
Sensor Based Planning and Nonsmooth Analysis

Howie Choset Joel Burdick
Dept. of Mechanical Engineering

Mail Code 104-44, CALTECH, Pasadena, CA 91125

Abstract. This paper describes some initial steps
towards sensor based path planning in an unknown
static environment. The method is a based on
a sensor-based incremental construction of a one-
dimensional retract of the free space. In this paper we
introduce a retract termed the Generalized Voronoi
Graph, and also analyze the Roadmap of Canny and
Link Opportunistic Path Planner. The bulk of this
paper is devoted to the application of nonsmooth
analysis to the Euclidean distance function. We show
that the distance function is in fact nonsmooth at the
points which are required to construct the plan. This
analysis leads directly t o the incorporation of simple
and realistic sensor models into the planning scheme.

1. Introduction
“Sensor Based Planning” incorporates sensor infor-
mation, reflecting the current state of the environ-
ment, into a robot’s planning process, as opposed
t o classical planning, which assumes full knowledge
of the world’s geometry prior to planning. Sensor
based planning is important because: (1) the robot
often has no a priori knowledge of the world; (2) the
robot may have only a coarse knowledge of the world
because of limited memory; (3) the world model is
bound to contain inaccuracies which can be overcome
with sensor based planning strategies; and (4) the
world is subject to unexpected occurrences or rapidly
changing situations.

There already exists a large body of path planning lit-
erature; see [LatSl] and references contained therein.
However, many of these techniques are not amenable
to sensor based interpretation. It is not possible to
simply add a step to acquire sensory information, and
then construct a plan from the acquired model using
a classical technique, since the robot needs a path
planning strategy in the first place to acquire the
world model. Instead, an incremental approach is
needed. Incremental and sensor based planning algo-
rithms have been developed for two dimensions. See
[RI911 for an example of an incremental Voronoi di-
agram construction technique. Lumelsky’s bug algo-
rithm [LS87] is another sensor based planning strat-
egy which is guaranteed to reach a goal in a two-
dimensional world, but not in higher dimensions.

In this paper, we describe some initial steps towards
path planning in a static environment where there
is no a priori knowledge. We develop an incremen-
tal method to construct a Generalized Voronoi Graph
(GVG), which is a 1-dimensional retract of a bounded
space. Much of the analysis in this paper can also be
applied to “sensorize” other methods based on a re-

tract, such as the Opportunistic Path Planner (OPP)
described in [CL93]. In constructing the retract from
sensor data, we only assume that the robot has a dead
reckoning system and on board sensors that measure
distance and direction to nearby obstacles. This plan-
ning scheme can be used in two ways. First, it will
find a path from an initial location to a goal if such a
path exists. Second, the method can be used to con-
struct a 1-dimensional retract of a bounded space.

The principal focus of this paper is not the Gener-
alized Voronoi Graph or any particular retract, such
as the Canny Roadmap. Instead, most of this pa-
per is devoted to the application of nonsmooth anal-
ysis t o the Euclidean distance function. This function
is an integral component of many path planners, in
addition to the one described in this paper. Prior
work has not fully considered the important issues of
nonsmoothness when they employ this distance func-
tion. We show that this function is in fact always
nonsmooth at the points which are required for con-
structing the plan. Furthermore, we show that this
analysis leads to the incorporation of simple and re-
alistic sensor models into the planning scheme. We
give the first rigorous basis for sensor-based construc-
tion of the retract fragments which are required for
planning. Simulations demonstrate the validity of the
approach. Experiments are currently under way.

2. Relation to Previous Work
Many successful classical motion planning methods
are based on the construction of a 1-dimensional re-
tract of the free configuration space, 7. For example,
we have in mind the “Opportunistic Path Planner”
(OPP) of Canny and Lin [CLgO], [CL93], which is it-
self based on Canny’s Roadmap Algorithm [Can88].
One-dimensional retracts have the nice properties of
accessibility and departabddy. That is, the planner
can construct a path between any two points in 3 by
first finding a path onto the retract (accessibility),
traversing the retract to the vicinity of the goal, and
then constructing a path from the retract to the goal
(departability).

As an example of these retract methods, we review
the OPP and point out its limitations for sensor
based use. Assume the configuration space, C, is Rm,
with coordinates (21, * , zm). As defined in [CLgO],
[CL93], a slice is the subset of C defined by the plane
$1 = A. On each slice, a continuous and differen-
tiable artificial potential function is defined. Canny
and Lin suggest that the Euclidean distance function
between a given point (which represents the robot’s

3034
1050-4729/94 $03.00 0 1994 IEEE

configuration) on the slice and the nearest obstacle be
used as the potential function. The loci of the max-
ima of the potential function are termed ridge curves
[RC94]. These are the maximally safe paths for the
robot.

The algorithm works as follows. A path is traced from
the start and from the goal onto the nearest ridge
curves by gradient ascent on the potential function in
the slices which intersect the start and goal positions.
The start and goal ridge curves are subsequently con-
structed by sweeping a slice (slicing) through the en-
vironment while tracing the local maxima of the po-
tential function. If the start and goal ridge curves are
connected, then the algorithm terminates. In gen-
eral, the set of ridge curves will not be connected,
and paths between neighboring ridge curves must be
found. The O P P proposes a method to connect ridge
curves with bridge curves. The bridge curves are con-
structed in the vicinity of interesting critical points.
Interesting critical points occur when c-space chan-
nels (Figure 1) join or split. If the goal and start ridge
curves do not connect, the O P P adds a bridge curve,
and the process is repeated until the start and goal
curves are connected, thereby finding a path from
the start to the goal. If all interesting critical points
are explored, and the goal and start do not connect,
then no path exists. Note that the union of bridge
and ridge curves forms the skeleton, or 1-dimensional
retract.

Ridge Curve

~ q-1
_ I

: ~ r i d g c ~ u ~ e ~nenaing -Chann~l-:
critical Point

Figure 1: Schematic of the OPP planning

The O P P can not be directly implemented in a
sensor-based way because it assumes: (t) prior
knowledge of the location of all the interesting crit-
ical points; and (2) that ridge curves can be traced
backward from the goal. Rimon and Canny [RC94]
have recently suggested a way to “sensorize” the O P P
algorithm. The principle contribution of [RC94] is a
study of the interesting critical points, which are cru-
cial to construction of the retract. They introduce
the notion of a “critical point sensor,” though they do
not suggest how to construct the interesting critical
point sensor. Nor do they provide a rigorous way to
construct the ridge curve fragments from sensor data.
Both works do not consider the issues of nonsmooth-
ness of the distance unction. As we show below, the
Euclidean distance function is not differentiable on
the ridge curves. Furthermore, the interesting crit-
ical points, which are crucial to the construction of
the retract, are sweep direction dependent-this is an
undesirable property.

The Generalized Voronoi Graph (GVG) retract in-

scheme

troduced in Section 6 has some advantages over the
skeleton of the O P P method. However, we first di-
gress to develop some ideas that are necessary to de-
fine the GVG as well as analyze other retracts, such
as the one used in the OPP.

3. Review of Nonsmooth Analysis
We show below that the Euclidean distance function
is in fact nonsmooth at many points of interest, and
therefore does not have a conventional derivative at
these points. However, one can build a calculus for
such nonsmooth functions from a less restrictive class
of assumptions than smoothness: Lipschitz, regular-
ity, and convexity. We review here some essential re-
sults from nonsmooth analysis and develop a few use-
ful results. A more comprehensive treatment of nons-
mooth analysis can be found in [Clago]. Throughout
this section, assume all Z E X where X is a finite
dimensional vector space.

Definition 3.1: A function f (Z) is Lipshitz near 5
when:

l/f(ac’i) - f(ac’j)ll 5 K115i - 5jIl V 5 i , Z j E Nbhd(5)
where K is some scalar.

Definition 3.2: The generalized directional deriva-
tive ([Clago], p10) of f(5) in the direction ii is:

Definition 3.3: f(5) is regular ([Cla90], p39) at Z
when: (1) Vii,f’(ac’,ii) exists, where f ’ is the usual
one sided derivative; and (2) Vi i , f ’ (5 , i i) = f”(5,;).

Definition 3.4: f is a convex function if Vi&, i = l..n
and Cy=, X i = 1

/ n \ n

All convex functions are regular ([Cla90], p40).

While a Lipschitz function need not be smooth, it
does possesses a generalized derivative, or generalized
gradient. This definition is key to the remainder of
this paper.

Definition 3.5: In finite dimensional space, the gen-
eralized gradient ([Cla90], p63) of a Lipschitz func-
tion f at ac’ is denoted by af (5) and given by:

where is the set of points where f fails to be differ-
entiable, S is any set of measure zero, and CO means
convex hull. Note that if f(5) is smooth at Z, then
at(.’) reduces to the conventional gradient.

We now introduce some properties that are useful for
manipulating the generalized gradient.

3035

Proposition 3.6:
-CO{& ; i = l...n} = CO{-& : i = l...n}

In particular, note that a(-f) = -a(f).
It will be useful in the sequel to analyze functions
which are described the maxima or minima over a
set of Lipschitz functions.

Proposition 3.8: Let {fi}, i = 1,". ,n, be a set
of functions which are Lipschitz near 50. For Z E
Nbhd(Zo), the function

is also Lipschitz and regular.([Cla90],p47)

Since (3.1) is Lipschitz, we can define its generalized
gradient.

Proposition 3.9: Pointwise Maxima. For the func-
tion f(5) = maxi=l, ...,,,{fi (Z)}, where eachfi(3) is
regular, f(Z) has the generalized gradient:

a@) = co{afi(q : 2 E I (q } (3.2)
where I (5) is the set of indices for which fi(2) = f(Z).
That is, fi(5) attains the maximum V i E I (2) .

Proposition 3.10: Pointwise Minima. For a set of
regular functions fi(i?), the function

has generalized gradient:

where I (Z) is the set of indices for which fi(Z) = g(Z),
i.e. where fi(3t) attain the minimum. Like above, g is
regular. The proof is a simple consequence of Props.
3.6 and 3.7.

a g (q = co{afi(.-) vi E I (Z) } (3.4)

4. Analysis of the Distance Function
As seen in Section 2, a function which encodes the
distance between the robot and nearby obstacles is
key to the construction of the skeletons of the OPP
retract. It is also key to the definition of the Gen-
eralized Voronoi Graph of Section 6. This section
defines several important distance functions and uses
the contents of Section 3 to analyze them. We as-
sume a point robot operating in an m-dimensional
Euclidean space, W , which is populated by obsta-
cles C1,. . - , C,, and which can be described as sets
of points. We often assume that the obstacles are
convex. Non-convex obstacles can be modeled as the
union of convex shapes. The case in which the robot

is not modeled as a point, but as a set, is not consid-
ered in this paper.

First we consider the distance between a point robot
and an obstacle in R".

Deflnition 4.1: Single Object Distance Function.
The distance between a point, Z and a set Ci is

d@) = jxlf 11.' - flI (4 4
QECi

where 11 - 11 is the 2-norm in R".

Recall from Section 2 that in order to incrementally
construct the skeleton curve, we wish to extremize
the distance function on a slice.. A slice is a set of
points (3 : a(5). = A} where A is a scalar and a(.)
is a function which foliates W. For now, we assume
that a slice is a hyperplance, and that the coordi-
nates are chosen so that a($) = 21. In this case, we
can decompose the physical space coordinates 5 into
"slice coordinates y' and the "sweep coordinate" A:
2 = (A, $*)T.

Deflnition 4.2: Single Object Distance constrained
to a slice, A. The distance between a point, which is
constrained to a slice, A, and a set Ci is:

where y' E a - ' (A) . Hereafter, di is shorthand for
q y ' ; A).

See figure 2 for an example of the distance function
plotted along a slice. At each slice point, d'. , ' is com-
puted to the nearest point of the obstacle.

Figure 2: Distance function plotted along

Typically, the world is populated with multiple ob-
stacles, and thus we define:

Deflnition 4.3: Multi-object Distance Function.
The distance between a point and many obstacles is
taken as the minimum distance to any obstacle:

D(2) = min di(3)

a horizontal slice

i=l,. . . ,?a

D(Z) can be found with realistic sensors.

Dewtion 4.4: Multi-object Distance Function con-
strained to a slice

l?(cA) = , min &($A) where $E a- '(A). 1=1,..- ,n

3036

This is the function which is extremized to generate
the ridge curves of the OPP, or the retract fragments
of the GVG. See figure 3 for an example of D plotted
along a slice.

-Slim

Figure 3: Distance function piotted along
a diagonal slice

We now consider how to compute the gradients of
these distance functions.

Proposition 4.5: The single object distance func-
tion satisfies:

Ildi(3) - d i (f) l l I 11.'- 41.
and so is Lipschitt ([Cla90],p51). d; is a convex
function if Ci is a convex set. Since convex obsta-
cles are assumed, d; is convex, and hence it is regu-
lar ([Cla90],p40). And, by Prop. 3.10, D is therefore
regular as well.

We now consider how to compute the gradient of d; .
When there is a unique closest point ZO E Ci to
ac' cl(C;), then ([Clago], p66):

That is, V d ; is a unit vector emanating from 3 point-
ing away from Zoo. Thus, if Ci is convex, then di is
smooth everywhere but on the boundary of C;. To
compute (4.2) from sensor data, one need only know
the distance to the nearest point on an obstacle, and
direction to that point.

But, di i s not smooth when there are multiple closest
points. Such a case would occur if Ci were not con-
vex, and ac' is equidistant from multiple points on the
boundary of C;. If 5 is equidistant to a set of points
{Z'}, then by Definition 3.5:

If C; is convex, ad , evaluates to V d i . Likewise, since
the multi-object distance function is a function of the
form (3.3) where each di is regular, Prop. 3.10 states
that its generalized gradient will have the form:

all($) = CO{Vd;(Z) i E 1 (Z) } (4.4)

Recall that I (5) is the set of indices where di(.') =
D(2) . The physical intuition is:

1. If there is a unique closest point (and hence a
unique closest obstacle), dD(2) is a unit vector
pointing away from the closest point. In this
case, D(5) is smooth.

2. If there are a set of equidistant closest points,
then aD(5) is the convex hull of each of the
gradients with respect to each point. In this
case, the robot is equidistant to multiple convex
obstacles.

5. Creating Ridge Fragments from Sen-
sor Data

To implement a sensor based incremental construc-
tion of a retract, we must compute the gradient of our
distance measurements directly from sensor data. In
particular, for the OPP ridge curves, the local max-
ima of D(Y';A) needs to be found on each slice. In
order to extremize b($X) on a slice, we must com-
pute its gradient with respect to the slice variables,
g. In this section we show how sensor data can be
used to compute this gradient, and how to reliably
find and differentiate between the different required
extremal points on each slice.

We want to compute the generalized gradient of
B(Y';X) with respect to the slice variables, <. How-
ever, our sensors give us data which can be used to
construct the generalized gradient of D(5) in the am-
bient space. This difference can be resolved as fol-
lows.

Proposition 5.1: The projection of aD(5) onto the
y' subspace is equal to the partial gradient of D(Z)
with respect to y':

where rY projects onto the y' subspace and 8,- repre-
sents partial differentiation with respect to g.
ProoE First recall that for smooth functions

T&m(.')) = aqD(3)

VZ1f(%ac2) = TZl (V f (h 3 2))
If there is a unique closest point, then D(5) is smooth
at 2, and the proposition is proved. If there is not a
unique closest point, by (4.4):

all($) = XiVd;(Z) 5.t. A; = 1 X i > 0
i € I (Z) i E I (Z)

Now project this generalized gradient onto the y' co-
ordinates:

~ , - (8 D (2)) = ~,j(AiVdi (2))
i € I (Z)

3037

Thus, it is quite straightforward to compute
t3gd(f, A) from simple distance sensor data.

A local maximum of D is found a0 follows. Assume
a point robot is located at 32 = (A,f). OD($) can
be computed using sensor data. These gradients are
then projected onto the slice coordinates to yield

If the robot is not located at a maximum or
inflection point, then d is rmooth and a,@ consists
of a single vector radient. The robot doea gradient
ascent until it reacfies a local maximum. R o m there,
the robot incremepts forward in the sweep direction,
and re-optimizes D on the new slice. In this way, the
ridge curves are constructed. The inflection curves
are constructed in a similar way.

An important question which must now be addressed
is: how do we reliably determine if we are at a max-
ima, minima, or inflection point on a slice? For the
local maxima, some of the local minima, and inflec-
tion pointr, D(3) and D(2) are not smooth. Thus,
unlike the caae of-smooth functions, we can not use
the vanishing of D's gradient as an indication of an
extremal point. However, as the following proposi-
tions point out, it is possible t o differentiate between
the extremals. To our howled e, these results are
new t o the nonsmooth analysis hera ta re . They are
equivalent to the Hessian, or curvature conditions,
which classify the extremal points of smooth func-
tions.

PROPOSITION 5.2: Local Extrema ([ClaW], p38) If
f attains a local minima or maxima at 2, then 0 E
af(2). Unfortunately, the converse is not always true.

Proposition 5.3: Let i!* = (A,g)T E R" be
equidistant from obstacles Cl, - , C,, where n 2 m.
That is, &($*;A) = = d,(f*;_X) = D(&;A). If
0 E int(t3@(g*;A)) = in t (n@D(y , ;A)) then f* is a
local maximum.

ProoE To prove this proposition, we first prove:

Lemma 5.4: If 6 E int(co{?rgVdi,i = 1,. . . ,n}) =
int(a@(f*,A)), then there exists at least one i E
(1,. . . ,n} such that inner product (5, -.ngVdi) > 0
in an E neighborhood of &, for a fixed and arbitrary
v' E Rm-l

ProoE Assume that there is no i for which
(5, -7rgVdi) > 0. Therefore, 5 defines a half space
H+ = {.' E R" : (.',5) > 0). By the assumption,
none of the vectors {-.ngVdi} lies in H+. There-
fore, all vectors { -?rgVdi} are in the same half space.
Thus, the interior of the convex hull of the vectors
{-ngVdj} does not contain the origin. This is a con-

v
Since (C, -?rgVdi) > 0 for at least one i, di decreases
in the direction of v' in an E neighborhood. Since this
is true for all 5,there is always a di that decreaaes in

tradiction, proving the above lemma.

any direction 5. Therefore, for some E > 0

By definition, D(& + €5) 5 d;(& + d), thus

D (f * + €5) < D (f *) V r , v'

which implies that D (f *) is a local maxima.

r C 1
t

Figure 4: Local Maximum

The conditions for local minima and inflection points
are similar, and can be proven in a similar way.

Proposition 5.5: At an inflection point, D is nons-
mooth, and 0 E boundary(d,-D(f*; A).

Proposition 5.6: At a local minima of d, 0 = ago.

Pojcatdconvex j
Hull

I 1

Figure 5: Local Minimum
Figure 5 shows an example of a local minima. Gener-
ically, D is smooth a t local minima. We term a con-
nected local minima curve a valley curve. The valley
curves are not an essential part of the skeleton sys-
tem we compute in Section 8, though they are often
useful in practice.

The OPP skeleton is the union of ridge curves and
bridge curves. Notice that a necessary condition for
z to be a local maxima of d, is that z must be equidis-
tant to at least m points in an m-dimensional space.

3038

6. Generalized Voronoi Graph
This section defines the Generalized Voron_oi Graph
(GVG), and shows that on it, D(2) and D(Y';X) is
nonsmooth. The GVG is a 1-dimensional retract
with many useful properties for sensor based plan-
ning Since the ridge curves of the O P P method are
fully contained in the GVG, D(2) and D(Y';X) are
nonsmooth on the OPP ridge curves, as well.

Definition 6.1: I'ij = (2 E Rm : di(ac') - d j (2) = 0)
is the set of points which are equidistant to obstacles
i and j

Definition 6.2: y i j = (ac' E r i j : di(ac') 5 d k (2) V k #
i, j) is the set of points equidistant to obstacles i and
j, such that each point x is closer to i and j than any
other obstacle.

Definition 6.3: r2 = U
7%-I n

U I'ij
i = l j = i + l

n-1 n

Definition 6.4: 7' = U
that y2 is the Voronoi Diagram.

U y i j . It can be shown
i = l j= i+1

I ObsGle i I
Figure 6: Set of Points Equidistant be-

tween any Two Obstacles. The solid
lines are the set y2, while the union of
the solid and dashed lines is the set I?'.

Definition 6.5: r i j k = rij (7 rik n r j k is the set of
points equidistant to objects i, j and I C . By transitiv-
ity, we only need two r's, so r i j k = r i j n r i k .

Definition 6.6: y i j k = y i j n r i k (n r j k) is the set
of points equidistant to objects i, j and k, such that
each point is closer t o z , j and k than any other ob-
ject. Again, by transitivity, on two y's are required
to define y i j k .

Definition 6.7: r3 = U U U y i j k

The following definition is a result of taking m - 1
intersections:

n-2 n-1 n

i = l j = i + l k = j + l

Definition 6.8: The Generalized Voronoi Graph
(GVG) is equal t o rm. 7" is the set of points equidis-
tant to m objects, such that each point is closer to
the m objects than any other object. The GVG is a
connected 1-dimensional retract with the properties
of accessibility and departability (the proof of this
claim is beyond the scope of this paper). The ridge
curves of the O P P method are contained in ym since
all ridge curve points are equidistant to at least m
objects.

Proposition curves. 6.9: fi is nonsmooth on the ridge

Proof: By Definition 4.4 and Proposition 3.10, D
is nonsmooth on r_". Since the ridge curves are fully
contained in rm, D is nonsmooth on the ridge curves.

Proposition 6.10: The ridge curves are a one di-
mensional set.

Proof: The above proposition is a result of the
following three Lemmas.

Lemma 6.11: y2 is co-dimension one in W

Proof: Again, we assume non-intersecting convex
obstacles, and note that (d i - d j) is smooth by the ob-
stacle convexity assumption. We now show that 0 is a
regular value of (d i - d j) (2) , which is true if and only
if V (d i - d j) (Z) is surjective, i.e. V d i (2) # V d j (2)

V 2 E r i j . Since V d i (2) and V d j (2) are each unit
vectors, they are only equal when they point in the
same direction. However, since i # j (i.e. they point
a t different obstacles non-intersecting), and ac' is a
point equidistant to obstacles i and j , V d i (2) and
V d j (2) can never point in the same direction. There-
fore V d i (2) # V d j (2) . Otherwise, obstacles i and j
would occupy the same physical space.

By the pre-image theorem, since 0 is a regular value
of the smooth function (d i - d j) (2) , r;j is a manifold
of co-dimension 1 in W . Since y i j is a subset of r;j,
it too is a manifold of co-dimension 1. y2 is a set (not
necessarily a manifold) of of co-dimension 1 because
it is the finite union of sets of co-dimension one. v
Lemma 6.11 proves Prop. 6.10 is true in two dimen-
sions. So, the following proposition generalizes the
above result to three dimensions, from which we can
generalize to m dimensions.

Lemma 6.12: r3 is co-dimension 2 in W .

Proof: Another definition is: r i j k = (2 E rij :
d i (Z) - d k (a c ') = 0). It is assumed that I ' i j # r i k e
z # k. Therefore, 0 is a regular value of (d; - d k) (z)
on r;j. By the pre-image theorem, r i j k has co-
dimension l in r i j , and thus co-dimension 2 in W .
y i j k is a subset of r i j k and thus is co-dimension 2
on W . Since 7 3 is the finite union of co-dimension 2

v manifolds, it is co-dimension 2 on W .

3039

Lemma 6.13: ym is co-dimension m - 1, that is, one
dimensional, in W.
ProoE Generalizing the above assumptions to
higher dimensions, by induction, one can show that
I" is one dimensional in W and has co-dimension 1
in Since ym is fully contained in rm, it too is
is co-dimension m - 1 and one dimensional in W. V
Since the ridge curves in an m-dimensional space are
fully contained in ?;n, they are one dimensional.

Definition 6.14: Meet Points are elements of ym+'

That is, the Meet Points are where two or more local
fragments of the GVG meet in a point. It can be
shown that the Meet Points are "sweep invariant."

7. Detecting the Meet Points
As a result of Prop. 6.12, the ridge curves in an
m- dimensional space are locally connected (smooth)
segments equidistant to m obstacles. These locally
smooth segments (termed ridge fragments) meet at
points (termed meet points) equidistant to m + 1 ob-
stacles. See figure 7. To incrementally construct the
GVG, it is sufficient to trace the local GVG frag-
ments. When Meet Points are reached, the algorithm
recursively explores each of the graph fragments that
depart from the meet point. Thus, finding these meet
points is a critical part of our algorithm. These meet
points can be detected as follows. While tracing the
ridge curves, the robot's sensors look at the set of m
(two in the plane) closest obstacles. Due to sensor
noise, and positioning inaccuracies, it is unreason-
able to expect the robot to accurately detect that it
is equidistant to m + 1 points at a meet point. How-
ever, aa the robot passes by a meet point, one of the
m closest points changes. In other words, we moved
from yil...im-lj to 7,1. . . im-1k. This occurrence is easy
to detect and robust. From this, one can compute a
good estimate for the location of the meet point.

'i

Figure 7: Meet point

In future work, we show that meet points are neces-
sary for the incremental construction of the General-
ized Voronoi Graph.

8. Simulation of the Method
We implemented the incremental GVG method in
simulation for the planar case. Recall that there are
two applications of the algorithm: (1) to find a path

to a goal; or (2) to construct a retract of a bounded
environment. We focus here on the more general case
of retract construction. The method is illustrated by
the example in Figures 8, 9 and 10.

The input to the algorithm is an initial sweep direc-
tion, and the initial coordinates of the robot. Like the
OPP, the robot finds a local maximum (or possibly
inflection in some non-generic cases) of 6 via gracii-
ent ascent along the slice which is determined by the
starting point and sweep direction. The methods of
Section 5 are used to check and verify the extrema1
conditions. The location of the local maximum and
the direction of the two nearest obstacles are stored.

The robot then begins to incrementally construct a
retract fragment. Since there is a choice of two direc-
tions for tracing the fragment, one direction is arbi-
trarily chosen. The curve is locally traced by using
a continuation method, which can be thought of as a
sweeping method similar to the OPP, but where the
sweep direction continually changes, and is defined
by the tangent to the retract fragement curve. The
fragment is traced until the robot reaches a bound-
ary or a Meet Point (it can be shown that one of
these two conditions will occur). If the robot reaches
a boundary, it returns to the start to trace the re-
tract frament in the other direction. Otherwise, it
can mark the meet point and begin to explore the
other retract fragments that depart from the Meet
Point. In this regard, our algorithm departs signifi-
cantly from the OPP in that at meet points, a new
sweep direction is effectively determined. For the first
stage, the robot may return to the starting point to
sweep in the negative direction until it reaches a Meet
Point or boundary. Figure 8 shows a snapshot of the
computer simulation after this stage has been com-
pleted. The figure consists of the trace of the local
maxima, and three Meet Points. The two on the ends
were explored (diagonal lines), and the middle meet
point remains to be explored.

,Inflection
Curve

Figure 8: Computer simulation of first
phase

The algorithm then continues recursively. The robot
returns to a Meet Point with unexplored branches,
and traces one of these branches. This tracing pro-
cedure continues until another Meet Ppint is reached
(where another level of recursion is initiated), or until
a boundary is reached. Figure 9 shows a subsequent
snapshot of the simulation after the robot has moved
through several Meet Points and reached a boundary.

3040

After tracing a fragment to a boundary, the robot re-
turns to an already detected Meet Point which has
unexplored directions. Note that during this process,
the robot might reach a previously explored Meet
Point by closing a “loop.” In such cases, the robot
returns to the last previously unexplored Meet Point,
and continues. The algorithm terminates when all re-
tract fragments emanating from all Meet Points have
been explored. The result is a complete retract of the
bounded space which has been iteratively constructed
with no a priori knowledge (Figure 10)

Figure 9: Second Snapshot

The advantage of this method is that the Meet Points
are easily detected, and do not depend upon a sweep
direction. In addition, as opposed to OPP’s method
of building bridge curves in the vicinity of the inter-
esting critical points, the resulting GVG retract is
maximally far from the obstacles at all times.

Figure 10: Final retract constructed by
the method

9. Summary
The bulk of this paper was devoted to nonsmooth
analysis of the Euclidean distance function. In par-
ticular, we showed how to obtain the local maxima
of a nonsmooth function, entirely from first order in-
formation. We showed that this analysis leads nat-
urally to a simple, robust, and rigorous methods to
construct local retract curve fragments from sensor
data. These result are useful for “sensorizing” other
methods which have been proposed in the classical
planning literature. In addition, the distance func-
tions introduced in this paper lead naturally to a new
1-dimensional retract, which we call the Generalized
Voronoi Graph. This retract has the nice property
that its local fragments meet in easily detectable and

invariant Meet Points. We proposed a novel method
to incrementally construct the Generalized Voronoi
Graph from distance sensor data. This method in
turn can be used to. construct a 1-dimensional retract
of an unknown environment based solely on distance
measurements. Simulation results validated the ap-
proach, and experiments are currently under way.

Acknowledgements The authors grateful acknowl-
edge the support of the Office of Naval Research,
Grant # N00014-93-1-0782. The authors would like
to thank Jim Ostrowski, Andrew Lewis, Elon Rimon
and Andrew Conley for their discussions. In partic-
ular, we would like to thank Jim Ostrowski for sup-
plying a proof for Prop. 5.3.

[Can881 J.F. Canny. The Complexity of Robot Mo-
tion Planning. MIT Press, Cambridge, MA,
1988.

[CL901

[CL931

[Clago]

[Latg 11

[LS87]

[RC94]

[~1911

J.F. Canny and M.C. Lin. An opportunis-
tic global path planner. In Proc. IEEE Int.
Conf. on Robotics and Automation, pages
1554-1559, Cincinnati, Ohio, 1990.
J.F. Canny and M.C. Lin. An opportunistic
global path planner. Algorithmica, 1O:lOZ-
120, 1993.
F. H. Clarke. Optimization and Nonsmooth
Analysis. Society of Industrial and Applied
Mathematics, Philadelphia, PA, 1990.
J.C. Latombe. Robot Motion Planning.
Kluwer Academic Publishers, Boston, MA,
1991.
V. Lumelsky and A. Stepanov. Path plan-
ning strategies for point mobile automaton
moving admist unknown obstacles of arbi-
trary shape. Algorithmica, 2:403-430, 1987.
E. Ftimon and J.F. Canny. Construction of
c-space roadmaps using local sensory data
- what should the sensors look for? In
Proc. IEEE Int. Conf. on Robotics and Au-
tomation, San Diego, CA, 1994. Recently
Submitted.
N. b o , N.S.V. Stolzfus and S.S. Iyengar. A
retraction method for learned navigation in
unknown terrains for a circular. robot. In
Proc. IEEE Int. Conf. on Robotacs and Au-
tomation, Sacramento, CA., 1991. 699-707.

3041

