
DETERMINING TASK OPTIMAL MODULAR ROBOT ASSEMBLY CONFIGURATIONS

Nanyang Technological University
Singapore 2263

Republic of Singapore

I-Ming Chwi Joel W. Burdick
School of Mechanical and Production Engineering Division of Engineering and Applied Science

MS 104-44 Caltech
Pasadena, CA 91125

U . S. A.
Y

Abstract
A “modular” robotic system consists of standardized
joint and link units that can be assembled into a num-
ber of different kinematic configurations. Given a pre-
determined set of modules, this paper considers the
problem of finding an “optimal” module assembly con-
figuration for a specific task. We formulate the solution
as a discrete optimization procedure. T h e formulation
is ba.sed on an assembly incidence matrix representa-
t.ion of a modular robot and a general task-oriented
objective function tha t can incorporate many realistic
task criteria. Genetic algorithms (GA) are employed
to solve this optimization problem, and a canonical
method t o represent a modular assembly in terms of
genetic strings is introduced. An example involving a 3-
DOF manipulator configuration is presented t o demon-
s t ra te the feasibility of this approach.

1 Introduction
A modular reconfigurable robotic system is a collec-
t.ion of various sub-assemblies, at the level of links and
joints, tha t can be easily separated and reassembled
into different configurations through standardized con-
necting interfaces. By reconfiguring the modules, dif-
ferent robots can be created so as to suit a diversity of
task requirements. Several prototype modular robotic
systems have been built and demonstrated [3,5,12,14].

Let the arrangement of modules in a modular robot be
called an assembly configuration. We consider the task-
orieizted o p t i m a l configuration problem in this paper-
i.e., how to t o find an optimal assembly configuration
from a set of modules for a specific task. We assume
t1ia.t the set of modules is fixed at planning time, and
t,lius only freedom available for optimization is the re-
combination and rearrangement of modules. For sim-
ply designed iiiodule sets, the total number of possible
assembly configurations can be manually enumerat,ed,
and this set of robot configurations can be easily tested
against the task requirements. As the module design
becomes more complicated and versatile, the possible
number of t.he robot’s assembly configurations grows
t~reinendously. An efficient and systematic method t o
find an optimal configuration is thus necessary.

Here we introduce a general framework for solving the
optimal assembly configuration problem. We define
a generally applicable task related objective function
which evaluat,es a modular robot assembly configura-
t.ion for a given t,a.sk while avoiding sub-assemblies with
undesirable kinematic properties. This function could
be applied t.o all of the unique assembly configurations
which result from the algorithm outlined in [1,2]. Al-
t.ernat.iveiy, we can use this funct,ion as the basis for
discret.e or coinbiiiat,orial optiinization met.hod. In this

IEEE International C o n f e r e n c e
o n Robotics a n d A u t o m a t i o n
0-7803-1965-6/95 $4.00 01995 IEEE - 132 -

Figure 1: Link modules-a cubic box and a prism

paper, we employ genetic algorithms because of the dis-
crete nature of the assembly configuration set.

Paredis and Khosla [ll] have considered task-based
robot design for fixed configuration robots. In their
formulation, all design parameters are assumed contin-
uous values, and hence conventional optimization tech-
niques can be employed. In the problem posed here,
the search space, the set of assembly configurations, is
a discrete set.

2 Conceptual Module Models
A conceptual module model set based on the features
found in many real implementations is introduced [112].
The module set consists of link and joint modules only.
T h e following 1- or 2-DOF joint modules are consid-
ered: revolute joint (R), prismatic joint (P), helical
joint (H), and cylindrical joint (C). Joint modules are
connected t o the link modules through connecting ports
and link modules possess multiple joint connections.
We further assume tha t link modules have symmetrical
geometry and symmetrically located connecting ports
(though modules with only two connecting ports and
no symmetry can be handles as well). T h e connecting
ports are labeled accordingly. T h e symmetry design al-
lows link modules t o be re-oriented without altering the
robot kinematics. For illustration purposes, we assume
only two types of link modules are available: square
prisms (10 ports) and cubic box units (6 ports), which
are shown in Fig. 1. Other objects can be similarly
treated.

3 Modular Robot Assembly Representation
T o describe the location of a joint on a multi-port link
module, we use a function termed assembly pattern.
Let PORT be the set of port numbers on a link and ATT
be the set of connecting s ta tus on a port. ATT contains
eligible joint types and a zero indicating an empty port.
For our modular robotic system, ATT = (0, RI H, C , P } .
For a cubic box, PORT= { 1 , 2 , 3 , 4 , 5 , 6) .

Definition 1 The assembly patfern on a link module
is an injection mapping

f : PORT + ATT.

Figure 2: Two assembly pattern examples

If the port is connected, f will assign a joint type. If it
is empty, a zero will be assigned. Because of the link
symmetry, many assembly patterns can be reoriented
in a way that they function identically in a large robot
structure. An equivalence based on the symmetric ro-
tations of link modules was defined on f in [l] to clas-
sify distinct link-joint assembly patterns. Chen [a] in-
troduced an enumeration algorithm, OrbitEnumerate,
based on this equivalence, to list all distinct assembly
patterns ori a link module with a prescribed number
and types of joints. Examples of assembly patterns are
shown in Fig. 2.
The connectivity of individual links and joints, or the
topology, in a robot mechanism can be represented by
a bznematic graph, in which vertices are links and edges
are joints [4]. This graph, in turn, can be expressed as
a vertex-edge zncadence matrix [16] which contains only
Os and 1s. The number of columns and rows in this
matrix are equal to the number of edges and vertices in
the graph respectively. Entry (i , j) is equal t o 1 if edge
j is incident on vertex i, or it is equal to zero otherwise.
Definition 2 Let G be the graph of a modular robot
and let M(G) be its incidence matrix. The assembly
configuration of this robot can be represented by an
assembly incidence matrix, A(G), obtained by replacing
every entry of 1 in M (G) with a non-zero integer, k E
PORT. The zero entries remain unchanged. ai? = k
indicates that joint e j is attached t o port k of link U;;
a,j = 0, otherwise.
For heterogeneous modular robots, which contain dif-
ferent kinds of link and joint modules, the assembly
incidence matrix is augmented with an additional row
and column that specifies the type of link and joint
modules and is called the extended assembly incidence
mafrix (eAIR4) [a]. Examples of assembly configura-
tions of the following AIMs are shown in Fig. 3.

Figure 3: Different assembly configurations
.............................

....* i i i FORWARD :
j ALGORITHM i i KINEMATICS AIM,

wilh

Forward K i n e m f i r

TASK SPECIFICATION
CONFIGURATION

EVALUATION
FUNCTION

W P
T D p O l O g y

- STRUCTURE SPECIFICATION

TASK-ORIENTED
OPTIMAL

COh'FIGURATIONS

Figure 4: The problem solving scheme

4 General Forinulation
To find an optimal solution, we wish to forinulate an
objective function that will evaluate how well an as-
sembly configuration can accomplish an assigned task.
Ideally, the form of the evaluation function should be
general enough so that it is applicable t o a wide variety
of tasks, but flexible enough t o incorporate different cri-
teria which may be task specific. We term this function
an assembly configuration evaluation function (ACEF).
In effect, the ACEF is used to evaluate every unique
assembly configuration generated by RobotEnumerat e
for a certain task requirement. The assembly configura-
tion with the greatest ACEF value is deemed optimal.
Then, this function can be used as the basis for a dis-

el e2 e3 e l e2 e3 crete optimization scheme. The remainder of this paper
10 5 1 10 5 1 L focuses primarily on the task evaluation function and

0 0 2 B I t is also important t o note that from a given set of
C C R 0 modules it may be possible t o construct robots with

various topologies-e.g., robots with serial or parallel
kinematic structures. Even with a fixed robot topol-
ogy class, the number of degrees of freedom (DOF) can
alter the kinematic functionality of the system. For
simplicity, we discuss the case of fixed topology and
fixed number of DOF. Fig. 4 depicts the scheme to
solve the task-oriented optimal configuration problem
for the case of a specific robot topology. The desired
robot topology and the number of DOFs are fed into
the configuration enumeration algorithm in advance. A
quantifiable task definition and task evaluation criteria
(TEC) are parameters to the ACEF. Furthermore, an

A (G) = ii (: :) A (e) = (9 0 0 0 L) . its use for a discrete optimization procedure.

As pointed out in [l], different AIMs may have identical
kinematic properties, such as the workspace and loca-
tion of joint singularities. These AIMS are classified by
an equivalence relation in order to reduce the number
of unique robot assembly configurations. Two AIR4s
are said to be equivalent if the underlying graphs are
isomorphic and the corresponding link assembly pat-
t,erns are equivalent. T h e configuration enumeration
algorithm, RobotEnumerate, stated in [a] utilized this
equivalence definition. The output is a set of kinemat-
ically unique robot assembly configurations.

v 4 0 0 4

133

auxiliary function, termed the module assembly prefer-
ence (MAP), is defined on individual assembly patterns
t>o filter out those with inappropriate or undesirable
kinematic features. The overall optimization problem
becomes: I

GIVEN: a robot task, a T E C , a MAP, and prescribed
robot topology,
FIND: an AIM in the assembly configuration set
whose ACEF value achieves a maximum.
If a set of robot configurations is given in advance, the
enumeration algorithm can be bypassed, and t.he opti-
mization procedure employed. The following sections
explain the details of choosing task definitions, TEC,
and AMPs. We use a serial type fixed base modular
arm wit,h revolute joints to demonstrate this problem
solving strategy.

5 Task Specifications
DEFINITION O F ROBOT TASKS
A robot task is defined as a collection of working
points, w p , in the operation space R3 [SI or a col-
lection of the end-effector positions/orientations w p =
(z, y, 8,$, $), where 0, 4, and II, are Euler angles rep-
resenting the orientation of the end-effector frame. If
the robot is to follow a trajectory, this ta.sk can be ap-
proximated by a set of points along the path.

- TASK EVALUATION CRITERIA (TEC)

h4aIly monotonically increasing local kinematic pesfor-
inance measures can be employed for task evaluation
[9,10,15]. These measures are typically evaluated a t a
particular working point with a specified mechanism
posture. Many measures are based on the mechanism’s
Jacobian mat.rix, J-e.g., the manipulability measure,
d e t (J J T) 1 / 2 [15] and the condition number or mini-
m u m singular value of J [9,10]. Other configuration
dependent criteria are possible.

Let p i be the value of a modular robot performance
measure a t task point i. For a collection of n task
points, we choose to define the total task performance,
p, to be the smallest pi among the task points, i.e,

p represents the worst case among the collection of ta.sk
points. Since pi 2 0, by definition, p 2 0. This choice
ensures tha t one robot, assembly will be bett,er than t,he
other in the worst case.

6 Module Assembly Preference
I n modular robots, the choice of the joint locations on
a link module will effect the kinematic capability of the
entire assembly. It is useful to be able to specify the
preference of certain link/joint assembly patterns in the
overall assembly configuration in order to avoid unde-
sirable kinema.tic conditions, such as link interference
or joint redundancy. By joint redundancy, we mean
that the number of effective DOF of a robot is less
than the number of its joints. For example, assembly
pat,terns with collinear revolute joint axes (Fig. 5) es-
hibit joint redundancy. However, the same assembly
patt.erns may be emphasized in other sit,uations. For

Figure 5: Joint patterns with redundancy

example, the redundant assembly patterns extend the
dimension of the robot a r m and enlarge the workspace.
Besides, when one of the two joints fails, the other joint
is able to drive tha t degree of freedom.

In order to retain or filter out a joint assembly patterns
in a modular robot, a binary-valued function called the
module assembly preference (MAP), 4, is defined on a
set of distinct assembly patterns. Let F represent the
set of distinct assembly patterns. [f] E F represents a
distinct joint pattern.

Definition 3 A module assembly preference, q5 : F -+
(0, l}, is a surjective function such that

d : [f] w w , w = o , 1 , (2)

$([f]) = 0 represents an undesirable joint pattern. The
MAP can be thought of as a quantifiable rule vary-
ing with different kinematic requirements. The prefer-
ence of an entire robot assembly configuration is defined
based on a MAP of assembly patterns. Suppose the
robot has n links and the values of the MAP on Link i
is w;. The structural preference of an entire robot, @,
is defined as follows.

Definition 4 The structural preference, @, of a mod-
ular robot assembly configuration A is the product of
the MAPs of the robot’s assembly patterns,

n

i=l
(3)

where A is the AIM of a robot assembly configuration.
Since wi is equal to 0 or 1, @(A) is equal to 0 or 1 as
well. Q(A) = 0 indicates the assembly configuration
contains undesirable assembly patterns. The choice of
a MAP, 4, is illustrated in the following example.

Example 1 Let a 3-DQF fixed base serial type with
R-joints and prismatic links satisfy the kinematic con-
ditions: m.inimum link interference an,d no joint redun-
dancy. The corresponding MAP is described in Fig. 6.
The intermediary prism link modules are connected by
two joints. From [a] we obtain 9 distinct assembly pat-
terns on link modules and 2 distinct patterns on cube
modules. The choice of no joint redundancy implies
tha t the MAP will be zero for patt,erns 4,9, and 13.
The requirement on minimum link interference will set
the MAP of patterns 2 and 7 t o zero, since two joints
are attached t o the same end of tlhe prism. The remain-
ing patterns are assigned a MAP value of one. For the
end prism link, there exists only two distinct assembly
patterns (patterns 10 and 11). The requirements on the
robot structure have little influence on the end link pa.t-
terns, so their MAPs are set t o 1. If joint redundancy
is allowed, patterns 4,9,13 will be set to 1. Using t,his
MAP, the st,ructural preferences of the 3-DOF robot

134

1 ASSEMBLYPATTERNS I MAP 1 ASSEMSLYPAlTERNS I MAP 1

Figure 6: MAP for patterns on a prism and a cube

configurations AI and A2 can be obtained as follows.

1 O O F B 1 O O F B
1 2 0 L

, A 2 = 0 1 9 L
A I = [: [0 0 2 L

R R R 0 R R R 0

The structural preference of AI is calculated starting
from the base module. Since there is only one assembly
state on the fixed base (pattern 14), its MAP is set t o
1. There are two R-joints connected to port 1 and 2 of
link 2 (pattern l), so w:! = 1. R-joints are connected
to port 2 and 5 of link 3 (pattern 5), so w3 = 1. For
the end link (pattern lo) , w4 = 1. Therefore, @(AI) =
w2 . w3 . w4 = 1. Similarly, in A2, w2 = 1 (pattern
l), w3 = 0 (pattern S), and w4 = 1 (pattern lo) , so
@(A?) = 0. I

7 Assembly Configuration Eva. Function
The structure of the ACEF for a serial modular robot
is shown in Fig. 7. This function evaluates the “good-
ness” of a robot assembly configuration for a required
task and structure specification. T h e “goodness” is rep-
resented by a non-negative real number. An AIM with
large real value represents a good assembly configura-
tion.

‘The input of the ACEF is an AIR4 with a predefined
number of DOFs and predefined topology. The function
is divided into task and structure parts. The MAP, 4,
is given to determine the structural preference @. Task
points and the TEC are given for task evaluation. In
the first part of task evaluation, the workspace check
procedure determines if an assembly, represented by an
AIM, can carry out the specified task. If a task point
is outside of the robot’s workspace, there is no need
to proceed with the task evaluation, and p will be set
to zero. If all task points are reachable, the TEC is
applied to calculate 1-1.

Tmk
EVALUATION P”i”1S

.MAP

@

WORKSPACE
CHECK

@ = n w 1

TEC

ACEF

Y = @p

Figure 7: ACEF for serial modular robots

Definition 5 The ACEF, Q, for the performance of a
robot assembly, A, is

q(A) = @(A) . p(A). (4)
Since @ (A) is equal t o zero or one, and p(A) 2 0, by
definition, Q(A) 2 0 as well. Note tha t the structure
preference @ functions as a filter for the ACEF. For
assembly configurations satisfying the kinematic con-
straints, 4p is always equal to 1. Therefore, Q(A) =
p (A) . Comparing the total performance of acceptable
AIMS is equivalent t o the comparison of the TECs of
the task points only.

WORKSPACE CHECK PROCEDURE

T h e workspace check is accomplished by solving the
inverse kinematics of the manipulator for a given task
point. If a real valued solution can be found, the task
point is within the workspace, otherwise, the task point
is out of reach. A numerical inverse kinematics tech-
nique proposed by [7] is adopted here for its robustness
and efficiency. The detail of the workspace checking
can be found in [2].

8 Genetic Algorithms for Modular Robots
If the iiuiiiber of assembly configurations tha t can be
generated froin a given set of modules is small, a n ex-
haustive evaluation of each assembly configuration can
be performed in a reasonable amount of time. How-
ever, as the number of robot DOFs increases, the set of
assembly configurations may become factorially large
and the exhaustive search becomes undesirable. In-
stead, a discrete random search technique can be used
for efficiency. Here, we explore the use of genetic algo-
rithms (GA) to solve this problem. Other researchers

135

Figure 8: An assembly string representation

have applied GAS to distributed robotic systems and
task-based robot design [8,13].

A "genetic algorithm" is an optimization method based
on a model of an ecological system in which the mechan-
ics of natural selection and natural genetics are the pri-
mary factors for improving the performance of a pop-
ulation [6] . In this algorithm, candidate solutions are
coded into string structures that are analogous to a ge-
netic code. A fitness function will assign a fitness value
t,o every string. The candidate strings are combined
among themselves with a structured, yet randomized,
information change in order to form a new generation of
candidate solutions. The change is based on operations
that mimic the adaptive process of natural systems: re-
production, crossover, and mutation. The strings of the
new generation are created by using bits and pieces of
t,he fittest strings in the previous generation. These
bits and pieces of the string contribute to the overall
performance of the string, and create offsprings with
higher fitness values. I t is interesting to note the anal-
ogy between the effect of module sub-assembly patterns
on overall performance of a modular robot, and the in-
fluence of sub-strings on overall string fitness.

CODING SCHEMES FOR AIMS
To employ GAS effectively, a coding scheme to trans-
form an AIM into a string structure is necessary. A
binary string of Os or Is is chosen to represent an AIM
because i t can offer.the maximum number of schemata
per bit of any coding [GI. This string contains sub-
strings, where each substring represents the types of
joints and the types of link and joint patterns in an
AIM. We call this binary string an assembly string. The
lengths of the substrings are determined by the num-
bers of joint types and the number of distance joints
and link patterns. Since joints and links are arranged
i n alternating sequence in a serial type robot, the sub-
st,rings representing the types of joints and links are
arranged in the same a1t)ernating sequence as in the
AIM shown in Fig. 8.

Snppose the substring for the joint t,ype is of length
11. Each joint type is assigned a unique bit string pat-
t.ern of length 11. Similarly, a substring of length l 2
i s used to represent the link t.ype. The possible types
of joint/link assembly patterns is assigned a substring
of 1engt.h /3. In order to reduce the size of t,lie search
space, bit, string patterns are only a.ssigned to kinemat-
ically unique patt,erns. Note that in a serial robot, the
number of joint,s connected to the int,ermediary links,

Poplnitial
(AIMS) i = l

I
Assembly Configuration

Evaluation Function

Pop, FifVec

Reproduction
Crossover
Mulalion

i + +

I I P o p N e n

i = n ? * 1 ye.$

Pop Final
(AMs)

Figure 9: GA for task-optimal configurations

links 1, n - 1, is different from the number of links
attached to the end link, link n. Hence, the length of
the joint pattern substring for link n is different from
that of links 1 to n - 1. Let the length of this substring
be 14. Since there is only one way to attach a joint to
the base of the robot, the base assembly pattern need
not be specified in the assembly string. Hence, an n-
DOF serial type robot can be expressed by an assembly
string of length R 11 + n 12 + (n - 1) 13 + 14. If all joints
(or all links) are of the same type, the joint (link) type
substrings can be removed from the assembly string,
i.e, I1 = 0 (or 12 = 0).

Because the number of distinct joint patterns is deter-
mined by the link module type, the joint pattern sub-
string must be sufficiently long t o represent the entire
set of joint patterns. For some link module types, the
number of distinct joint patterns which can be repre-
sented by this substring is much larger than the number
of the actual distinct joint patterns. Hence, i t is always
possible to map a n AIM into an assembly string, but
the converse does not hold every time. For consistency,
the fitness values of those assembly strings tha t cannot
be mapped back to AIMS will be set to zero.

Fig. 9 depicts the application of GA in solving the task-
optimal configuration problem. T h e input is a set of
randomly chosen assembly strings, PopIn i t i a l from
the pool of kinematically unique assemblies provided
by t,he algorit(1im of [I]. T h e number of elements in the
set is specified by the user. T h e fitness function is the
ACEF. The fitness value of every AIM in P o p I n i t i a l
is obtained through a n ACEF. A new generation of as-
sembly strings is created by the G A operations (refer
to [GI for detail), and are then present.ed to t.he ACEF
for fitness evaluation. T h e whole process will repeat
until a predetermined generation, i.e., PopFinal in the

136

Figure 10: Initial configurktions

Figure 11: Final configurations

figure, is reached. After the destination generation is
reached, we choose the assembly string in this gener-
ation that has the largest fitness value as the optimal
assembly configuration satisfying the required task and
structure specifications.

Example 2 We wish to find a 3-DOF fixed base serial
robot with R-joints tha t passes through a set of task
points listed in the following table. We also demand
that there are no redundant joints and minimum link
interference. The T E C is chosen to be the manipula-
tor’s manipulability measure and the MAP is described
in Example 1.

T h e initial set of AIMs is shown in Fig. 10. The
empty boxes represent assembly strings that do not
correspond to any AIM. Their fitness values are set
to zero. The fitness values of these AIMs obtained
from the ACEF are (5.7963, O., O., 5.7963, O., 0.). The
parameters used in the G A are PcroSs = 0.6, the
probability of crossover operation, and Pmvlate = 0.1,
the probability of mutation. T h e destination genera-
tion is chosen t o be the lo th generation. After evolv-
ing ten generations, the AIMS in the final genera-
tion are shown in Fig. 11. Their fitness values are
(5.7963, O., 5.7963,5.7963, O., O.)* Fig. 12 shows the av-
erage and maximum fitness value in every generation.
Assembly configurations 1, 3 , and 4 are identical and
have the highest fitness value of 5.7963 so they are cho-
sen as the opt,imal one. I

Figure 12: Avg. 6t max. fitness in each generation

9 Coilclusion
In order to evaluate a modular robot assembly config-
uration, we introduced a flexible and general assembly
configuration evaluation function. This function can
be used in two ways to find the optimal modular robot
assembly configuration tha t solves a given task. First,
the function could be used to evaluate the suitability
of each of the kinematically unique assembly configu-
ration that is enumerated by the algorithm in [1]. The
configuration with the highest evaluation is obviously
the most suitable. However, in some instances, such a
procedure will be computationally expensive. Instead,
a discrete combinatorial optimization algorithm, which
employs the modular robot evaluation function, is a
desirable alternative. We have found the Genetic Algo-
rithm method to be especially well suited for the modu-
lar robot problem, and we presented a method to effec-
tively encode modular robot assembly configurations in
the bit strings required for the G A procedure.
References
[l] I.-M. Chen and J. W. Burdick, “Enumerating Non-
Isomorphic Assembly Configurations of Modular Robotic
Systems,” Proc. of IROS, Yokohama, Japan, pp. 1985-
1992, 1993.
[a] I.-M. Chen, “Theory and Applications of Modular Re-
configurable Robotic Systems,” PhD Dissertation, Califor-
nia Institute of Technology, 1994.
[3] R. Cohen, M. G. Lipton, M. Q. Dai and B. Benhabib,
“Conceptual Design of a Modular Robot,” ASME J. M e -
chanical Design, 114, pp. 117-125,March, 1992.
[4] L. Dobrjanskyj and F. Freudenstein, “Some Applica-
tions of Graph Theory to the Structural Analysis of Mech-
anisms,” ASME J. Engineering for Industry, 89, pp 153-
158, Feb., 1967.
[5] T. Fukuda and S. Nakagawa, “Dynamically Reconfig-
urable Robotic System,” Proc. IEEE Int. Conf. Robotics
and Automation, pp 1581-1586, 1988.
[GI D. E. Goldberg, “Genetic Algorithms in Search, Opti-
mization, and Machine Learning,” Addison-Wesley, 1989.
[7] P. K. Khosla, C. P. Neuman and F. B. Prinz, “An Algo-
rithm for Seam Tracking Applications,” Int. J. Robotics
Research, 4, No. 1, pp 27-41, 1985.
[8] J. 0. Kim and P. Khosla, “Design of Space Shuttle Tile
Servicing Robot: An Application of Task Based Kinematic
Design,” Proc. IEEE Inl. Conf. Robotics and Automa-
tion, pp 867-874, 1993.
[9] C. A. Klein and B. E. Blaho, “Dexterity Measures for
the Design and Control of Kinematically Redundant Ma-
nipulators,” Int J Robotics Res., 6, No. 2, pp 72-83, 1987.
[lo] C. A. Klein and T. A. Miklos, “Spatial Robotic
Isotropy,” Int J Robotics Res., 10, No.4, pp 426-437, 1991.
[11] C. Paredis and P. Khosla, “Kinematic Design of Se-
rial Link Manipulators From Task Specifications,” Int. J .
Robotics Research, 12, No.3, pp 274-287, 1993.
[12] D. Schmitz, P. Khosla and T. Kanade, “The CMU Re-
configurable Modular Manipulator System,” Carnegie Mel-
lon Univ., CMU-RI-TR-88-7, 1988.
[13] T. Ueyama, T. Fukuda and F. Arai, “Structure Config-
uration Using Genetic Algorithm for Cellular Robotic Sys-
tem,” Proc. of IROS, Raleigh, NC, pp 1542-1549, 1992.
[14] I(. H. Wurst, “The Conception and Construction of a
Modular Robot System,” Proc. 16th Int. Sym. Industrial
Robotics (ISIR), pp 37-44, 1986.
[15] T . Yoshikawa, “Manipulability of Robotic Mecha-
nisms,” In l . J . Robotics Research, 4, No.2, pp3-9, 1985.
[l G] N. Deo, Graph Theory with Applications to Engineer-
ing and Computer Science, Prentice-Hall, 1974.

137

