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Abstract 
A “modular” robotic system consists of standardized 
joint and link units that can be assembled into a num- 
ber of different kinematic configurations. Given a pre- 
determined set of modules, this paper considers the 
problem of finding an “optimal” module assembly con- 
figuration for a specific task. We formulate the solution 
as a discrete optimization procedure. T h e  formulation 
is ba.sed on an assembly incidence matrix representa- 
t.ion of a modular robot and a general task-oriented 
objective function tha t  can incorporate many realistic 
task criteria. Genetic algorithms (GA) are employed 
to  solve this optimization problem, and a canonical 
method t o  represent a modular assembly in terms of 
genetic strings is introduced. An example involving a 3- 
DOF manipulator configuration is presented t o  demon- 
s t ra te  the feasibility of this approach. 

1 Introduction 
A modular reconfigurable robotic system is a collec- 
t.ion of various sub-assemblies, at the level of links and 
joints, tha t  can be easily separated and reassembled 
into different configurations through standardized con- 
necting interfaces. By reconfiguring the modules, dif- 
ferent robots can be created so as to  suit a diversity of 
task requirements. Several prototype modular robotic 
systems have been built and demonstrated [3,5,12,14]. 

Let the arrangement of modules in a modular robot be 
called an assembly configuration. We consider the task- 
orieizted o p t i m a l  configuration problem in this paper- 
i.e., how to t o  find an  optimal assembly configuration 
from a set of modules for a specific task. We assume 
t1ia.t the  set of modules is fixed at planning time, and 
t,lius only freedom available for optimization is the re- 
combination and rearrangement of modules. For sim- 
ply designed iiiodule sets, the  total number of possible 
assembly configurations can be manually enumerat,ed, 
and this set of robot configurations can be easily tested 
against the task requirements. As the module design 
becomes more complicated and versatile, the possible 
number of t.he robot’s assembly configurations grows 
t~reinendously. An efficient and systematic method t o  
find an optimal configuration is thus necessary. 

Here we introduce a general framework for solving the 
optimal assembly configuration problem. We define 
a generally applicable task related objective function 
which evaluat,es a modular robot assembly configura- 
t.ion for a given t,a.sk while avoiding sub-assemblies with 
undesirable kinematic properties. This  function could 
be applied t.o all of the unique assembly configurations 
which result from the algorithm outlined in [1,2]. Al- 
t.ernat.iveiy, we can use this funct,ion as the basis for 
discret.e or coinbiiiat,orial optiinization met.hod. In this 
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Figure 1: Link modules-a cubic box and a prism 

paper, we employ genetic algorithms because of the  dis- 
crete nature of the assembly configuration set. 

Paredis and Khosla [ll] have considered task-based 
robot design for fixed configuration robots. In their 
formulation, all design parameters are assumed contin- 
uous values, and hence conventional optimization tech- 
niques can be employed. In the problem posed here, 
the search space, the set of assembly configurations, is 
a discrete set. 

2 Conceptual Module Models 
A conceptual module model set based on the features 
found in many real implementations is introduced [112]. 
The  module set consists of link and joint modules only. 
T h e  following 1- or 2-DOF joint modules are consid- 
ered: revolute joint (R), prismatic joint (P), helical 
joint (H),  and cylindrical joint (C). Joint modules are 
connected t o  the link modules through connecting ports 
and link modules possess multiple joint connections. 
We further assume tha t  link modules have symmetrical 
geometry and symmetrically located connecting ports 
(though modules with only two connecting ports and 
no symmetry can be handles as well). T h e  connecting 
ports are labeled accordingly. T h e  symmetry design al- 
lows link modules t o  be re-oriented without altering the 
robot kinematics. For illustration purposes, we assume 
only two types of link modules are available: square 
prisms (10 ports) and cubic box units (6 ports), which 
are shown in Fig. 1. Other objects can be similarly 
treated. 

3 Modular Robot Assembly Representation 
T o  describe the location of a joint on a multi-port link 
module, we use a function termed assembly pattern. 
Let PORT be the set of port numbers on a link and ATT 
be the set of connecting s ta tus  on a port. ATT contains 
eligible joint types and a zero indicating an empty port. 
For our modular robotic system, ATT = (0, RI H, C ,  P } .  
For a cubic box, PORT= { 1 , 2 , 3 , 4 , 5 , 6 ) .  

Definition 1 The assembly patfern on a link module 
is an injection mapping 

f : PORT + ATT. 



Figure 2: Two assembly pattern examples 

If the port is connected, f will assign a joint type. If it  
is empty, a zero will be assigned. Because of the link 
symmetry, many assembly patterns can be reoriented 
in a way that  they function identically in a large robot 
structure. An equivalence based on the symmetric ro- 
tations of link modules was defined on f in [l] to  clas- 
sify distinct link-joint assembly patterns. Chen [a] in- 
troduced an enumeration algorithm, OrbitEnumerate, 
based on this equivalence, to  list all distinct assembly 
patterns ori a link module with a prescribed number 
and types of joints. Examples of assembly patterns are 
shown in Fig. 2. 
The connectivity of individual links and joints, or the 
topology, in a robot mechanism can be represented by 
a bznematic graph, in which vertices are links and edges 
are joints [4]. This graph, in turn,  can be expressed as 
a vertex-edge zncadence matrix [16] which contains only 
Os and 1s. The number of columns and rows in this 
matrix are equal to  the number of edges and vertices in 
the graph respectively. Entry ( i , j )  is equal t o  1 if edge 
j is incident on vertex i, or it is equal to  zero otherwise. 
Definition 2 Let G be the graph of a modular robot 
and let M(G)  be its incidence matrix.  The assembly 
configuration of this robot can be represented by an 
assembly incidence matrix, A(G),  obtained by replacing 
every entry of 1 in M ( G )  with a non-zero integer, k E 
PORT. The zero entries remain unchanged. ai? = k 
indicates that  joint e j  is attached t o  port k of link U;; 
a,j = 0, otherwise. 
For heterogeneous modular robots, which contain dif- 
ferent kinds of link and joint modules, the assembly 
incidence matrix is augmented with an additional row 
and column that  specifies the type of link and joint 
modules and is called the extended assembly incidence 
mafrix (eAIR4) [a]. Examples of assembly configura- 
tions of the following AIMs are shown in Fig. 3. 

Figure 3: Different assembly configurations 
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Figure 4: The problem solving scheme 

4 General Forinulation 
To find an optimal solution, we wish to  forinulate an 
objective function that  will evaluate how well an as- 
sembly configuration can accomplish an assigned task. 
Ideally, the form of the evaluation function should be 
general enough so that  it is applicable t o  a wide variety 
of tasks, but flexible enough t o  incorporate different cri- 
teria which may be task specific. We term this function 
an assembly configuration evaluation function (ACEF). 
In effect, the ACEF is used to  evaluate every unique 
assembly configuration generated by RobotEnumerat e 
for a certain task requirement. The  assembly configura- 
tion with the greatest ACEF value is deemed optimal. 
Then, this function can be used as the basis for a dis- 

el  e2 e3 e l  e2 e3 crete optimization scheme. The remainder of this paper 
10 5 1 10 5 1 L focuses primarily on the task evaluation function and 

0 0 2 B I t  is also important t o  note that  from a given set of 
C C R 0 modules it may be possible t o  construct robots with 

various topologies-e.g., robots with serial or parallel 
kinematic structures. Even with a fixed robot topol- 
ogy class, the number of degrees of freedom (DOF) can 
alter the kinematic functionality of the system. For 
simplicity, we discuss the case of fixed topology and 
fixed number of DOF. Fig. 4 depicts the scheme to 
solve the task-oriented optimal configuration problem 
for the case of a specific robot topology. The desired 
robot topology and the number of DOFs are fed into 
the configuration enumeration algorithm in advance. A 
quantifiable task definition and task evaluation criteria 
(TEC) are parameters to  the ACEF. Furthermore, an 

A ( G ) =  ii (: : ) A ( e ) =  ( 9  0 0 0 L ) .  its use for a discrete optimization procedure. 

As pointed out in [l], different AIMs may have identical 
kinematic properties, such as the workspace and loca- 
tion of joint singularities. These AIMS are classified by 
an equivalence relation in order to  reduce the number 
of unique robot assembly configurations. Two AIR4s 
are said to  be equivalent if the  underlying graphs are 
isomorphic and the corresponding link assembly pat- 
t,erns are equivalent. T h e  configuration enumeration 
algorithm, RobotEnumerate, stated in [a] utilized this 
equivalence definition. The  output  is a set of kinemat- 
ically unique robot assembly configurations. 

v 4 0 0 4  
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auxiliary function, termed the module assembly prefer- 
ence (MAP),  is defined on individual assembly patterns 
t>o filter out those with inappropriate or undesirable 
kinematic features. The overall optimization problem 
becomes: I 

GIVEN: a robot task, a T E C ,  a MAP, and prescribed 
robot topology, 
FIND: an AIM in the assembly configuration set 
whose ACEF value achieves a maximum. 
If a set of robot configurations is given in advance, the 
enumeration algorithm can be bypassed, and t.he opti- 
mization procedure employed. The following sections 
explain the details of choosing task definitions, TEC, 
and AMPs. We use a serial type fixed base modular 
arm wit,h revolute joints to  demonstrate this problem 
solving strategy. 

5 Task Specifications 
DEFINITION O F  ROBOT TASKS 
A robot task is defined as a collection of working 
points, w p ,  in the operation space R3 [SI or a col- 
lection of the end-effector positions/orientations w p  = 
(z, y, 8,$, $), where 0,  4, and II, are Euler angles rep- 
resenting the orientation of the end-effector frame. If 
the robot is to  follow a trajectory, this ta.sk can be ap- 
proximated by a set of points along the path. 

- TASK EVALUATION CRITERIA (TEC) 

h4aIly monotonically increasing local kinematic pesfor- 
inance measures can be employed for task evaluation 
[9,10,15]. These measures are typically evaluated a t  a 
particular working point with a specified mechanism 
posture. Many measures are based on the mechanism’s 
Jacobian mat.rix, J-e.g., the manipulability measure, 
d e t ( J J T ) 1 / 2  [15] and the condition number or mini- 
m u m  singular value of J [9,10]. Other configuration 
dependent criteria are possible. 

Let p i  be the value of a modular robot performance 
measure a t  task point i. For a collection of n task 
points, we choose to  define the total task performance, 
p, to  be the smallest pi among the task points, i.e, 

p represents the worst case among the collection of ta.sk 
points. Since pi 2 0, by definition, p 2 0. This choice 
ensures tha t  one robot, assembly will be bett,er than t,he 
other in the worst case. 

6 Module Assembly Preference 
I n  modular robots, the choice of the joint locations on 
a link module will effect the kinematic capability of the 
entire assembly. It is useful to  be able to  specify the 
preference of certain link/joint assembly patterns in the 
overall assembly configuration in order to  avoid unde- 
sirable kinema.tic conditions, such as link interference 
or joint redundancy. By joint redundancy, we mean 
that  the number of effective DOF of a robot is less 
than the number of its joints. For example, assembly 
pat,terns with collinear revolute joint axes (Fig. 5) es- 
hibit joint redundancy. However, the same assembly 
patt.erns may be emphasized in other sit,uations. For 

Figure 5: Joint patterns with redundancy 

example, the redundant assembly patterns extend the 
dimension of the robot a r m  and enlarge the workspace. 
Besides, when one of the two joints fails, the other joint 
is able to  drive tha t  degree of freedom. 

In order to  retain or filter out  a joint assembly patterns 
in a modular robot, a binary-valued function called the 
module assembly preference (MAP),  4, is defined on a 
set of distinct assembly patterns. Let F represent the 
set of distinct assembly patterns. [ f ]  E F represents a 
distinct joint pattern. 

Definition 3 A module assembly preference, q5 : F -+ 
(0, l}, is a surjective function such that 

d : [ f ] w w ,  w = o , 1 ,  (2) 

$( [f]) = 0 represents an undesirable joint pattern. The  
MAP can be  thought of as a quantifiable rule vary- 
ing with different kinematic requirements. The  prefer- 
ence of an entire robot assembly configuration is defined 
based on a MAP of assembly patterns. Suppose the 
robot has n links and the values of the MAP on Link i 
is w;. The  structural preference of an entire robot, @, 
is defined as follows. 

Definition 4 The structural preference, @, of a mod- 
ular robot assembly configuration A is the product of 
the MAPs of the robot’s assembly patterns, 

n 

i=l  
(3) 

where A is the AIM of a robot assembly configuration. 
Since wi is equal to  0 or 1, @(A) is equal to  0 or 1 as 
well. Q(A)  = 0 indicates the assembly configuration 
contains undesirable assembly patterns. The  choice of 
a MAP, 4, is illustrated in the following example. 

Example 1 Let a 3-DQF fixed base serial type with 
R-joints and prismatic links satisfy the kinematic con- 
ditions: m.inimum link interference an,d no joint redun- 
dancy. The corresponding MAP is described in Fig. 6. 
The  intermediary prism link modules are connected by 
two joints. From [a] we obtain 9 distinct assembly pat- 
terns on link modules and 2 distinct patterns on cube 
modules. The  choice of no  joint redundancy implies 
tha t  the MAP will be zero for patt,erns 4,9, and 13. 
The  requirement on minimum link interference will set 
the MAP of patterns 2 and 7 t o  zero, since two joints 
are attached t o  the same end of tlhe prism. The remain- 
ing patterns are assigned a MAP value of one. For the 
end prism link, there exists only two distinct assembly 
patterns (patterns 10 and 11). The  requirements on the 
robot structure have little influence on the end link pa.t- 
terns, so their MAPs are set t o  1. If joint redundancy 
is allowed, patterns 4,9,13 will be set to  1. Using t,his 
MAP, the st,ructural preferences of the 3-DOF robot 
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Figure 6: MAP for patterns on a prism and a cube 

configurations AI and A2 can be obtained as follows. 

1 O O F B  1 O O F B  
1 2 0  L 

, A 2 =  0 1 9 L 
A I = [ :  [ 0 0 2  L 

R R R  0 R R R  0 

The structural preference of AI is calculated starting 
from the base module. Since there is only one assembly 
state on the fixed base (pattern 14), its MAP is set t o  
1. There are two R-joints connected to  port 1 and 2 of 
link 2 (pattern l), so w:! = 1. R-joints are connected 
to  port 2 and 5 of link 3 (pattern 5), so w3 = 1. For 
the end link (pattern lo ) ,  w4 = 1. Therefore, @(AI)  = 
w2 . w3 . w4 = 1. Similarly, in A2, w2 = 1 (pattern 
l), w3 = 0 (pattern S), and w4 = 1 (pattern lo) ,  so 
@(A?) = 0. I 

7 Assembly Configuration Eva. Function 
The structure of the ACEF for a serial modular robot 
is shown in Fig. 7. This function evaluates the “good- 
ness” of a robot assembly configuration for a required 
task and structure specification. T h e  “goodness” is rep- 
resented by a non-negative real number. An AIM with 
large real value represents a good assembly configura- 
tion. 

‘The input of the ACEF is an AIR4 with a predefined 
number of DOFs and predefined topology. The  function 
is divided into task and structure parts. The  MAP, 4, 
is given to  determine the structural preference @. Task 
points and the TEC are given for task evaluation. In 
the first part of task evaluation, the workspace check 
procedure determines if an assembly, represented by an 
AIM, can carry out the specified task. If a task point 
is outside of the robot’s workspace, there is no need 
to proceed with the task evaluation, and p will be set 
to zero. If all task points are reachable, the TEC is 
applied to calculate 1-1. 

Tmk 
EVALUATION P”i”1S 

.MAP 

@ 

WORKSPACE 
CHECK 

@ = n w  1 

TEC 

ACEF 

Y =  @p 

Figure 7: ACEF for serial modular robots 

Definition 5 The ACEF, Q, for the performance of a 
robot assembly, A, is 

q(A)  = @(A)  . p(A). (4) 
Since @ ( A )  is equal t o  zero or one, and p(A)  2 0, by 
definition, Q(A) 2 0 as well. Note tha t  the structure 
preference @ functions as a filter for the ACEF. For 
assembly configurations satisfying the kinematic con- 
straints, 4p is always equal to  1. Therefore, Q(A)  = 
p ( A ) .  Comparing the total performance of acceptable 
AIMS is equivalent t o  the comparison of the TECs of 
the task points only. 

WORKSPACE CHECK PROCEDURE 

T h e  workspace check is accomplished by solving the 
inverse kinematics of the manipulator for a given task 
point. If a real valued solution can be found, the task 
point is within the workspace, otherwise, the task point 
is out of reach. A numerical inverse kinematics tech- 
nique proposed by [7] is adopted here for its robustness 
and efficiency. The detail of the workspace checking 
can be found in [2]. 

8 Genetic Algorithms for Modular Robots 
If the iiuiiiber of assembly configurations tha t  can be 
generated froin a given set of modules is small, a n  ex- 
haustive evaluation of each assembly configuration can 
be  performed in a reasonable amount of time. How- 
ever, as the number of robot DOFs increases, the set of 
assembly configurations may become factorially large 
and the exhaustive search becomes undesirable. In- 
stead, a discrete random search technique can be used 
for efficiency. Here, we explore the use of genetic algo- 
rithms (GA) to  solve this problem. Other researchers 
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Figure 8: An assembly string representation 

have applied GAS to distributed robotic systems and 
task-based robot design [8,13]. 

A "genetic algorithm" is an optimization method based 
on a model of an ecological system in which the mechan- 
ics of natural selection and natural genetics are the pri- 
mary factors for improving the performance of a pop- 
ulation [ 6 ] .  In this algorithm, candidate solutions are 
coded into string structures that  are analogous to  a ge- 
netic code. A fitness function will assign a fitness value 
t,o every string. The  candidate strings are combined 
among themselves with a structured, yet randomized, 
information change in order to  form a new generation of 
candidate solutions. The  change is based on operations 
that  mimic the adaptive process of natural systems: re- 
production, crossover, and mutation. The strings of the 
new generation are created by using bits and pieces of 
t,he fittest strings in the previous generation. These 
bits and pieces of the string contribute to  the overall 
performance of the string, and create offsprings with 
higher fitness values. I t  is interesting to  note the anal- 
ogy between the effect of module sub-assembly patterns 
on overall performance of a modular robot, and the in- 
fluence of sub-strings on overall string fitness. 

CODING SCHEMES FOR AIMS 
To employ GAS effectively, a coding scheme to trans- 
form an AIM into a string structure is necessary. A 
binary string of Os or Is is chosen to  represent an AIM 
because i t  can offer.the maximum number of schemata 
per bit of any coding [GI. This string contains sub- 
strings, where each substring represents the types of 
joints and the types of link and joint patterns in an 
AIM. We call this binary string an assembly string. The 
lengths of the substrings are determined by the num- 
bers of joint types and the number of distance joints 
and link patterns. Since joints and links are arranged 
i n  alternating sequence in a serial type robot, the sub- 
st,rings representing the types of joints and links are 
arranged in the same a1t)ernating sequence as in the 
AIM shown in Fig. 8. 

Snppose the substring for the joint t,ype is of length 
11.  Each joint type is assigned a unique bit string pat- 
t.ern of length 11. Similarly, a substring of length l 2  
i s  used to  represent the link t.ype. The possible types 
of joint/link assembly patterns is assigned a substring 
of 1engt.h /3. In order to  reduce the size of t,lie search 
space, bit, string patterns are only a.ssigned to  kinemat- 
ically unique patt,erns. Note that  in a serial robot, the 
number of joint,s connected to  the int,ermediary links, 

Poplnitial 
(AIMS) i = l  

I 
Assembly Configuration 

Evaluation Function 

Pop, FifVec 

Reproduction 
Crossover 
Mulalion 

i + +  

I I P o p N e n  

i = n ?  * 1 ye.$ 

Pop Final 
(AMs)  

Figure 9: GA for task-optimal configurations 

links 1, . . . .  n - 1, is different from the number of links 
attached to  the end link, link n. Hence, the length of 
the joint pattern substring for link n is different from 
that of links 1 to  n - 1. Let the length of this substring 
be 14. Since there is only one way to  attach a joint to  
the base of the robot, the base assembly pattern need 
not be specified in the assembly string. Hence, an n- 
DOF serial type robot can be expressed by an assembly 
string of length R 11 + n 12 + (n  - 1) 13 + 14. If all joints 
(or all links) are of the same type, the joint (link) type 
substrings can be removed from the assembly string, 
i.e, I1 = 0 (or 12 = 0). 

Because the number of distinct joint patterns is deter- 
mined by the link module type, the joint pattern sub- 
string must be sufficiently long t o  represent the entire 
set of joint patterns. For some link module types, the 
number of distinct joint patterns which can be repre- 
sented by this substring is much larger than the number 
of the actual distinct joint patterns. Hence, i t  is always 
possible to  map a n  AIM into an assembly string, but  
the converse does not hold every time. For consistency, 
the fitness values of those assembly strings tha t  cannot 
be mapped back to  AIMS will be set to  zero. 

Fig. 9 depicts the application of GA in solving the task- 
optimal configuration problem. T h e  input is a set of 
randomly chosen assembly strings, PopIn i t  i a l  from 
the pool of kinematically unique assemblies provided 
by t,he algorit(1im of [I]. T h e  number of elements in the 
set is specified by the user. T h e  fitness function is the 
ACEF. The  fitness value of every AIM in P o p I n i t i a l  
is obtained through a n  ACEF. A new generation of as- 
sembly strings is created by the G A  operations (refer 
to  [GI for detail), and are then present.ed to  t.he ACEF 
for fitness evaluation. T h e  whole process will repeat 
until a predetermined generation, i.e., PopFinal  in the 
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Figure 10: Initial configurktions 

Figure 11: Final configurations 

figure, is reached. After the destination generation is 
reached, we choose the assembly string in this gener- 
ation that  has the largest fitness value as the optimal 
assembly configuration satisfying the required task and 
structure specifications. 

Example 2 We wish to  find a 3-DOF fixed base serial 
robot with R-joints tha t  passes through a set of task 
points listed in the following table. We also demand 
that  there are no redundant joints and minimum link 
interference. The  T E C  is chosen to  be the manipula- 
tor’s manipulability measure and the MAP is described 
in Example 1. 

T h e  initial set of AIMs is shown in Fig. 10. The  
empty boxes represent assembly strings that  do not 
correspond to any AIM. Their fitness values are set 
to  zero. The  fitness values of these AIMs obtained 
from the ACEF are (5.7963, O., O., 5.7963, O.,  0.). The 
parameters used in the G A  are PcroSs = 0.6, the 
probability of crossover operation, and Pmvlate = 0.1, 
the probability of mutation. T h e  destination genera- 
tion is chosen t o  be the lo th  generation. After evolv- 
ing ten generations, the AIMS in the final genera- 
tion are shown in Fig. 11. Their fitness values are 
(5.7963, O.,  5.7963,5.7963, O., O. )*  Fig. 12 shows the av- 
erage and maximum fitness value in every generation. 
Assembly configurations 1, 3 ,  and 4 are identical and 
have the highest fitness value of 5.7963 so they are cho- 
sen as the opt,imal one. I 

Figure 12: Avg. 6t max.  fitness in each generation 

9 Coilclusion 
In order to  evaluate a modular robot assembly config- 
uration, we introduced a flexible and general assembly 
configuration evaluation function. This function can 
be used in two ways to  find the optimal modular robot 
assembly configuration tha t  solves a given task. First, 
the function could be used to  evaluate the suitability 
of each of the kinematically unique assembly configu- 
ration that  is enumerated by the algorithm in [1]. The 
configuration with the highest evaluation is obviously 
the most suitable. However, in some instances, such a 
procedure will be computationally expensive. Instead, 
a discrete combinatorial optimization algorithm, which 
employs the modular robot evaluation function, is a 
desirable alternative. We have found the Genetic Algo- 
rithm method to  be especially well suited for the modu- 
lar robot problem, and we presented a method to  effec- 
tively encode modular robot assembly configurations in 
the bit strings required for the G A  procedure. 
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