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The Dispersion of the Gauss-Markov Source
Peida Tian, Victoria Kostina

Abstract

The Gauss-Markov source produces Ui = aUi−1 + Zi for i ≥ 1, where U0 = 0, |a| < 1 and Zi ∼ N (0, σ2) are i.i.d.
Gaussian random variables. We consider lossy compression of a block of n samples of the Gauss-Markov source under squared
error distortion. We obtain the Gaussian approximation for the Gauss-Markov source with excess-distortion criterion for any
distortion d > 0, and we show that the dispersion has a reverse waterfilling representation. This is the first finite blocklength result
for lossy compression of sources with memory. We prove that the finite blocklength rate-distortion function R(n, d, ε) approaches

the rate-distortion function R(d) as R(n, d, ε) = R(d) +
√

V (d)
n
Q−1(ε) + o

(
1√
n

)
, where V (d) is the dispersion, ε ∈ (0, 1) is

the excess-distortion probability, and Q−1 is the inverse Q-function. We give a reverse waterfilling integral representation for the
dispersion V (d), which parallels that of the rate-distortion functions for Gaussian processes. Remarkably, for all 0 < d ≤ σ2

(1+|a|)2 ,
R(n, d, ε) of the Gauss-Markov source coincides with that of Zi, the i.i.d. Gaussian noise driving the process, up to the second-order
term. Among novel technical tools developed in this paper is a sharp approximation of the eigenvalues of the covariance matrix
of n samples of the Gauss-Markov source, and a construction of a typical set using the maximum likelihood estimate of the
parameter a based on n observations.

Index Terms

Lossy source coding, Gauss-Markov source, dispersion, finite blocklength regime, rate-distortion theory, sources with memory,
achievability, converse, autoregressive processes, covering in probability spaces, parameter estimation.

I. INTRODUCTION

In rate-distortion theory [2] [3], a source, modeled as a discrete stochastic process {Ui}∞i=1, produces a random vector
UUU , (U1, ..., Un)> and the goal is to represent UUU by the minimum number of reproduction vectors VVV such that the distortion is
no greater than a given threshold d. For any such set of reproduction vectors, the associated rate is defined as the ratio between
the logarithm of the number of vectors and n. The rate quantifies the minimum number of bits per symbol needed to describe
the source with distortion d.

Numerous studies have been pursued since the seminal paper [3], where Shannon first proved the rate-distortion theorem
for the discrete stationary memoryless sources (DMS) and then for the stationary ergodic sources. Shannon’s rate-distortion
theorem shows that the minimum rate needed to describe a DMS within distortion d is given by the rate-distortion function
(RDF) R(d), which is computed as a solution to a (single-letter) minimal mutual information convex optimization problem.
Goblick [4] proved a coding theorem for general ergodic sources showing that the RDF is equal to the limit of n-letter minimal
mutual information. That limit has exponential computational complexity in general. Computable expressions for the RDF
of sources with memory are known only in the following special cases. Gray [5] showed a closed-form expression for the
RDF for a binary symmetric Markov source with bit error rate distortion in a low distortion regime. For higher distortions,
Jalali and Weissman [6] recently showed upper and lower bounds allowing one to compute the rate-distortion function in this
case with desired accuracy. Gray [7] showed a lower bound to the rate-distortion function of finite-state finite-alphabet Markov
sources with a balanced distortion measure, and the lower bound becomes tight when d ∈ (0, dc] for critical distortion dc. For
the mean squared error distortion measure (MSE), Davisson [8], and also Kolmogorov [9], derived the rate-distortion function
for stationary Gaussian processes by applying a unitary transformation to the process to decorrelate it and applying reverse
waterfilling to the decorrelated Gaussians [10]. Berger [11] and Gray [5], in separate contributions in the late 60’s and early
70’s, derived the MSE rate-distortion function for Gaussian autoregressive sources.

All of the above mentioned work [2–8, 10, 11] apply to the operational regime where the coding length n grows without
bound. Asymptotic coding theorems are important since they set a clear boundary between the achievable and the impossible.
However, practical compression schemes are of finite blocklength. A natural, but challenging, question to ask is: for a given
coding blocklength n, what is the minimum rate to compress the source with distortion at most d? Answering this question
exactly is hard. An easier question is that of second-order analysis, which studies the dominating term in the gap between RDF
and the finite blocklength minimum rate.

In rate-distortion theorems, the landscape of second-order analyses consists of two criteria: average distortion and excess
distortion. The average distortion constraint posits that the average distortion should be at most d, while excess distortion
constraint requires that the probability of distortion exceeding d be at most ε. For average distortion criterion, Zhang, Yang
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and Wei [12] proved that for i.i.d. finite alphabet sources, the leading term in the gap R(n, d)− R(d) is logn
2n

1, where R(n, d)
denotes the minimum rate compatible with average distortion d at coding length n. Later, Yang and Zhang [13] extended the
achievability result of [12] to abstract sources.

For lossy compression of i.i.d. sources under excess distortion criterion, the minimum achievable finite blocklength rate
admits the following expansion [14], [15], known as the Gaussian approximation:

R(n, d, ε) = R(d) +

√
V (d)

n
Q−1(ε) +O

(
log n

n

)
, (1)

where V (d) is referred to as the source dispersion and Q−1(·) denotes the inverse Q-function. Extensions of the result in (1)
to joint source-channel coding [16] [17] and multiterminal source coding [18] [19] have also been studied.

The dispersion of lossy compression of sources with memory is unknown. In the context of variable-length lossy compression
with guaranteed distortion, Kontoyiannis [20, Th. 6, Th. 8] established a connection between the number of bits needed to
represent n given samples produced by an arbitrary source, and the logarithm of the reciprocal of distortion d-ball probability.
Unfortunately computation of that probability has exponential in n complexity. In contrast, the dispersions of lossless compression
of sources with memory and of channel coding over channels with memory are known in some cases. The second-order
expansion of the minimum encoded length in the lossless compression of Markov sources is computed in [21, 22]. Polyanskiy
et al. found the channel dispersion of the Gilbert-Elliott channel in [23, Th. 4].

In this paper, we derive an expansion of type (1) on R(n, d, ε) for the Gauss-Markov source, one of the simplest models for
sources with memory. We show that the dispersion V (d) for the Gauss-Markov source is equal to the limiting variance of
the d-tilted information, and has a reverse waterfilling representation. We show that the dispersion V (d) for low distortions is
the same as that of the i.i.d. Gaussian noise driving the process, and becomes smaller for distortions above a critical value
dc, which extend the corresponding result of Gray [5, Eq. (24)] to the nonasymptotic regime. Section II presents the problem
formulation. The main results and proof techinques are presented in Section III. Our proofs of converse and achievability are
presented in Sections IV and V, respectively. The converse proof generalizes to the Gaussian autoregressive processes [5], but the
achievability proof does not. In proving the converse and achievability, we develop several new tools including a nonasymptotic
refinement of Gray’s result [5, Eq. (19)] on the eigenvalue distribution of the covariance matrix of the Gauss-Markov source.
This refinement relies on a sharp bound on the differences of eigenvalues of two sequences of tridiagonal matrices, proved
using the Cauchy interlacing theorem and the Gershgorin circle theorem from matrix theory. In proving achievability, we derive
a maximum likelihood estimator of the parameter a of the Gauss-Markov source and bound the estimation error using the
Hanson-Wright inequality [24, Th. 1.1]. Our key tool in the achievability proof is the construction of a typical set based on the
maximum likelihood estimator. Finally, we conclude in Section VI with brief discussions on some open problems. Fig. 4 in
Appendix A-A presents a roadmap containing the relations of all theorems, corollaries and lemmas in this paper.

Notations: Throughout, lowercase (uppercase) boldface letters denote vectors (random vectors) of length n. We omit the
dimension when there is no ambiguity, i.e. uuu ≡ un ≡ (u1, . . . , un)> and UUU ≡ Un ≡ (U1, . . . , Un)>. We write U for U∞.
For a random variable X , we use E[X] and Var [X] to denote its mean and variance, respectively. We write matrices using
sans serif font, e.g. matrix A, and we write ‖A‖F and ‖A‖ to denote the Frobenius and operator norms of A, respectively.
The trace of A is denoted by tr(A). For a vector vvv, we denote by ‖vvv‖p the `p-norm of vvv (p = 1 or p = 2 in this paper).
We also denote the sup norm of a function F by ‖F‖∞ , supx∈D |F (x)|, where D denotes the domain of F . We use the
standard O(·), o(·) and Θ(·) notations to characterize functions according to their asymptotic growth rates. Namely, let f(n)
and g(n) be two functions on n, then f(n) = O(g(n)) if and only if there exists positive real number M and n0 ∈ N such
that |f(n)| ≤M |g(n)| for any n ≥ n0; f(n) = o(g(n)) if and only if limn→∞ f(n)/g(n) = 0; f(n) = Θ(g(n)) if and only
there exist positive constants c1, c2 and n0 ∈ N such that c1g(n) ≤ f(n) ≤ c2g(n) for any n ≥ n0. For any positive integer m,
we denote by [m] the set of intergers {1, 2, ...,m}. We denote by 1 {·} the indicator function. We use n!! to denote the double
factorial of n. The imaginary unit is denoted by j. All exponents and logarithms are base e.

II. PROBLEM FORMULATION

A. Operational definitions

In single-shot lossy compression, we consider source and reproduction alphabets X and Y , and a given source distribution
PX over X . The distortion measure is a mapping d(·, ·) : X × Y 7→ [0,+∞). An encoder f is a mapping f : X 7→ [M ], and a
decoder is g : [M ] 7→ Y . The image set of a decoder g is referred to as a codebook consisting of M codewords {g(i)}Mi=1.
Given distortion threshold d > 0 and excess-distortion probability ε ∈ (0, 1), an (M,d, ε) code consists of an encoder-decoder
pair (f, g) such that P [d(X, g(f(X))) > d] ≤ ε. The nonasymptotic fundamental limit of lossy compression is the minimum
achievable code size for a given distortion threshold d and an excess-distortion probability ε ∈ (0, 1):

M?(d, ε) , min {M : ∃ an (M,d, ε) code} . (2)

1This statement is translated from [12], where the equivalent result was stated in terms of distortion-rate function.



3

In this paper, X = Y = Rn, and the distortion measure is the mean squared error (MSE) distortion: ∀uuu, vvv ∈ Rn,

d(uuu,vvv) ,
1

n
‖uuu− vvv‖22. (3)

We refer to the set B(xxx, d), defined below, as a distortion d-ball centered at xxx:

B(xxx, d) , {xxx′ ∈ Rn : d (xxx,xxx′) ≤ d} . (4)

We consider the Gauss-Markov source {Ui}∞i=1, which satisfies the following difference equation:

Ui = aUi−1 + Zi, ∀i ≥ 1, (5)

and U0 = 0. Here, a ∈ [0, 1) is the gain2, and Zi’s are independently and identically distributed (i.i.d.) N (0, σ2) that form the
innovation process. We adopt (5) as the simplest model capturing information sources with memory: gain a determines how
much memory (as well as the growth rate), and the innovation Zi represents new randomness being generated at each time step.
In statistics, the Gauss-Markov source (5) is also known as the first-order Gaussian autoregressive (AR) process.

For a fixed blocklength n ∈ N, a distortion threshold d > 0 and an excess-distortion probability ε ∈ (0, 1), an (n,M, d, ε)
code consists of an encoder fn : Rn 7→ [M ] and a decoder gn : [M ] 7→ Rn such that P [d (UUU, gn(fn(UUU))) ≥ d] ≤ ε, where
UUU = (U1, . . . , Un)> denotes the source vector. The rate associated with an (n,M, d, ε) code is R , logM

n . The nonasymptotic
operational fundamental limit, that is, the minimum achievable code size at blocklength n, distortion d > 0 and excess-distortion
probability ε ∈ (0, 1), is

M?(n, d, ε) , min {M : ∃ an (n,M, d, ε) code} , (6)

and the corresponding minimum source coding rate is

R(n, d, ε) ,
logM?(n, d, ε)

n
. (7)

The objective of this paper is to characterize R(n, d, ε) for the Gauss-Markov source.

B. Informational definitions

The problem of characterizing the operational fundamental limit M?(d, ε) in (2) is closely related to the rate-distortion
function (RDF) RX(d) of the source X , which is defined as the solution to the following convex optimization problem [3]:

RX(d) , inf
PY |X : E[d(X,Y )]≤d

I(X;Y ), (8)

where the infimum is over all conditional distributions PY |X : X 7→ Y such that the expected distortion is less than or equal d,
and I(X;Y ) denotes the mutual information between X and Y . In this paper, we assume that

1) RX(d) is differetiable with respect to d;
2) there exists a minimizer in (8).

The pair (X,Y ?) is referred to as the RDF-achieving pair if PY ?|X is the minimizer in (8). For any x ∈ X , the d-tilted
information X(x, d) in x, introduced in [14, Def. 6], is

X(x, d) , −λ?d− logE exp (−λ?d(x, Y ?)) , (9)

where λ? is the negative slope of the curve RX(d) at distortion d:

λ? , −R′X(d). (10)

The d-tilted information X(X, d) has the property that

RX(d) = E[X(X, d)]. (11)

When X is a finite set, (11) follows immediately from the Karush–Kuhn–Tucker (KKT) conditions for the optimization
problem (8), see [25, Th. 9.4.1] and [11, Eq. (2.5.16)]. Csiszár showed the validity of (11) when X is an abstract probability
space [26, Corollary, Lem. 1.4, Eqs. (1.15), (1.25), (1.27)-(1.32)], see Appendix A-C for a concise justification. For more
properties of the d-tilted information, see [14, Eq. (17)-(19)].

Next, we introduce the conditional relative entropy minimization (CREM) problem, which plays a key role in our development.
Let PX and PY be probability distributions defined on alphabets X and Y , respectively. For any d > 0, the CREM problem is
defined as

R(X,Y, d) , inf
PF |X : E[d(X,F )]≤d

D(PF |X ||PY |PX), (12)

2Note that if a ∈ (−1, 0] in (5), then
{
(−1)iUi

}∞
i=0

is a Gauss-Markov source with nonnegative gain −a and the same innovation variance. Thus restricting
to 0 ≤ a < 1 is without loss of generality.
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where F is a random variable taking values in Y , and D(PF |X ||PY |PX) is the conditional relative entropy:

D(PF |X ||PY |PX) ,
∫
D(PF |X=x||PY )dPX(x). (13)

A well-known fact in the study of lossy compression is that the CREM problem (12) is related to the RDF (8) as

RX(d) = inf
PY

R(X,Y, d), (14)

where the infimization is over all probability distributions PY of the random variables Y over Y that are independent of X;
and the equality in (14) is achieved when PY is the Y ?-marginal of the RDF-achieving pair (X,Y ?), see [10, Eq. (10.140)]
and [27, Th. 4] for the finite alphabets X ; [13, Eq. (3.3)] and [20, Eq. (13)] for abstract alphabets X . The property (14) is
a foundation of the Blahut–Arimoto algorithm, which computes iterative approximations to RX(d) by alternating between
inner and outer infimizations in (14). The CREM problem is also important in nonasymptotic analyses of lossy compressors,
see [13, Eq. (3.3)], [20, Eq. (13)] and [14, Eq. (27)]. Operationally, it relates to the mismatched-codebooks problem, that is,
lossy compression of source PX using random codewords drawn from PY [28, Th. 12]. Similar to (9), ∀x ∈ X , δ > 0, d > 0,
the generalized tilted information ΛY (x, δ, d), defined in [14, Eq. (28)], is

ΛY (x, δ, d) , −δd− logE exp (−δd(x, Y )) . (15)

The optimizer PF?|X of (12) satisfies the following condition: ∀x ∈ X , y ∈ Y ,

log
dPF?|X(y|x)

dPY (y)
= ΛY (x, δ?, d)− δ?d(x, y) + δ?d, (16)

where

δ? , −R′(X,Y, d). (17)

When X and Y are discrete, (16) can be verified by the KKT conditions for the optimization problem (12). For abstract
alphabets X , see [28, Th. 2] and [13, Property 1] for an exposition. By comparing (9) and (15) and using the relation (14), we
see that

X(x, d) = ΛY ?(x, λ?, d), (18)

where λ? is in (10).
For the Gauss-Markov source defined in (5), its n-th order rate-distortion function RUUU (n, d) is defined by replacing X by UUU

in (8) and then normalizing by n:

RUUU (n, d) ,
1

n
inf
PVVV |UUU :

E[d(UUU,VVV )]≤d

I(UUU ;VVV ). (19)

The rate-distortion function RU (d) for the Gauss-Makov source (5) is

RU (d) , lim sup
n→∞

RUUU (n, d). (20)

It immediately follows from (11) that

RU (d) = lim sup
n→∞

1

n
E [UUU (UUU, d)] , (21)

where UUU (UUU, d) is the d-tilted information random variable defined in (9), that is,

UUU (uuu, d) = −λ?nd− logE [exp (−λ?nd (uuu,VVV ?))] , (22)

where (UUU,VVV ?) forms a RDF-achieving pair in (19) and

λ? = −R′UUU (n, d). (23)

The variance of the d-tilted information is important in capturing the second-order performance of the best source code. Define

VUUU (n, d) , Var [UUU (UUU, d)] , (24)

VU (d) , lim sup
n→∞

1

n
VUUU (n, d). (25)

The quantity VU (d) is referred to as the informational dispersion, in contrast to the operational dispersion VU (d) defined in
the next subsection. Reverse waterfilling solutions for rate-distortion functions of the Gauss-Markov source were well-known,
see [5, Eq. (15)] for RUUU (n, d), [5, Eq. (22)] for RU (d) and our discussions in Section II-D below. In this paper, we derive
similar parametric expressions for both VUUU (n, d) and VU (d).
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C. Operational fundamental limits

In terms of coding theorems, the equality between R(d) (the minimum achievable source coding rate under average distortion
criterion when the blocklength n goes to infinity) and RU (d) (the informational rate-distortion function defined in (20)) has
been established, e.g. [11, Th. 6.3.4] and [5, Th. 2]. For the Gauss-Markov source, by the Markov inequality, the achievability
result under average distortion criterion, e.g. [5, Th. 2], can be converted into an achievability result under the excess distortion
criterion. A matching converse follows from Kieffer’s strong converse [29, Th. 1] for the stationary ergodic sources. Therefore,
for any d > 0 and ε ∈ (0, 1), we have

lim
n→∞

R(n, d, ε) = RU (d), (26)

where R(n, d, ε) is defined in (7) and RU (d) in (20).
The main result of this paper is the following Gaussian approximation for the minimum achievable rate R(n, d, ε) in lossy

compression of the Gauss-Markov source (5):

R(n, d, ε) = RU (d) +

√
VU (d)

n
Q−1(ε) + o

(
1√
n

)
, (27)

where Q−1(·) denotes the inverse Q-function, and the term o(·) will be refined in Theorems 7 and 11 in Sections IV and V
below. Our main result (27) is a nonasymptotic refinement of (26), implying that the convergence rate in the limit (26) is of
order 1√

n
with the optimal constant factor given in (27). Formally, the rate-dispersion function VU (d), introduced in [14, Def.

7] and simply referred to as (operational) dispersion, is

VU (d) , lim
ε→0

lim
n→∞

n

(
R(n, d, ε)− RU (d)

Q−1(ε)

)2

. (28)

Equivalently, our main result (27) establishes the equality between the operational and informational dispersions for the
Gauss-Markov source:

VU (d) = VU (d). (29)

D. Related work

The n-th order RDF RUUU (n, d) defined in (19) for the Gauss-Markov source is given by the reverse waterfilling [5, Eq. (17)]
and [11, Eq. (6.3.34)-(6.3.36)]:

RUUU (n, d) =
1

n

n∑
i=1

max

(
0,

1

2
log

σ2
i

θn

)
, (30)

d =
1

n

n∑
i=1

min(θn, σ
2
i ), (31)

where σ2
i ’s are the eigenvalues of the covariance matrix (see the discussions in Section III-A below):

ΣUUU , E[UUUUUU>], (32)

and θn > 0 is the water level matched to d at blocklength n. The rate-distortion function RU (d) for the Gauss-Markov source (5)
is obtained by passing to the limit of infinite n in (30) and (31) via invoking the limiting theorems on the eigenvalues of the
covariance matrix ΣUUU [5, Eq. (22)] and [11, Th. 6.3.2], given by

RU (d) =
1

2π

∫ π

−π
max

[
0,

1

2
log

S(w)

θ

]
dw, (33)

d =
1

2π

∫ π

−π
min [θ, S(w)] dw, (34)

where the power spectrum of the Gauss-Markov source (5) is given by

S(w) =
σ2

g(w)
, (35)

and the function g is defined as

g(w) , 1 + a2 − 2a cos(w), ∀w ∈ [−π, π]. (36)

We refer to (30)-(31) as the n-th order reverse waterfilling, and to (33)-(34) as the limiting reverse waterfilling. Fig. 1 depicts
the limiting reverse waterfilling (34).
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Results similar to (30)-(34) hold for the stationary Gaussian processes [9, Eq. (17)-(18)], as well as for the higher-order
Gaussian AR processes (not necessarily stationary) [5, Eq. (22)]. We discuss the subtle differences between the rate-distortion
functions of the (asymptotically) stationary and nonstationary Gaussian AR processes in Section VI below. This paper considers
the (asymptotically) stationary Gauss-Markov sources, i.e., (5) with |a| < 1.

The converse results in this paper extend partly to the higher-order Gaussian AR processes, studied by Gray [5] and Berger [11,
Sec. 6.3.2]. The Gaussian AR process is [5, Eq. (1)]

Ui =

i∑
`=1

a`Ui−` + Zi, i ≥ 1, (37)

and Ui = 0 for i ≤ 0, where Zi’s are i.i.d. N (0, σ2), and the real constants a`’s satisfy [5, Eq. (10)]
∞∑
`=0

|a`| <∞. (38)

The Gauss-Markov source in (5) is a special case of (37) with a1 = a and a` = 0 for ` ≥ 2. The following relation between
the rate-distortion functions of the Gaussian AR process {Ui}+∞i=1 in (37) and the i.i.d. Gaussian process {Zi}+∞i=1 is due to
Gray [5, Eq. (24)]: {

RU (d) = RZ(d), 0 < d ≤ dc,
RU (d) > RZ(d), dc < d ≤ dmax,

(39)

where dc is referred to as the critical distortion, defined as dc , θmin, where

θmin , min
w∈[−π,π]

S(w). (40)

Accordingly, denote the maximum value of S(w) over the inverval [−π, π] as

θmax , max
w∈[−π,π]

S(w). (41)

In (39), dmax is the maximum distortion achievable in (34) (that is, when θ ≥ θmax):

dmax ,
1

2π

∫ π

−π
S(w) dw, (42)

and RZ(d) is the RDF for i.i.d. Gaussian sources derived by Shannon [3, Equation below Fig. 9]:

RZ(d) = max

(
0,

1

2
log

σ2

d

)
. (43)

The power spectrum S(w) of the Gaussian AR process is [5, Eq. (21)]

S(w) = σ2

∣∣∣∣∣
+∞∑
`=0

a`e
−j`w

∣∣∣∣∣
−2

, w ∈ [−π, π]. (44)

Equality in (39) is a deep result stating that in a range of low distortions, the asymptotic rate-distortion tradeoff of a Gaussian
AR process and that of its driving innovation process are the same. See Fig. 2 for an illustration of (39) in the special case of a
Gauss-Markov source with a = 0.5.

The critical distortion dc and the maximum distortion dmax can be understood pictorially as follows. In Fig. 1 and equivalently
in (34), as the water level θ rises from 0 to θmin, the minimum on the right side of (34) equals θ, meaning that d = θ for
0 < θ ≤ θmin (equivalently, 0 ≤ d ≤ dc). As the water level θ rises further, lower parts of the spectrum S(w) start to play a
role in (34). When the water level θ rises above the peak in Fig. 1: θ ≥ θmax, the distortion d in (34) remains as dmax. In the
case of the Gauss-Markov source, from (35), it is easy to see that dc and dmax are given by

dc =
σ2

(1 + |a|)2
, (45)

dmax =
σ2

1− a2
. (46)

Note that dmax in (46) equals the stationary variance of the source (Appendix B-B), i.e.,

dmax = lim
n→∞

Var [Un] . (47)

For the nonstationary Gauss-Markov sources (|a| ≥ 1), dmax = +∞.
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Fig. 1: Reverse waterfilling (34) over the power spectrum: the water level θ is chosen so that the shaded area equals 2πd.
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Fig. 2: The rate-distortion functions for the Gauss-Markov source {Ui} with a = 0.5 and σ2 = 1, and for the innovation
process {Zi}∞i=1, Zi ∼ N (0, 1) driving that source.

III. MAIN RESULTS

A. Preliminary: decorrelation

We first make a simple but important observation on the equivalence between lossy compression of the Gauss-Markov sources
and parallel independent Gaussian sources. For any n ∈ N, the random vector UUU = (U1, . . . , Un)> generated by the model (5)
follows the multivariate Gaussian distribution N (000,ΣUUU ), where ΣUUU = σ2(A>A)−1 is its covariance matrix and A is an n× n
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lower triangular matrix with det A = 1:

A ,


1 0 0 . . . 0
−a 1 0 . . . 0
0 −a 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 −a 1

 . (48)

Since (5) can be rewritten as ZZZ = AUUU , and ZZZ ∼ N (0, σ2I), the covariance matrix of UUU is given by

ΣUUU = E[A−1ZZZZZZ>(A−1)>] = σ2(A>A)−1. (49)

We refer to the random vector XXX as the decorrelation of UUU :

XXX , S>UUU, (50)

where S is the unitary matrix in the eigendecomposition of the positive definite matrix (A>A)−1:

(A>A)−1 = SΛS>, (51)

Λ = diag

(
1

µ1
, ...,

1

µn

)
, (52)

where 0 < µ1 ≤ . . . ≤ µn are the eigenvalues of A>A. From (49) and (51), it is clear that XXX ∼ N (000, σ2Λ), i.e., X1, . . . , Xn

are independent zero-mean Gaussian random variables with variances σ2
i ’s being the eigenvalues of ΣUUU :

σ2
i ,

σ2

µi
, i ∈ [n]. (53)

Since they are related via the unitary transformation S which preserves the geometry of the underlying Euclidean space, UUU and
XXX are equivalent in terms of their fundamental limits. Indeed, any (n,M, d, ε) code for UUU (recall the definition in Section II-B
above) can be transformed, via S, into an (n,M, d, ε) code for XXX , and vice versa; therefore, the finite blocklength minimum
achievable rates R(n, d, ε) for UUU and XXX are the same. Since I(SXXX; SYYY ) = I(XXX;YYY ) and E‖SXXX − SYYY ‖22 = E‖XXX − YYY ‖22, their
n-th order and limiting rate-distortion functions are the same: ∀n ∈ N, d ∈ (0, dmax), we have RXXX(n, d) = RUUU (n, d), and
hence RX(d) = RU (d). By the same transformation, it is easy to verify that this equivalence also extends to the d-tilted
information: ∀uuu ∈ Rn, let

xxx , S>uuu, (54)

then

UUU (uuu, d) = XXX(xxx, d). (55)

Due to the above equivalence, we will refer to both UUU and its decorrelation XXX in our analysis. Decorrelation is a well-known
tool, which was used to find the rate-distortion functions for the general Gaussian AR processes [5].

B. Gaussian approximations for the Gauss-Markov sources

We now formally state the main contributions of this paper.

Theorem 1. For the Gauss-Markov source in (5) with a ∈ [0, 1), fix any excess-distortion probability ε ∈ (0, 1) and distortion
threshold d ∈ (0, dmax), where dmax is defined in (46). The minimum achievable source coding rate for the Gauss-Markov
source in (5) satisfies

R(n, d, ε) = RU (d) +

√
VU (d)

n
Q−1(ε) + o

(
1√
n

)
, (56)

where RU (d) is the rate-distortion function of the Gauss-Markov source, given in (33); and the operational dispersion VU (d),
defined in (28), is given by

VU (d) =
1

4π

∫ π

−π
min

[
1,

(
S(w)

θ

)2
]
dw, (57)

where θ > 0 is the water level matched to the distortion d via (34), and the power spectrum S(w) is in (35).

The proof of Theorem 1 is in given in Sections IV (converse) and V (achievability).
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Pleasingly, the new reverse waterfilling solution for the dispersion in (57) parallels the classical reverse waterfilling
representation of the rate-distortion function in (33). Furthermore, just like their rate-distortion functions (recall (39)), the
dispersions of the Gauss-Markov source U in (5) and its innovation process Z are comparable:

Corollary 1. Let VU (d) and VZ(d) be the dispersions of the Gauss-Markov source (5) and the memoryless Gaussian source
{Zi}∞i=1, respectively, then {

VU (d) = VZ(d), 0 < d ≤ dc,
VU (d) < VZ(d), dc < d < σ2.

(58)

Proof. From [15, Th. 2] and [14, Th. 40], we know that the dispersion of the memoryless Gaussian source is

VZ(d) =
1

2
, ∀d ∈ (0, σ2), (59)

which is also shown in Fig. 3. By the definition of dc in (45) and the discussion around (45) and (46), we see that (57) satisfies

min

[
1,

(
σ2

θg(w)

)2
] {

= 1, if d ∈ (0, dc],

< 1, if d ∈ (dc, dmax),
(60)

from which Corollary 1 follows. �

Corollary 1 parallels Gray’s result (39) [5, Eq. (24)] for the rate-distortion functions of U and Z, and they together imply
that for d ∈ (0, dc], the fundamental limits of lossy compression of the Gauss-Markov source and the i.i.d. Gaussian source
{Zi}∞i=1 are the same, up to the second-order term. For d ∈ (dc, σ

2), the Gauss-Markov source is harder to compress in the
limit of n going to infinity since RU (d) > RZ(d), but the Gauss-Markov source approaches its asymptotic fundamental limit
faster since VU (d) < VZ(d). See the discussions following Theorem 2 below for an intuitive explanation.

The dispersions for a = 0 and a = 0.5 are plotted in Fig. 3, where the dotted line (for a = 0, σ2 = 1) recovers the dispersion
result (59) in [14, 15] for the i.i.d. Gaussian sources {Zi}∞i=1, as expected. The solid line ( for a = 0.5, σ2 = 1) coincides with
the dotted line in the region d ∈ (0, dc], which means that the Gauss-Markov source has the same dispersion as its innovation
process in the region of low d’s. For d ∈ (dc, σ

2), the dispersion of the Gauss-Markov source is smaller than that of its
innovation process and decreases with d, as indicated by Corollary 1.

Using the residue theorem from complex analysis, we also derive the coordinates of the two corner points P1 and P2 on the
solid line (Appendix B-A):

P1 = (dc, 1/2), P2 =

(
dmax,

(1 + a2)(1− a)

2(1 + a)3

)
. (61)

The vertical segment between (dmax, 0) and P2 corresponds to the case when the water level θ is above the spectrum peak θmax

in Fig. 1, and the dispersion VU (d) in (57) becomes

VU (d) =
1

4πθ2

∫ π

−π
S(w)2 dw, (62)

which continues decreasing as θ increases, even as the distortion d remains as dmax, as seen from (34) and (57).
Theorem 2 below gives formulas for the d-tilted information defined in (22) and informational dispersion defined in (25).

Theorem 2. For the Gauss-Markov source U in (5), for any d ∈ (0, dmax) and n ≥ 1, the d-tilted information is given by

UUU (uuu, d) = XXX(xxx, d) =

n∑
i=1

min(θn, σ
2
i )

2θn

(
x2
i

σ2
i

− 1

)
+

1

2
log

max(θn, σ
2
i )

θn
, (63)

and the informational dispersion satisfies

VU (d) =
1

4π

∫ π

−π
min

[
1,

(
S(w)

θ

)2
]
dw, (64)

where θn > 0 is the water level matched to d via the n-th order reverse waterfilling (31); θ > 0 is the water level matched to
the distortion d via the limiting reverse waterfilling (34); and the power spectrum S(w) is defined in (35).

Proof. Appendix C-D. �

Theorem 2 computes the informational dispersion VU (d) defined in (25). The formula (56) in Theorem 1 is an equivalent
reformulation of the definition of the operational dispersion VU (d) in (28), while (57) together with Theorem 2 establish the
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Fig. 3: Dispersion versus distortion: The Gauss-Markov source with a = 0 and σ2 = 1 (dotted line) degenerates to the i.i.d.
Gaussian source, i.e., the innovation process {Zi}∞i=1. The dispersion of the Gauss-Markov source with a = 0.5 and σ2 = 1 is
given by the solid line. Two corner points on the solid line are labeled as P1 (corresponding to dc) and P2 (corresponding to
dmax).

equality VU (d) = VU (d). Theorem 1 and Theorem 2 establish that for the Gauss-Markov source, the operational RDF and
dispersion are given by (21) and (25), respectively, providing a natural extension to the fact that in lossy compression of i.i.d.
sources {Xi}, the mean E[X1

(X1, d)] and the variance Var [X1
(X1, d)] of the single-letter d-tilted information X1

(X1, d)
are equal to the RDF and the dispersion, respectively [14, Th. 12].

Theorem 2 also provides intuition on our result in Corollary 1 for d > dc. Since (XXX,YYY ?) forms a RDF-achieving pair in
RXXX(n, d) (recall (19)), it is well-known [10, Th. 10.3.3] that YYY ? has independent coordinates and ∀ i ∈ [n],

Y ?i ∼ N (0,max
(
σ2
i − θn, 0

)
), (65)

where θn > 0 is the water level matched to the distortion d in the n-th order reverse waterfilling over {σ2
i }ni=1 in (31).

Since d > dc, there are some Xi in (63) which are “inactive”, that is, σ2
i < θn, which makes the variance of (63) smaller.

Geometrically, since XXX concentrates inside an ellipsoid, we are covering such an ellipsoid by balls of radius
√
nd. The centers

of these distortion d-balls lie on another lower dimensional ellipsoid. That lower dimensional ellipsoid is the one on which the
random vector YYY ? concentrates. For d > dc, although centered at a lower dimensional ellipsoid (since Y ?i ≡ 0 for inactive
Xi’s), these d-balls are large enough to also cover those “inactive” dimensions.

C. Technical tools

1) Eigenvalues of the covariance matrices: Although decorrelation simplifies the problem by transforming a source with
memory into a memoryless one, the real challenge is to study the evolution of the variances σ2

i ’s in (53), as n increases. For
finite n, there is no closed-form expression for the eigenvalues of ΣUUU for a ∈ (0, 1).3 Since the inverse of ΣUUU is 1

σ2 A>A,
which is almost a Toeplitz matrix except the (n, n)-th entry, the limiting distribution of the eigenvalues of ΣUUU can be deduced
from the limiting distribution of eigenvalues of Toeplitz matrices [5, Eq. (19)].

Theorem 3 (Reformulation of Gray [5, Eq. (19)]). Fix any a ∈ [0, 1). For any continuous function F (t) over the interval

t ∈ [θmin, θmax] , (66)

the eigenvalues σ2
i ’s of ΣUUU satisfy

lim
n→∞

1

n

n∑
i=1

F (σ2
i ) =

1

2π

∫ π

−π
F (S(w)) dw, (67)

3A closed-form expression for the eigenvalues of ΣUUU is known only for a = 1 [30, Eq. (2)].



11

where S(w) is defined in (35).

There are more general results in the form of Theorem 3, known as Szegö’s theorem, see [31, Chap. 5] for Toeplitz forms
and [32, Cor. 2.3] for asymptotically Toeplitz matrices. In the context of rate-distortion theory, applying Theorem 3 to (30)-(31)
leads to (33)-(34).

Unfortunately, Theorem 3 is insufficient to obtain the fine asymptotics in our Theorem 1. To derive our finite blocklength
results, we need to understand the rate of convergence in (67). Towards that end, we develop a nonasymptotic refinement of
Theorem 3, presented next.

Theorem 4 (Nonasymptotic eigenvalue distribution of ΣUUU ). Fix any a ∈ [0, 1). For any bounded, L-Lipschitz and non-decreasing
function F (t) over the interval in (66), and for any n ≥ 1, the eigenvalues σ2

i ’s of ΣUUU satisfy∣∣∣∣∣ 1n
n∑
i=1

F (σ2
i )− 1

2π

∫ π

−π
F (S(w)) dw

∣∣∣∣∣ ≤ CL
n
, (68)

where CL > 0 is a constant that depends on the Lipschitz constant L and the sup norm ‖F‖∞ of F , and S(w) is in (35).

Proof. Theorem 4 follows from Lemma 1 below and elementary analyses on Riemann sums. See Appendix C-B for details. �

In the course of the proof of Theorem 4, we obtain the following nonasymptotic bounds on each eigenvalue µi of A>A,
which is of independent interest.

Lemma 1 (Sharp approximation of the eigenvalues of A>A). Fix any a ∈ [0, 1). For any n ∈ N, let 0 < µ1 ≤ µ2 . . . ≤ µn be
the eigenvalues of A>A, and let

ξi , g

(
iπ

n+ 1

)
, (69)

where g is in (36). Then, we have

0 ≤ ξi − µi ≤
2aπ

n
, ∀ i ∈ [n]. (70)

Proof. The idea in proving Lemma 1 is that A>A is almost a tridiagonal Toeplitz matrix, whose eigenvalues are given by (69).
The bound (70) is obtained via the Cauchy interlacing theorem and the Gershgorin circle theorem. See Appendix C-A for
details. �

Remark 1. In view of (69) and (70) in Lemma 1, we have ∀ n ∈ N and ∀ i ∈ [n],

(1− a)2 ≤ µi ≤ (1 + a)2. (71)

The key difference between the asymptotically stationary case (a ∈ [0, 1)) and the nonstationary case (a ≥ 1) is that, in the
later case, µ1 decreases to zero as n increases to infinity, see [33, Lemma] and [30, Eq. (2)]. In the asymptotically stationary
case, µ1 is bounded away from zero according to (71).

2) An estimation problem: Our achievability proof relies on the analysis of the following parameter estimation problem.
Given a source sequence uuu = (u1, . . . , un)>, drawn from the model (5) with unknown a, the maximum likelihood estimate
(MLE) of the parameter a is (Appendix F-A)

â(uuu) =

∑n−1
i=1 uiui+1∑n−1
i=1 u

2
i

. (72)

We show that the estimation error of the MLE decays exponentially in n for any a ∈ [0, 1).

Theorem 5. Fix a ∈ [0, 1). Let η ∈ (0, 1). Then, there exists a universal constant c > 0 and two constants c1, c2 > 0 (c1 and
c2 only depend on a, see (378) in Appendix F-C below) such that for all n large enough, the estimation error of the MLE
satisfies

P [|â(UUU)− a| > η] ≤ 2 exp
[
−cmin

(
c1η

2n, c2ηn
)]
. (73)

Proof. Appendix F-B. �

Finally, we present a strengthened version of Theorem 5, which is used in our achievability proof. Let α > 0 be a constant.
Define ηn as

ηn ,

√
α log log n

n
. (74)



12

Theorem 6. Fix a ∈ [0, 1). Given a constant α > 0, let ηn be in (74). Then, for all n large enough, the estimation error of
the MLE satisfies

P [|â(UUU)− a| > ηn] ≤ 2

(log n)
κα , (75)

where κ is a constant given by

κ ,
c

8(1− a2)
, (76)

and c > 0 is the constant in Theorem 5.

Proof. Appendix F-C. �

See Section V-B for the construction of a typical set based on â(uuu).

IV. CONVERSE

Theorem 7 (Converse). For the Gauss-Markov source (5) with the constant a ∈ [0, 1), for any excess-distortion probability
ε ∈ (0, 1), and for any distortion threshold d ∈ (0, dmax), the minimum achievable source coding rate satisfies

R(n, d, ε) ≥ RU (d) +

√
VU (d)

n
Q−1(ε)− log n

2n
+O

(
1

n

)
, (77)

where RU (d) is the rate-distortion function given in (33), and VU (d) is the informational dispersion, defined in (25) and
computed in (64).

We present two converse proofs in the following. The first one is a volumetric argument; while the second one relies on a
general converse derived in [14, Th. 7] and a new concentration result on the d-tilted information of the Gauss-Markov source.

A. A geometric proof

Geometrically, any (n,M, d, ε) code induces a covering of (Rn, PUUU ): the union of d-balls centered at the codewords have
probability mass at least 1− ε. Converting the underlying probability to PZZZ and using the symmetry of N (000, σ2I), we obtain
the following lower bound on the number of codewords M . The argument relies on det A = 1, where A is in (48).

Theorem 8. Given ε ∈ (0, 1) and d ∈ (0, dmax), the size of any (n,M, d, ε) code for the Gauss-Markov source (5) must satisfy

M ≥
(
r(n, ε)

d

)n/2
, (78)

where r(n, ε) is such that

P(G < n · r(n, ε)/σ2) = 1− ε, (79)

and G is a random variable distributed according to the χ2-distribution with n degrees of freedom.

Proof of Theorem 8. Appendix D-A. �

Remark 2. Theorem 8, which applies to the Gauss-Markov source, parallels [14, Th. 36], which applies to the i.i.d. Gaussian
source. Both proofs rely on the volumetric method, though the proof of Theorem 8 requires additional arguments related to
linear transformations of the underlying space. Theorem 8 yields the optimal second-order coding rate for the Gauss-Markov
source only in the low distortion regime (as we will see in the proof of Theorem 7 below), while an analysis of [14, Th. 36]
gives the optimal second-order coding rate for the i.i.d. Gaussian source of any distortion [14, Th. 40].

Equipped with Theorem 8, we are ready to prove the converse in Theorem 7 for d ∈ (0, dc].

Proof of Theorem 7 below the critical distortion. Applying the Berry-Esseen Theorem in Appendix A-B to (79) yields

r(n, ε) ≥ σ2

[
1 +

√
2

n
Q−1

(
ε+

CBE√
n

)]
. (80)

Plugging (80) into (78) and taking logarithms, we obtain

R(n, d, ε) ≥ 1

2
log

σ2

d
+

√
1

2n
Q−1(ε) +O

(
1

n

)
, (81)

where we use the Taylor expansions of log(1 + x) and the inverse Q-function. The converse bound (81) holds for any ε ∈ (0, 1)
and d ∈ (0, dmax). By (39) and (58), we see that (81) is the same as (77) for d ∈ (0, dc], up to the second-order term. In
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addition, (81) is slightly stronger than (77) in the third-order term. For d ∈ (dc, dmax), (81) is not tight, even in the first order
since RU (d) > 1

2 log σ2

d for d ∈ (dc, dmax), by (39) and (43). �

Remark 3. The converse (81) holds for the general Gaussian AR processes defined in (37). The proof stays the same, except
that the matrix A in (48) is replaced by

A ,


1 0 0 . . . 0
−a1 1 0 . . . 0
−a2 −a1 1 . . . 0

...
. . . . . . . . .

...
−an−1 . . . −a2 −a1 1

 . (82)

B. Converse proof

The second proof is based on a general converse by Kostina and Verdú [14], restated here for convenience, and a concentration
result which bounds the difference between XXX(XXX, d) and its approximation XXX(XXX, dn), for dn defined in (86) below.

Theorem 9 ([14, Th. 7]). Fix d ∈ (0, dmax). Any (n,M, d, ε) code must satisfy

ε ≥ sup
γ≥0

P [XXX(XXX, d) ≥ logM + γ]− exp(−γ). (83)

The converse bound in Theorem 9 above provides a lower bound on ε for any (n,M, d, ε) code using the d-tilted information,
and is used to derive a converse result on the dispersion of the stationary memoryless sources in [14, Eq. (103)-(106)]. The key
step in the proof of [14, Eq. (103)-(106)] is to write the d-tilted information as a sum of n i.i.d. random variables, to which the
Berry-Esseen Theorem is applied.

For the Gauss-Markov source XXX , using (22), (31) and (65), we can write the d-tilted information XXX(XXX, d) as a sum of n
independent (but not identical) random variables:

XXX(XXX, d) =

n∑
i=1

Xi(Xi,min(θn, σ
2
i )), (84)

where θn is given in (31). Indeed, (84) is further simplified to (63) in the proof of Theorem 2. However, it is hard to conduct
nonasymptotic analysis using (84) since understanding the evolution of both θn and σ2

i ’s as n grows in (84) is challenging.
Therefore, we approximate XXX(XXX, d) using

XXX(XXX, dn) =

n∑
i=1

Xi(Xi,min(θ, σ2
i )), (85)

where

dn ,
1

n

n∑
i=1

min(θ, σ2
i ), (86)

and θ is the water level matched to d via the limiting reverse waterfilling (34). Then, θ does not dependent on n in (85). Since
our Theorem 4 and Lemma 1 in Section III-C1 capture the evolution of σ2

i ’s as n grows, (85) is easier to analyze than (84)
in the nonasymptotic regime. Throughout the paper, the relations among a given distortion d, the water levels θ, θn, and the
distortion dn defined in (86), are θn

(31)←→ d
(34)←→ θ

(31)←→ dn. Note that there is no direct reverse waterfilling relation between dn
in (86) and θn in (31). As shown by our concentration result Theorem 10 in the following, the approximation XXX(XXX, dn) stays
within a constant from XXX(XXX, d) with probability at least 1−O

(
1
n

)
.

Theorem 10 (Approximation of the d-tilted information). For any d ∈ (0, dmax), let θ > 0 be the water level matched to d via
the limiting reverse waterfilling (34). Suppose we have a sequence of distortion levels dn ∈ (0, dmax) with the property that
there exists a constant h1 > 0 such that for all n large enough,

|d− dn| ≤
h1

n
. (87)

Then, there exists a constant c̃ ∈ (0, 1) such that for any u > 2h1

c̃θ and all n large enough, we have

P [|XXX (XXX, d)− XXX (XXX, dn)| ≤ u] ≥ 1− 1

n
(
c̃θu
2h1
− 1
)2 . (88)
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Proof of Theorem 10. Appendix D-B. �

In the rest of this section, we present the detailed proof of Theorem 7 for any d ∈ (0, dmax). The d-tilted information XXX (XXX, d)
is first approximated by XXX (XXX, dn) defined in (85), which is a sum of independent random variables whose expectations and
variances approximate the rate-distortion function RU (d) and the informational dispersion VU (d), respectively. Combining
these approximation bounds and Theorem 9, we obtain the converse in (77). The details follow.

Proof of Theorem 7. Fix d ∈ (0, dmax). Let θ > 0 be the water level matched to d via the limiting reverse waterfilling (34).
Notice that dn, defined in (86), is the distortion matched to the water level θ via the n-th order reverse waterfilling (31) over
σ2
i ’s. Comparing (31) and (86), and applying Theorem 4 to the function t 7→ min (θ, t), we deduce that there exists a constant
Cd > 0 such that for any n ≥ 1,

|d− dn| ≤
Cd
n
. (89)

Let ȲYY ? be the n-dimensional Gaussian random vector such that (XXX,ȲYY
?
) forms a RDF-achieving pair in RXXX(n, dn) defined

in (19). Note that ȲYY ? defined here is indeed different from YYY ? in (65), where (XXX,YYY ?) forms a RDF-achieving pair in RXXX(n, d).
It is well-known [10, Th. 10.3.3] that ȲYY ? has independent coordinates and similar to (65),

Ȳ ?i ∼ N (0,max
(
σ2
i − θ, 0

)
). (90)

By the independence of Ȳ ?i ’s, (18) and (22), we have

XXX(XXX, dn) =

n∑
i=1

ΛȲ ?i (Xi, λ
?,min

(
θ, σ2

i

)
), (91)

where

λ? = −R′XXX(n, dn) = −R′(XXX,ȲYY ?, dn). (92)

Denote by Ei and Vi the means and the variances of ΛȲ ?i (Xi, λ
?,min

(
θ, σ2

i

)
) (the summands in (91)). By the same computations

leading to (232) and (233) in Appendix C-D, we have

Ei = max

(
0,

1

2
log

σ2
i

θ

)
, (93)

Vi = min

(
1

2
,
σ4
i

2θ2

)
. (94)

We now derive the approximation of RU (d) and VU (d) using the means Ei’s and the variances Vi’s, respectively. Applying
Theorem 4 to the function t 7→ max

(
0, 1

2 log t
θ

)
in (21) and (93), and to the function t 7→ min

(
1
2 ,

t2

2θ2

)
in (64) and (94), we

conclude that there exist two constants cr, cv > 0 (depending on d only) such that∣∣∣∣∣nRU (d)−
n∑
i=1

Ei

∣∣∣∣∣ ≤ cr, (95)∣∣∣∣∣∣√nVU (d)−

√√√√ n∑
i=1

Vi

∣∣∣∣∣∣ ≤ cv. (96)

Next, we consider the sequence of distortion levels {dn}∞n=1, which satisfies the condition (87) due to (89). Define the event

E ,
{
XXX (XXX, d) ≥ XXX (XXX, dn)− 4Cd

c̃θ

}
, (97)

where c̃ ∈ (0, 1) is the constant in Theorem 10 and Cd > 0 is the constant in (89). Theorem 10 implies that

P [E ] ≥ 1− 1

n
. (98)

Letting γ = 1
2 log n in Theorem 9, we see that if an (n,M, d, ε′)-excess-distortion code exists, then

ε′ ≥ P
[
XXX(XXX, d) ≥ logM +

log n

2

]
− 1√

n
(99)

≥ P
[
XXX(XXX, d) ≥ logM +

log n

2
|E
]
P [E ]− 1√

n
(100)

≥
(

1− 1

n

)
P
[
XXX(XXX, dn) ≥ logM +

log n

2
+

4Cd
c̃θ

]
− 1√

n
, (101)
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where (101) is due to (98) and (97). For any fixed ε ∈ (0, 1), define εn as

εn , ε+ exp(−γ) +
CBE√
n

+
1

n
, (102)

where CBE is the constant in the Berry-Esseen Theorem in Appendix A-B. Then, we have εn ∈ (0, 1) for all n large enough.
We choose M as

logM , nRU (d) +
√
nVU (d)Q−1(εn)− γ − cr − cv

∣∣Q−1(εn)
∣∣− 4Cd

c̃θ
. (103)

From (95), (96) and (103), we have

logM ≤
n∑
i=1

Ei +Q−1(εn)

√√√√ n∑
i=1

Vi − γ −
4Cd
c̃θ

. (104)

Continuing the inequality in (101), we have

ε′ ≥
(

1− 1

n

)
P

 n∑
i=1

ΛȲ ?i (Xi, λ
?,min

(
θ, σ2

i

)
) ≥

n∑
i=1

Ei +Q−1(εn)

√√√√ n∑
i=1

Vi

− 1√
n

(105)

≥
(

1− 1

n

)(
εn −

CBE√
n

)
− 1√

n
(106)

≥ εn −
1

n
− 1 + CBE√

n
(107)

= ε, (108)

where (105) is by (91) and the bound (104); (106) is by the Berry-Esseen Theorem in Appendix A-B; and (108) is by the
choice of εn in (102). Consequently, for all n large enough, any (n,M, d, ε′)-excess-distortion code must satisfy ε′ ≥ ε, so we
must have

R(n, d, ε) ≥ logM

n
. (109)

Plugging (103) into (109) and applying the Taylor expansion to Q−1(εn) yields (77). �

V. ACHIEVABILITY

Theorem 11 (Achievability). Fix any α > 0. Consider the Gauss-Markov source defined in (5). For any excess-distortion
probability ε ∈ (0, 1), and any distortion threshold d ∈ (0, dmax), the minimum achievable source coding rate is bounded as

R(n, d, ε) ≤ RU (d) +

√
VU (d)

n
Q−1(ε) +O

(
1

(log n)κα
√
n

)
, (110)

where RU (d) is the rate-distortion function given in (33); VU (d) is the informational dispersion, defined in (25) and computed
in (64); and κ > 0 is the constant in (76).

This section presents the proof of Theorem 11. We first discuss how bounds on the covering number of n-dimensional
ellipsoids can be converted into achievability results. We then proceed to present our proof of Theorem 11, which relies on
random coding [14, Cor. 11], and a lower bound on the probability of a distortion d-ball using the d-tilted information XXX(XXX, d).

A. Connections to covering number

Dumer et al. [34] considered the problem of covering an ellipsoid using the minimum number of balls in Rn, and derived
lower and upper bounds on that number. Although any upper bound on the covering number implies an upper bound on
R(n, d, ε), the upper bound on covering number in [34] is not tight enough to yield the achievability direction of the Gaussian
approximation (56). We proceed to explain how to obtain a bound on R(n, d, ε) from the results in [34]. An ellipsoid Enrrr is
defined by

Enrrr ,

{
xxx ∈ Rn :

n∑
i=1

x2
i

r2
i

≤ 1

}
, (111)
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where rrr = (r1, . . . , rn), and ri > 0 is one half of the length of the i-axis of Enrrr . We say that a subset Md ⊂ Rn is a
d-covering4 of the ellipsoid Enrrr if

Enrrr ⊆
⋃

yyy∈Md

B(yyy, d), (112)

where B(yyy, d) is the d-ball centered at yyy, defined in (4). The covering number N(n, d) of an ellipsoid Enrrr is defined as the size
of its minimal d-covering. The d-entropy Hd(E

n
rrr ) is the logarithm of the covering number

Hd(E
n
rrr ) , logN(n, d). (113)

The result in [34, Th. 2] states that

Hd(E
n
rrr ) = Kd + o (Kd) , (114)

where

Kd ,
∑

i:r2i>nd

1

2
log

r2
i

nd
. (115)

Despite the similarity between (115) and the reverse waterfilling (30), the result in (114) is not strong enough to recover even
the asymptotic rate-distortion tradeoff (30) unless d ≤ dc.

In our problem, let XXX be the decorrelation of UUU in (50), then X1, . . . , Xn are independent zero-mean Gaussian distributed
with variances being σ2

i defined in (53). The random vector XXX concentrates around an ellipsoid with probability mass at least
1− ε. Applying the Berry-Esseen theorem to express ri’s in (115), we deduce that for any ε ∈ (0, 0.5) and d ∈ (0, dc],

R(n, d, ε) ≤ 1

2
log

σ2

d
+
Q−1(ε)√

2n
+ o(1), (116)

where the extra o(1) term comes from the o(Kd) term in (114). Due to that o(1) term, the bound (116) is first-order optimal,
but not second-order optimal. Strenghthening (114) to Hd(E

n
rrr ) = Kd + o

(√
Kd

)
would allow one to replace the o(1) term

in (116) by o
(

1√
n

)
, yielding the ≤ (achievability) direction of the Gaussian approximation (56) in the regime of d ∈ (0, dc].

We do not pursue this approach here. Instead, we prove (56) via the tilted information.

B. Outline of the achievability proof

We describe the main ideas in our achievability proof and present the details in next subsection. Our proof is inspired by
the work of Kostina and Verdú [14, Th. 12], where the same problem was addressed for the stationary memoryless sources.
However, the proof there cannot be directly applied to the Gauss-Markov source. The random coding bound, stated next,
provides an upper bound on the excess-distortion probability ε using the probability of the distortion d-balls.

Lemma 2 (Random coding bound). Let XXX be the decorrelation of UUU in (50). There exists an (n,M, d, ε) code with

ε ≤ inf
PYYY

EXXX
[
e−MPYYY (B(XXX,d))

]
, (117)

where the infimum is over all pdf’s PYYY on Rn with YYY independent of XXX .

Proof. A direct application of [14, Cor. 11] to XXX . �

The next lemma provides a lower bound on the probability of the distortion d-balls using the d-tilted information XXX(XXX, d).

Lemma 3 (Lossy AEP for the Gauss-Markov sources). Fix any α > 0 and let ηn be in (74) in Section III-C2 above. For any
d ∈ (0, dmax) and ε ∈ (0, 1), there exists a constant K > 0 such that for all n large enough,

P
[
log

1

PYYY ? (B(XXX, d))
≤ XXX(XXX, d) + β1 logq n+ β2

]
≥ 1− K

(log n)κα
, (118)

where XXX is the decorrelation of UUU in (50); (XXX,YYY ?) forms a RDF-achieving pair in RXXX(n, d), and q > 1, β1 > 0, β2 are
constants, see (270) and (271) in Appendix E-A below. The constant κ > 0 is in (76) in Section III-C2 above.

Proof. Appendix E-A. �

Together with log 1
PY ? (B(x,d)) ≥ X(x, d) in [14, Eq. (26)], obtained by applying Markov’s inequality to (22), Lemma 3

establishes the link between the probability of distortion d-ball and the d-tilted information: log 1
PYYY ? (B(XXX,d)) ≈ XXX(XXX, d) for the

Gauss-Markov source. Results of this kind were referred to as lossy asymptotic equipartition property (AEP) in [28, Sec. I.B].

4In [34], the term ε-covering was used instead of d-covering used here. They are related by ε =
√
nd.



17

Lemma 3 is the key lemma in our achievability proof for the Gauss-Markov sources. The proof of Lemma 3 is one of the
main technical contributions of this paper. An analog of Lemma 3 for the stationary memoryless sources [14, Lem. 2] has
been used to prove the non-asymptotic achievability result [14, achievability proof of Th. 12]. Showing a lower bound on the
probability of distortion d-balls in terms of XXX(XXX, d), that is, in the form of (118), is technical even for i.i.d. sources. To derive
such a bound for the Gauss-Markov sources, we rely on fundamentally new ideas, including the maximum likelihood estimator
â(uuu) defined in (72) and analyzed in Theorem 6 in Section III-C2 above. We proceed to discuss the estimator and its role in
the proof of Lemma 3 next.

A major step in proving [14, Lem. 2] for the i.i.d. source {Xi} with Xi ∼ PX involves the empirical probability distribution
PX̂ : given a source sequence xxx, PX̂(x) , 1

n

∑n
i=1 1 {xi = x}. The product of the empirical distributions PX̂XX , PX̂ × . . . PX̂

was used in the proof of [14, Lem. 2] for the i.i.d. sources [14, Eq. (270)] to form a typical set of source outcomes.
To describe a typical set of outcomes of the Gauss-Markov source, to each source outcome xxx (equivalently, uuu) we associate

a proxy random variable X̂XX(xxx) as follows. We first estimate the parameter a in (5) from the source outcome uuu using the
maximum likelihood estimator â(uuu) in (72) in Section III-C2 above. Then, the proxy random variable X̂XX(xxx) is defined as a
Gaussian random vector with independent (but not identical) coordinates X̂i(xxx) ∼ N (0, σ̂2

i (xxx)), where σ̂2
i (xxx)’s are the proxy

variances defined using â(uuu):

σ̂2
i (xxx) ,

σ2

1 + â(uuu)2 − 2â(uuu) cos (iπ/(n+ 1))
. (119)

Equivalently, X̂XX(xxx) is a zero-mean Gaussian random vector whose distribution is given by

X̂XX(xxx) ∼ N
(
000,diag(σ̂2

1(xxx), ..., σ̂2
n(xxx))

)
. (120)

To simplify notations, when there is no ambiguity, we will write X̂XX and σ̂2
i for X̂XX(xxx) and σ̂2

i (xxx), respectively. Intuitively, the
formula (119) approximates the eigenvalues of the covariance matrix of UUU (or equivalently, that of XXX) for a typical xxx. Due to
Theorem 6, with probability approaching 1, we have â(UUU) ≈ a, which implies σ̂2

i ≈ σ2
i and X̂XX ≈XXX . The accuracy of these

approximations is quantified in Theorem 12 below, which is the main tool in the proof of Lemma 3.
We need a few notations before presenting Theorem 12. First, we particularize the CREM problem (12)-(17) to the Gauss-

Markov source. Let XXX be the decorrelation of UUU in (50). For any random vector YYY with density, replacing X by XXX in (12) and
normalizing by n, we define

R (XXX,YYY , d) , inf
PFFF |XXX :E[d(XXX,FFF )]≤d

1

n
D(PFFF |XXX ||PYYY |PXXX). (121)

Properties of the CREM (121) for the two special cases: when (i) YYY is a Gaussian random vector with independent coordinates
and (ii) (XXX,YYY ) forms a RDF-achieving pair, are presented in Appendix C-C. Let F̂FF

?
be the optimizer of R(X̂XX,YYY ?, d), where

X̂XX is defined in (120) and YYY ? in (65). For xxx ∈ Rn, define mi(xxx) as

mi(xxx) , E
[
(F̂ ?i − xi)2 |X̂i = xi

]
. (122)

Definition 1 (MLE-typical set). Fix any d ∈ (0, dmax). Given a constant α > 0, let ηn be in (74) in Section III-C2 above. For
any constant p > 0 and any n ∈ N, define T (n, α, p) as the set of vectors uuu ∈ Rn satisfying the following conditions:

|â(uuu)− a| ≤ ηn, (123)∣∣∣∣∣ 1n
n∑
i=1

mi(xxx)− d

∣∣∣∣∣ ≤ pηn, (124)∣∣∣∣∣ 1n
n∑
i=1

(
x2
i

σ2
i

)k
− (2k − 1)!!

∣∣∣∣∣ ≤ 2, for k = 1, 2, 3, (125)

where xxx = S>uuu, and mi(xxx)’s are functions of xxx defined in (122) above.

The condition (123) requires that uuu ∈ T (n, α, p) should yield a small estimation error, which holds with probability
approaching 1 due to Theorem 6. We will explain the condition (124) in Appendix E-D below. To gain insight into the
condition (125), note that due to (53), we have Xi

σi
∼ N (0, 1) and

E

[(
X2
i

σ2
i

)k]
= (2k − 1)!!. (126)

Therefore, the condition (125) bounds the variations of XXX , up to its sixth moments, and this condition holds with probability
approaching 1 by the Berry-Esseen theorem. Theorem 12 below summarizes the properties of the typical set T (n, α, p) used in
the proof of Lemma 3.
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Theorem 12 (Properties of the MLE-typical set). For any d ∈ (0, dmax) and any constant α > 0, let ηn be given in (74) in
Section III-C2 above and p be a sufficiently large constant (specifically, p ≥ (298) in Appendix E-B below), then we have:
(1). The probability mass of T (n, α, p) is large: there exists a constant A1 > 0 such that for all n large enough,

P [UUU ∈ T (n, α, p)] ≥ 1− A1

(log n)
κα , (127)

where the constant κ is defined in (76) in Section III-C2 above.
(2). The proxy variances are good approximations: there exists a constant A2 > 0 such that for all n large enough, for any

uuu ∈ T (n, α, p), it holds that ∣∣σ̂2
i (xxx)− σ2

i

∣∣ ≤ A2ηn, ∀i ∈ [n], (128)

where σ̂2
i (xxx)’s are defined in (119).

(3). Let θ > 0 be the water level matched to d via the limiting reverse waterfilling (34). For all n large enough, for any
uuu ∈ T (n, α, p), it holds that ∣∣∣λ̂?(xxx)− λ?

∣∣∣ ≤ 9A2

4θ2
ηn, (129)

where xxx = S>uuu with S in (51); λ? is given by (23);

λ̂?(xxx) = −R′
(
X̂XX,YYY ?, d

)
; (130)

XXX is the decorrelation of UUU in (50); (XXX,YYY ?) forms a RDF-achieving pair in RXXX(n, d); and X̂XX is the proxy Gaussian
random variable defined in (120).

Proof. Appendix E-B. �

C. Achievability proof

Proof of Theorem 11. The proof is based on the random coding bound Lemma 2 and the lower bound in Lemma 3. Fix any
d ∈ (0, dmax) and ε ∈ (0, 1), and let θ > 0 be the water level matched to d via the limiting reverse waterfilling (34). We reuse
the notations in (89)-(96). Similar to the event E in (97), we define the event F as

F ,
{
XXX (XXX, d) ≤ XXX (XXX, dn) +

4Cd
c̃θ

}
. (131)

Theorem 10 implies that

P [F ] ≥ 1− 1

n
. (132)

Define εn as

εn , ε−
CBE + 1√

n
− K

(log n)κα
− 1

n
. (133)

Since ε ∈ (0, 1), we have εn ∈ (0, 1) for all n large enough. Choose M as

logM , nRU (d) +
√
nVU (d)Q−1(εn) + log

log n

2
+ β1 logq n+ β2 + cr + cv

∣∣Q−1(εn)
∣∣+

4Cd
c̃θ

, (134)

where q > 1, β1 > 0, β2 are the constants in Lemma 3; and cr, cv are the positive constants in (95) and (96). Define the random
variable Gn as

Gn , logM − XXX (XXX, dn)− β1 logq n− β2 −
4Cd
c̃θ

, (135)

where XXX (XXX, dn) is in (91). By (95), (96), and (135), we have

Gn ≥
n∑
i=1

Ei +Q−1(εn)

√√√√ n∑
i=1

Vi − XXX (XXX, dn) + log
log n

2
, (136)

where Ei’s and Vi’s are defined in (93) and (94), respectively. Define the event G as

G ,
{
Gn < log

log n

2

}
. (137)
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By (136), (91) and the Berry-Esseen Theorem, we have

P [G] ≤ P

XXX (XXX, dn)−
n∑
i=1

Ei > Q−1(εn)

√√√√ n∑
i=1

Vi

 (138)

≤ εn +
CBE√
n
. (139)

Define the event:

L ,
{

log
1

PY ?Y ?Y ? (B(XXX, d))
≤ logM −Gn

}
(140)

=

{
log

1

PY ?Y ?Y ? (B(XXX, d))
≤ XXX (XXX, dn) + β1 logq n+ β2 +

4Cd
c̃θ

}
, (141)

where YYY ? is given in (65). Combining Lemma 3 and (132) yields

P [L] ≥ 1− 1

n
− K

(log n)
κα . (142)

Indeed, denoting the probability on the left-hand side of (118) by P [H], we have

P [H] = P [H ∩ F ] + P [H ∩ Fc] (143)

≤ P [L] +
1

n
, (144)

where (144) holds since H ∩ F ⊆ L.
We have now gathered all the ingredients to prove Theorem 11. Replacing YYY by YYY ? in Lemma 2, we conclude that there

exists an (n,M, d, ε′) code with

ε′ ≤ EXXX
[
e−MPYYY ? (B(XXX,d))

]
(145)

= EXXX
[
e−MPYYY ? (B(XXX,d))

1 {L}
]

+ EXXX
[
e−MPYYY ? (B(XXX,d))

1 {Lc}
]

(146)

≤ EXXX
[
e−e

Gn
]

+
K

(log n)κα
+

1

n
(147)

= EXXX
[
e−e

Gn
1 {G}

]
+ EXXX

[
e−e

Gn
1 {Gc}

]
+

K

(log n)κα
+

1

n
(148)

≤ P(G) +
1√
n
P(Gc) +

K

(log n)κα
+

1

n
(149)

≤ εn +
CBE + 1√

n
+

K

(log n)κα
+

1

n
(150)

= ε, (151)

where (145) is by weakening (117) using YYY = YYY ?; (147) holds by (142) and 1 {L}MPYYY ?(B(XXX, d)) ≥ eGn ; (149) holds since
e−e

Gn ≤ 1 and 1 {Gc} e−eGn ≤ 1√
n

; (150) is by (139); and (151) is by the choice of εn in (133). Consequently, since there
exists an (n,M, d, ε′) code with ε′ ≤ ε, we must have

R(n, d, ε) ≤ logM

n
, (152)

where logM is given by (134). Similar to the converse proof, plugging (134) into (152) and then using the Taylor expansion
of Q−1(εn) yields (110). �

VI. CONCLUSION

In this paper, we derived the reverse waterfilling characterization (57) of the dispersion for lossy compression of the
Gauss-Markov source (5) with |a| < 1 (Theorem 1). This is the first dispersion result for lossy compression of sources with
memory. In doing so, we developed several novel technical tools, which are highlighted below.
• We derived the expression for the limiting variance of the d-tilted information for the Gauss-Markov source in Theorem 2.

Its proof relies on our parametric representation for the d-tilted information, presented in Lemma 7 in Appendix C-D.
• Theorem 4 presented a nonasymptotic refinement of Gray’s result [5] (restated in Theorem 3) on the eigenvalue distribution

of the covariance matrix of the random vector UUU from the Gauss-Markov source. The key tool we developed to prove
Theorem 4 is Lemma 1 in Section III-C1, which is a sharp bound relating the eigenvalues of two sequences of symmetric
tridiangonal matrices.
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• The maximum likelihood estimator â(uuu), defined in (72) and analyzed in Theorems 5 and 6, is of independent interest as
it allows one to estimate the distribution of uuu drawn from the class of the Gauss-Markov sources with unknown a. The
error bounds in Theorem 5 rely on the Hanson-Wright inequality [24, Th. 1.1]. That inequality applies beyond the case
when Zi’s are Gaussian, which means that our approach can be applied to other sources with memory.

• To prove achievability, we constructed a typical set in Definition 1 based on the maximum likelihood estimator. This idea
of constructing typical sets via estimators could also find its use in other problems.

Finally, we discuss several open problems.
• The dispersion for Gauss-Markov sources with |a| ≥ 1 is unknown. This paper treats the asymptotically stationary case,

i.e., |a| < 1. The case |a| ≥ 1 is fundamentally different, since that source is nonstationary. The rate-distortion functions
for nonstationary Gaussian autoregressive processes were first derived by Gray [5, Eq. (22)] in 1970, and later in 1980
by Hashimoto and Arimoto [33, Eq.(6)] in an equivalent but distinct form; that equivalence was shown by Gray and
Hashimoto [35] in 2008. Gray’s reverse waterfilling [5, Eq. (22)] is different from Kolmogorov’s reverse waterfilling (33)
in the nonstationary case, where the later does not apply. Therefore, in order to characterize the dispersion for the case
|a| ≥ 1, one would need to use Gray’s reverse waterfilling [5, Eq. (22)] for RU (d).

• A natural generalization of this work would be to consider the dispersion for the general stationary Gaussian autoregressive
processes (37). The geometric converse proof in Section IV already yields a converse bound on R(n, d, ε), which is tight
in the low distortion regime d ∈ (0, dc] in the first-order term; we conjecture it is also tight in the second-order term. A
possible way to show a matching achievability bound for the Gaussian AR processes of order m, inspired by the estimation
idea in this paper, is to analyze an estimator which estimates the vector aaa = (a1, ..., am)> in (37) instead of the scalar a.
To deal with large distortions, i.e. d > dc, sharp bounds on eigenvalues of A>A with A given by (82) need to be derived,
similar to Lemma 1 in Section III-C1; the tools in Appendix C-A might be useful.

• A formula (analogous to (56)) for the channel dispersion of the Gaussian intersymbol interference (ISI) channels, see [36,
Eq. (29)], was presented in [36, Th. 5] without proof. The channel capacity of the Gaussian ISI channel is well-known,
e.g. [37, Theorem] [38, Th. 1]. The tools in this paper might be useful in obtaining a proof of the channel dispersion
in [36, Th. 5].

• A fundamental problem left open is how widely the limiting formula for the dispersion

V (d) = lim sup
n→∞

1

n
Var [XXX(XXX, d)] (153)

applies. Theorem 1 and Theorem 2 established its validity for the Gauss-Markov source. We conjecture that it continues to
apply whenever the central limit theorem type of results can be derived for XXX(XXX, d).

APPENDIX A

A. A roadmap of the paper

The relations of our main theorems, lemmas, corollaries are presented in Fig. 4.

B. Classical theorems

Theorem 13 (Berry-Esseen Theorem, e.g. [39, Chap. 16.5]). Let W1, . . . ,Wn be a collection of independent zero-mean random
variables with variances V 2

i > 0 and finite third absolute moment Ti , E[|Wi|3] < +∞. Define the average variance V 2 and
average third absolute moment T as

V 2 ,
1

n

n∑
i=1

V 2
i , T ,

1

n

n∑
i=1

Ti. (154)

Then for n ∈ N, we have

sup
t∈R

∣∣∣∣∣P
[

1

V
√
n

n∑
i=1

Wi < t

]
− Φ(t)

∣∣∣∣∣ ≤ 6T

V 3
√
n
, (155)

where Φ is the cdf of the standard normal distribution N (0, 1).

Remark 4. Since in this paper, we only consider random variables Wi’s with bounded p-th moment for any finite p, it is easy
to check that there exists a constant CBE > 0 such that

sup
t∈R

∣∣∣∣∣P
[

1

V
√
n

n∑
i=1

Wi < t

]
− Φ(t)

∣∣∣∣∣ ≤ CBE√
n
. (156)

While the constant CBE depends on the random variables Wi’s, to simplify notations, we use CBE in all applications of the
Berry-Esseen Theorem.
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Fig. 4: A roadmap of the paper: an arrow from block A to block B means that the derivation of block B is based on block A.
Our main result is Theorem 1. The results in Theorem 2, Theorem 4, Theorem 10, and Lemma 1 are novel. The hardest part of
the proof consists of Theorem 12, Lemma 10, Lemma 3.

C. Justification of (11)

We provide a short justification of how (11) follows from [26]. We use the same notations in [26]. We denote P the
distribution of the source X , and Q0 the optimal reproduction distribution in RX(d), that is, Q0 is the Y -marginal of a
minimizer P̃0. First, [26, Corrollary, Eq. (1.25)] shows that

RX(d) = max
α(x), s

EP [logα(X)]− sd. (157)

Next, the proof of [26, Lem. 1.4] in [26, Eq. (1.27)-(1.32)] shows that the maximizer (α?(·), s?) is given by [26, Eq. (1.15)]
with s? = λ? due to [26, Eq. (1.12)]. For convenience, we write down [26, Eq. (1.15)]:

α?(x) =
1

EQ0
[exp(−λ?d(x, Y ?))]

, (158)

where Y ? ∼ Q0. Finally, plugging (158) into (157) yields (11). �

APPENDIX B
PROOFS IN SECTION III

A. Corner points on the dispersion curve

We derive (61) using the residue theorem from complex analysis [40, Th. 17]. Similar ideas have been applied by Berger [11,
Chap. 6, p. 232] and Gray [35, Eq. (12)] to study the rate-distortion functions for the nonstationary Gaussian AR processes (37).
The coordinate of P1 in Fig. 3 can be easily obtained as follows. The water level matched to dc via (34) is θmin in (40).
Hence, (57) is simplified as

VU (dc) =
1

4π

∫ π

−π
1 dw =

1

2
. (159)

To treat P2, note that the water level matched to dmax via (34) is θmax in (41), which, due to (35), equals,

θmax =
σ2

(1− a)2
. (160)
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This implies that (57) evaluates as

VU (dmax) =
σ4

4πθ2
max

∫ π

−π

1

(g(w))
2 dw. (161)

Invoking the residue theorem [40, Th. 17], we will obtain the integral

I ,
∫ π

−π

1

(g(w))
2 dw =

2π(1 + a2)

(1− a2)3
, (162)

which will complete the derivation. To that end, change variables using z = ejw and rewrite

g(w) = 1 + a2 − a(z + z−1) (163)

= (z−1 − a)(z − a). (164)

The integral I is then

I =

∮
|z|=1

z

ja2(z − a−1)2(z − a)2
dz (165)

= 2πj Resz=a
z

ja2(z − a−1)2(z − a)2
(166)

=
2π

a2
lim
z→a

d

dz

z

(z − a−1)2
(167)

=
2π(1 + a2)

(1− a2)3
, (168)

where (165) is by the change of variable z = ejw; (166) is due to the residue theorem and a ∈ [0, 1); and (167) is the standard
method of computing residues. �

B. Two interpretations of the maximum distortion

We present the computation details of (47) and how (42) leads to (46). Using the same technique as in (165)-(168), we
compute (42) as

dmax =
σ2

2π

∮
|z|=1

1

jz(z−1 − a)(z − a)
dz (169)

= σ2Resz=a
1

−a(z − a−1)(z − a)
(170)

= σ2 lim
z→a

1

−a(z − a−1)
(171)

=
σ2

1− a2
. (172)

To compute the stationary variance, take the variance on both sides of (5),

Var [Ui] = a2Var [Ui−1] + σ2, (173)

then taking the limit on both sides of (173), we have

lim
i→∞

Var [Ui] = a2 lim
i→∞

Var [Ui−1] + σ2, (174)

which implies

lim
i→∞

Var [Ui] =
σ2

1− a2
. (175)

�
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APPENDIX C
PROOFS IN SECTION II

A. Eigenvalues of nearly Toeplitz tridiagonal matrices

For convenience, we record two import results from matrix theory.

Theorem 14 (Cauchy Interlacing Theorem for eigenvalues [41, p.59]). Let H be an n× n Hermitian matrix partitioned as

H =

(
P ?
? ?

)
, where P is an (n−1)× (n−1) principal submatrix of H. Let λ1(P) ≤ λ2(P) . . . ≤ λn−1(P) be the eigenvalues

of P, and λ1(H) ≤ λ2(H) . . . ≤ λn(H) be the eigenvalues of H, then λi(H) ≤ λi(P) ≤ λi+1(H) for i = 1, ..., n− 1.

Theorem 15 (Gershgorin circle theorem [42, p.16, Th. 1.11]). Let M be any n × n matrix, with entries mij . Define ri ,∑
j 6=i |mij | , ∀ i ∈ [n], then for any eigenvalue λ of M, there exists i ∈ [n] such that |λ−mii| ≤ ri.

Proof of Lemma 1. To indicate the dimension, denote by An the matrix A defined in (48), and denote

Bn , A>nAn =



1 + a2 −a 0 0 . . . 0
−a 1 + a2 −a 0 . . . 0

0 −a 1 + a2 −a
. . .

...
...

. . . . . . . . . . . .
...

...
. . . 0 −a 1 + a2 −a

0 . . . . . . 0 −a 1


. (176)

Notice that we obtain a tridiagonal Toeplitz matrix Wn if the (n, n)-th entry of Bn is replaced by 1 + a2:

Wn =



1 + a2 −a 0 0 . . . 0
−a 1 + a2 −a 0 . . . 0

0 −a 1 + a2 −a
. . .

...
...

. . . . . . . . . . . .
...

...
. . . 0 −a 1 + a2 −a

0 . . . . . . 0 −a 1 + a2


, (177)

whose eigenvalues ξ(n)
1 ≤ ξ

(n)
2 . . . ≤ ξ

(n)
n are given by (69), see [43, Eq. (4)]. At an intuitive level, we expect ξ(n)

i ’s to
approximate µi’s well since Bn and Wn differ in only one entry. The first part of the proof applies the Cauchy interlacing
theorem (Theorem 14) to show (70) for 2 ≤ i ≤ n. The bound (70) for i = 1 is proved via the Gershgorin circle theorem
(Theorem 15) in the second part.

Applying Theorem 14 by partitioning Bn as

Bn =

(
Wn−1 ?
? 1

)
, (178)

we obtain

µi ≤ ξ(n−1)
i ≤ µi+1, ∀ i ∈ [n− 1]. (179)

On the other hand, since Wn � Bn in the semidefinite order, we have

ξ
(n)
i ≥ µi, ∀ i ∈ [n]. (180)

Combining (179) and (180) yields

ξ
(n−1)
i−1 ≤ µi ≤ ξ(n)

i , ∀ i = 2, ..., n. (181)

Simple algebraic manipulations using (69) and (181) lead to

ξ
(n)
i − µi ≤ ξ(n)

i − ξ(n−1)
i−1 ≤ 2πa

n
, ∀ i = 2, ..., n. (182)

To bound the difference ξ(n)
1 − µ1, we apply Theorem 15 to Bn. Note that for Bn, we have r1 = rn = a and ri = 2a, ∀i =

2, ..., n − 1 (recall ri’s defined in Theorem 15). For the eigenvalue µ1, there exists j ∈ [n] such that |µ1 − Bjj | ≤ rj . The
following analyses lead to µ1 ≥ (1− a)2:
• If 2 ≤ j ≤ n− 1, then |µ1 − (1 + a2)| ≤ 2a, which implies that µ1 ≥ 1 + a2 − 2a.
• If j = 1, then |µ1 − (1 + a2)| ≤ a, which implies that µ1 ≥ 1 + a2 − a ≥ 1 + a2 − 2a.
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• If j = n, then |µ1 − 1| ≤ a, which implies µ1 ≥ 1− a ≥ (1− a)2.

Recall from (69) that ξ(n)
1 = 1 + a2 − 2a cos

(
π
n+1

)
. Hence,

ξ
(n)
1 − µ1 ≤ 2a

[
1− cos

(
π

n+ 1

)]
(183)

≤ aπ2

(n+ 1)2
, (184)

≤ 2aπ

n
(185)

where (184) is by the inequality cos(x) ≥ 1− x2/2. �

B. Proof of Theorem 4

Proof. Since S(w) in (35) is even in w ∈ [−π, π], we have

I ,
1

2π

∫ π

−π
F [S(w)] dw (186)

=
1

π

∫ π

0

F [S(w)] dw. (187)

We bound the integral I by Riemann sums over intervals of width π
n+1 , see Fig. 5. Since F [S(w)] is a nonincreasing function

in w ∈ [0, π], we have

I ≥ 1

π

n∑
i=1

F

[
S

(
iπ

n+ 1

)]
π

n+ 1
. (188)

Using Lemma 1, we can further bound (188) from below as

Fig. 5: Bound the integral I by Riemann sum.

I ≥ 1

n+ 1

n∑
i=1

F

(
σ2

µi + 2aπ/n

)
. (189)

Since F is L-Lipschitz, we have for i ∈ [n],

F

(
σ2

µi + 2aπ/n

)
≥ F

(
σ2

µi

)
− L

(
σ2

µi
− σ2

µi + 2aπ/n

)
(190)

≥ F
(
σ2

µi

)
− 2aπLσ2

nµ2
i

. (191)

Plugging (191) into (189), we obtain

I ≥ 1

n+ 1

n∑
i=1

F

(
σ2

µi

)
− 2aLπσ2

n(n+ 1)

n∑
i=1

1

µ2
i

. (192)
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From (71), we see that

1

n

n∑
i=1

1

µ2
i

≤ 1

(1− a)4
. (193)

Let ‖F‖∞ be the sup norm of F over the interval (66), then

I ≥ 1

n+ 1

n∑
i=1

F

(
σ2

µi

)
− 2aLπσ2

(n+ 1)(1− a)4
(194)

≥ 1

n

n∑
i=1

F

(
σ2

µi

)
− ‖F‖∞ + 2aLπσ2/(1− a)4

n
. (195)

Similarly, we can derive the upper bound

I ≤ 1

n

n∑
i=1

F

(
σ2

µi

)
+

2‖F‖∞
n

. (196)

Therefore, setting

CL , max

{
‖F‖∞ +

2aLπσ2

(1− a)4
, 2‖F‖∞

}
(197)

completes the proof. �

C. Properties of the conditional relative entropy minimization problem

This section presents three results on the CREM problem (121), all of which are necessary to the proof of Theorem 11.
1) Gaussian CREM: The optimization problem (121) is referred to as the Gaussian CREM when XXX and YYY are Gaussian

random vectors with independent coordinates. The optimizer and optimal value of the Gaussian CREM are characterized by the
following lemma.

Lemma 4. Let XXX and YYY be Gaussian random vectors with independent coordinates, i.e.,

XXX ∼ N (000,ΣX), where ΣX = diag
(
α2

1, . . . , α
2
n

)
, (198)

YYY ∼ N (000,ΣY), where ΣY = diag
(
β2

1 , . . . , β
2
n

)
. (199)

Then, the optimizer PFFF?|XXX in the Gaussian CREM (121) R (XXX,YYY , d) is

PFFF?|XXX =

n∏
i=1

PF?i |Xi , (200)

where for any xxx ∈ Rn, the conditional distribution of F ?i given Xi = xi is5

F ?i | {Xi = xi} ∼ N
(

2δ?β2
i xi

1 + 2δ?β2
i

,
β2
i

1 + 2δ?β2
i

)
, (201)

and the optimal value is

R (XXX,YYY , d) = −δ?d+
1

2n

n∑
i=1

log
(
1 + 2δ?β2

i

)
+

1

n

n∑
i=1

δ?α2
i

1 + 2δ?β2
i

, (202)

where δ? is the negative slope defined as

δ? = −R′ (XXX,YYY , d) . (203)

5When β2
i = 0 for some i ∈ [n], the random variable in (201) degenerates to a deterministic random variable taking value 0, and the notation N (0, 0)

denotes the Dirac delta function.
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Proof. We particularize (16) to the Gaussian CREM. For any fixed xxx ∈ Rn, rearranging (16) yields

fFFF?|XXX (yyy|xxx) = fYYY (yyy) exp {ΛYYY (xxx, δ?, d)− δ?nd (xxx,yyy) + δ?nd} (204)
∝ fYYY (yyy) exp {−δ?nd (xxx,yyy)} (205)

∝ exp

{
−δ?

n∑
i=1

(yi − xi)2 −
n∑
i=1

y2
i

2β2
i

}
(206)

=

n∏
i=1

exp

−
(
yi − 2δ?β2

i xi
1+2δ?β2

i

)2

2β2
i

1+2δ?β2
i

 , (207)

where p1 ∝ p2 means that p1 = c′p2 for a positive constant c′; (205) is by keeping only terms containing yyy (since xxx is
fixed); (206) is by plugging the pdf of YYY into (205); and (207) is by completing the squares in yi. Hence, (200) and (201)
follow. Next, the expression (202) is obtained by a direct computation using (16), (200) and (201).

R(XXX,YYY , d) =
1

n

∫
Rn
fXXX(xxx)

∫
Rn
fFFF?|XXX(yyy|xxx) [ΛYYY (xxx, δ?, d)− δ?nd (xxx,yyy) + δ?nd] dyyydxxx (208)

=
1

n

∫
Rn
fXXX(xxx)

∫
Rn
fFFF?|XXX(yyy|xxx)ΛYYY (xxx, δ?, d) dyyydxxx (209)

= −δ?d+
1

2n

n∑
i=1

log
(
1 + 2δ?β2

i

)
+

1

n

n∑
i=1

δ?α2
i

1 + 2δ?β2
i

, (210)

where (208) follows by substituting (16) into (121); (209) holds since E[d (XXX,FFF ?)] = d by the optimality of FFF ?; and (210) is
by direct integration of (209), which relies on the definition of the generalized tilted information (15) and the well-known
formula for the moment generating function (MGF) of a noncentral χ2

1-distribution. �

2) Gauss-Markov CREM: The optimization problem (121) is referred to as the Gauss-Markov CREM if XXX is the decorrelation
of UUU in (50), and (XXX,YYY ) = (XXX,YYY ?) forms a RDF-achieving pair in RXXX(n, d). Recall from (53) that XXX ∼ N (0,ΣXXX), where

ΣXXX = diag(σ2
1 , . . . , σ

2
n), (211)

and σ2
i ’s are given by (53). Recall from (65) that YYY ? ∼ N (0,ΣYYY ?), where

ΣYYY ? = diag(ν2
1 , . . . , ν

2
n), (212)

and we denote ν2
i as

ν2
i , max

(
0, σ2

i − θn
)
. (213)

And θn > 0 is the water level matched to d via the n-th order reverse waterfilling (31). From (14), we have

R(XXX,YYY ?, d) = RUUU (n, d), (214)

and RUUU (n, d) is given by (30). Lemma 4 is also applicable to the special case of the Gauss-Markov CREM. Furthermore, the
next lemma characterizes the negative slope in the Gauss-Markov CREM.

Lemma 5. In the Gauss-Markov CREM, for any d ∈ (0, dmax) and n ∈ N, let θn > 0 be the water level matched to d via the
n-th order reverse waterfilling (31), the negative slope λ? defined in (23) satisfies

λ? =
1

2θn
. (215)

Proof. We directly compute the negative slope using the parametric representation (30) and (31). Taking the derivative with
respect to d on both sides of (30) yields

λ? =
1

n

n∑
i=1

1

2θn

dθn
dd

1
{
σ2
i > θn

}
. (216)

Differentiating (31), we obtain

dd

dθn
=

1

n

n∑
i=1

1
{
σ2
i > θn

}
, (217)

which is independent of i. Plugging (217) into (216) yields (215).



27

To justify the formal differentiation in (217), observe using (31) that d is a continuous piecewise linear function of θn,
and d is differentiable with respect to θn except at the n points: θn = σ2

i , i ∈ [n]. The above proof goes through as long
as the derivatives at those n points are understood as the left derivatives. Indeed, RUUU (n, d) is differentiable w.r.t. d for any
d ∈ (0, dmax), e.g. [14, Eq. (16)]. �

3) Sensitivity of the negative slope: The following theorem is a perturbation result, which bounds the change in the negative
slope when the variances of the input XXX to R (XXX,YYY ?, d) are perturbed. It is related to lossy compression using mismatched
codebook: the codewords are drawn randomly according to the distribution PYYY ? while the source distribution is X̂XX instead of XXX .

Lemma 6. Let XXX be the decorrelation of UUU in (50), and let (XXX,YYY ?) be a RDF-achieving pair in RXXX(n, d) (recall (19)). For
any fixed distortion d ∈ (0, dmax), let θ > 0 be the water level matched to d via the limiting reverse waterfilling in (34). For
any t ∈ (0, θ/3), let σ̂2

i ’s be such that

|σ̂2
i − σ2

i | ≤ t, ∀ i ∈ [n]. (218)

Let the Gaussian random vector X̂XX be X̂XX ∼ N (000,diag(σ̂2
1 , . . . , σ̂

2
n)), and let λ̂? be the negative slope of R(X̂XX,YYY ?, d). Then,

for all n large enough, the negative slope λ̂? satisfies

|λ? − λ̂?| ≤ 9t

4θ2
, (219)

where λ? = −R′ (XXX,YYY ?, d) is given by (215).

Proof. Consider the Gaussian CREM R(X̂XX,YYY ?, d). Let θ̂n > 0 be the water level matched to d via the n-th order reverse
waterfilling (31) over σ̂2

i ’s, and let θn > 0 be the water level matched to d via the n-th order reverse waterfilling (31) over
σ2
i ’s. In (202), replacing (XXX,YYY ) by (X̂XX,YYY ?), and then taking the derivative with respect to d on both sides yields

−λ̂? = −λ̂? +
1

2n

∑
i:σ̂2

i>θ̂n

−2λ̂?

1 + 2λ̂?ν2
i

dθ̂n
dd

+
1

n

∑
i:σ̂2

i>θ̂n

2σ̂2
i λ̂

?2

(1 + 2λ̂?ν2
i )2

dθ̂n
dd

, (220)

where ν2
i ’s are defined in (213). Rearranging terms yields

λ̂? =

 ∑
i:σ̂2

i>θ̂n

1

(1 + 2λ̂?ν2
i )2

/ ∑
i:σ̂2

i>θ̂n

2(σ̂2
i − σ2

i + θn)

(1 + 2λ̂?ν2
i )2

 . (221)

Substituting the bound (218) into (221), we obtain

λ̂? ∈
[

1

2(θn + t)
,

1

2(θn − t)

]
. (222)

Since limn→∞ θn = θ, for all n large enough, we have

2θ

3
≤ θn ≤

4θ

3
. (223)

Since t ∈ (0, θ/3), (223) implies that 0 < t < θn/2. From (215), (222) and (223), we see that

|λ? − λ̂?| ≤ max

{∣∣∣∣ 1

2(θn + t)
− 1

2θn

∣∣∣∣ , ∣∣∣∣ 1

2(θn − t)
− 1

2θn

∣∣∣∣} (224)

≤ t

θ2
n

(225)

≤ 9t

4θ2
. (226)

�

D. Proof of Theorem 2

Theorem 2 is a direct consequence of the following lemma.

Lemma 7 (Parametric representation for the d-tilted information). Let XXX be the decorrelation of UUU (50), and let (XXX,YYY ?) be a
RDF-achieving pair in RXXX (n, d). For any d ∈ (0, dmax), let θn > 0 be the water level matched to d via the n-th order reverse
waterfilling (31) over σ2

i , i ∈ [n]. Then, for all xxx ∈ Rn,

ΛY ?i (xi, λ
?,min(θn, σ

2
i )) =

min(θn, σ
2
i )

2θn

(
x2
i

σ2
i

− 1

)
+

1

2
log

max(θn, σ
2
i )

θn
, (227)
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where λ? defined in (23) is given by (215).

Proof. The proof relies on the Gaussianity of YYY ?. For each i ∈ [n], from (15) and (215), we have

ΛY ?i (xi, λ
?,min(θn, σ

2
i )) = −min(θn, σ

2
i )

2θn
− logE

[
exp

{
−λ? (Y ?i − xi)

2
}]

. (228)

Substituting Y ?i ≡ 0 a.s. for all i such that σ2
i ≤ θn (recall (212)) into (228), we obtain

ΛY ?i (xi, λ
?,min(θn, σ

2
i )) =

x2
i − σ2

i

2θn
. (229)

Substituting Y ?i ∼ N (0, σ2
i − θn) for all i such that σ2

i > θn (recall (212)) into (228) and applying the formula for the moment
generating function of a noncentral χ2-distribution with one degree of freedom, we obtain

ΛY ?i (xi, λ
?,min(θn, σ

2
i )) =

1

2

(
x2
i

σ2
i

− 1

)
+

1

2
log

σ2
i

θn
. (230)

Unifying (229) and (230), we obtain (227). �

Proof of Theorem 2. For any fixed distortion d ∈ (0, dmax), let θ > 0 be the water level matched to d via the limiting reverse
waterfilling (34). By the independence of Y ?1 , . . . , Y

?
n and (31), we have for any xxx,

XXX(xxx, d) =

n∑
i=1

ΛY ?i (xi, λ
?,min(θn, σ

2
i )), (231)

where λ? = −R′XXX(n, d). Taking the expectation and the variance of (231) using (227) yields6

E[XXX(XXX, d)] =

n∑
i=1

1

2
max

(
0, log

σ2
i

θn

)
, (232)

Var [XXX(XXX, d)] =

n∑
i=1

1

2
min

(
1,

(
σ2
i

θn

)2
)
. (233)

An application of Theorem 3 to (232) on the function t 7→ 1
2 max

(
0, log t

θ

)
yields (21). Similarly, an application of Theorem 3

to (233) on the function t 7→ 1
2 min

[
1,
(
t
θ

)2]
yields (64). �

APPENDIX D
PROOFS IN SECTION IV

A. Proof of Theorem 8

Proof. The result follows from a geometric argument, illustrated in Fig. 6. Let C ⊂ Rn be the set of codewords of an arbitrary
(n,M, d, ε) code, and B(ccc, d) be the distortion d-ball centered at a codeword ccc ∈ C (recall (4)). By the definition of an
(n,M, d, ε) code, we know that the union of the distortion d-balls centered at codewords in C has probability mass at least
1− ε:

P [UUU ∈ B] ≥ 1− ε, (234)

where B denotes the union of the distortion d-balls centered at the codewords in C:

B ,
⋃
ccc∈C
B(ccc, d). (235)

For a set S ⊆ Rn, denote by

AS , {Asss : sss ∈ S} (236)

the linear transformation of S by the matrix A. Recall from (48) that A is invertible and the innovation is ZZZ = AUUU . Changing
variable UUU = A−1ZZZ in (234) yields

P [ZZZ ∈ AB] ≥ 1− ε. (237)

Next, we give a geometric interpretation of the set AB. Consider the set AC, that is, the transformation of the codebook C by
A. For any xxx ∈ Rn, notice that the set

AB(A−1xxx, d) =
{
xxx′ ∈ Rn : (xxx′ − xxx)>(AA>)−1(xxx′ − xxx) ≤ nd

}
(238)

6The result on expectations was implicitly established by Gray [5], which we recover here. The result on variances is new.
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is the set of points bounded by the ellipsoid centered at xxx with principal axes being the eigenvectors of AA>. It follows that

AB = A
⋃
ccc∈C
B(ccc, d) (239)

=
⋃

ccc′∈AC

AB(A−1ccc′, d), (240)

i.e., AB is the union of ellipsoids centered at transformed codewords. See Fig. 6c for an illustration of the set AB.
Finally, the following volumetric argument completes the proof of Theorem 8. Since the volume of a union of sets is less

than or equal to the sum of the sets’ volumes, we have

M ≥ Vol(AB)

Vol(AB(000, d))
. (241)

Moreover, Vol(AB(000, d)) = Vol(B(000, d)) due to det A = 1. On the other hand, due to the spherical symmetry of the distribution
of ZZZ, the ball B(000, r(n, ε)), where r(n, ε) satisfies (79), has the smallest volume among all sets in Rn with probability greater
than or equal to 1− ε, and so

Vol(AB) ≥ Vol(B(000, r(n, ε))). (242)

Therefore, we can weaken (241) as

M ≥ Vol(B(000, r(n, ε)))

Vol(B(000, d))
=

(
r(n, ε)

d

)n/2
. (243)

(a) The UUU space: Given d, ε, the goal is to
cover at least 1− ε probability mass, under
distribution of UUU , using the least number of
distortion d-balls.

(b) The XXX space is simply a unitary trans-
formation of the UUU space.

(c) The ZZZ space: Given d, ε, the goal is to
cover at least 1− ε probability mass, under
distribution of ZZZ, using the least number of
distortion ellipsoids, each of which has the
same volume as the distortion d-ball since
det(AA>) = 1.

Fig. 6: Converse proof in figures. The contour plot in each figure shows the underlying probability distribution.

�

B. Proof of Theorem 10

Proof. The proof is based on Chebyshev’s inequality. Fix d ∈ (0, dmax). For each fixed n ∈ N, let θ1, θ2 > 0 be the water
levels matched to d and dn, respectively, in the n-th order reverse waterfilling (31) over σ2

i , i ∈ [n], that is,

d =
1

n

n∑
i=1

min
(
θ1, σ

2
i

)
, (244)

dn =
1

n

n∑
i=1

min
(
θ2, σ

2
i

)
. (245)

Obviously, both θ1 and θ2 depend on n. We now proceed to show that there exists a constant h2 > 0 such that for all n large
enough,

|θ1 − θ2| ≤
h2

n
. (246)
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Indeed, without loss of generality, assume d < dn
7, then θ1 < θ2 by the mononicity of the reverse waterfilling (31). Define the

following index sets

I1 ,
{
i ∈ [n] : σ2

i ≤ θ1

}
, (247)

I2 ,
{
i ∈ [n] : θ1 < σ2

i < θ2

}
, (248)

I3 ,
{
i ∈ [n] : θ2 ≤ σ2

i

}
. (249)

Then,

dn − d =
1

n

n∑
i=1

(
min

(
θ2, σ

2
i

)
−min

(
θ1, σ

2
i

))
(250)

=
1

n

∑
i∈I1

0 +
1

n

∑
i∈I2

(
σ2
i − θ1

)
+

1

n

∑
i∈I3

(θ2 − θ1) (251)

≥ |I3|
n

(θ2 − θ1) . (252)

Since dn < dmax, there exists a constant c̃ ∈ (0, 1) such that for all n large enough, |I3| ≥ c̃n, hence (246) holds with h2 = h1

c̃ .
Now, let G1, . . . , Gn be i.i.d. N (0, 1). To simplify notations, we denote the random variable as

∆(d, dn) , XXX (XXX, d)− XXX (XXX, dn) . (253)

From (231) and (227), we have

∆(d, dn) =

n∑
i=1

{[
min

(
θ1, σ

2
i

)
2θ1

−
min

(
θ2, σ

2
i

)
2θ2

]
(G2

i − 1) +
1

2
log

[
max

(
θ1, σ

2
i

)
2θ1

· 2θ2

max (θ2, σ2
i )

]}
. (254)

To apply Chebyshev’s inequality, we bound the mean and the variance of ∆(d, dn) as follows.

E [∆(d, dn)] =

n∑
i=1

1

2
log

[
max

(
θ1, σ

2
i

)
2θ1

· 2θ2

max (θ2, σ2
i )

]
(255)

=
∑
i∈I1

0 +
∑
i∈I2

1

2
log

σ2
i

θ1
+
∑
i∈I3

1

2
log

θ2

θ1
(256)

≤ h2

θ1
, (257)

where (257) holds since for i ∈ I2, we have 1
2 log

σ2
i

θ1
≤ 1

2 log θ2
θ1

, while for i ∈ I3, due to (246), we have

1

2
log

θ2

θ1
≤ 1

2
log

(
1 +

h2

nθ1

)
≤ h2

2nθ1
. (258)

By a similar argument, we can bound the variance as

Var [∆(d, dn)] ≤ h2
2

θ2
1n
. (259)

In conjunction with (257), (259), Chebyshev’s inequality yields that for all n large enough and ∀` > 0,

P [|∆(d, dn)− E [∆(d, dn)]| ≥ `] ≤ h2
2

θ2
1n`

2
. (260)

Choosing ` = uh2

θ1
in (260) and applying (257) yields that ∀u > 0,

P
[
|∆(d, dn)| ≥ (1 + u)h2

θ1

]
≤ 1

nu2
. (261)

Let θ > 0 be the water level matched to d via the limiting reverse waterfilling (34), then limn→∞ θ1 = θ by (244) and (34).
Therefore, we have θ1 ≥ θ

2 for all n large enough. Hence, for all n large enough and ∀u > 0, we have

P
[
|∆(d, dn)| ≥ 2(1 + u)h2

θ

]
≤ 1

nu2
. (262)

Rearranging terms in (262) completes the proof. �

7Otherwise, switch θ1 and θ2 in the rest of the proof.
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APPENDIX E
PROOFS IN SECTION V

A. Proof of Lemma 3

In addition to new concentration inequalities, shown in Lemma 9 and Lemma 10 below, the proof leverages the following
bound, which is a direct application of [14, Lem. 1] to the random vector XXX .

Lemma 8 (Lower bound on probability of distortion balls). Fix d ∈ (0, dmax), n ∈ N, and the distribution PYYY on Rn. Then
for any xxx ∈ Rn, it holds that

PYYY (B(xxx, d)) ≥ sup
P
X̂XX
,γ>0

exp
{
−λ̂?nγ − ΛYYY (xxx, λ̂?, d)

}
× P

[
d− γ ≤ d

(
xxx, F̂FF

?
)
≤ d |X̂XX = xxx

]
, (263)

where the supremum is over all pdfs PX̂XX on Rn; ΛYYY (xxx, λ̂?, d) is the generalized tilted information defined in (15) with

λ̂? = −R′(X̂XX,YYY , d); (264)

and the random variable F̂FF
?

achieves R(X̂XX,YYY , d).

The high-level idea in proving Lemma 3 is the following. In Lemma 8, we replace YYY by YYY ? defined in (65) and (212), and
we choose X̂XX to be the proxy Gaussian random variable X̂XX(xxx) defined in (120). With such choices of X̂XX and YYY , the next two
lemmas provide further lower bounds on the two factors on the right side of (263). The first one is a concentration inequality
on the generalized tilted information.

Lemma 9. For any fixed d ∈ (0, dmax) and excess-distortion probability ε ∈ (0, 1), there exist constants C and C2 > 0 such
that for all n large enough,

P
[
ΛYYY ?(XXX, λ̂?(XXX), d) ≤ ΛYYY ?(XXX,λ?, d) + C log n

]
≥ 1− C2√

n
, (265)

where λ̂?(xxx) is given by (130) with X̂XX defined in (120), and λ? is in (215).

Proof. Appendix E-C. �

The second bound, presented in Lemma 10 below, is referred to as the shell-probability lower bound. For any xxx ∈ Rn and
any γ ∈ (0, d), define the shell

S(xxx, d, γ) , {xxx′ ∈ Rn : d− γ ≤ d (xxx,xxx′) ≤ d} . (266)

Geometrically, Lemma 8 provides a quantitative connection between the probability of a distortion d-ball and the probability of
its shell, and Lemma 10 below gives a lower bound on the probability of the shell S(xxx, d, γ) for “typical” sequences xxx.

Lemma 10 (Shell-probability lower bound). Fix any distortion d ∈ (0, dmax) and any excess-distortion probability ε ∈ (0, 1).
For any constant α > 0 and any n ∈ N, consider the set T (n, α, p) defined in Definition 1, where p is the constant in
Theorem 12. Let

γ ,
logq n

n
, (267)

where q > 1 is a constant defined in (347) in Appendix E-D below. Then, there exists a constant C1 > 0 such that for all n
large enough, for any uuu ∈ T (n, α, p) and xxx = S>uuu with S in (52), it holds that

P
[
F̂FF
?
∈ S(xxx, d, γ) |X̂XX = xxx

]
≥ C1√

n
, (268)

where X̂XX is given in (120).

Proof. Appendix E-D. �

We now present the proof of Lemma 3.

Proof of Lemma 3. Let XXX be the decorrelation of UUU in (50). Replace YYY by YYY ? in Lemma 8. Let T (n, α, p) be the set defined
in Definition 1, and let p be the constant in Theorem 12. Let C,C1, C2, q be the constants in Lemmas 9 and 10. Consider any
n that is large enough such that Theorem 12, Lemma 9 and Lemma 10 hold. Let θ > 0 be the water level matched to d via the
limiting reverse waterfilling (34). Denote the event

E ,
{

log
1

PYYY ? (B(XXX, d))
> XXX (XXX, d) + β1 logq n+ β2

}
, (269)
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where β1 and β2 are constants defined by

β1 ,
1

2θ
+ Cd +

1

2
+ C, (270)

β2 , − logC1, (271)

and Cd > 0 is a constant such that ∣∣∣∣λ̂?(xxx)− 1

2θ

∣∣∣∣ ≤ Cd (272)

for any uuu ∈ T (a, α, p) and xxx = S>uuu. The existence of such Cd is guaranteed by (129) in Theorem 12 and the fact that
limn→∞ θn = θ.

Using elementary probability rules, we write

P
[
log

1

PYYY ? (B(XXX, d))
> XXX (XXX, d) + β1 logq n+ β2

]
=P [E , UUU ∈ T (n, α, p)] + P [E , UUU 6∈ T (n, α, p)] (273)

≤P
[
UUU ∈ T (n, α, p), λ̂?(XXX)nγ + ΛYYY ?(XXX, λ̂?(XXX), d)− logP

[
F̂FF
?
∈ S(X̂XX, d, γ) |X̂XX = XXX

]
> XXX (XXX, d) + β1 logq n+ β2

]
+ P [UUU 6∈ T (n, α, p)] (274)

≤P
[
UUU ∈ T (n, α, p), ΛYYY ?(XXX, λ̂?(XXX), d)− XXX (XXX, d) > −λ̂?(XXX)nγ + log

C1√
n

+ β1 logq n+ β2

]
+ P [UUU 6∈ T (n, α, p)]

(275)

≤P
[
UUU ∈ T (n, α, p), ΛYYY ?(XXX, λ̂?(XXX), d)− XXX (XXX, d) > C log n

]
+ P [UUU 6∈ T (n, α, p)] (276)

≤ K

(log n)κα
, (277)

where (274) is by Lemma 8; (275) is by (268); (276) is by the choice of γ in (267) and q > 1; (277) is by Lemma 9 and (127);
and K > 0 is a constant. �

B. Proof of Theorem 12

Proof. We first prove the property (1). First, Theorem 6 states that for all n large enough the condition (123) is violated with
probability at most 2

(logn)κα . Second, we bound the probability of violating condition (125). Note that since Xi ∼ N (0, σ2
i )

by (53), we have Gi , Xi
σi
∼ N (0, 1) for all i ∈ [n]. For each k = 1, 2, 3, applying the Berry-Esseen theorem8 to the zero-mean

random variables G2k
i − (2k − 1)!!, we obtain

P

[∣∣∣∣∣ 1n
n∑
i=1

G2k
i − (2k − 1)!!

∣∣∣∣∣ > 2

]
≤ 2Q

(
2
√
n

rk

)
+

12Tk
r3
k

√
n
, (278)

where r2
k and Tk are the variance and the third absolute moment of G2k

i − (2k − 1)!!, respectively; rk and Tk are both positive
constants since Gi’s have bounded finite-order moments. Therefore, there exists a constant A′1 > 0 such that for all n large
enough,

P

[∣∣∣∣∣ 1n
n∑
i=1

G2k
i − (2k − 1)!!

∣∣∣∣∣ > 2

]
≤ A′1√

n
. (279)

The bound (279) implies that the condition (125) is violated with probability at most 3A′1√
n

by the union bound.
Verifying that the condition (124) is satisfied with high probability is more involved. The high-level procedure is the following.

The expressions for mi(xxx)’s in (122) can be directly obtained from (201) in Lemma 4 in Appendix C-C1. Then we approximate
mi(xxx) using carefully crafted m̄i(xi), for which it is easier to obtain a concentration bound of the form (124). At the end, the
approximation gaps between mi(xxx) and m̄i(xi) are shown to be sufficiently small, and (124) ensues.

8The Berry-Esseen theorem suffices here, though tighter bounds are possible via other concentration inequalities, say Chernoff’s bound.
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We now present the details. We start with a closer look at the optimizer F̂FF
?

in R(X̂XX,YYY ?, d). Recall the distributions of XXX
and YYY ? in (211) and (212), and the distribution of X̂XX in (120). An application of Lemma 4 in Appendix C-C1 to R(X̂XX,YYY ?, d)
yields that for all xxx ∈ Rn,

PF̂FF?|X̂XX=xxx =

n∏
i=1

PF̂?i |X̂i=xi
, (280)

F̂ ?i | X̂i = xi ∼ N

(
2λ̂?(xxx)ν2

i xi

1 + 2λ̂?(xxx)ν2
i

,
ν2
i

1 + 2λ̂?(xxx)ν2
i

)
, (281)

where λ̂?(xxx) is given by (130) and ν2
i ’s are defined in (213). Then, from (281) and the definition of mi(xxx) in (122), it is

straightforward to obtain the expression

mi(xxx) =
ν2
i

1 + 2λ̂?(xxx)ν2
i

+
x2
i

(1 + 2λ̂?(xxx)ν2
i )2

. (282)

The quantity mi(xxx) in the form of (282) is hard to analyze since there is no simple formula for λ̂?(xxx). We instead consider
m̄i(xi)’s, defined as

m̄i(xi) ,
ν2
i

1 + 2λ?ν2
i

+
x2
i

(1 + 2λ?ν2
i )2

, (283)

which is obtained from (282) by replacing λ̂?(xxx) with λ?. The random variable m̄i(Xi) is much easier to analyze, since
λ? = 1

2θn
by Lemma 5 in Appendix C-C2, with which (283) is simplified as

m̄i(xi) =

(
min

(
σ2
i , θn

))2
σ2
i

(
x2
i

σ2
i

− 1

)
+ min

(
σ2
i , θn

)
. (284)

We will control the difference between mi(xxx) and m̄i(xi) by bounding |λ?−λ̂?(xxx)|. Indeed, a lengthy but elementary calculation,
deferred to the end of the proof, shows that there exists a constant A′′1 > 0 (depending only on d) such that for all n large
enough, ∀xxx ∈ Rn satisfying (123) and (125), we have∣∣∣∣∣ 1n

n∑
i=1

m̄i(xi)−
1

n

n∑
i=1

mi(xxx)

∣∣∣∣∣ ≤ A′′1ηn. (285)

With (285), we proceed to explain how to apply the Berry-Esseen theorem to obtain the following bound: there exists a constant
A′′′1 > 0 such that for all n large enough and ∀ω > 0,

P

[∣∣∣∣∣ 1n
n∑
i=1

m̄i(Xi)− d

∣∣∣∣∣ ≥ ω
√

log log n

n

]
≤ A′′′1

(log n)
ω2

2β2

, (286)

where

β2 ,
1

n

n∑
i=1

Var [m̄i(Xi)] . (287)

To that end, first note from (284) and (31) that

1

n

n∑
i=1

E[m̄i(Xi)] = d, (288)

then an application of the Berry-Esseen theorem to m̄i(Xi)−min(σ2
i , θn) yields

P

[∣∣∣∣∣ 1n
n∑
i=1

m̄i(Xi)− d

∣∣∣∣∣ ≥ ω
√

log log n

n

]
≤ 2Q

(
ω
√

log log n

β

)
+

12T

β3
√
n

(289)

≤ 2

(log n)
ω2

2β2

+
12T

β3
√
n
, (290)

where T , 1
n

∑n
i=1 E[|m̄i(Xi)−min(σ2

i , θn)|3] is bounded. Using (284), it is easy to check that there exists a constant βd > 0

(depending only on d) such that 0 < βd < β ≤
√

2σ2

(1−a)2 . Therefore, (286) follows from (290). Now, we combine (285) and (286)
to conclude that the condition (124) is satisfied with high probability. Define the set L ⊂ Rn as

L , {uuu ∈ Rn : uuu satisfies (123) and (125)} . (291)
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Then, by Theorem 6, (279) and the union bound, we have

P [UUU ∈ Lc] ≤ 2

(log n)
κα +

3A′1√
n
. (292)

Hence, we have

P

[∣∣∣∣∣ 1n
n∑
i=1

mi(XXX)− d

∣∣∣∣∣ ≥ pηn
]

(293)

≤P

[∣∣∣∣∣ 1n
n∑
i=1

m̄i(Xi)−
1

n

n∑
i=1

mi(XXX)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

m̄i(Xi)− d

∣∣∣∣∣ ≥ pηn
]

(294)

=P [·,UUU ∈ L] + P [·,UUU ∈ Lc] (295)

≤P

[∣∣∣∣∣ 1n
n∑
i=1

m̄i(Xi)− d

∣∣∣∣∣ ≥ (p−A′′1)ηn

]
+ P [UUU ∈ Lc] (296)

≤ A′′′1

(log n)
(p−A′′1 )2α

2β2

+
2

(log n)
κα +

3A′1√
n
, (297)

where (294) is due to the triangle inequality; (296) holds by (285); (297) follows from (286) for p > A′′1 . Hence, for any p
such that

p ≥ A′′1 +
2
√
κσ2

(1− a)2
, (298)

we conclude from (297) that there exists a constant Ã1 > 0 such that for all n large enough,

P

[∣∣∣∣∣ 1n
n∑
i=1

mi(XXX)− d

∣∣∣∣∣ ≥ pηn
]
≤ Ã1

(log n)
κα . (299)

Therefore, Theorem 6, (279) and (299) altogether imply the property (1) in Theorem 12.
Next, we show property (2) in Theorem 12. By the triangle inequality, we have ∀uuu ∈ Rn and ∀i ∈ [n],∣∣σ̂2

i − σ2
i

∣∣ ≤ ∣∣∣∣σ̂2
i −

σ2

ξi

∣∣∣∣+

∣∣∣∣σ2

ξi
− σ2

i

∣∣∣∣ , (300)

where ξi is given in (69). We bound the two terms in (300) separately. From (53), (70) and (71), we have∣∣∣∣σ2

ξi
− σ2

i

∣∣∣∣ ≤ 2aπσ2

(1− a)4n
. (301)

To simplify notations, let φi , iπ
n+1 and denote by ϕ(t) the function

ϕ(t) ,
σ2

1 + t2 − 2t cosφi
. (302)

It is easy to see that the derivatives φ′(a) and φ′′(a) are bounded for any fixed a ∈ [0, 1). By the Taylor expansion and the
triangle inequality, we have ∣∣∣∣σ̂2

i −
σ2

ξi

∣∣∣∣ = |ϕ(â(uuu))− ϕ(a)| (303)

≤ |ϕ′(a)| |â(uuu)− a|+ o (|â(uuu)− a|) . (304)

Hence, combining (300), (301) and (304), we conclude that there exists a constant A2 > 0 such that for all n large enough (128)
holds for any uuu ∈ T (n, α, p).

Finally, the bound (129) follows immediately from a direct application of Lemma 6 to (128).
Calculations to show (285): From (282) and (283), we have

1

n

n∑
i=1

m̄i(xi)−
1

n

n∑
i=1

mi(xxx) (305)

=
1

n

n∑
i=1

2ν4
i

(
λ̂?(xxx)− λ?

)
(

1 + 2λ̂?(xxx)ν2
i

)
(1 + 2λ?ν2

i )
+

1

n

n∑
i=1

2x2
i ν

2
i

(
2 + 2λ̂?(xxx)ν2

i + 2λ?ν2
i

)(
λ̂?(xxx)− λ?

)
(

1 + 2λ̂?(xxx)ν2
i

)2

(1 + 2λ?ν2
i )

2
. (306)
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By (129), for all n large enough, ∀uuu ∈ T (n, α, p) and xxx = S>uuu, we have∣∣∣(1 + 2λ̂?(xxx)ν2
i

)
−
(
1 + 2λ?ν2

i

)∣∣∣ ≤ 1 + 2λ?ν2
i

2
. (307)

Using (213) and (215), we deduce that 1 ≤ 1 + 2λ?ν2
i ≤

σ2
i

θn
. Therefore, (307) implies that

1

2
≤ 1 + 2λ̂?(xxx)ν2

i ≤
3σ2

i

2θn
. (308)

We continue to bound (306) as ∣∣∣∣∣ 1n
n∑
i=1

m̄i(xi)−
1

n

n∑
i=1

mi(xxx)

∣∣∣∣∣ (309)

≤ 1

n

n∑
i=1

4ν4
i

∣∣∣λ̂?(xxx)− λ?
∣∣∣+

1

n

n∑
i=1

20x2
i ν

2
i σ

2
i

θn

∣∣∣λ̂?(xxx)− λ?
∣∣∣ (310)

≤

[
1

n

n∑
i=1

4ν4
i +

1

n
· 20σ6

θn(1− a)6

n∑
i=1

x2
i

σ2
i

] ∣∣∣λ̂?(xxx)− λ?
∣∣∣ (311)

≤A′′1ηn, (312)

where (310) is by plugging (308) into (306); (311) is by ν2
i ≤ σ2

i and

σ6
i =

σ6

µ3
i

≤ σ6

(1− a)6
, ∀i ∈ [n], (313)

which is due to (71); and (312) holds for some constant A′′1 > 0 (depending on d only) by (125), (129) and (223). �

C. Proof of Lemma 9

Proof. We sketch the proof, which is similar to [14, Lem. 5] except for some slight changes. Since Y ?1 , . . . , Y
?
n are independent

and the distortion measure d (·, ·) is separable, we use the definition (15), the distribution formula (212) for YYY ?, and the formula
for the moment generating function of a noncentral χ2

1-distributed random variable to obtain for δ > 0 and xxx ∈ Rn,

ΛYYY ? (xxx, δ, d) = −nδd+

n∑
i=1

δx2
i

1 + 2δν2
i

+

n∑
i=1

1

2
log
(
1 + 2δν2

i

)
, (314)

where ν2
i ’s are in (213). Let λ̂?(xxx) be defined in (130). Similar to [14, Eq. (315)-(320)], by the Taylor expansion of ΛYYY ? (xxx, δ, d)

in δ at the point δ = λ?, we have for any xxx ∈ Rn,

ΛYYY ?
(
xxx, λ̂?(xxx), d

)
− ΛYYY ? (xxx, λ?, d) ≤ (S′(xxx))2

2S′′(xxx)
, (315)

where we denoted

S′(xxx) , Λ′YYY ? (xxx, λ?, d) =

n∑
i=1

[
min(θn, σ

2
i )
]2

σ2
i

(
x2
i

σ2
i

− 1

)
, (316)

and

S′′(xxx) , −Λ′′YYY ? (xxx, λ? + ξ(xxx), d) , (317)

where (316) is by first taking derivatives of (314) with respect to δ and then plugging λ? = 1
2θn

; θn > 0 is the water level
matched to d via the n-th order reverse waterfilling (31) over σ2

i ’s; and

ξ(xxx) , ρ(λ̂?(xxx)− λ?), (318)

for some ρ ∈ [0, 1]. Note from the definition (121) that for any xxx, R(X̂XX(xxx),YYY ?, d) is a nonincreasing function in d, hence
λ̂?(xxx) ≥ 0, which, combined with direct computations using (314), implies S′′(xxx) ≥ 0, see (323) below. This fact was used in
deriving the inequality in (315).

Next we show concentration bounds for the two random variables S′(XXX) and S′′(XXX). From (316), we see that S′(XXX) is a
sum of n zero-mean and bounded-variance random variables. Then, by the Berry-Esseen theorem, we have

P
[
|S′(XXX)| ≥

√
V ′n log n

]
≤ K ′1√

n
, (319)
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where K ′1 > 0 is a constant and V ′ is a constant such that

V ′ ≥ 1

n

n∑
i=1

2
[
min(θn, σ

2
i )
]4

σ4
i

. (320)

To treat S′′(XXX), consider the following event E :

E , {xxx ∈ R : |λ̂?(xxx)− λ?| ≤ n−1/4}. (321)

Using Lemma 6 in Appendix C-C3, (300)-(304) and Theorem 5 in Section III-C2, one can show (similar to the proof of
Theorem 6) that there exists a constant c′ > 0 such that for all n large enough,

P [Ec] ≤ exp{−c′
√
n}. (322)

Computing the derivatives using (314) yields

S′′(xxx) =

n∑
i=1

4x2
i ν

2
i

[
1 + 2ν2

i (λ? + ξ(xxx))
]−3

+ 2ν4
i

[
1 + 2ν2

i (λ? + ξ(xxx))
]−2

. (323)

By conditioning on E and Ec, we see that for any t > 0,

P [S′′(XXX) ≤ nt] = P [S′′(XXX) ≤ nt, E ] + P [S′′(XXX) ≤ nt, Ec] (324)
≤ P [S′′(XXX) ≤ nt, E ] + P [Ec] . (325)

Using (323) and the simple bound 1
x+y ≥

exp(−y/x)
x for any x, y > 0, we have for any xxx ∈ E ,

S′′(xxx) ≥ exp(−3n−1/4/λ?)

n∑
i=1

[
4x2

i ν
2
i

(
1 + 2ν2

i λ
?
)−3

+ 2ν4
i

(
1 + 2ν2

i λ
?
)−2
]

(326)

=

n∑
i=1

Aix
2
i +Bi, (327)

where Ai, Bi ≥ 0 are defined as

Ai , exp(−3n−1/4/λ?)4ν2
i

(
1 + 2ν2

i λ
?
)−3

, (328)

Bi , exp(−3n−1/4/λ?)2ν4
i

(
1 + 2ν2

i λ
?
)−2

. (329)

Let Vn be defined as

Vn ,
1

n

n∑
i=1

2Aiσ
4
i , (330)

and choose the constant t in (325) such that for all n large enough,

0 < t <
1

n

n∑
i=1

(Aiσ
2
i +Bi)−

√
Vn log n

n
. (331)

By the Berry-Esseen theorem, there exists a constant K ′′1 > 0 such that

P [S′′(XXX) ≤ nt, E ] ≤ P

[
n∑
i=1

AiX
2
i +Bi ≤ nt

]
≤ K ′′1√

n
. (332)

The existence of such a constant t satisfying (331) is guaranteed since for any d < dmax and for all n sufficiently large, there is
a constant fraction of strictly positive Ai’s and Bi’s, which can be verified by plugging (213) and (215) into (328) and (329).
Combining (325) and (332) implies that there exists a constant K ′′′1 > 0 such that for all n large enough

P [S′′(XXX) ≤ nt] ≤ K ′′′1√
n
, (333)

where the constant t satisfies (331). Finally, similar to [14, Eq. (339)], combining (315), (319) and (333) yields (265). �
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D. Proof of Lemma 10

Proof. Due to Lemma 4 in Appendix C-C1, for any xxx ∈ Rn, we can write the random variable involved in (268) as a sum of
independent random variables, to which the Berry-Esseen theorem is applied. The details follow. From (280) and (281), we have

d
(
xxx, F̂FF ?

)
=

1

n

n∑
i=1

M2
i (xxx), (334)

where the random variables Mi(xxx)’s are defined as

Mi(xxx) , (F̂ ?i − xi). (335)

From (281), we know that the conditional distribution satisfies

Mi(xxx) | X̂XX = xxx ∼ N

(
−xi

1 + 2λ̂?(xxx)ν2
i

,
ν2
i

1 + 2λ̂?(xxx)ν2
i

)
, (336)

where λ̂?(xxx) is in (130). Hence, conditioned on X̂XX = xxx, the random variable d
(
xxx, F̂FF ?

)
follows the noncentral χ2-distribution

with (at most) n degrees of freedom. Applying the Berry-Esseen theorem to (334) yields that ∀γ > 0,

P
[
d− γ < d

(
xxx, F̂FF ?

)
≤ d |X̂XX = xxx

]
(337)

= P

[
nd− nγ −

∑n
i=1mi(xxx)

s
√
n

<
1

s
√
n

n∑
i=1

(
M2
i (xxx)−mi(xxx)

)
≤
nd−

∑n
i=1mi(xxx)

s
√
n

|X̂XX = xxx

]
(338)

≥ Φ

(
nd−

∑n
i=1mi(xxx)

s
√
n

)
− Φ

(
nd− nγ −

∑n
i=1mi(xxx)

s
√
n

)
− 12t

s3
√
n
, (339)

where mi(x), defined in (122), is the expectation of M2
i (xxx) conditioned on X̂XX = xxx; and

s2 ,
1

n

n∑
i=1

Var
[
M2
i (xxx) | X̂XX = xxx

]
, (340)

t ,
1

n

n∑
i=1

E[
∣∣M2

i (xxx)−mi(xxx)
∣∣3 | X̂XX = xxx]. (341)

By the mean value theorem, (339) equals

nγ

s
√
n
√

2π
e−

b2

2 − 12t

s3
√
n

(342)

for some b satisfying

nd−
∑n
i=1mi(xxx)− nγ
s
√
n

≤ b ≤
nd−

∑n
i=1mi(xxx)

s
√
n

. (343)

To further lower-bound (342), we bound b2 as follows.

b2 ≤ 2

(
nd−

∑n
i=1mi(xxx)

s
√
n

)2

+ 2

(
nγ

s
√
n

)2

(344)

≤ 2p2α log log n

s2
+

2 log2q n

s2n
(345)

≤ 4p2α log log n

c2
s

, (346)

where (344) is by (343) and the elementary inequality (x+ y)2 ≤ 2(x2 + y2); (345) is by (124) and the choice of γ in (267).
The constant q in (267) is chosen to be

q ,
2p2α

c2
s

+ 1. (347)
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The constant cs > 0 is a lower bound of s, whose existence is justified below at the end of the proof. Finally, (346) holds for
all sufficiently large n. Using (346), we can further lower-bound (342) as(

logq n

s
√

2π
(log n)

− 2p2α

c2s − 12t

s3

)
1√
n

(348)

=

(
log n

s
√

2π
− 12t

s3

)
1√
n

(349)

≥ C1√
n
, (350)

where (348) is by plugging (346) into (342); (349) is by using (347); and (350) holds for all sufficiently large n and some
constant C1 > 0. Therefore, (268) follows.

Finally, to justify that s and t, defined in (340) and (341), are bounded as we assumed in obtaining (346) and (350), we
compute using (336)

Var
[
M2
i (xxx) | X̂XX = xxx

]
=

4x2
i ν

2
i

(1 + 2λ̂?(xxx)ν2
i )3

+
2ν4
i

(1 + 2λ̂?(xxx)ν2
i )2

. (351)

Then, using (308) to bound 1 + 2λ̂?(xxx)ν2
i and (125) to bound x2

i , we can lower- and upper-bound s by positive constants; t
can be bounded similarly. �

APPENDIX F

A. Derivation of the maximum likelihood estimator

This section presents the details in obtaining (72). The random vector (U1, U2 − aU1, ..., Un − aUn−1)> is distributed
according to N (0, σ2I). Let pa(·) be the probability density function of UUU with parameter a, then

â(uuu) , arg max
a

pa(uuu) (352)

= arg max
a

n∏
i=1

1√
2πσ2

e−
1

2σ2
(ui−aui−1)2 (353)

= arg min
a

n∑
i=2

(ui − aui−1)2 + u2
1 (354)

= arg min
a

(
n∑
i=2

u2
i−1

)
a2 −

(
2

n∑
i=2

ui−1ui

)
a+

(
n∑
i=1

u2
i

)
(355)

=

∑n−1
i=1 uiui+1∑n−1
i=1 u

2
i

, (356)

where (354) is by collecting the terms in the exponent, and (356) is by minimizing the quadratic function of a.

B. Proof of Theorem 5

Proof. We first bound P [â(UUU)− a > η]. Define the random variable W (n, η) as

W (n, η) ,
n−1∑
i=1

(
UiZi+1 − ηU2

i

)
. (357)

Then, from (72) in Section III-C2 above and (5), it is easy to see that

P [â(UUU)− a > η] = P [W (n, η) > 0] . (358)

From the definition of the Gauss-Markov source in (5), we have

Ui =

i∑
j=1

ai−jZj . (359)

Plugging (359) into (357), we obtain

W (n, η) =

n∑
i=2

i−1∑
j=1

ai−j−1ZiZj −
η

1− a2

n−1∑
i=1

n−1∑
j=1

(
a|i−j| − a2n−i−j

)
ZiZj . (360)
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Notice that (360) can be further rewritten as the following quadratic form in the n i.i.d. random variables Z1, . . . , Zn:

W (n, η) = ZZZ>Q(n, η)ZZZ, (361)

where Q(n, η) is an n× n symmetric matrix defined as

Qi,j(n, η) =


−η 1−a2(n−i)

1−a2 , i = j < n

0, i = j = n
1
2a
|i−j|−1 − η a

|i−j|−a2n−i−j
1−a2 , otherwise.

(362)

For simplicity, in the rest of the proof, we write W and Q for W (n, η) and Q(n, η), respectively. By the Hanson-Wright
inequality [24, Th. 1.1], there exists a universal constant c > 0 such that for any t > 0 9

P [W − E [W ] > t] ≤ exp

[
−cmin

(
t2

σ4‖Q‖2F
,

t

σ2‖Q‖

)]
, (363)

where ‖Q‖F and ‖Q‖ are the Frobenius and operator norms of Q, respectively. Taking t = −E [W ] (which is > 0 for all n
large enough, as shown in (367) below) in (363), we can bound (358) as

P [W > 0] ≤ exp

[
−cmin

(
(−E [W ])

2

σ4‖Q‖2F
,
−E [W ]

σ2‖Q‖

)]
. (364)

It remains to bound E [W ], ‖Q‖2F and ‖Q‖. In the following, we show that −E [W ] = Θ(ηn), ‖Q‖2F = Θ(n) and ‖Q‖ = O(1).
Plugging these estimates into (364) yields (73) up to constants. The details follow. We first consider E [W ]. From (361) and (362),
we have

E [W ] = σ2tr(Q) = − ησ2n

1− a2
+
ησ2(1− a2n)

(1− a2)2
. (365)

Define the constant K1 > 0 as

K1 ,
1

2(1− a2)
. (366)

Then, for all n large enough, we have

−E [W ] ≥ K1σ
2ηn. (367)

We then consider ‖Q‖2F . Direct computations using (362) yield

‖Q‖2F =

[
1

2(1− a2)
+

(1 + a2)η2 − 2a(1− a2)η

(1− a2)3
+

(
4aη2 − 2(1− a2)η

)
a2n

a(1− a2)3

]
· n

+
4aη

(1− a2)3
− 1

2(1− a2)2
− η2(4a2 + 1)

(1− a2)4

+

[
4a2η2

(1− a2)4
+

1

2(1− a2)2
− 4aη

(1− a2)3

]
· a2n

+
η2

(1− a2)4
· a4n. (368)

Define the constant K2 > 0 as

K2 ,
1

1− a2
+

2(1 + 5a2)η2

(1− a2)3
. (369)

Since η > 0 and a ∈ [0, 1), from (368), we have for all n large enough,

‖Q‖2F ≤ K2n. (370)

9The sub-gaussian norm ‖Zi‖ψ2
[44, Def. 5.7] of Zi ∼ N (0, σ2) satisfies ‖Zi‖ψ2

≤ C1σ for a universal constant C1 > 0, see [44, Example 5.8].
By [24, Th. 1.1], there exists a universal constant C2 > 0 such that for any t > 0,

P [W − E [W ] > t] ≤ exp

[
−C2 min

(
t2

C4
1σ

4‖Q‖2F
,

t

C2
1σ

2‖Q‖

)]
.

In (363), we absorb C1 and C2 into a single universal constant c.
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Finally, we bound ‖Q‖. Using the Gershgorin circle theorem [42, p.16, Th. 1.11], one can easily show that

‖Q‖ ≤ max
i∈[n]

‖qi‖1, (371)

where qi denotes the i-th row in Q. Direct computations using (362) yield that ∀i ∈ [n],

‖qi‖1 ≤ K3, (372)

where K3 is a positive constant given by

K3 ,
1

1− a
+

η

1− a2
+

2η

(1− a)2
. (373)

Therefore, ∀n ≥ 1, we have

‖Q‖ ≤ K3. (374)

Plugging the bounds (367), (370) and (374) into (364), we have for all n large enough

P [W > 0] ≤ exp

[
−cmin

(
K2

1η
2n

K2
,
K1ηn

K3

)]
. (375)

Notice that all the arguments up to this point are valid for any η > 0. However, the constants K2 and K3 in the bound (375)
depend on η via (369) and (373), respectively. Since we are interested in small η, in the rest of the proof, we assume η ∈ (0, 1).
Besides, with the restriction η ∈ (0, 1), we can get rid of the dependence of K2 and K3 on η, and simplify (375). For any
η ∈ (0, 1), we can bound K2 and K3 as follows:

K2 ≤ K ′2 ,
1

1− a2
+

2(5 + a2)

(1− a2)3
, (376)

K3 ≤ K ′3 ,
a+ 4

(1− a)2(1 + a)
. (377)

Applying the bounds (376) and (377) to (375), and then setting

c1 ,
K2

1

K ′2
and c2 ,

K1

K ′3
(378)

yields

P [â(UUU)− a > η] ≤ exp
[
−cmin

(
c1η

2n, c2ηn
)]
. (379)

Finally, to bound P [â(UUU)− a < −η], in the above proof, we replace the random variable W (n, η) by V (n, η), defined as

V (n, η) ,
n−1∑
i=1

(
−UiZi+1 − ηU2

i

)
. (380)

In quadratic forms, V (n, η) = ZZZ>S(n, η)ZZZ, where S(n, η) is an n× n symmetric matrix, defined in a way similar to Q(n, η):

Si,j(n, η) =


−η 1−a2(n−i)

1−a2 , i = j < n

0, i = j = n

− 1
2a
|i−j|−1 − η a

|i−j|−a2n−i−j
1−a2 , otherwise.

(381)

With the same techniques as above, we obtain

P [â(UUU)− a < −η] ≤ exp
[
−cmin

(
c1η

2n, c2ηn
)]
, (382)

where c, c1 and c2 are the same constants as those in (379). �
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C. Proof of Theorem 6

Proof. The proof is similar to that of Theorem 5. In particular, (375) still holds:

P [â(UUU)− a > ηn] ≤ exp

[
−cmin

(
K2

1η
2
nn

K2
,
K1ηnn

K3

)]
. (383)

Instead of (376) and (377), we bound K2 and K3 by

K2 ≤ K ′′2 ,
2

1− a2
, (384)

and

K3 ≤ K ′′3 ,
2

1− a
, (385)

where (384) and (385) hold for all n large enough in view of (74), (369) and (373). Applying the bounds (384) and (385)
to (383) and using the fact that for all n large enough,

min

(
K2

1η
2
nn

K ′′2
,
K1ηnn

K ′′3

)
=

η2
nn

8(1− a2)
, (386)

we obtain

P [â(UUU)− a > ηn] ≤ 1

(log n)
κα , (387)

where κ is given in (76). Finally, we can bound P [â(UUU)− a < −ηn] in the same way. �
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