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Abstract. This paper describes some initial steps 
towards sensor based path planning in an unknown 
static environment. The method is a based on 
a sensor-based incremental construction of a one- 
dimensional retract of the free space. In this paper we 
introduce a retract termed the Generalized Voronoi 
Graph, and also analyze the Roadmap of Canny and 
Link Opportunistic Path Planner. The bulk of this 
paper is devoted to  the application of nonsmooth 
analysis to  the Euclidean distance function. We show 
that the distance function is in fact nonsmooth at  the 
points which are required to  construct the plan. This 
analysis leads directly t o  the incorporation of simple 
and realistic sensor models into the planning scheme. 

1. Introduction 
“Sensor Based Planning” incorporates sensor infor- 
mation, reflecting the current state of the environ- 
ment, into a robot’s planning process, as opposed 
t o  classical planning, which assumes full knowledge 
of the world’s geometry prior to  planning. Sensor 
based planning is important because: (1) the robot 
often has no a priori knowledge of the world; (2) the 
robot may have only a coarse knowledge of the world 
because of limited memory; (3) the world model is 
bound to contain inaccuracies which can be overcome 
with sensor based planning strategies; and (4) the 
world is subject to  unexpected occurrences or rapidly 
changing situations. 

There already exists a large body of path planning lit- 
erature; see [LatSl] and references contained therein. 
However, many of these techniques are not amenable 
to  sensor based interpretation. It is not possible to 
simply add a step to acquire sensory information, and 
then construct a plan from the acquired model using 
a classical technique, since the robot needs a path 
planning strategy in the first place to acquire the 
world model. Instead, an incremental approach is 
needed. Incremental and sensor based planning algo- 
rithms have been developed for two dimensions. See 
[RI911 for an example of an incremental Voronoi di- 
agram construction technique. Lumelsky’s bug algo- 
rithm [LS87] is another sensor based planning strat- 
egy which is guaranteed to reach a goal in a two- 
dimensional world, but not in higher dimensions. 

In this paper, we describe some initial steps towards 
path planning in a static environment where there 
is no a priori knowledge. We develop an incremen- 
tal method to  construct a Generalized Voronoi Graph 
(GVG), which is a 1-dimensional retract of a bounded 
space. Much of the analysis in this paper can also be 
applied to “sensorize” other methods based on a re- 

tract, such as the Opportunistic Path Planner (OPP) 
described in [CL93]. In constructing the retract from 
sensor data, we only assume that the robot has a dead 
reckoning system and on board sensors that measure 
distance and direction to  nearby obstacles. This plan- 
ning scheme can be used in two ways. First, it will 
find a path from an initial location to a goal if such a 
path exists. Second, the method can be used to con- 
struct a 1-dimensional retract of a bounded space. 

The principal focus of this paper is not the Gener- 
alized Voronoi Graph or any particular retract, such 
as the Canny Roadmap. Instead, most of this pa- 
per is devoted to the application of nonsmooth anal- 
ysis t o  the Euclidean distance function. This function 
is an integral component of many path planners, in 
addition to the one described in this paper. Prior 
work has not fully considered the important issues of 
nonsmoothness when they employ this distance func- 
tion. We show that this function is in fact always 
nonsmooth at the points which are required for con- 
structing the plan. Furthermore, we show that this 
analysis leads to the incorporation of simple and re- 
alistic sensor models into the planning scheme. We 
give the first rigorous basis for sensor-based construc- 
tion of the retract fragments which are required for 
planning. Simulations demonstrate the validity of the 
approach. Experiments are currently under way. 

2. Relation to Previous Work 
Many successful classical motion planning methods 
are based on the construction of a 1-dimensional re- 
tract of the free configuration space, 7. For example, 
we have in mind the “Opportunistic Path Planner” 
(OPP) of Canny and Lin [CLgO], [CL93], which is it- 
self based on Canny’s Roadmap Algorithm [Can88]. 
One-dimensional retracts have the nice properties of 
accessibility and departabddy. That is, the planner 
can construct a path between any two points in 3 by 
first finding a path onto the retract (accessibility), 
traversing the retract to the vicinity of the goal, and 
then constructing a path from the retract to the goal 
(departability ). 

As an example of these retract methods, we review 
the OPP  and point out its limitations for sensor 
based use. Assume the configuration space, C, is Rm, 
with coordinates (21, * , zm).  As defined in [CLgO], 
[CL93], a slice is the subset of C defined by the plane 
$1 = A. On each slice, a continuous and differen- 
tiable artificial potential function is defined. Canny 
and Lin suggest that the Euclidean distance function 
between a given point (which represents the robot’s 
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configuration) on the slice and the nearest obstacle be 
used as the potential function. The loci of the max- 
ima of the potential function are termed ridge curves 
[RC94]. These are the maximally safe paths for the 
robot. 

The algorithm works as follows. A path is traced from 
the start and from the goal onto the nearest ridge 
curves by gradient ascent on the potential function in 
the slices which intersect the start and goal positions. 
The start and goal ridge curves are subsequently con- 
structed by sweeping a slice (slicing) through the en- 
vironment while tracing the local maxima of the po- 
tential function. If the start and goal ridge curves are 
connected, then the algorithm terminates. In gen- 
eral, the set of ridge curves will not be connected, 
and paths between neighboring ridge curves must be 
found. The O P P  proposes a method to connect ridge 
curves with bridge curves. The bridge curves are con- 
structed in the vicinity of interesting critical points. 
Interesting critical points occur when c-space chan- 
nels (Figure 1) join or split. If the goal and start ridge 
curves do not connect, the O P P  adds a bridge curve, 
and the process is repeated until the start and goal 
curves are connected, thereby finding a path from 
the start to  the goal. If all interesting critical points 
are explored, and the goal and start do not connect, 
then no path exists. Note that  the union of bridge 
and ridge curves forms the skeleton, or 1-dimensional 
retract. 

Ridge Curve 

~ q-1 
_ I  

: ~ r i d g c ~ u ~ e  ~nenaing -Chann~l-: 
critical Point 

Figure 1: Schematic of the OPP planning 

The O P P  can not be directly implemented in a 
sensor-based way because it assumes: (t) prior 
knowledge of the location of all the interesting crit- 
ical points; and (2) that  ridge curves can be traced 
backward from the goal. Rimon and Canny [RC94] 
have recently suggested a way to  “sensorize” the O P P  
algorithm. The principle contribution of [RC94] is a 
study of the interesting critical points, which are cru- 
cial to  construction of the retract. They introduce 
the notion of a “critical point sensor,” though they do 
not suggest how to construct the interesting critical 
point sensor. Nor do they provide a rigorous way to 
construct the ridge curve fragments from sensor data. 
Both works do not consider the issues of nonsmooth- 
ness of the distance unction. As we show below, the 
Euclidean distance function is not differentiable on 
the ridge curves. Furthermore, the interesting crit- 
ical points, which are crucial to the construction of 
the retract, are sweep direction dependent-this is an 
undesirable property. 

The Generalized Voronoi Graph (GVG) retract in- 

scheme 

troduced in Section 6 has some advantages over the 
skeleton of the O P P  method. However, we first di- 
gress to develop some ideas that are necessary to de- 
fine the GVG as well as analyze other retracts, such 
as the one used in the OPP. 

3. Review of Nonsmooth Analysis 
We show below that the Euclidean distance function 
is in fact nonsmooth at many points of interest, and 
therefore does not have a conventional derivative at 
these points. However, one can build a calculus for 
such nonsmooth functions from a less restrictive class 
of assumptions than smoothness: Lipschitz, regular- 
ity, and convexity. We review here some essential re- 
sults from nonsmooth analysis and develop a few use- 
ful results. A more comprehensive treatment of nons- 
mooth analysis can be found in [Clago]. Throughout 
this section, assume all Z E X where X is a finite 
dimensional vector space. 

Definition 3.1: A function f (Z)  is Lipshitz near 5 
when: 

l/f(ac’i) - f(ac’j)ll 5 K115i - 5jIl V 5 i , Z j  E Nbhd(5) 
where K is some scalar. 

Definition 3.2: The generalized directional deriva- 
tive ([Clago], p10) of f(5) in the direction ii is: 

Definition 3.3: f(5) is regular ([Cla90], p39) at Z 
when: (1) Vii,f’(ac’,ii) exists, where f ’  is the usual 
one sided derivative; and (2) Vi i , f ’ ( 5 , i i )  = f”(5,;). 

Definition 3.4: f is a convex function if Vi&, i = l..n 
and Cy=, X i  = 1 

/ n  \ n 

All convex functions are regular ([Cla90], p40). 

While a Lipschitz function need not be smooth, it 
does possesses a generalized derivative, or generalized 
gradient. This definition is key to the remainder of 
this paper. 

Definition 3.5: In finite dimensional space, the gen- 
eralized gradient ([Cla90], p63) of a Lipschitz func- 
tion f at ac’ is denoted by af (5) and given by: 

where is the set of points where f fails to  be differ- 
entiable, S is any set of measure zero, and CO means 
convex hull. Note that if f(5) is smooth at Z, then 
at(.’) reduces to the conventional gradient. 

We now introduce some properties that are useful for 
manipulating the generalized gradient. 
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Proposition 3.6: 
-CO{& ; i = l...n} = CO{-& : i = l...n} 

In particular, note that a(-f) = -a(f). 
It  will be useful in the sequel to analyze functions 
which are described the maxima or minima over a 
set of Lipschitz functions. 

Proposition 3.8: Let {fi}, i = 1,". ,n, be a set 
of functions which are Lipschitz near 50. For Z E 
Nbhd(Zo), the function 

is also Lipschitz and regular.([Cla90],p47) 

Since (3.1) is Lipschitz, we can define its generalized 
gradient. 

Proposition 3.9: Pointwise Maxima. For the func- 
tion f(5) = maxi=l, ...,,,{fi (Z)}, where eachfi(3) is 
regular, f(Z) has the generalized gradient: 

a@) = co{afi(q : 2 E I ( q }  (3.2) 
where I (5)  is the set of indices for which fi(2) = f(Z). 
That is, fi(5) attains the maximum V i E I (2 ) .  

Proposition 3.10: Pointwise Minima. For a set of 
regular functions fi(i?), the function 

has generalized gradient: 

where I ( Z )  is the set of indices for which fi(Z) = g(Z), 
i.e. where fi(3t) attain the minimum. Like above, g is 
regular. The proof is a simple consequence of Props. 
3.6 and 3.7. 

a g ( q  = co{afi(.-) vi E I ( Z ) }  (3.4) 

4. Analysis of the Distance Function 
As seen in Section 2, a function which encodes the 
distance between the robot and nearby obstacles is 
key to  the construction of the skeletons of the OPP 
retract. It is also key to the definition of the Gen- 
eralized Voronoi Graph of Section 6. This section 
defines several important distance functions and uses 
the contents of Section 3 to  analyze them. We as- 
sume a point robot operating in an m-dimensional 
Euclidean space, W ,  which is populated by obsta- 
cles C1,. . - , C,, and which can be described as sets 
of points. We often assume that the obstacles are 
convex. Non-convex obstacles can be modeled as the 
union of convex shapes. The case in which the robot 

is not modeled as a point, but as a set, is not consid- 
ered in this paper. 

First we consider the distance between a point robot 
and an obstacle in R". 

Deflnition 4.1: Single Object Distance Function. 
The distance between a point, Z and a set Ci is 

d@) = jxlf 11.' - flI ( 4 4  
QECi 

where 11 - 11 is the 2-norm in R". 

Recall from Section 2 that in order to incrementally 
construct the skeleton curve, we wish to  extremize 
the distance function on a slice.. A slice is a set of 
points (3 : a(5). = A} where A is a scalar and a(.) 
is a function which foliates W. For now, we assume 
that a slice is a hyperplance, and that the coordi- 
nates are chosen so that a($) = 21. In this case, we 
can decompose the physical space coordinates 5 into 
"slice coordinates y' and the "sweep coordinate" A: 
2 = (A, $*)T. 

Deflnition 4.2: Single Object Distance constrained 
to a slice, A. The distance between a point, which is 
constrained to a slice, A, and a set Ci is: 

where y' E a - ' ( A ) .  Hereafter, di is shorthand for 
q y ' ;  A). 

See figure 2 for an example of the distance function 
plotted along a slice. At each slice point, d'. , ' is com- 
puted to  the nearest point of the obstacle. 

Figure 2: Distance function plotted along 

Typically, the world is populated with multiple ob- 
stacles, and thus we define: 

Deflnition 4.3: Multi-object Distance Function. 
The distance between a point and many obstacles is 
taken as the minimum distance to any obstacle: 

D(2)  = min di(3) 

a horizontal slice 

i=l,. . .  ,?a 

D(Z) can be found with realistic sensors. 

Dewtion 4.4: Multi-object Distance Function con- 
strained to a slice 

l?(cA) = , min &($A) where $E a- '(A).  1=1,..- ,n 
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This is the function which is extremized to generate 
the ridge curves of the OPP, or the retract fragments 
of the GVG. See figure 3 for an example of D plotted 
along a slice. 

-Slim 

Figure 3: Distance function piotted along 
a diagonal slice 

We now consider how to compute the gradients of 
these distance functions. 

Proposition 4.5: The single object distance func- 
tion satisfies: 

Ildi(3) - d i ( f ) l l  I 11.'- 41. 
and so is Lipschitt ([Cla90],p51). d; is a convex 
function if Ci is a convex set. Since convex obsta- 
cles are assumed, d;  is convex, and hence it is regu- 
lar ([Cla90],p40). And, by Prop. 3.10, D is therefore 
regular as well. 

We now consider how to compute the gradient of d; .  
When there is a unique closest point ZO E Ci to  
ac' cl(C;), then ([Clago], p66): 

That is, V d ;  is a unit vector emanating from 3 point- 
ing away from Zoo. Thus, if Ci is convex, then di is 
smooth everywhere but on the boundary of C;. To 
compute (4.2) from sensor data, one need only know 
the distance to  the nearest point on an obstacle, and 
direction to  that point. 

But, di i s  not smooth when there are multiple closest 
points. Such a case would occur if Ci were not con- 
vex, and ac' is equidistant from multiple points on the 
boundary of C;. If 5 is equidistant to  a set of points 
{Z'}, then by Definition 3.5: 

If C; is convex, ad ,  evaluates to  V d i .  Likewise, since 
the multi-object distance function is a function of the 
form (3.3) where each di is regular, Prop. 3.10 states 
that  its generalized gradient will have the form: 

all($) = CO{Vd;(Z) i E 1 ( Z ) }  (4.4) 

Recall that I (5)  is the set of indices where di(.') = 
D(2) .  The physical intuition is: 

1. If there is a unique closest point (and hence a 
unique closest obstacle), dD(2)  is a unit vector 
pointing away from the closest point. In this 
case, D(5)  is smooth. 

2. If there are a set of equidistant closest points, 
then aD(5)  is the convex hull of each of the 
gradients with respect to each point. In this 
case, the robot is equidistant to  multiple convex 
obstacles. 

5. Creating Ridge Fragments from Sen- 
sor Data 

To implement a sensor based incremental construc- 
tion of a retract, we must compute the gradient of our 
distance measurements directly from sensor data. In 
particular, for the OPP  ridge curves, the local max- 
ima of D(Y';A) needs to be found on each slice. In 
order to extremize b($X) on a slice, we must com- 
pute its gradient with respect to the slice variables, 
g. In this section we show how sensor data can be 
used to  compute this gradient, and how to reliably 
find and differentiate between the different required 
extremal points on each slice. 

We want to compute the generalized gradient of 
B(Y';X) with respect to  the slice variables, <. How- 
ever, our sensors give us data which can be used to 
construct the generalized gradient of D(5)  in the am- 
bient space. This difference can be resolved as fol- 
lows. 

Proposition 5.1: The projection of aD(5)  onto the 
y' subspace is equal to  the partial gradient of D(Z) 
with respect to y': 

where rY projects onto the y' subspace and 8,- repre- 
sents partial differentiation with respect to g. 
ProoE First recall that for smooth functions 

T&m(.')) = aqD(3) 

VZ1f(%ac2) = TZl ( V f ( h 3 2 ) )  
If there is a unique closest point, then D(5)  is smooth 
at 2, and the proposition is proved. If there is not a 
unique closest point, by (4.4): 

all($) = XiVd;(Z) 5.t. A; = 1 X i  > 0 
i € I ( Z )  i E I ( Z )  

Now project this generalized gradient onto the y' co- 
ordinates: 

~ , - ( 8 D ( 2 ) )  = ~,j( AiVdi (2 ) )  
i € I ( Z )  
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Thus, it is quite straightforward to  compute 
t3gd(f, A) from simple distance sensor data. 

A local maximum of D is found a0 follows. Assume 
a point robot is located at 32 = (A,f). OD($) can 
be computed using sensor data. These gradients are 
then projected onto the slice coordinates to yield 

If the robot is not located at a maximum or 
inflection point, then d is rmooth and a,@ consists 
of a single vector radient. The robot doea gradient 
ascent until it reacfies a local maximum. R o m  there, 
the robot incremepts forward in the sweep direction, 
and re-optimizes D on the  new slice. In this way, the 
ridge curves are constructed. The inflection curves 
are constructed in a similar way. 

An important question which must now be addressed 
is: how do we reliably determine if we are at a max- 
ima, minima, or inflection point on a slice? For the 
local maxima, some of the local minima, and inflec- 
tion pointr, D(3) and D(2) are not smooth. Thus, 
unlike the caae of-smooth functions, we can not use 
the vanishing of D's gradient as an indication of an 
extremal point. However, as the following proposi- 
tions point out, it is possible t o  differentiate between 
the extremals. To our howled e, these results are 
new t o  the nonsmooth analysis hera ta re .  They are 
equivalent to the Hessian, or curvature conditions, 
which classify the extremal points of smooth func- 
tions. 

PROPOSITION 5.2: Local Extrema ([ClaW], p38) If 
f attains a local minima or maxima at 2, then 0 E 
af(2). Unfortunately, the converse is not always true. 

Proposition 5.3: Let i!* = (A,g)T E R" be 
equidistant from obstacles Cl, - , C,, where n 2 m. 
That is, &($*;A) = = d,(f*;_X) = D(&;A). If 
0 E int(t3@(g*;A)) = in t (n@D(y , ;A))  then f* is a 
local maximum. 

ProoE To prove this proposition, we first prove: 

Lemma 5.4: If 6 E int(co{?rgVdi,i = 1,. . . ,n}) = 
int(a@(f*,A)), then there exists at least one i E 
(1,. . . ,n}  such that  inner product (5, -.ngVdi) > 0 
in an E neighborhood of &, for a fixed and arbitrary 
v' E Rm-l 

ProoE Assume that there is no i for which 
(5, -7rgVdi) > 0. Therefore, 5 defines a half space 
H+ = {.' E R" : (.',5) > 0). By the assumption, 
none of the vectors {-.ngVdi} lies in H+. There- 
fore, all vectors { -?rgVdi} are in the same half space. 
Thus, the interior of the convex hull of the vectors 
{-ngVdj} does not contain the origin. This is a con- 

v 
Since (C, -?rgVdi) > 0 for at least one i, di decreases 
in the direction of v' in an E neighborhood. Since this 
is true for all 5,there is always a di that  decreaaes in 

tradiction, proving the above lemma. 

any direction 5. Therefore, for some E > 0 

By definition, D(& + €5) 5 d;(& + d), thus 

D ( f *  + €5) < D ( f * )  V r ,  v' 

which implies that  D ( f * )  is a local maxima. 

r C 1 
t 

Figure 4: Local Maximum 

The conditions for local minima and inflection points 
are similar, and can be proven in a similar way. 

Proposition 5.5: At an inflection point, D is nons- 
mooth, and 0 E boundary(d,-D(f*; A). 

Proposition 5.6: At a local minima of d, 0 = ago. 

Pojcatdconvex j 
Hull 

I 1 

Figure 5: Local Minimum 
Figure 5 shows an example of a local minima. Gener- 
ically, D is smooth a t  local minima. We term a con- 
nected local minima curve a valley curve. The valley 
curves are not an essential part of the skeleton sys- 
tem we compute in Section 8, though they are often 
useful in practice. 

The OPP skeleton is the union of ridge curves and 
bridge curves. Notice that a necessary condition for 
z to be a local maxima of d, is that  z must be equidis- 
tant to at least m points in an m-dimensional space. 
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6. Generalized Voronoi Graph 
This section defines the Generalized Voron_oi Graph 
(GVG), and shows that  on it, D(2)  and D(Y';X) is 
nonsmooth. The GVG is a 1-dimensional retract 
with many useful properties for sensor based plan- 
ning Since the ridge curves of the O P P  method are 
fully contained in the GVG, D(2)  and D(Y';X) are 
nonsmooth on the OPP ridge curves, as well. 

Definition 6.1: I'ij = ( 2  E Rm : di(ac') - d j ( 2 )  = 0) 
is the set of points which are equidistant to obstacles 
i and j 

Definition 6.2: y i j  = (ac' E r i j  : di(ac') 5 d k ( 2 ) V k  # 
i, j) is the set of points equidistant to  obstacles i and 
j, such that  each point x is closer to  i and j than any 
other obstacle. 

Definition 6.3: r2 = U 
7%-I n 

U I'ij 
i = l  j = i + l  

n-1 n 

Definition 6.4: 7' = U 
that  y2 is the Voronoi Diagram. 

U y i j .  It can be shown 
i = l  j= i+1  

I ObsGle i I 
Figure 6: Set of Points Equidistant be- 

tween any Two Obstacles. The solid 
lines are the set y2, while the union of 
the solid and dashed lines is the set I?'. 

Definition 6.5: r i j k  = rij (7 rik n r j k  is the set of 
points equidistant to  objects i, j and I C .  By transitiv- 
ity, we only need two r's, so r i j k  = r i j  n r i k .  

Definition 6.6: y i j k  = y i j  n r i k  (n r j k )  is the set 
of points equidistant to objects i, j and k, such that 
each point is closer t o  z , j  and k than any other ob- 
ject. Again, by transitivity, on two y's are required 
to  define y i j k .  

Definition 6.7: r3 = U U U y i j k  

The following definition is a result of taking m - 1 
intersections: 

n-2  n-1 n 

i = l  j = i + l  k = j + l  

Definition 6.8: The Generalized Voronoi Graph 
(GVG) is equal t o  rm. 7" is the set of points equidis- 
tant to  m objects, such that  each point is closer to 
the m objects than any other object. The GVG is a 
connected 1-dimensional retract with the properties 
of accessibility and departability (the proof of this 
claim is beyond the scope of this paper). The ridge 
curves of the O P P  method are contained in ym since 
all ridge curve points are equidistant to  at least m 
objects. 

Proposition curves. 6.9: fi is nonsmooth on the ridge 

Proof: By Definition 4.4 and Proposition 3.10, D 
is nonsmooth on r_". Since the ridge curves are fully 
contained in rm, D is nonsmooth on the ridge curves. 

Proposition 6.10: The ridge curves are a one di- 
mensional set. 

Proof: The above proposition is a result of the 
following three Lemmas. 

Lemma 6.11: y2 is co-dimension one in W 

Proof: Again, we assume non-intersecting convex 
obstacles, and note that ( d i - d j )  is smooth by the ob- 
stacle convexity assumption. We now show that  0 is a 
regular value of ( d i  - d j ) ( 2 ) ,  which is true if and only 
if V ( d i  - d j ) ( Z )  is surjective, i.e. V d i ( 2 )  # V d j ( 2 )  

V 2 E r i j .  Since V d i ( 2 )  and V d j ( 2 )  are each unit 
vectors, they are only equal when they point in the 
same direction. However, since i # j (i.e. they point 
a t  different obstacles non-intersecting), and ac' is a 
point equidistant to obstacles i and j ,  V d i ( 2 )  and 
V d j ( 2 )  can never point in the same direction. There- 
fore V d i ( 2 )  # V d j ( 2 ) .  Otherwise, obstacles i and j 
would occupy the same physical space. 

By the pre-image theorem, since 0 is a regular value 
of the smooth function ( d i  - d j ) ( 2 ) ,  r;j is a manifold 
of co-dimension 1 in W .  Since y i j  is a subset of r;j, 
it too is a manifold of co-dimension 1. y2 is a set (not 
necessarily a manifold) of of co-dimension 1 because 
it is the finite union of sets of co-dimension one. v 
Lemma 6.11 proves Prop. 6.10 is true in two dimen- 
sions. So, the following proposition generalizes the 
above result to three dimensions, from which we can 
generalize to m dimensions. 

Lemma 6.12: r3 is co-dimension 2 in W .  

Proof: Another definition is: r i j k  = ( 2  E rij : 
d i ( Z ) - d k ( a c ' )  = 0). It is assumed that  I ' i j  # r i k  e 
z # k. Therefore, 0 is a regular value of (d; - d k ) ( z )  
on r;j. By the pre-image theorem, r i j k  has co- 
dimension l in r i j ,  and thus co-dimension 2 in W .  
y i j k  is a subset of r i j k  and thus is co-dimension 2 
on W .  Since 7 3  is the finite union of co-dimension 2 

v manifolds, it is co-dimension 2 on W .  
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Lemma 6.13: ym is co-dimension m - 1, that is, one 
dimensional, in W. 
ProoE Generalizing the above assumptions to  
higher dimensions, by induction, one can show that 
I" is one dimensional in W and has co-dimension 1 
in Since ym is fully contained in rm, it too is 
is co-dimension m - 1 and one dimensional in W. V 
Since the ridge curves in an m-dimensional space are 
fully contained in ?;n, they are one dimensional. 

Definition 6.14: Meet Points are elements of ym+' 

That is, the Meet Points are where two or more local 
fragments of the GVG meet in a point. It can be 
shown that the Meet Points are "sweep invariant." 

7. Detecting the Meet Points 
As a result of Prop. 6.12, the ridge curves in an 
m- dimensional space are locally connected (smooth) 
segments equidistant to  m obstacles. These locally 
smooth segments (termed ridge fragments) meet at  
points (termed meet points) equidistant to m + 1 ob- 
stacles. See figure 7. To incrementally construct the 
GVG, it is sufficient to  trace the local GVG frag- 
ments. When Meet Points are reached, the algorithm 
recursively explores each of the graph fragments that  
depart from the meet point. Thus, finding these meet 
points is a critical part of our algorithm. These meet 
points can be detected as follows. While tracing the 
ridge curves, the robot's sensors look at the set of m 
(two in the plane) closest obstacles. Due to  sensor 
noise, and positioning inaccuracies, it is unreason- 
able to expect the robot to accurately detect that it 
is equidistant to m + 1 points at a meet point. How- 
ever, aa the robot passes by a meet point, one of the 
m closest points changes. In other words, we moved 
from yil...im-lj to  7,1. . . im-1k.  This occurrence is easy 
to detect and robust. From this, one can compute a 
good estimate for the location of the meet point. 

'i 

Figure 7: Meet point 

In future work, we show that meet points are neces- 
sary for the incremental construction of the General- 
ized Voronoi Graph. 

8. Simulation of the Method 
We implemented the incremental GVG method in 
simulation for the planar case. Recall that  there are 
two applications of the algorithm: (1) to find a path 

to a goal; or (2) to construct a retract of a bounded 
environment. We focus here on the more general case 
of retract construction. The method is illustrated by 
the example in Figures 8, 9 and 10. 

The input to  the algorithm is an initial sweep direc- 
tion, and the initial coordinates of the robot. Like the 
OPP, the robot finds a local maximum (or possibly 
inflection in some non-generic cases) of 6 via gracii- 
ent ascent along the slice which is determined by the 
starting point and sweep direction. The methods of 
Section 5 are used to check and verify the extrema1 
conditions. The location of the local maximum and 
the direction of the two nearest obstacles are stored. 

The robot then begins to incrementally construct a 
retract fragment. Since there is a choice of two direc- 
tions for tracing the fragment, one direction is arbi- 
trarily chosen. The curve is locally traced by using 
a continuation method, which can be thought of as a 
sweeping method similar to the OPP, but where the 
sweep direction continually changes, and is defined 
by the tangent to  the retract fragement curve. The 
fragment is traced until the robot reaches a bound- 
ary or a Meet Point (it can be shown that one of 
these two conditions will occur). If the robot reaches 
a boundary, it returns to  the start to trace the re- 
tract frament in the other direction. Otherwise, it 
can mark the meet point and begin to explore the 
other retract fragments that  depart from the Meet 
Point. In this regard, our algorithm departs signifi- 
cantly from the OPP in that  at  meet points, a new 
sweep direction is effectively determined. For the first 
stage, the robot may return to the starting point to  
sweep in the negative direction until it reaches a Meet 
Point or boundary. Figure 8 shows a snapshot of the 
computer simulation after this stage has been com- 
pleted. The figure consists of the trace of the local 
maxima, and three Meet Points. The two on the ends 
were explored (diagonal lines), and the middle meet 
point remains to  be explored. 

,Inflection 
Curve 

Figure 8: Computer simulation of first 
phase 

The algorithm then continues recursively. The robot 
returns to a Meet Point with unexplored branches, 
and traces one of these branches. This tracing pro- 
cedure continues until another Meet Ppint is reached 
(where another level of recursion is initiated), or until 
a boundary is reached. Figure 9 shows a subsequent 
snapshot of the simulation after the robot has moved 
through several Meet Points and reached a boundary. 
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After tracing a fragment to  a boundary, the robot re- 
turns to  an already detected Meet Point which has 
unexplored directions. Note that  during this process, 
the robot might reach a previously explored Meet 
Point by closing a “loop.” In such cases, the robot 
returns to  the last previously unexplored Meet Point, 
and continues. The algorithm terminates when all re- 
tract fragments emanating from all Meet Points have 
been explored. The result is a complete retract of the 
bounded space which has been iteratively constructed 
with no a priori knowledge (Figure 10) 

Figure 9: Second Snapshot 

The advantage of this method is that  the Meet Points 
are easily detected, and do not depend upon a sweep 
direction. In addition, as opposed to  OPP’s method 
of building bridge curves in the vicinity of the inter- 
esting critical points, the resulting GVG retract is 
maximally far from the obstacles at all times. 

Figure 10: Final retract constructed by 
the method 

9. Summary 
The bulk of this paper was devoted to  nonsmooth 
analysis of the Euclidean distance function. In par- 
ticular, we showed how to obtain the local maxima 
of a nonsmooth function, entirely from first order in- 
formation. We showed that  this analysis leads nat- 
urally to  a simple, robust, and rigorous methods to 
construct local retract curve fragments from sensor 
data. These result are useful for “sensorizing” other 
methods which have been proposed in the classical 
planning literature. In addition, the distance func- 
tions introduced in this paper lead naturally to a new 
1-dimensional retract, which we call the Generalized 
Voronoi Graph. This retract has the nice property 
that  its local fragments meet in easily detectable and 

invariant Meet Points. We proposed a novel method 
to incrementally construct the Generalized Voronoi 
Graph from distance sensor data. This method in 
turn can be used to. construct a 1-dimensional retract 
of an unknown environment based solely on distance 
measurements. Simulation results validated the ap- 
proach, and experiments are currently under way. 
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