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Abstract

Solving a large-scale system of linear equations is a key step at the heart of many
algorithms in machine learning, scientific computing, and beyond. When the prob-
lem dimension is large, computational and/or memory constraints make it desirable,
or even necessary, to perform the task in a distributed fashion. In this paper, we
consider a common scenario in which a taskmaster intends to solve a large-scale
system of linear equations by distributing subsets of the equations among a number
of computing machines/cores. We propose an accelerated distributed consensus
algorithm, in which at each iteration every machine updates its solution by adding
a scaled version of the projection of an error signal onto the nullspace of its system
of equations, and where the taskmaster conducts an averaging over the solutions
with momentum. The convergence behavior of the proposed algorithm is analyzed
in detail and analytically shown to compare favorably with the convergence rate of
alternative distributed methods, namely distributed gradient descent, distributed
versions of Nesterov’s accelerated gradient descent and heavy-ball method, the
block Cimmino method, and ADMM. On randomly chosen linear systems, as well
as on real-world data sets, the proposed method offers significant speed-up relative
to all the aforementioned methods. Finally, our analysis suggests a novel varia-
tion of the distributed heavy-ball method, which employs a particular distributed
preconditioning, and which achieves the same theoretical convergence rate as the
proposed consensus-based method.

1 Introduction

With the advent of big data, many analytical tasks of interest rely on distributed computations over
multiple processing cores or machines. This is either due to the inherent complexity of the problem,
in terms of computation and/or memory, or due to the nature of the data sets themselves that may
already be dispersed across machines. Most algorithms in the literature have been designed to run in
a sequential fashion, as a result of which in many cases their distributed counterparts have yet to be
devised.

Many sophisticated algorithms in machine learning and data analysis are composed of a number
of basic computations (e.g., matrix algebra, solving equations, etc). For these computations to run
efficiently in a distributed setting, we are required to address a number of technical questions: (a)
What computation should each worker carry out? (b) What is the communication architecture and
what messages should be communicated between the processors? (c) How does the distributed
implementation fare in terms of computational complexity? and (d) What is the rate of convergence
in the case of iterative algorithms?

In this paper, we focus on solving a system of linear equations in a distributed fashion, which is one
of the most fundamental problems in numerical computation, and lies at the heart of many algorithms
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in engineering and the sciences. In particular, we consider the setting in which a taskmaster intends to
solve a large-scale system of equations with the help of a set of computing machines/cores (Figure 1).

This problem can in general be cast as an optimization problem with a cost function that is separable
in the data (but not in the variables) 1. Hence, there are general approaches to construct distributed
algorithms for this problem, such as distributed versions of gradient descent and its variants (e.g.
Nesterov’s accelerated gradient [15], heavy-ball method [16], etc.), where each machine computes
the partial gradient corresponding to a term in the cost and the taskmaster then aggregates the partial
gradients by summing them, as well as the so-called Alternating Direction Method of Multipliers
(ADMM) and its variants [3]. Among others, some recent approaches for Distributed Gradient
Descent (DGD) have been presented and analyzed in [23], [17] and [21], and also coding techniques
for robust DGD in the presence of failures and straggler machines have been studied in [10, 20].
ADMM has been widely used [7, 5, 22] for solving various convex optimization problems in a
distributed way, and in particular for consensus optimization [13, 18, 12], which is the relevant one
for the type of separation that we have here.

In addition to the optimization-based methods, there are a few distributed algorithms designed
specifically for solving systems of linear equations. The most famous one of these is what is known
as the block Cimmino method [6, 19, 2], which is a block row-projection method [4], and is in a
way a distributed implementation of the Kaczmarz method [8]. Another algorithm has been recently
proposed in [11, 14], where a consensus-based scheme is used to solve a system of linear equations
over a network of autonomous agents. Our algorithm bears some resemblance to all of these methods,
but as it will be explained in detail, it has much faster convergence than any of them.

Our main contribution is the design and analysis of a fast distributed consensus-based algorithm
to solve large-scale systems of linear equations. More specifically, we develop a methodology in
which the taskmaster assigns a subset of equations to each of the machines and invokes a distributed
consensus-based algorithm to obtain the solution to the original problem in an iterative manner. At
each iteration, each machine updates its solution by projecting an error signal onto the nullspace of
its corresponding system of equations and taking a weighted step in that direction. The taskmaster
then conducts a memory-augmented averaging on the new solutions provided by the machines. We
prove that the algorithm has linear convergence, and we quantify its convergence rate and complexity.
Compared to the Kaczmarz/Cimmino-type methods [6, 19, 2] and the consensus scheme proposed
in [11, 14], our method is significantly accelerated, due to the momentum incorporated in both
projection and averaging steps. For this reason, we refer to our method as Accelerated Projection-
Based Consensus (APC). We provide a complete analysis of the convergence rate of APC (Section 3),
as well as a detailed comparison with all the other distributed methods mentioned above (Section 4).
Also by empirical evaluations over both randomly chosen linear systems and real-world data sets, we
demonstrate that the proposed algorithm offers significant speed-ups relative to the other distributed
methods (Section 5). Finally, as a further implication of our results, we propose a novel distributed
preconditioning method (Section 6), which can be used to improve the convergence rate of distributed
gradient-based methods and match that of the APC.

2 The Setup

We consider the problem of solving a large-scale system of linear equations

Ax = b, (1)

where A ∈ RN×n, x ∈ Rn and b ∈ RN . While we will generally take N ≥ n, we will assume
that the system has a unique solution. For this reason, we will most often consider the square case
(N = n).

As mentioned before, for large-scale problems (when N,n � 1), it is highly desirable, or even
necessary, to solve the problem in a distributed fashion. Assuming we havemmachines, the equations
can be partitioned so that each machine gets a disjoint subset of them. In other words, we can write

1Solving a system of linear equations, Ax = b, can be set up as the optimization problem minx ‖Ax−b‖2 =
minx

∑
i ‖(Ax)i − bi‖2.
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Figure 1: Schematic representation of the taskmaster and the m machines. Each machine i has only a
subset of the equations, i.e. [Ai, bi].

(1) as 
A1

A2

...
Am

x =


b1
b2
...
bm

 ,
where each machine i receives [Ai, bi]. In some applications, the data may already be stored on
different machines in such a fashion. For the sake of simplicity, we assume that m divides N , and
that the equations are distributed evenly among the machines, so that each machine gets p = N

m

equations. Therefore Ai ∈ Rp×n and bi ∈ Rp for every i = 1, . . .m. It is helpful to think of p as
being relatively small compared to n. In fact, each machine has a system of equations which is highly
under-determined.

3 Accelerated Projection-Based Consensus

3.1 The Algorithm

Each machine i can certainly find a solution (among infinitely many) to its own highly under-
determined system of equations Aix = bi, with simply O(p3) computations. We denote this initial
solution by xi(0). Clearly adding any vector in the right nullspace of Ai to xi(0) will yield another
viable solution. The challenge is to find vectors in the nullspaces of each of the Ai’s in such a way
that all the solutions for different machines coincide.

At each iteration t, the master provides the machines with an estimate of the solution, denoted
by x̄(t). Each machine then updates its value xi(t) by projecting its difference from the estimate
onto the nullspace, and taking a weighted step in that direction (which behaves as a “momentum”).
Mathematically

xi(t+ 1) = xi(t) + γPi(x̄(t)− xi(t)),
where Pi = I−ATi (AiA

T
i )−1Ai is the projection matrix onto the nullspace of Ai (It is easy to check

that AiPi = 0 and P 2
i = Pi).

Although this might have some resemblance to the block Cimmino method because of the projections,
as it will be explained, the convergence time of the APC method is much better (by a square root)
than that of the block Cimmino method. Moreover, it turns out that the block Cimmino method is in
fact a special case of APC for γ = 1.

The update rule of xi(t+ 1) described above can be also thought of as the solution to an optimization
problem with two terms, the distance from the global estimate x̄(t) and the distance from the previous
solution xi(t). In other words, one can show that

xi(t+ 1) = argmin
xi

‖xi − x̄(t)‖2 +
1− γ
γ
‖xi − xi(t)‖2

s.t. Aixi = bi
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Algorithm 1 APC: Accelerated Projection-based Consensus (For solving Ax = b distributedly)

Input: data [Ai, bi] for each machine i = 1, . . .m, parameters η, γ
Initialization: at each machine i find a solution xi(0) (among infinitely many) to Aix = bi.
for t = 1 to T do

for each machine i parallel do
xi(t+ 1)← xi(t) + γPi(x̄(t)− xi(t))

end for
at the master: x̄(t+ 1)← η

m

∑m
i=1 xi(t+ 1) + (1− η)x̄(t)

end for

The second term in the objective is what distinguishes this method from the block Cimmino method.
If one sets γ equal to 1 (which, as it will be shown in Section 4.5, is the reduction to the block
Cimmino method), the second term disappears altogether, and the update no longer depends on xi(t).
As we will show, this has a dramatic impact on the convergence rate.

After each iteration, the master collects the updated values xi(t+ 1) to form a new estimate x̄(t+ 1).
A plausible choice for this is to simply take the average of the values as the new estimate, i.e.,

x̄(t+ 1) =
1

m

m∑
i=1

xi(t+ 1).

This update works, and is what appears both in ADMM and in the consensus method of [11, 14]. But
it turns out that it is extremely slow. Instead, we take an affine combination of the average and the
previous estimate as

x̄(t+ 1) =
η

m

m∑
i=1

xi(t+ 1) + (1− η)x̄(t),

which introduces a one-step memory, and again behaves as a momentum.

The resulting update rule is therefore

xi(t+ 1) = xi(t) + γPi(x̄(t)− xi(t)), i = 1, . . . ,m, (2a)

x̄(t+ 1) =
η

m

m∑
i=1

xi(t+ 1) + (1− η)x̄(t), (2b)

which leads to Algorithm 1.

3.2 Convergence Analysis

We analyze the convergence of the proposed algorithm and prove that it has linear convergence with
no additional assumption imposed. We also derive the rate of convergence explicitly.

Let us define the matrix X ∈ Rn×n as

X ,
1

m

m∑
i=1

ATi (AiA
T
i )−1Ai. (3)

Note that 1
m

∑m
i=1 Pi = I −X . As it will become clear soon, the condition number of this matrix

determines the behavior of the algorithm. Since the eigenvalues of the projection matrix Pi are all 0
and 1, for every i, the eigenvalues of X are all between 0 and 1. Denoting the eigenvalues of X by
µi, we have:

0 ≤ µmin , µn ≤ · · · ≤ µ1 , µmax ≤ 1. (4)
Let us define complex quadratic polynomials pi(λ) characterized by γ and η as

pi(λ; γ, η) , λ2 + (−ηγ(1− µi) + γ − 1 + η − 1)λ+ (γ − 1)(η − 1) (5)

for i = 1, . . . , n. Further, define set S as the collection of pairs γ ∈ [0, 2] and η ∈ R for which the
largest magnitude solution of pi(λ) = 0 among every i is less than 1, i.e.

S = {(γ, η) ∈ [0, 2]× R | roots of pi have magnitude less than 1 for all i}. (6)

The following result summarizes the convergence behavior of the proposed algorithm.

4



Theorem 1. Algorithm 1 converges to the true solution as fast as ρt converges to 0, as t→∞, for
some ρ ∈ (0, 1), if and only if (γ, η) ∈ S. Furthermore, the optimal rate of convergence is

ρ =

√
κ(X)− 1√
κ(X) + 1

≈ 1− 2√
κ(X)

, (7)

where κ(X) = µmax

µmin
is the condition number of X , and the optimal parameters (γ∗, η∗) are the

solution to the following equations{
µmaxηγ = (1 +

√
(γ − 1)(η − 1))2,

µminηγ = (1−
√

(γ − 1)(η − 1))2.

For proof see the supplementary material.

3.3 Computational Complexity and Numerical Stability

In addition to the convergence rate, or equivalently the number of iterations until convergence, one
needs to consider the computational complexity per iteration.

At each iteration, since Pi = In − ATi (AiA
T
i )−1Ai, and Ai is p × n, each machine has to do the

following two matrix-vector multiplications: (1) Ai(xi(t)− x̄(t)), which takes pn scalar multiplica-
tions, and (2)

(
ATi (AiA

T
i )−1

)
times the vector from the previous step (e.g. using QR factorization),

which takes another np operations. Thus the overall computational complexity of each iteration is
2pn.

Finally, we should mention that the computation done at each machine during each iteration is
essentially a projection, which has condition number one and is as numerically stable as a matrix
vector multiplication can be.

4 Comparison with Related Methods

4.1 Distributed Gradient Descent (DGD)

As mentioned earlier, (1) can also be viewed as an optimization problem of the form

minimize
x

‖Ax− b‖2,

and since the objective is separable in the data, i.e. ‖Ax − b‖2 =
∑m
i=1 ‖Aix − bi‖2, generic

distributed optimization methods such as distributed gradient descent apply well to the problem.

The regular or full gradient descent has the update rule x(t+ 1) = x(t)− αAT (Ax(t)− b), where
α > 0 is the step size or learning rate. The distributed version of gradient descent is one in which
each machine i has only a subset of the equations [Ai, bi], and computes its own part of the gradient,
which is ATi (Aix(t)− bi). The updates are then collectively done as:

x(t+ 1) = x(t)− α
m∑
i=1

ATi (Aix(t)− bi). (8)

One can show that this also has linear convergence, and the rate of convergence is

ρ =
κ(ATA)− 1

κ(ATA) + 1
≈ 1− 2

κ(ATA)
. (9)

We should mention that since each machine needs to compute ATi (Aix(t)− bi) at each iteration t,
the computational complexity per iteration is 2pn, which is identical to that of APC.

5



Table 1: A summary of the convergence rates of different methods. The smaller the convergence rate
is, the faster is the method. DGD: Distributed Gradient Descent, D-NAG: Distributed Nesterov’s
Accelerated Gradient Descent, D-HBM Distributed Heavy-Ball Method, Consensus: Standard
Projection-Based Consensus, B-Cimmino: Block Cimmino Method, APC: Accelerated Projection-
based Consensus.

DGD D-NAG D-HBM Consensus B-Cimmino APC (proposed)

1− 2
κ(ATA)

1− 2√
3κ(ATA)+1

1− 2√
κ(ATA)

1− µmin(X) 1− 2
κ(X) 1− 2√

κ(X)

4.2 Distributed Nesterov’s Accelerated Gradient Descent (D-NAG)

A popular variant of gradient descent is Nesterov’s accelerated gradient descent [15], which has a
memory term, and works as follows:

y(t+ 1) = x(t)− α
m∑
i=1

ATi (Aix(t)− bi), (10a)

x(t+ 1) = (1 + β)y(t+ 1)− βy(t). (10b)

One can show [9] that the optimal convergence rate of this method is

ρ = 1− 2√
3κ(ATA) + 1

, (11)

which is improved over the regular distributed gradient descent.

4.3 Distributed Heavy-Ball Method (D-HBM)

The heavy-ball method [16], otherwise known as the gradient descent with momentum, is another
accelerated variant of gradient descent as follows:

z(t+ 1) =βz(t) +

m∑
i=1

ATi (Aix(t)− bi), (12a)

x(t+ 1) =x(t)− αz(t+ 1). (12b)

It can be shown [9] that the optimal rate of convergence of this method is

ρ =

√
κ(ATA)− 1√
κ(ATA) + 1

≈ 1− 2√
κ(ATA)

, (13)

which is further improved over DGD and D-NAG, and is similar to, but not the same as, APC. The
difference is that the condition number ofATA =

∑m
i=1A

T
i Ai is replaced with the condition number

of X =
∑m
i=1A

T
i

(
AiA

T
i

)−1
Ai in APC. Given its structure as the sum of projection matrices, one

may speculate that X has a much better condition number than ATA. Indeed, our experiments with
random, as well as real, data sets suggest that this is the case and that the condition number of X is
often significantly better.

4.4 Alternating Direction Method of Multipliers (ADMM)

Alternating Direction Method of Multipliers (more specifically, consensus ADMM [18, 3]), is another
generic method for solving optimization problems with separable cost function f(x) =

∑m
i=1 fi(x)

distributedly, by defining additional local variables. Each machine i holds local variables xi(t) ∈ Rn
and yi(t) ∈ Rn, and the master’s value is x̄(t) ∈ Rn, for any time t. For fi(x) = 1

2‖Aix− bi‖
2, the

update rule of ADMM simplifies to

xi(t+ 1) = (ATi Ai + ξIn)−1(ATi bi − yi(t) + ξx̄(t)), i = 1, . . . ,m (14a)

x̄(t+ 1) =
1

m

m∑
i=1

xi(t+ 1) (14b)

yi(t+ 1) = yi(t) + ξ(xi(t+ 1)− x̄(t+ 1)), i = 1, . . . ,m (14c)

6



It turns out that this method is very slow (and often unstable) in its native form for the application
in hand. One can check that when system (1) has a solution all the yi variables converge to zero in
steady state. Therefore setting yi’s to zero can speed up the convergence significantly. We use this
modified version in Section 5, to compare with.

We should also note that the computational complexity of ADMM is O(pn) per iteration (the inverse
is computed using matrix inversion lemma), which is again the same as that of gradient-type methods
and APC.

4.5 Block Cimmino Method

The Block Cimmino method [6, 19, 2], which is a parallel method specifically for solving linear
systems of equations, is perhaps the closest algorithm in spirit to APC. It is, in a way, a distributed
implementation of the so-called Kaczmarz method [8]. The convergence of the Cimmino method is
slower by an order in comparison with APC (its convergence time is the square of that of APC), and
it turns out that APC includes this method as a special case when γ = 1.

The block Cimmino method is the following:
ri(t) = A+

i (bi −Aix̄(t)), i = 1, . . . ,m (15a)

x̄(t+ 1) = x̄(t) + ν

m∑
i=1

ri(t), (15b)

where A+
i = ATi (AiA

T
i )−1 is the pseudoinverse of Ai.

Proposition 2. The APC method (Algorithm 1) includes the block Cimmino method as a special case
for γ = 1.

The proof is provided in the supplementary material.

It is not hard to show that optimal rate of convergence of the Cimmino method is

ρ =
κ(X)− 1

κ(X) + 1
≈ 1− 2

κ(X)
, (16)

which is by an order worse than that of APC (1− 2√
κ(X)

).

A summary of the optimal convergence rates of all the methods is provided in Table 1

5 Experimental Results

In this section, we evaluate the proposed method (APC) by comparing it with the other distributed
methods discussed throughout the paper, namely DGD, D-NAG, D-HBM, modified ADMM, and
block Cimmino methods. We use randomly-generated problems as well as real-world ones form the
National Institute of Standards and Technology repository, Matrix Market [1].

We first compare the rates of convergence of the algorithms ρ, which is the spectral radius of the
iteration matrix. To distinguish the differences, it is easier to compare the convergence times, which is
defined as T = 1

− log ρ (≈ 1
1−ρ ). We tune the parameters in all of the methods to their optimal values,

to make the comparison between the methods fair. Also as mentioned before, all the algorithms have
the same per-iteration computation and communication complexity. Table 2 shows the values of
the convergence times for a number of synthetic and real-world problems with different sizes. It
can be seen that APC has a much faster convergence, often by orders of magnitude. As expected
from the analysis, the APC’s closest competitor is the distributed heavy-ball method. Notably, in
randomly-generated problems, when the mean is not zero, the gap is much larger.

To further verify the performance of the proposed algorithm, we also run all the algorithms on
multiple problems, and observe the actual decay of the error. Fig. 2 shows the relative error (the
distance from the true solution, divided by the true solution, in `2 norm) for all the methods, on two
examples from the repository. Again, to make the comparison fair, all the methods have been tuned
to their optimal parameters. As one can see, APC outperforms the other methods by a wide margin,
which is consistent with the order-of-magnitude differences in the convergence times of Table 2.
We should also remark that initialization does not seem to affect the convergence behavior of our
algorithm.
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Table 2: A comparison between the optimal convergence time T (= 1
− log ρ ) of different methods on

real and synthetic examples. Boldface values show the smallest convergence time.
QC324: Model of H+

2 in an Electromagnetic Field. ORSIRR 1: Oil Reservoir Simulation. ASH608:
Original Harwell sparse matrix test collection.

DGD D-NAG D-HBM M-ADMM B-CIMMINO APC

QC324
(324× 324) 1.22× 107 4.28× 103 2.47× 103 1.07× 107 3.10× 105 3.93× 102

ORSIRR 1
(1030× 1030) 2.98× 109 6.68× 104 3.86× 104 2.08× 108 2.69× 107 3.67× 103

ASH608
(608× 188) 5.67× 100 2.43× 100 1.64× 100 1.28× 101 4.98× 100 1.53× 100

STANDARD
GAUSSIAN
(500× 500)

1.76× 107 5.14× 103 2.97× 103 1.20× 106 1.46× 107 2.70× 103

NONZERO-MEAN
GAUSSIAN
(500× 500)

2.22× 1010 1.82× 105 1.05× 105 8.62× 108 9.29× 108 2.16× 104

STANDARD TALL
GAUSSIAN
(1000× 500)

1.58× 101 4.37× 100 2.78× 100 4.49× 101 1.13× 101 2.34× 100

Figure 2: The decay of the error for different distributed algorithms, on two real problems from
Matrix Market [1] (QC324: Model of H+

2 in an Electromagnetic Field, and ORSIRR 1: Oil reservoir
simulation). n = # of variables, N = # of equations, m = # of workers, p = # of equations per
worker.

6 A Distributed Preconditioning to Improve Gradient-Based Methods

The noticeable similarity between the optimal convergence rate of APC (
√
κ(X)−1√
κ(X)+1

) and that of

D-HBM (
√
κ(ATA)−1√
κ(ATA)+1

) suggests that there might be a connection between the two. It turns out that

there is, and we propose a distributed preconditioning for D-HBM, which makes it achieve the same
convergence rate as APC. The algorithm works as follows.

Prior to starting the iterative process, each machine i can premultiply its own set of equations
Aix = bi by (AiA

T
i )−1/2, which can be done in parallel (locally) with O(p2n) operations. This

8



transforms the global system of equations Ax = b to a new one Cx = d, where

C =

 (A1A
T
1 )−1/2A1

...
(AmA

T
m)−1/2Am

 , and d =

 (A1A
T
1 )−1/2b1

...
(AmA

T
m)−1/2bm

 .
The new system can then be solved using distributed heavy-ball method, which will achieve the same
rate of convergence as APC, i.e.

√
κ−1√
κ+1

where κ = κ(CTC) = κ(X).

7 Conclusion

We considered the problem of solving a large-scale system of linear equations by a taskmaster
with the help of a number of computing machines/cores, in a distributed way. We proposed an
accelerated projection-based consensus algorithm for this problem, and fully analyzed its convergence
rate. Analytical and experimental comparisons with the other known distributed methods confirm
significantly faster convergence of the proposed scheme. Finally, our analysis suggested a novel
distributed preconditioning for improving the convergence of the distributed heavy-ball method to
achieve the same theoretical performance as the proposed consensus-based method.
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Supplementary Material

A Proof of the Main Result

Here we provide the proof of Theorem 1.

Proof. Let x∗ be the unique solution of Ax = b. To make the analysis easier, we define error vectors
with respect to x∗ as ei(t) = xi(t) − x∗ for all i = 1 . . .m, and ē(t) = x̄(t) − x∗, and work with
these vectors. Using this notation, Eq. (2a) can be rewritten as

ei(t+ 1) = ei(t) + γPi(ē(t)− ei(t)), i = 1, . . . ,m.

Note that both x∗ and xi(t) are solutions to Aix = bi. Therefore, their difference, which is ei(t), is
in the nullspace of Ai, and it remains unchanged under projection onto the nullspace. As a result,
Piei(t) = ei(t), and we have

ei(t+ 1) = (1− γ)ei(t) + γPiē(t), i = 1, . . . ,m. (17)

Similarly, the recursion (2b) can be expressed as

ē(t+ 1) =
η

m

m∑
i=1

ei(t+ 1) + (1− η)ē(t),

which using (17) becomes

ē(t+ 1) =
η

m

m∑
i=1

((1− γ)ei(t) + γPiē(t)) + (1− η)ē(t)

=
η(1− γ)

m

m∑
i=1

ei(t) +

(
ηγ

m

m∑
i=1

Pi + (1− η)In

)
ē(t). (18)

It is relatively easy to check that in the steady state, the recursions (17), (18) become{
Piē(∞) = ei(∞), i = 1, . . . ,m

ē(∞) = 1
m

∑m
i=1 Piē(∞)

which because of 1
m

∑m
i=1 Pi = I− 1

m

∑m
i=1A

T
i (AiA

T
i )−1Ai = I−X , implies ē(∞) = e1(∞) =

· · · = em(∞) = 0, if µmin 6= 0.

Now let us stack up all the m vectors ei along with the average ē together, as a vector e(t)T =
[e1(t)T , e2(t)T , . . . , em(t)T , ē(t)T ] ∈ R(m+1)n. The update rule can be expressed as:

e1(t+ 1)
...

em(t+ 1)
ē(t+ 1)

 =

 (1− γ)Imn γ

P1

...
Pm


η(1−γ)
m [In . . . In] M



e1(t)

...
em(t)
ē(t)

 , (19)

where M = ηγ
m

∑m
i=1 Pi + (1− η)In.

The convergence rate of the algorithm is determined by the spectral radius (largest magnitude
eigenvalue) of the (m+ 1)n× (m+ 1)n block matrix in (19). The eigenvalues λi of this matrix are
indeed the solutions to the following characteristic equation.

det

 (1− γ − λ)Imn γ

P1

...
Pm


η(1−γ)
m [In . . . In] ηγ

m

∑m
i=1 Pi + (1− η − λ)In

 = 0.
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Using the Schur complement and properties of determinant, the characteristic equation can be
simplified as follows.

0 = (1− γ − λ)mn det

(
ηγ

m

m∑
i=1

Pi + (1− η − λ)In −
η(1− γ)γ

(1− γ − λ)m

m∑
i=1

Pi

)

= (1− γ − λ)mn det

(
ηγ

m
(1− 1− γ

1− γ − λ
)

m∑
i=1

Pi + (1− η − λ)In

)

= (1− γ − λ)mn det

(
−ηγλ

(1− γ − λ)m

m∑
i=1

Pi + (1− η − λ)In

)

= (1− γ − λ)(m−1)n det

(
−ηγλ

∑m
i=1 Pi
m

+ (1− γ − λ)(1− η − λ)In

)
.

Therefore, there are (m− 1)n eigenvalues equal to 1− γ, and the remaining 2n eigenvalues are the
solutions to

0 = det (−ηγλ(I −X) + (1− γ − λ)(1− η − λ)I)

= det (ηγλX + ((1− γ − λ)(1− η − λ)− ηγλ) I) .

Whenever we have dropped the subscript of the identity matrix, it is of size n.

Recall that the eigenvalues of X are denoted by µi, i = 1, . . . , n. Therefore, the eigenvalues of
ηγλX+((1− γ − λ)(1− η − λ)− ηγλ) I are ηγλµi+(1−γ−λ)(1−η−λ)−ηγλ, i = 1, . . . , n.
The above determinant can then be written as the product of the eigenvalues of the matrix inside it, as

0 =

n∏
i=1

ηγλµi + (1− γ − λ)(1− η − λ)− ηγλ.

Therefore, there are two eigenvalues λi,1, λi,2 as the solution to the quadratic equation

λ2 + (−ηγ(1− µi) + γ − 1 + η − 1)λ+ (γ − 1)(η − 1) = 0

for every i = 1, . . . , n, which will constitute the 2n eigenvalues. When all these eigenvalues, along
with 1 − γ, are less than 1, the error converges to zero as ρt, with ρ being the largest magnitude
eigenvalue (spectral radius). Therefore, Algorithm 1 converges to the true solution x∗ as fast as ρt
converges to 0, as t→∞, if and only if (γ, η) ∈ S.

The optimal rate of convergence is achieved when the spectral radius is minimum. For that to
happen, all the above eigenvalues should be complex and have magnitude |λi,1| = |λi,2| =√

(γ − 1)(η − 1) = ρ. It implies that we should have

(γ + η − ηγ(1− µi)− 2)2 ≤ 4(γ − 1)(η − 1), ∀i,
or equivalently

−2
√

(γ − 1)(η − 1) ≤ γ + η − ηγ(1− µi) ≤ 2
√

(γ − 1)(η − 1), ∀i.
The expression in the middle is an increasing function of µi, and therefore for the above bounds to
hold, it is enough for the lower bound to hold for the µmin and the upper bound to hold for µmax, i.e.{

γ + η − ηγ(1− µmax)− 2 = 2
√

(γ − 1)(η − 1)

2 + ηγ(1− µmin)− γ − η = 2
√

(γ − 1)(η − 1)
,

which can be massaged and expressed as{
µmaxηγ = (1 +

√
(γ − 1)(η − 1))2 = (1 + ρ)2

µminηγ = (1−
√

(γ − 1)(η − 1))2 = (1− ρ)2
.

Dividing the above two equations implies κ(X) = (1+ρ)2

(1−ρ)2 , which results in the optimal rate of
convergence being

ρ =

√
κ(X)− 1√
κ(X) + 1
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B Proof of Proposition 2

We prove that the block Cimmino method is a special case of the proposed algorithm for γ = 1.

Proof. When γ = 1, Eq. (2a) becomes

xi(t+ 1) = xi(t)− Pi (xi(t)− x̄(t))

= xi(t)−
(
I −ATi (AiA

T
i )−1Ai

)
(xi(t)− x̄(t))

= x̄(t) +ATi (AiA
T
i )−1Ai(xi − x̄(t))

= x̄(t) +ATi (AiA
T
i )−1(bi −Aix̄(t))

In the last equation, we used the fact that xi is always a solution to Aix = bi. Notice that the above
equation is no longer an “update” in the usual sense, i.e., xi(t+ 1) does not depend on xi(t) directly.
This can be further simplified using the pseudoinverse of Ai, A+

i = ATi (AiA
T
i )−1 as

xi(t+ 1) = x̄(t) +A+
i (bi −Aix̄(t)).

It is then easy to see from the Cimmino’s equation (15a) that

ri(t) = xi(t+ 1)− x̄(t).

Therefore, the update (15b) can be expressed as

x̄(t+ 1) = x̄(t) + ν

m∑
i=1

ri(t)

= x̄(t) + ν

m∑
i=1

(xi(t+ 1)− x̄(t))

= (1−mν)x̄(t) + ν

m∑
i=1

xi(t+ 1),

which is nothing but the same update rule as in (2b) with η = mν.
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