p be the distance along I ,  measured from the 
midpoint, of the contact points, such that p is ne,gative 
toward y1 and positive toward y2. Let 2L be thie dis- 
tance between the coiitact points. Then p1 = L + p  and 
p2 = L - p. Substituting for T A ~ ,  p 1 ,  and p z  in ( a ) ,  then 
adding r c l ( q 0 ,  ( 0 , ~ )  to ~ 2 ( q o ,  ( o , ~ ) ) ,  gives a quadratic 

polynomial is - { + ( p ( z l )  - ~ ( 2 2 ) ) ~  + +(.I) - ~ ( z z ) ) ) .  
Where zi is the center of curvature of bdy(L3) at yi, and 
p(z i )  is the p coordinate of z i t  for i = 1 , 2 .  It follows 
that a sufficient condition for tcirel(qo, ( 0 , w ) )  to be neg- 
ative for all p is E < + Ip ( z1 )  - p ( z 2 ) )  = - z:!ll. TO 
surnniarize, if the fingers' curvature IS chosen according 
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polynomial in p. T b e maximum value attained b'y this 
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(b) 
I 

(3 
Figure 6. %finger immobilization exploiting concavities 

to  the rule = ( - r ~ ~ )  - E such that E < lrg,l and 
E < f l f z l  - ~ ~ 1 1 ,  m& = 0 for the grasp (Fig. 6(a)). 0 

Example: In Fig. 6(b) a 2D object is grasped or 
fixtured by two discs. mto = 2 for this grasp. Because 
of the concavity a t  the contact points, B is immobilized 
to Znd order i.e., mio = 0. 

Special case-2D Body with Parallel Edges: 
As in the previous section, we consider the important 
special case where 13 has two parallel edges. The follow- 
ing lemma (proved in [12]) implies that 2-point grasps 
which do not lie on parallel edges always exist. 

Lemma 5.2 ([12]) A n y  2 0  s m o o t h  a n d  c o m p a c t  body 
8 p o s s e s s e s  a 2-point equ i l ib r iun i  g r a s p  s u c h  t h a t  t h e  
grasp  p o i n t s  do r i o t  lie on parallel edges. 

The following theorerri is a corollary of Proposition 5.1. 

Theorem 2 All generic  smooth  2D bodies  c a n  be im- 
m o b i l i z e d  b y  two, p o s s i b l y  concave, frzctionlessfingers. 

The genericity assertion refers to the condition made 
in Prop. 5.1, that  the object’s circles of curvatures a t  
the grasp points be non-concentric. This concentric- 
ity can be shown to be non-generic. Moreover, Lemma 
5.2 guarantees that objects with parallel edges (whose 
circles of curvature are concentric at  infinity), possess 
grasp point,s which do not lie on parallel edges. Hence 
almost all 2D objects with parallel edges also fall within 
the class of immobilizable objects of the theorem. 

6 Immobilizing Polygonal Objects 

This section summarizes work in [12], where the bounds 
derived for smooth objects are extended to polygons. 
First we characterize the c-obstacle of a finger contact- 
ing a polygon, then we derive the bounds. 

6.1 The C-Space Obstacles  of a Polygon 

We now describe the finger c-obstacle when Ai contacts 
B at a vert,ex of B .  First consider the case where the 
contact occurs a t  a convex corner of B (Fig. 7(a)). h s -  
sliming A; is smooth,  t,he contact, norrrial between A, 
arid !3 is defined as the unique normal to bdy(Ai )  at the 
contact point. Note that a given Ai can contact B a t  
the vertex as to genera.te any contact, normal which is a 
convex combinat>iori of B’s edge normals. However, once 
the finger is placed, the contact normal is unique. The 
c-obstacle bounda,ry is locally smooth at all of B’s con- 
figurations where its contact normal with .Ai does not 
coincide with E’s edge normals. In fact,, the curvature 
of the c-obstacle boundary is obtained by substituting 
rai = 0 in the curvat>ure forrriula (2). 

the contact noniial is the 
unique nomial to the fiiger 

B 
I I 

,,:\ 

the generalized normal is 
the convex combination 
of B’s edge normals 7 !  

center of , inscribed disc 
..... .. ... 

(a) W (b) 

Figure 7. The contact normal at a (a) convex corner and 
(b) concave corner 

If the contact occurs at  a concave corner of B, Ai must 
have a “sharp corner” or a vertex a t  its contact point 
with B (Fig. 7(b)). In this case 0 is the local union of 
two halfplaiies, each bounded by one of the edges of B 
generating the corner. Thus, if CBil and CBjZ are the 
c-obstacles corresponding to  the sub-shapes of B, the 
actual c-obstacle, denoted CBi, is given locally by their 
union, CBi = C D i l  UCBiz .  The lSt order free motions 
of B ,  I M ) ( q o ) ,  is the intersection of the halfspaces of lSt 
order free motions of CBil and CBiz at 40 i.e., M:(qo) 
looks like a ((wedge’’ in TgoR3. The following definition 
is based 011 Clarke’s notion of genera l i zed  g r a d i e n t  [3]. 

Defini t ion 4 L e t  a v e r t e x  of .Ai be in p o i n t  c o n t a c t  with 
a concave corner of B a t  yi. L e t  fiil(yi), I?iz(yi) be 
t h e  unrt iioriiinls t o  t h e  edges  of B a t  yi. T h e n  t h e  gen- 
eralized contac t  noririal a t  yi is t h e  c o n v e x  c o m h i n a -  
t i o n  a N ( y z )  e co{fiil(yi), I?i:.,(yi)} (Fig. 7(b)). 

We make the reasonable conjecture that A; c a n  app ly  
contact f o r c e  a long  a n y  v e c t o r  in aN(yi). The conjec- 
ture agrees with our intuit,ion, though its rigorous justi- 
fication is part of ongoing research. As we shall see, at 
any given equilibrium grasp the direction along which 
Ai is required to apply a force is uniquely specified. 

All the results obtained for the locally maximal in- 
scribed disc of smooth objects also hold for polygons. 
However, Lemma 3.1 must be rephrased in terms of the 
generalized contact normal. 

Leiiiiiia 6.1 ([12]) L e t  2 be a local maximum of 6. 
Then each  diii(y) for  y E ~ ( 2 )  c o n t a i n s  a v e c t o r  Z(y)  
w h i c h  points toward 2, a n d  0 E co{$(y) : y E Z(x)}. 

6.2 Irninobilizatiori with 3 Convex Fingers 

We now show that, any polygon can be immobilized with 
3 convex fingers. First consider the case where the lo- 
cally maxinial inscribed disc touches bdy(f3) at 3 p0int.s. 

Proposition 6.2 ([12]) L e i  L3 be a polygon.  I f  n lo- 
ca l l y  i u a z i ~ n a l  i n s c r i b e d  d i s c  t o u c h e s  bdy(B) a t  three 
p o i n t s ,  B i s  completely immobilized b y  p l a c i n g  3 f i n -  
gers in c o n t a c t  with B a t  t h e s e  p o i n t s .  

Sketch  of proof: If all the contact points lie in the 
interior of edges of B ,  B is clearly immobilized by 2nd 
order effects. Next we argue that if the locally maximal 
inscribed disc touches bdy(B) a t  a vertex of B, it  must be 
a concave corner. Thus consider, for instance, the grasp 
shown in Fig. 7(b). We show that the possible l S t  order 



free motions of B lie in the one-dimensional subspace of 
instantaneous rotations about the disc center x .  Then 
we show that these motions are order penetration 
with respect to the edges of 8 forming the concave cor- 
ner. Hence B is immobilized by lSt order effects. ~II 

STACK : Next consider the case where a locally maxi- 
mal inscribed disc touches the boundary of B at two 
points. We show in [12] that in this case the locally 
maximal inscribed disc touches bdy(B) at two parallel 
edges. The next proposition discusses 3-finger immobi- 
lization which starts from two parallel edges. 

Proposition 6.3 ([12]) Let B be a polygon. Let a 
locally maximal inscribed disc touch bdy(t?) at  two 
points. Then there exist three points on bdy(t3) such 
that B is completely iuiinobilized by placing SUB- 
ciently f l a t  conuex fingers at  these points. 
The proposition is an adaptation of Prop. 4.4. The 
only notable difference is that now we rotate d1 and d2 
about the respective edge endpoint, rather than sliding 
them along bdy(B) (Fig. 7(a ). The propositions are 
summarized in the following t i ieorern. 

Theorem 3 All polygons can be immobilized b y  three 
frictionless convex fingers, provided that the fingers are 
suficiently f l a t  at  the contact poznts. 

6.3 

As in the smooth case, we can perform the immobiliza- 
tion at  any 2-point equilibrium grasp, provided that the 
grasp points do not lie on parallel edges of B. 

Proposition 6.4 ([12]) Let B be a polygon, and let 
y1, y2 E bdy(B) determine a 2-point equilibrium grasp. 
If the edges of B containing y1 a n d  y2 are non-parallel, 
0 is completely immobilized b y  placing two Jingers 
of suitable curvature at  these points. 

The following lemma provides a means by which the 
proposition can be applied to any polygon. The lemma 
is an adaptation of lemma 5.2. 

Lemma 6.5 ([12]) A n y  polygon B possesses a 2-point 
equilibrium grasp such that the grasp points do not lie 
on parallel edges. 

The lemma, together with Proposition 6.4, imply the 
following theorern. 
Theorem 4 All polygons can br i inmobdizcd by two 
suitably curved frictionless fingers. 
Note that one contact always occurs at a vertex of B 
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7 Conclusioii 
By using curvature effects, we have shown in detail how 
to immobilize planar smooth and polygonal objects with 
fewer frictionless fingers or fixtures than were previously 
thought necessary. By reducing the number of immo- 
bilizing fixtures, our results allow greater flexibility in 
fixture and grasp planning. 

Real applications of this work to fixture or grasp plan- 
ning will invariably involve some amount of friction. 
However, our focus on immobilization with frictionless 
fingers reflects a conservative approach-friction always 
acts to enhance immobilization but it may be arbitrar- 
ily small or poorly modeled. Moreover, recent results 
by Mirtich and Canny [7] suggest that frictional grasps 
chosen on the basis of frictionless analysis yield oplimal 
disturbance rejection. 

There are a number of open issues to  be investigated. 
The proofs of immobility rely on equilibrium girasps 
which were derived from a locally maximal inscribed 
disc. It should be emphasized that these immobiliizing 
grasps may not necessarily be the optimal immobilizing 
grasps for a given object. The choice of the optirrial2- 
or 3-fingered grasp is a subject of current research. It 
should also be pointed out that while we have slhown 
how to immobilize objects with fewer fingers, it m,ay be 
advantageous in some applications to use more fingers 
than the number prescribed here. 

The methods used to prove our results can be ex- 
tended t,o 3D objectts. Research in progress shows that 
any generic smooth or polyhedral 3D object can be im- 
mobilized with 4 frictionless convex fingers. This re- 
search further suggests that generic smooth or polyhe- 
dral 3D objects can be imrnobilized with 3 suitably con- 
cave fingers or fixtures. 
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