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SI-1 The exponential proportional hazards model with non-

informative censoring (EPH-C) and L1 penalty (EPH-C-

L1)

Let t, a non-negative random variable, be the survival time of an individual. We denote

the non-random (p × 1)-dimensional vector of covariates x for that individual. If a subset

s′ = s+ 1 of the p′ = p+ 1 covariates have a fixed sum (e.g. categorical covariates), we only

include s elements of the subset in the p covariates. Under the EPH model, there are two

parameters of interest, the time-independent baseline hazard λ and the (p × 1)-dimensional

vector of regression coefficients β. For notational efficiency, we set,

x̃ =

1

x

 w =

lnλ

β

 (SI-1)

Under this model, the survival time distribution, given the covariates x̃, is the exponential

distribution with the following parameterization of the standard exponential rate parameter

ρ,

t|x ∼ Exp(ρ = exp
(
wT x̃

)
) (SI-2)

We take the following model for non-informative censoring (EPH-C). There are two non-

negative random variables, t and c, that represent the survival time and the censoring time
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of the individual. We take the probability densities for t and c to be given by Eqn. (SI-2),

with parameters wT and wC , respectively, and t ⊥ c|x. In the censored setting, one is not

able to observe both t and c for an individual. Instead, the observed random variables for

each individual are t̃ = min(t, c) and δ = I(t̃ = t), where I is the indicator function. The

probability of the observed data for an individual is simply,

pwT ,wC (t̃, δ|x) =
(
pwT (t̃|x)PwC (c > t̃|x)

)δ (
PwT (t > t̃|x)pwC (t̃|x)

)1−δ
. (SI-3)

PwT,C ((t, c) > t̃|x) is the survival function for (t, c), respectively. As a shorthand, we use the

subscript {T,C} for generic expressions for the respective (t, c) distributions.

We assume that the individual observations of the data are independent, so the likeli-

hood of the data of N individuals is simply the product of the individual probabilities. The

likelihood of the data can be rearranged into a product of a partial likelihoods for wT and

wC ,

L(wT ,wC) = L(wT )L(wC)

L(wT,C) =

N∏
n=1

pwT,C (t̃n|xn)δ
T,C
n PwT,C ((t, c) > t̃n|xn)1−δT,C

n (SI-4)

where we have introduced δT = δ and δC = 1− δ.

For PCA-EPH-C, the model is the same as EPH-C, except the non-random (p × 1)-

dimensional vector of covariates x is replaced with (k × 1)-dimensional PCA projection of

the covariates x. Let the covariates x for N individuals be arranged into a (p × N) mean-

subtracted matrix with singular value decomposition UΛVT . Let Λk refer to the square

matrix with the top k singular values along the diagonal, and let Vk refer to the truncated

k × N right singular vectors. Then the (k × N)-dimensional covariates for PCA-EPH-C for

individuals 1, . . . , N are ΛkVk.

For EPH-C-L1, the model is the same as EPH-C, except an L1-penalty is desired, or, for

the setting of p > N , required. For EPH-C-L1, the partial log-likelihood of EPH-C gains a

penalty factor,

ln (LL1(wT,C)) = ln (L(wT,C))− γT,C |wT,C | , (SI-5)

where γT,C sets the degree of sparsity induced by the penalty. Determining the appropriate

γT,C is a model selection problem.
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SI-1.1 Inference

The parameters in the EPH model can be estimated through an iterative maximum likelihood

procedure. Following the insight by [1], the maximum likelihood estimates,

ŵT,C = max
wT,C

L(wT,C)

can be re-framed as an iterative least-squares minimization problem through a first-order

Taylor expansion of L(wT,C). For notational convenience, arrange the data for each individual

x̃n into a (p+ 1)×N -dimensional matrix X̃, and δn, t̃n into 1×N -dimensional vectors δ, t̃.

Another convenient definition is ηT,C = wT
T,CX̃. The minimization problem for ŵ

(s+1)
T,C at

step s+ 1 is,

ŵ
(s+1)
T,C = min

w
(s+1)
T,C

∣∣∣∣∣∣∣∣(η(s)
T,C + δT,C ◦ t̃−1 ◦ exp

(
−η(s)

T,C

)
− 1−

(
w

(s+1)
T,C

)T
X̃

)
diag

(√
t̃ ◦ exp( 1

2η
(s)
T,C)

)∣∣∣∣∣∣∣∣2
where ◦ is the element-wise Hadamard product, (exp(x),x−1) are applied element-wise, and

1 is a 1×N vector of ones. We initialize as follows,

w
(0)
T,C =

ln

(∑N
n=1 δ

T,C
n∑N

n=1 t̃n

)
0

 ,

where 0 is a p× 1 vector of zeros.

If an L1 penalized solution for ŵT,C is desired, use standard algorithms such as least-

angle-regression-lasso (LARS-lasso) [2] at each iteration [1].

We find ŵT,C converges quickly; we use 5 iterations.

SI-1.2 Prediction

Once we have the maximum likelihood estimate for the regression coefficients, ŵT , we can

calculate the expectation of the time-to-event given the covariates x for an individual. Under

the EPH model (Eqn. SI-2), the prediction t̂ for the individual’s time-to-event is,

t̂ = EŵT
[t|x] = exp(−ŵT

T x̃).

For PCA-EPH-C prediction, the (k× 1)-dimensional PCA projection of the covariates for

the an unseen sample x is, UT
k (x − µ), where the UT

k and µ are learned from the training

samples.
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SI-2 Factor analysis (FA)

SI-2.1 Inference

There is no closed-form solution for the maximum likelihood estimates of the parameters of

FA, but the estimates can be obtained through the Expectation-Maximization (EM) algorithm

[3] applied to the complete log-likelihood [4]. For notational convenience, arrange the data

for each individual xn into a dx × N -dimensional matrix X, zn into a dz × N -dimensional

matrix Z, and µ is a dx × N matrix with each column identical. We follow [4] and find µ̂

from the maximum likelihood of the marginal likelihood of the observed covariates,

µ̂ =
1

N

N∑
n=1

xn. (SI-6)

From the complete log-likelihood, then, the expectation (E) -step, given parameters µ,W,Ψ

is,

E[Z|X] = (WTΨ−1W + 1)−1WTΨ−1(X− µ) (SI-7)

E[ZZT |X] = N(WTΨ−1W + 1)−1 + E[Z|X]E[Z|X]T . (SI-8)

The maximization (M) -step of the parameters is,

Ŵ|µ̂ = (X− µ̂) E[Z|X]TE[ZZT |X]−1

Ψ̂|µ̂,Ŵ =
1

N
diag

(
(X− µ̂)(X− µ̂)T − ŴE[ZZT |X]ŴT

)
. (SI-9)

SI-2.1.1 Additional conditional distributions

The conditional binomial distribution, Binomial(b, f = σ(Wz + µ)), is,

pb,W,µ(x|z) =

 dx∏
i=1

 b

xi

σb(−(Wiz + µi))

 exp
(
xT (Wz + µ)

)
(SI-10)

where the elements of x are xi ∈ {0, 1, . . . , b}. This conditional distribution has a drawback

in that the marginal distribution of the observed covariates, p(x), is intractable. Using the

insight of [5] and [6], we introduce a variational approximation to the logistic function σ in

(Eqn. SI-10). This approximation is,

σ(x) ≥ σ(ξ) exp

(
1

2
(x− ξ)− λ(ξ)(x2 − ξ2)

)
λ(ξ) =

1

2ξ

(
σ(ξ)− 1

2

)
, (SI-11)
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where ξ is the variational parameter. Note that the approximation is exact when ξ = x.

Under this approximation, pb,W,µ(x|z) is approximated by p̃b,W,µ,ξ(x|z), where there is a

dx × 1 vector of variational parameters ξ (for N individuals there are dx ×N),

p̃b,W,µ,ξ(x|z) =

 dx∏
i=1

 b

xi

σb(ξi) exp

(
− b

2
(Wiz + µi + ξi)− bλ(ξi)((Wiz + µi)

2 − ξ2
i )

)
exp

(
xT (Wz + µ)

)
. (SI-12)

This approximation is a lower bound: p̃b,W,µ,ξ(x|z) ≤ pb,W,µ(x|z) and p̃b,W,µ,ξ(x) ≤ pb,W,µ(x).

An additional benefit is that the variational approximation is quadratic in z. As a conse-

quence, the EM updates for the approximate complete log-likelihood are analytic, and the

conditional probability of p̃(z|x) becomes Gaussian.

With this approximation, for individuals n ∈ {1, . . . , N}, the E-steps are,

E[zjn|xn] =

dz∑
k=1

(Cn)jk

(
dx∑
i=1

Wik

(
xin −

b

2
− 2bλ(ξin)µin

))
(SI-13)

E[zjnzkn|xn] = (Cn)jk + E[zjn|xn]E[zkn|xn]

where ((Cn)−1)jk =

(
δjk + 2b

dx∑
i=1

λ(ξin)WijWik

)
(SI-14)

In these expressions, repeated indices do not imply summations. µin is the (in)th element of

the matrix of N columns of the dx × 1 vector µ. δjk is the Kronecker delta. Each Cn is a

dz × dz matrix.

The M-steps are,

ξ̂
2
in|Wij ,µin =

dz∑
k=1

dz∑
j=1

WijWikE[zjnzkn|xn] + 2

dz∑
j=1

WijE[zjn|xn]µin + µ2
in

Ŵik|ξ̂in,µin = min
Wik

1

2

 dz∑
j=1

N∑
n=1

(
xin −

b

2
− 2bλ(ξ̂in)µin

)
E[zjn|xn]((Li)

−1T )jk

−
dz∑
j=1

Wij(Li)jk

2

where

dz∑
l=1

(Li)jl(Li)
T
lk =

N∑
n=1

2bλ(ξ̂in)E[zjnzkn|xn]

µ̂i|ξ̂in,Ŵij =
1∑N

n=1 2bλ(ξ̂in)

N∑
n=1

(xin −
b

2

)
− 2bλ(ξ̂in)

dz∑
j=1

ŴijE[zjn|xn]

 ,(SI-15)

where each (Li) is the ith (in dx) (dz × dz)-Cholesky decomposition. There are dx total

dz-dimensional minimization problems for Ŵi. In these expressions, repeated indices do not
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imply summations. We have revealed the indices and summations for the sake of clarity. Note

that this is an expectation-conditional-maximization algorithm (ECM) due to the structure of

successive maximizations [7]. We have suppressed a EM-iteration index in favor of ·̂ referring

to the current iteration’s maximum likelihood estimate of the parameter and the absence of

a hat · on a parameter referring to the prior iteration’s maximum likelihood estimate of the

parameter.

The conditionally multinomial distribution Multinomial(b, f = softmax(Wz + µ)) is,

pb,W,µ(x|z) =
b!∏dx
i=1 xi!

exp

(
xT (Wz + µ)− b ln

(
dx∑
i=1

exp (Wiz + µi)

))
(SI-16)

where b =
∑dx

i=1 xi and
∑dx

i=1 fi = 1. To have the appropriate number of parameters for the

multinomial distribution, we set the elements of the last row of W and µ equal to zero.

[8] introduce the following two-step bound on the function ln
(∑dx

i=1 exp (ηi)
)

. This bound

builds on the work of [5] and [6] and allows for a closed-form approximate EM algorithm for

the multinomial factor analysis setting. The bound in [8] is,

ln

(
dx∑
i=1

exp(ηi)

)
≤ α+

dx∑
i=1

ln(1 + exp(ηi − α)) = α−
dx∑
i=1

lnσ(−ηi + α) (SI-17)

Next, the variational approximation (Eqn. SI-11) is applied separately to each σ(−ηi + α).

This is the same as i independent binomial approximations, with one more parameter, α, for

the overall constraint. The approximate conditional multivariate distribution is,

p̃b,W,µ,ξ(x|z) =
b!∏dx

i=1 xi!
exp (−bα)σb(ξi) exp

(
xT (Wz + µ)

)
dx∏
i=1

exp

(
− b

2
(Wiz + µi − α+ ξi)− bλ(ξi)((Wiz + µi − α)2 − ξ2

i )

)
(SI-18)

For N individuals, α is a 1 × N vector, and, as in the binomial case, there are dx × N

variational parameters ξ.

Like the binomial case, this approximation provides a lower bound: p̃b,W,µ,ξ(x|z) ≤

pb,W,µ(x|z) and p̃b,W,µ,ξ(x) ≤ pb,W,µ(x). The variational approximation is again quadratic

in z, and the EM updates for the approximate complete log-likelihood are analytic, and the

conditional probability of p̃(z|x) becomes Gaussian.

With this approximation, for individuals n ∈ {1, . . . , N}, the E-steps are,

E[zjn|xn] =

dz∑
k=1

(Cn)jk

(
dx∑
i=1

Wik

(
xin −

b

2
− 2bλ(ξin)(µin −αn)

))
(SI-19)

E[zjnzkn|xn] = (Cn)jk + E[zjn|xn]E[zkn|xn]
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where ((Cn)−1)jk =

(
δjk + 2b

dx∑
i=1

λ(ξin)WijWik

)
(SI-20)

In these expressions, repeated indices do not imply summations. µin is the (in)th element of

the matrix of N columns of the dx × 1 vector µ. δjk is the Kronecker delta. Each Cn is a

dz × dz matrix.

The M-steps are,

ξ̂
2

in|Wij ,µin,αn =

dz∑
k=1

dz∑
j=1

WijWikE[zjnzkn|xn] + 2

dz∑
j=1

WijE[zjn|xn]µin + µ2
in

−2αn

dz∑
j=1

WijE[zjn|xn] + α2
n − 2αnµin

α̂n|ξ̂in,Wij ,µin =
1∑dx

i=1 λ(ξ̂in)

 dx∑
i=1

λ(ξ̂in)

 dz∑
j=1

WijE[zjn|xn] + µin

− 1− dx

2

2


Ŵik|ξ̂in, α̂n,µin = min

Wik

1

2

 dz∑
j=1

N∑
n=1

(
xin −

b

2
− 2bλ(ξ̂in) (µin − α̂n)

)
E[zjn|xn]((Li)

−1T )jk

−
dz∑
j=1

Wij(Li)jk

2

where

dz∑
l=1

(Li)jl(Li)
T
lk =

N∑
n=1

2bλ(ξ̂in)E[zjnzkn|xn]

µ̂i|ξ̂in,Ŵij , α̂n =
1∑N

n=1 2bλ(ξ̂in)

N∑
n=1

(xin −
b

2

)
− 2bλ(ξ̂in)

 dz∑
j=1

ŴijE[zjn|xn]− α̂n

 ,

(SI-21)

where the conventions are the same as for the conditionally binomial case. We choose an

ECM approach for W and µ for the same reasons as for the conditionally binomial case. We

also choose an ECM approach for the variational parameters to avoid large matrix inversions.

SI-2.1.2 Diverse conditional distributions

For diverse conditional distributions such as (Eqn. 12), with the variational approximations in

place for the conditionally binomial covariates and conditionally multinomial covariates, the

conditional probability of p̃(z|x) remains Gaussian. The E-step for individuals n ∈ {1, . . . , N}
are,

E[zjn|xn] =

dz∑
k=1

(Cn)jk

D∑
d=1

I(type(d) = normal)

d(d)
x∑

i=1

W
(d)
ik (Ψ(d))−1

ii (x
(d)
in − µ

(d)
in )

+I(type(d) = binomial)

d(d)
x∑

i=1

W
(d)
ik

(
x

(d)
in −

b(d)

2
− 2b(d)λ(ξ

(d)
in )µ

(d)
in

)

8



+I(type(d) = multinomial)

d(d)
x∑

i=1

W
(d)
ik

(
x

(d)
in −

b(d)

2
− 2b(d)λ(ξ

(d)
in )(µ

(d)
in −α(d)

n )

)
E[zjnzkn|xn] = (Cn)jk + E[zjn|xn]E[zkn|xn]

where ((Cn)−1)jk =

δjk +

D∑
d=1

I(type(d) = normal)

d(d)
x∑

i=1

W
(d)
ij (Ψ(d))−1

ii W
(d)
ik

+ I(type(d) 6= normal) 2b(d)

d(d)
x∑

i=1

λ(ξ
(d)
in )W

(d)
ij W

(d)
ik

 . (SI-22)

The M-steps for each (d) data type’s parameters are simply the M-steps for the relevant data

type given in (eqns. SI-9, SI-15, SI-21).

SI-2.1.3 Initialization

For each data type (d), we take a warm start initialization of the EM algorithm. In the

following, we will omit the data type index. If dx > dz, we initialize FA at the probabilistic

PCA solution [9],

µ(0) =
1

N

N∑
n=1

xn

W(0) = Udz(Λ2
dz − σ

21)

Ψ(0) = σ21

where X− µ(0) = UΛVT is the singular value decomposition

and σ2 =
1

N(dx − dz)

dx∑
i=dz+1

Λ2
ii (SI-23)

and Udz is the first dz columns of U, and likewise for Λ. If dx ≤ dz, then we initialize W(0)

as a matrix of ones, and Ψ(0) = (Λ2
ii I(i = dx)/N)1.

We initialize all variational parameters to one (αn = 1, ξin = 1), and enforce the appro-

priate constraints on W,µ for the conditionally multinomial distributions.

SI-3 Joint factor analysis and exponential proportional haz-

ards model with informative censoring (FA-EPH-C)

SI-3.1 Inference

With the addition of time-to-event and censoring data, the marginal probability of the data

pθ(t̃, δ,x
(1), . . . ,x(D)) is not analytic, even with the variational approximations. As a result,

the conditional expectations of the latent variables given the data are also not analytic. We
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calculate the necessary conditional expectations of functions f(z) given t̃, δ,x(1), . . . ,x(D) by

sampling from the conditional distribution using the Metropolis-Hastings (MH) algorithm

[10; 11]. The use of Monte-Carlo methods to approximate the E-step in the EM algorithm

was first introduced by [12]. The proposal density we use is z′n|z
(s)
n ∼ N (z

(s)
n , κCn), where

z′n is the proposal sample for step (s+ 1) and individual n, Cn is the covariance of individual

n under the FA-only model (Eqn. SI-22), and κ is a scale parameter. We initialize at

z
(0)
n = E[zn|xn], the conditional expectation of individual n under the FA-only model (Eqn.

SI-22).

We discard the first s = {1, . . . , 300} burn-in samples and collect the s = {301, . . . , 600}

samples for each individual n. We use these 300 samples for each individual n to calculate

the empirical conditional expectations E[f(z)|t̃, δ,x(1), . . . ,x(D)].

We monitor the acceptance rate ra, effective sample size neff , and convergence parame-

ter R̂(|E[zn|xn]|2) for two parallel Metropolis-Hastings sampling chains for the first E-step

for the first-individual to tune the scale parameter κ [13]. The effective sample size is

defined in [13] (Eqn. 11.4), and the convergence parameter R̂ of a statistic is defined in

[13] between (eqns. 11.3-4). Starting with κ = 6 and continuing in descending order (

κ ∈ {6, 5.5, 5, 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5, 0.25, 0.1}), we select the first scale parameter that

has an acceptance rate between 0.134 ≤ ra ≤ 0.334, an effective sample size neff ≥ 10, and

a convergence parameter R̂(|E[zn|xn]|2) ≤ 1.2. [13] contains a comprehensive discussion of

these statistics.

The M-step for each x(d) data type’s parameters is simply the M-step for the relevant data

type given in (eqns. SI-9, SI-15, SI-21). For the time-to-event and censoring data type M-

steps, we perform a Newton-Raphson step [14]. The subsequent EM algorithm is a generalized

EM (GEM) algorithm [3]. The M-step is the same for wT,C with δT,C . We omit the T,C

index below. At step (s+ 1), the M-step is,

w(s+1) = w(s) + a

(
N∑

n=1

t̃nEΘ(s)

[
z̃nz̃Tn exp

((
w(s)

)T
z̃n

) ∣∣∣t̃, δ,x(1), . . . ,x(D)

])−1

N∑
n=1

(
δnEΘ(s) [z̃n|t̃, δ,x(1), . . . ,x(D)]− t̃nEΘ(s)

[
z̃n exp

((
w(s)

)T
z̃n

) ∣∣∣t̃, δ,x(1), . . . ,x(D)

])
where 0 < a ≤ 1.

The parameter a sets the scale of the Newton-Raphson step size, z̃ is defined as in (Eqn.

SI-1), and the expectations are taken with respect to the step (s) parameters. We set a = 1.
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We initialize at,

w
(0)
T,C =

ln

(∑N
n=1 δ

T,C
n∑N

n=1 t̃n

)
0

 . (SI-24)

For the results in this note, we stop the approximate GEM algorithm after 10 iterations.

We explored using a larger number of iterations but found no improvement in the simulated

or cross-validated expected c-index (Sec. SI-6).

SI-3.2 Prediction

Once we have estimates for the maximum likelihood parameters ŵT , ŵC , Θ̂, we would like

to predict a survival time t̂ given x(1), . . . ,x(D) and the maximum likelihood parameters

ŵT , ŵC , Θ̂. With the variational approximations for binomial and multinomial distributions,

the conditional expectation of the survival time t is analytic. The result is,

t̂ = EŵT ,ŵC ,Θ̂
[t|x(1), . . . ,x(D)] =

1

λ̂T
exp

(
1

2
β̂
T
T Ĉβ̂T − EŵT ,ŵC ,Θ̂

[zT |x(1), . . . ,x(D)]β̂T

)
(SI-25)

where Ĉ and EŵT ,ŵC ,Θ̂
[zT |x(1), . . . ,x(D)] are defined in (Eqn. SI-22), and β̂T , λ̂T are compo-

nents of ŵT in (Eqn. SI-1). For these predictions, we take the average variational parameter

values α̂ = 1
N

∑N
n=1 α̂n and ξ̂i = 1

N

∑N
n=1 ξ̂in, since the estimates for the variational parame-

ters α̂ and ξ̂ were dependent on the learning-set individual n.

SI-4 Fast Approximation

We find a fast, decoupled approximation to the fully integrative model FA-EPH-C. The fast

approximation is as follows: (1) inference for factor analysis and estimation of the conditional

expectation of the latent variables, and then (2) inference for an exponential proportional

hazards model with the conditional expectation of the latent variables as covariates. The

decoupled inference algorithms are analytic. This provides a significant speed-up compared

to the fully integrative model, which requires Metropolis-Hastings simulations for every indi-

vidual at every E-step.

We tested the fast approximation on the cross validation stage of all four real datasets and

all four simulations. The average difference in c-index on the validation sets (integrative - fast

approximation) is 0.00, and the root mean-squared error is 0.02. The fully integrative model

took approximately 11 minutes on 50 cores to fit and predict for the GBM 0th cross-validation
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set for Model 0, while the fast approximation took around 4 minutes and 1 core. For the

LGG 0th cross-validation set for Model 0, the fully integrative model took approximately 25

minutes, while the fast approximation took approximately 5 minutes.

The majority of the instances tested had the fast approximation perform equivalently to

the the fully integrative model. However, while preparing the simulation studies, we observed

some instances where the fully integrative model outperformed the fast approximation. We

recommend using the fast approximation for exploratory analysis, and the fully integrative

model for final analysis.

SI-5 Concordance Index

The concordance index (c-index) was introduced by [15] as a non-parametric measure of

survival time prediction accuracy. In the absence of censoring, the c-index is related to the

Wilcoxon-Mann-Whitney U-statistic. We use the generalization of the c-index to account for

ties introduced by [16]. With the following definition,

τ(t̃,δ),(t̂,δ̂) =
1

N(N − 1)

N∑
n=1

N∑
m=1
m 6=n

(
I(t̃n ≥ t̃m)δm − I(t̃n ≤ t̃m)δn

) (
I(t̂n ≥ t̂m)δ̂m − I(t̂n ≤ t̂m)δ̂n

)

the c-index that accounts for ties is,

c(̃t, δ, t̂, δ̂ = 1) =
1

2

(
τ(t̃,δ),(t̂,1)

τ(t̃,δ),(t̃,δ)

+ 1

)
. (SI-26)

This reduces to the standard c-index when there are no ties.

SI-6 Cross-validation Strategy

The following outlines our cross-validation strategy:

1. Reserve 25% of the individuals (uniformly at random) as a test set. These individuals

are not used in cross-validation. Divide the remaining 75% individuals (uniformly at

random) into ncv cross-validation sets. Our results use ncv = 5.

2. Select a learning model M̂ . This could be various dz for FA-EPH-C or various L1

penalties for EPH-L1.

3. For each ncv cross-validation set v, the learning set l is the remaining (ncv − 1)/ncv

cross-validation sets. For each set v:

12



(a) Learn the parameters Θ̂l for learning model M̂ from the learning set l. In this

section, Θ is a collection of all the model parameters. If M̂ is a FA-EPH-C model,

use the approximate GEM algorithm outlined in Sec. SI-3.1. If M̂ is a EPH-L1

model, use the iterative least-squares procedure outlined in Sec. SI-1.1.

(b) Predict t̂v = EΘ̂l
[t|x(1)

v , . . . ,x
(D)
v ] for all N individuals in the validation set v (for

M̂ ∈FA-EPH-C, Eqn. SI-25 or Eqn. SI-6 for M̂ ∈ EPH-C-L1).

(c) Calculate the c-index on the validation set given the learning set,

c(v)|l = c(tv, 1, t̂v,1)|Θ̂l (Eqn. SI-26).

4. Calculate the mean and standard deviation for the cross-validated c-index.

SI-7 Model Selection Strategy

We use the following conservative selection criteria for “best” c-index among the tested mod-

els:

• Find the model with largest mean c-index. This is the“best” model, as long as the

following condition is met: no other model’s mean ± standard deviation is contained

within with the largest mean ± standard deviation.

• If the condition is not met, find the model with the next largest mean c-index that has

it’s mean ± standard deviation contained within the largest mean ± standard deviation.

This is the“best” model, as long as the following condition is met: no other model’s

mean ± standard deviation is contained within with the second largest mean ± standard

deviation.

• And so on, for additional nesting.

SI-8 Independent Censoring

The hazard function for the survival time, hT (t|x), after conditioning on time-independent

covariates x, is (page 3)[17],

hT (t|x) = lim
ε→0

P (t ≤ T < t+ ε|T ≥ t,x) =
p(t|x)

P (T > t|x)
. (SI-27)
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In this expression, the conditional probability density is p(t|x), and the conditional survival

function is P (T > t|x). Let us also define hT (t|C > t,x),

hT (t|C > t,x) = lim
ε→0

P (t ≤ T < t+ ε|T ≥ t, C ≥ t,x). (SI-28)

The condition for independent censoring is, conditioned on time-independent covariates x

(page 26-27)[17],

hT (t|x) = hT (t|C > t,x) whenever P (T̃ > t) > 0 (SI-29)

For the probability distribution for FA-EPH-C, (Eqn. 15), the relevant conditional hazard

functions are,

hT (t|x) =

∫
pwT (t|z)

(∏D
d=1 pΘ(d)(x(d)|z)

)
p(z)dz∫

PwT (T > t|z)
(∏D

d=1 pΘ(d)(x(d)|z)
)
p(z)dz

(SI-30)

hT (t|C > t,x) =

∫
pwT (t|z)PwC (C > t|z)

(∏D
d=1 pΘ(d)(x(d)|z)

)
p(z)dz∫

PwT (T > t|z)PwC (C > t|z)
(∏D

d=1 pΘ(d)(x(d)|z)
)
p(z)dz

. (SI-31)

It can be shown (Theorem 1)[18] the independent censoring condition (Eqn. SI-29) holds

for FA-EPH-C if and essentially only if,

PwC (C > t|z)−1 = a constant or hT (t|z) = a constant. (SI-32)

In FA-EPH-C, this only occurs when the censoring distribution and/or the survival distribu-

tion is independent of the latent variables, and βC = 0 and/or βT = 0, respectively.

SI-9 Additional Applications

SI-9.1 Glioblastoma multiforme.

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Primary

GBM arises de novo without progression from previously diagnosed LGG. Like LGG, primary

GBM exhibits heterogeneity in molecular phenotype and survival response. Clinical, exome

sequence, DNA copy number, DNA methylation, and messenger RNA expression data have

been collected for many glioblastomas from adults.[19] Seventy-one primary glioblastomas

have complete data including survival time, and 56 of the 71 patients are uncensored (79%).

Table 1 contains the dimension of each type of covariate used in FA-EPH-C and EPH-C-L1,

and the data collection and data platforms are discussed in detail the original paper [19].
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A cross-validated search for FA-EPH-C over latent dimensions dz = {2, 3, 4, 5} (Model

numbers 0 − 3) identifies latent dimension dz = 2 (Model 0) (Fig. SI-6). The models for

dz = {3, 4, 5} are eliminated because for at least one of the five CV sets, the EM algorithm

approached a Heywood case [20]. A Heywood case has some components of an estimated

Ψ(d) approach zero. One of the causes of Heywood cases is too many latent variables. A

cross-validated search for sparsity parameters γ ∈ {5e3, 1e4, 1e5} (Model numbers 4− 6) for

EPH-C-L1 identifies γ = 1e5 (Model 6) as the best penalty; however the performance of

this model on the GBM data is still quite poor (Fig. SI-6). The search for PCA-EPH-C

over latent dimensions dz = {2, 3, 4, 5} (Model numbers 7 − 10) identifies dimension dz = 3

(Model 8) as the best PCA-EPH-C model. For the GBM EPH-C gold-standard model (Model

number 11), we include age (in years), a 5-class categorical variable capturing expression

subtype (Classical, Mesenchymal, Neural, Proneural, G-CIMP), a binary variable capturing

MGMT status (∈ {methylated = 1, unmethylated = 0}), and a binary variable capturing

IDH1 status (∈ {WT = 1, R132H = 0}) as covariates. These covariates were identified as

predictive of positive clinical outcomes.[19] The performance of the gold standard is worse

than the other models considered in the CV model selection stage, despite the fact that the

comparison is biased in favor of the gold-standard model. FA-EPH-C outperforms EPH-C-L1,

PCA-EPH-C, and gold standard models during CV.

At latent dimension dz = 2 for FA-EPH-C, the latent projection of the training and

validation data shows no appreciable clustering among the patients (Fig. SI-7). Fig. SI-8

shows that the latent projection found by FA-EPH-C dz = 2 reveals some correlation with the

IDH1 status, MGMT status, and the expression subtype. The most apparent correlation is

with MGMT status.

The final test set c-index prediction accuracy for GBM was quite variable across the final

models. The gold standard EPH-C model performed best, followed by PCA-EPH-C with

dz = 3, then FA-EPH-C with dz = 2, and lastly the EPH-C-L1 with γ = 1e5. The results are

summarized in Table 2 .

SI-9.2 Lung adenocarcinoma

Lung cancer is the leading cause of cancer-related mortality around the world, and lung

adenocarcinoma (LUAD) is the most common type of lung cancer. Clinical, exome sequence,

DNA copy number, messenger RNA expression, and micro RNA expression data have been

collected for 172 LUAD tumors, with 72 patients uncensored (42%).[21] Table 1 contains
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the dimension of each type of covariate used in FA-EPH-C and EPH-C-L1. See the original

paper for a comprehensive discussion of the data collection and platforms.[21]

A cross-validated search for FA-EPH-C over latent dimensions dz = {2, 3, 4, 5} (Model

numbers 0−3) identifies dimension dz = 3 (Model 1) (Fig. SI-9). A cross-validated search for

sparsity parameters γ ∈ {1e3, 1e4, 1e5} (Model numbers 4−6) for EPH-C-L1 identifies γ = 1e3

(Model 4) as the best penalty (Fig. SI-9). The search for PCA-EPH-C over latent dimensions

dz = {2, 3, 4, 5} (Model numbers 7 − 10) identifies dimension dz = 3 (Model 8) as the best

PCA-EPH-C model. For the LUAD gold standard model (Model number 11), we take a 3-

class categorical variable for expression subtype (Terminal respiratory unit (TRU), Proximal-

proliferative (PP), Proximal-inflammatory (PI)), and a four-class categorical variable for the

pathology N-stage (n0, n1, n2, nx). These covariates were associated with survival outcome,

with the TRU subtype exhibiting superior outcomes.[21] This gold standard model is the best

predictor of survival time at the CV stage (Fig. SI-9).

The latent projection of the training and validation data shows no apparent clustering

among the patients at latent dimension dz = 2 for FA-EPH-C (Fig. SI-13). The latent

projection found by FA-EPH-C dz = 2, Fig. SI-14, exhibits some correlation with N-stage

and expression subtype. The most appreciable correlation is with the classical expression

subtype.

The final test set c-index prediction accuracy for LUAD was quite poor across the final

models, with the exception of PCA-EPH-C with dz = 3. The gold standard EPH-C model

performed next best, followed by the EPH-C-L1 with γ = 1e3, and lastly by the FA-EPH-C

with dz = 3. The results are summarized in Table 2 .

SI-9.3 Lung squamous cell carcinoma.

Lung squamous cell carcenoma (LUSC) is the second most common type of lung cancer. Clin-

ical, exome sequence, DNA copy number, DNA methylation, and messenger RNA expression

data have been collected for 104 LUSC tumors.[22] Table 1 contains the dimension of each

type of covariate used in FA-EPH-C and EPH-C-L1. Of the 104 patients, 47 are uncen-

sored (45%). See the original paper for a comprehensive discussion of the data collection and

platforms.[22]

A cross-validated search for FA-EPH-C over latent dimensions dz = {2, 5, 10, 15} (Model

numbers 0 − 3) identifies dimension dz = 15 (Model 3) (Fig. SI-12). We search over larger

latent dimensions for LUSC than for the other datasets because for LUSC, fitting the larger
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dimensional models do not result in Heywood cases. A cross-validated search for sparsity

parameters γ ∈ {1e3, 1e4, 1e5} (Model numbers 4−6) for EPH-C-L1 identifies γ = 1e3 (Model

4) as the best penalty; this is the best performing model for CV (Fig. SI-12). The search

for PCA-EPH-C over latent dimensions dz = {2, 5, 10, 15} (Model numbers 7− 10) identifies

dimension dz = 2 (Model 7) as the best PCA-EPH-C model, due to it’s comparatively small

variance. However, the performance is quite poor. The original paper does not perform a

survival analysis on the cohort and does not identify specific covariates as predictive of positive

clinical outcomes. [22] We follow later work [23] and use gender, smoking history, age at

initial pathologic diagnosis, and tumor stage as covariates in our gold standard model (Model

number 11). In particular, we use a binary variable for gender (∈ {Female = 1,Male = 0}),

a 4-class categorical variable for smoking history (Lifelong non-smoker, Current reformed

smoker for ≤ 15 years, Current reformed smoker for > 15 years, and Current smoker), and a

7-class categorical variable for pathology T-stage (t1, t1a, t1b, t2, t2a, t3, and t4). This gold

standard model is a poor predictor of survival time (Fig. SI-12). FA-EPH-C outperforms the

gold standard model during CV.

The latent projection of the training and validation data shows no apparent clustering

among the patients at latent dimension dz = 2 for FA-EPH-C (Fig. SI-13). The latent

projection found by FA-EPH-C dz = 2, Fig. SI-14, exhibits some correlation with the smoking

status, gender, and T-stage. The most appreciable correlation is with T-stage.

The final test set c-index prediction accuracy for LUSC was quite poor across all of the

final models. The FA-EPH-C with dz = 15 model performed best, followed by the EPH-C-L1

with γ = 1e3 and PCA-EPH-C with dz = 2, and last by the gold standard EPH-C model.

The results are summarized in Table 2 .
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SI-10 Additional Figures
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8 - PCA-EPH-C dz =3 
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Figure SI-1: Results for the SIM4 5-fold CV latent dimension search for FA-EPH-C and

comparison to the EPH-C-L1 model. Model types are as follows. Models 0− 3 are FA-EPH-

C and have, in order, dz = {2, 3, 4, 5}. Models 4 − 6 are EPH-C-L1 and have, in order,

γ = {5e4, 1e5, 1e6}, which selects an average of {5, 5, 5} relevant covariates.
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Figure SI-2: All of the SIM4 samples in the true latent space z.

18



0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
E[z1 |x]

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
[z

2
|x

]

0.0
1.0
2.0

0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
E[z1 |x]

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

E
[z

3
|x

]

0.0
1.0
2.0

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25
E[z2 |x]

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

E
[z

3
|x

]

0.0
1.0
2.0

Figure SI-3: SIM4 latent projections E[z|x(1), . . . ,x(D)] of the training cohort for the FA-EPH-

C dz = 3 model, colored by group membership. Circles represent uncensored observations,

and triangles represent censored observations.
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Figure SI-4: SIM4 latent projections E[z|x(1), . . . ,x(D)] of the test cohort for the FA-EPH-C

dz = 3 model, colored by group membership. Circles represent uncensored observations, and

triangles represent censored observations.
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Figure SI-5: LGG latent projections E[z|x(1), . . . ,x(D)] of the 0th cross-validation training

cohort for the FA-EPH-C dz = 2 model, and the dz = 2 PCA projection of the same

x(1), . . . ,x(D) data. Circles represent uncensored observations, and triangles represent cen-

sored observations.
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Figure SI-6: Results for the GBM 5-fold cross-validation latent dimension search for FA-EPH-

C, comparison to EPH-C-L1, and gold standard EPH-C. Model types are as follows. Models

0 − 3 are FA-EPH-C and have, in order, dz = {2, 3, 4, 5}. Models 1, 2, 3 are eliminated from

the model selection search because on at least 1 out of the 5 cross-validation groups, the

EM algorithm approaches a Heywood case. Models 4− 6 are EPH-C-L1 and have, in order,

γ = {5e3, 1e4, 1e5}, which selects on average {14, 9, 2} relevant covariates. Models 7− 10 are

PCA-EPH-C with dz = {2, 3, 4, 5}. Model 11 is the gold standard EPH-C model.
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Figure SI-7: GBM latent projections E[z|x(1), . . . ,x(D)] of the 0th cross-validation training and

validation cohort for the FA-EPH-C dz = 2 model. Circles represent uncensored observations,

and triangles represent censored observations.
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Figure SI-8: GBM latent projections E[z|x(1), . . . ,x(D)] of the 0th cross-validation training

cohort for the FA-EPH-C dz = 2 model. Circles represent uncensored observations, and

triangles represent censored observations.
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Figure SI-9: Results for the LUAD 5-fold cross-validation latent dimension search for FA-

EPH-C, comparison to EPH-C-L1, and gold standard EPH-C. Model types are as follows.

Models 0− 4 are FA-EPH-C and have, in order, dz = {2, 3, 4, 5}. Models 4− 6 are EPH-C-L1

and have, in order, γ = {1e3, 1e4, 1e5}, which selects on average {39, 12, 3} relevant covariates.

Models 7− 10 are PCA-EPH-C with dz = {2, 3, 4, 5}. Model 11 is the gold standard EPH-C

model.
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Figure SI-10: LUAD latent projections E[z|x(1), . . . ,x(D)] of the 0th cross-validation train-

ing and validation cohort for the FA-EPH-C dz = 2 model. Circles represent uncensored

observations, and triangles represent censored observations.
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Figure SI-11: LUAD latent projections E[z|x(1), . . . ,x(D)] of the 0th cross-validation training

cohort for the FA-EPH-C dz = 2 model. Circles represent uncensored observations, and

triangles represent censored observations.
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Figure SI-12: Results for the LUSC 5-fold cross-validation latent dimension search for FA-

EPH-C, comparison to EPH-C-L1, and gold standard EPH-C. Model types are as follows.

Models 0 − 3 are FA-EPH-C and have, in order, dz = {2, 5, 10, 15}. Models 4 − 6 are EPH-

C-L1 and have, in order, γ = {1e3, 1e4, 1e5}, which selects an average of {29, 11, 6} relevant

covariates. Models 7 − 10 are PCA-EPH-C with dz = {2, 5, 10, 15}. Model 11 is the gold

standard EPH-C model.
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Figure SI-13: LUSC latent projections E[z|x(1), . . . ,x(D)] of the 0th cross-validation train-

ing and validation cohort for the FA-EPH-C dz = 2 model. Circles represent uncensored

observations, and triangles represent censored observations.

25



0.3 0.2 0.1 0.0 0.1 0.2
E[z1 |x]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
[z

2
|x

]

3.0

3.6

4.2

4.8

5.4

6.0

6.6

7.2

7.8

(a) Log Event Time, in Log days

0.3 0.2 0.1 0.0 0.1 0.2
E[z1 |x]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
[z

2
|x

]

female
male

(b) Gender

0.3 0.2 0.1 0.0 0.1 0.2
E[z1 |x]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
[z

2
|x

]

Current reformed smoker for < or = 15 years
Current reformed smoker for > 15 years
Current smoker
Lifelong Non-smoker

(c) Smoking

0.3 0.2 0.1 0.0 0.1 0.2
E[z1 |x]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
[z

2
|x

]

t1
t1a
t1b
t2
t2a
t3
t4

(d) Pathology T stage

Figure SI-14: LUSC latent projections E[z|x(1), . . . ,x(D)] of the 0th cross-validation training

cohort for the FA-EPH-C dz = 2 model. Circles represent uncensored observations, and

triangles represent censored observations.
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