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Abstract

We propose a new approach to Bayesian prior probability distributions (priors) that can improve orbital solutions
for low-phase-coverage orbits, where data cover less than ∼40% of an orbit. In instances of low phase coverage—
such as with stellar orbits in the Galactic center or with directly imaged exoplanets—data have low constraining
power and thus priors can bias parameter estimates and produce underestimated confidence intervals. Uniform
priors, which are commonly assumed in orbit fitting, are notorious for this. We propose a new observable-based
prior paradigm that is based on uniformity in observables. We compare performance of this observable-based prior
and of commonly assumed uniform priors using Galactic center and directly imaged exoplanet (HR 8799) data.
The observable-based prior can reduce biases in model parameters by a factor of two and helps avoid
underestimation of confidence intervals for simulations with less than ∼40% phase coverage. Above this threshold,
orbital solutions for objects with sufficient phase coverage—such as S0-2, a short-period star at the Galactic center
with full phase coverage—are consistent with previously published results. Below this threshold, the observable-
based prior limits prior influence in regions of prior dominance and increases data influence. Using the observable-
based prior, HR 8799 orbital analyses favor low-eccentricity orbits and provide stronger evidence that the four
planets have a consistent inclination of ∼30° to within 1σ. This analysis also allows for the possibility of
coplanarity. We present metrics to quantify improvements in orbital estimates with different priors so that
observable-based prior frameworks can be tested and implemented for other low-phase-coverage orbits.

Key words: Galaxy: center – Galaxy: fundamental parameters – methods: statistical – planets and satellites:
fundamental parameters
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1. Introduction

The advent of adaptive optics (AO) has enabled orbital
parameter estimation for individual objects in several new and
exciting astrophysical systems, such as the Galactic nuclear star
cluster (NSC) and directly imaged exoplanet systems. At the
center of the Milky Way, the orbit of S0-2 (period=16 yr) has
provided the best evidence to date for the existence of
supermassive black holes, and has now begun to constrain
alternative theories of gravity (Ghez et al. 2000, 2003,
2005, 2008; Eckart et al. 2002; Schödel et al. 2002, 2003;
Eisenhauer et al. 2003; Gillessen et al. 2009, 2017; Genzel
et al. 2010; Meyer et al. 2012; Boehle et al. 2016; Grould et al.
2017; Hees et al. 2017; Parsa et al. 2017). Over time, it has
become possible to measure stellar orbits at larger Galacto-
centric radii and thereby study the dynamical structure of the
Galactic NSC—the only such system for which orbital studies
of central black holes and their host galaxies are possible (e.g.,
Ghez et al. 2005; Gillessen et al. 2017). Similarly, AO has
opened up a new window in the field of exoplanets. Orbital
motions of exoplanets imaged with AO have enabled the first
studies of the 3D dynamical structures of exoplanet systems,
which can give insights into the formation and evolution of
giant planets (e.g., Marois et al. 2008, 2010; Currie et al.
2011, 2012; Chauvin et al. 2012; Esposito et al. 2013;
Maire et al. 2015; Pueyo et al. 2015; Konopacky et al. 2016;

Rameau et al. 2016; Zurlo et al. 2016; Wertz et al. 2017).
However, the majority of orbital measurements at the Galactic
center (GC) and of directly imaged exoplanets have incomplete
orbital phase coverage.
It is difficult to infer accurate orbital estimates for objects with

low orbital phase coverage. In these cases, Bayesian prior
probability distributions (priors) can easily dominate parameter
estimates. In orbit analyses, uniform priors in model parameters
are commonly assumed (e.g., Ghez et al. 2008; Boehle et al.
2016; Gillessen et al. 2017); however, uniform priors are
subjective, as they depend on a choice of the parameterization
of the model. Other prior forms that still depend on model
parameters have also been used, including isotropic orientations
(as suggested by Ford 2006) and uniformity in the Thiele-Innes
elements (Lucy 2014). However, Lucy (2014) showed that, when
data are not rigorously constraining (e.g., when observations
sweep out an angle that is less than ∼40% of the projected 360°
orbit), such subjective model-based priors can lead to biases in
parameter estimates and produce inaccurate confidence intervals.
We aim to develop a prior that is less subjective (and thus more

objective) than what has previously been used in orbit modeling.
While the concept of using an objective prior has not been deeply
explored in orbit modeling, there is a rich literature in statistics in
which objective-prior frameworks have been developed. Although
priors cannot be truly objective, because any probability distribu-
tion contains some information, objective-prior frameworks aim to
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minimize prior influence and thus maximize data influence on
parameter inference. The Jeffreys prior (Jeffreys 1946), based on
the Fisher information content, is one such paradigm that is
designed to be invariant under parameterization. However, in
multiple dimensions, the Jeffreys prior has been shown to be
inconsistent with other objective prior frameworks, such as
reference analysis or location-scale invariance (Bernardo 2005).
For a prior to be considered objective, it must inherently sample
relevant regions of parameter space (Jeffreys 1946; Neyman &
Scott 1948; Hartigan 1964; Jaynes 1968; Bernardo 2005; Berger
et al. 2009; Pierini et al. 2011). In other words, it requires consistent
sampling of regions of parameter space favored by the data, which
ideally would ensure unbiased parameter estimates and accurate
confidence intervals. Reference analysis (Berger et al. 2009)
accomplishes this by maximizing the relative expected information
between posterior and prior distributions in the asymptotic limit of
large data sets. However, most real-life experiments only produce a
subset of this asymptotically large data set, and thus can have
properties that differ from those of the larger data set.
Consequently, priors based on this asymptotic assumption (e.g.,
those from reference analysis) can lead to unintended statistical
consequences, such as misleading inferences or biases (Gelman
et al. 2017). In addition, such analyses are difficult to calculate,
except in simple examples (Pierini et al. 2011).

In this paper, we propose a new approach to priors that can
improve orbital estimates for low-phase-coverage orbits. We
refer to these new priors as observable-based priors because
they are based on uniformity in the observables rather than in
model parameters. This prior requires all measurements to be
equally likely before observation, and thus it promotes
consistent sampling, limits prior influence in regions of prior
dominance, and increases data influence.

We present the general definition of our observable-based
prior in Section 2.1, and describe the specific form of the prior
for orbit-modeling applications in Section 2.2. We describe the
observational data used for this analysis in Section 3, and use
simulations based on these data to test the performance of the
observable-based prior compared to that of standard uniform
priors in Section 4. We then present updated orbital analyses of
S0-2 and the HR 8799 planets in Section 5, and discuss the
scientific impact in Section 6.

2. Observable-based Priors

2.1. General Form

We construct a prior that is as objective as possible—in order
to promote unbiased parameter estimates and accurate
confidence intervals—but that is not based on a hypothetically
large data set like in reference analysis (Berger et al. 2009).
Defining priors with respect to quantities that can be physically
measured ensures a priori that the underlying assumptions
(likelihood and priors) make physical sense and that possible
observations are not biased before observing data. In other
words, a prior should neither de-emphasize areas of parameter
space that could be observed, nor emphasize areas of parameter
space that cannot be observed. There should theoretically be an
equal probability of obtaining observations in all regions of
parameter space that are possible to observe, which motivates
the construction of a prior based on uniformity in the
observables rather than on model parameters.

Observable-based priors assume a prior in observable space,
O( ), which can be transformed into a prior in model-

parameter space, M( ), by inverting the integral

O M O M MO ò d= -( ) ( ( )) ( ) ( )d f 1

to solve for M( ). Here,O MO= ( )f is the definition of the set
of observables and M is the set of model parameters.
Observable-based priors require that external prior knowledge
and knowledge of the experimental design are encapsulated in

O( ) rather than in M( ). In this paper, we assume a one-to-
one transformation for simplicity. For problems where O and
M have the same dimensionality, inverting Equation (1) gives:

M O
O

M
 =

¶
¶

( ) ( ) ( )
( )

( ). 2

Here, O M¶ ¶( ) ( ) is the Jacobian defined by the transformation
from observable space to model parameter space. If the
dimensionality ofM is larger than that ofO, then extra constraints
must be introduced to produce an unique prior. Alternatively, if the
dimensionality of O is larger, then the observables themselves are
not independent of each other. In general, measurements are not
independent and identically distributed for orbit analyses, and thus
the number of observables increases with the number of
measurements. Each observable depends on the epoch of
observation, making the distributions O( ) and M( ) dependent
on the epoch t (e.g., O( ∣ )t and M( ∣ )t ). This dependence makes
it impossible to uniquely specify O( ∣ )t and M( ∣ )t at every
observed epoch. Instead, we marginalize over a PDF of the
observing schedule, P( )t , to specify a marginal distribution

M( ). This marginal distribution can be approximated as a sum
over the epochs of observation:

M M ò=( ) ( ∣ ) ( ) ( )t P t dt 3

Må» ( ∣ ) ( )t . 4
j

j

We define our prior such that the probability of a set of
observablesO at time t, O( ∣ )t , is uniform within a range that is
proportional to the measurement error. Because the likelihood
is invariant under coordinate translation, a flat prior distribution
in observable space ensures that the posterior is also invariant
under the same assumptions (Jaynes 1968). Observable-based
priors of other forms in observable coordinates can also be
assumed, depending on the form of the likelihood. Assuming
uniformity in observable space, Equation (2) conditioned on
time t becomes:

M O
O

M
 =

¶
¶

( ∣ ) ( ∣ ) ( ( ))
( )

( )t t
t

5

O

M s
µ

¶
¶( )
( ( ))
( )

( )
t

t1
, 6

i
i

where s ( )ti i is the product of the measurement uncertainties for
the set of observables at time t. That the specified form of the prior
is inversely proportional to the measurement uncertainties implies
that, in practice, the prior assigns different weight to information
on observables carried by each measurement. In other words,

2
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more emphasis is placed on data points with smaller measurement
uncertainties. Note that the above prior is identical to the Jeffreys
prior (Jeffreys 1946) for a single epoch, though this similarity
ends for data sets that span multiple epochs.6 Under the above
assumptions, it follows from Equations (4) and (6) that the
observable-based prior in model-parameter space becomes:

M M å»( ) ( ∣ ) ( )t 8
j

j

O

M
å  s

µ
¶

¶( )
( ( ))
( )

( )
t

t1
. 9

j i i j

j

This observable-based prior is based on experimental design,
though not on actual observed data. This idea has precedence in
Bayesian statistics, as the Jeffreys prior is similarly based on a
form of the likelihood. While our prior relates to the Jeffreys
prior for a single epoch, it has different philosophical
motivation. Rather than being based on the abstract concept
of information content, our observable-based prior is based on
the practical idea that there should be an equal probability of
obtaining observations in regions of parameter-space that are
possible to observe. In addition, there should be no probability
of obtaining observations in regions of parameter space that are
not possible to observe, thereby avoiding the pitfalls of
asymptotic-based priors (Gelman et al. 2017). Thus, the
observable-based prior is less subjective than commonly
assumed model-based priors, because it does not directly
impose constraints on model parameters. However, it is weakly
informative rather than truly objective, in the sense that it
imposes constraints on possible observed data.

2.2. Observable-based Priors in Orbit Modeling

We construct an observable-based prior, of the general form
defined in Section 2.1, specific to a Keplerian point-potential
orbit model in which the central mass, Mcent, dominates. In
future work, we will extend the model to include post-
Newtonian parameters in General Relativity, such as the
relativistic redshift. In the Keplerian model described here,
seven global parameters (that describe the gravitational
potential) and six Keplerian orbital parameters comprise the
model M. The seven global parameters are the central mass
(Mcent), the line-of-sight distance to the primary (Ro), its
position on the sky (xo, yo), and its three-dimensional velocity
(vx,o, vy,o, vz,o). The six Keplerian orbital elements, further
detailed by Ghez et al. (2005), are the angle to the ascending
node (Ω), argument of periapse (ω), inclination (i), orbital
period (P), time of closest approach (To), and eccentricity (e).
The model M is thus defined as:

M w= W{ }
( )

M R x y v v v i P T e, , , , , , , , , , , , .

10
o o o x o y o z o ocent , , ,

Observational data D constrain the set of model parameters
M. For data with only astrometric observations (e.g., directly

imaged planets), the set of measured observablesD at time t is:

D = { ( ) ( )} ( )x t y t, , 11

where x and y describe the orbiting body’s position on the sky
with respect to the position of the primary, xo and yo. For data
with both astrometric and RV observations (e.g., GC data),

D = { ( ) ( ) ( )} ( )x t y t v t, , , 12z

where vz is the orbiting body’s line-of-sight velocity. Note that
x, y, and vz refer to the position and velocity of the orbiting
body, while xo, yo, vx,o, vy,o, and vz,o describe the position and
velocity of the primary (in the GC case, the SMBH). Relative
positions are characterized by the angular separation between
the primary and the orbiting body, projected onto the plane of
the sky. While the position of the primary can correspond to a
particular R.A. and decl., relative R.A. and decl. coordinates
would depend on an object’s location on the curved coordinate
system, requiring an additional transformation. In the small-
angle approximation, there is effectively no curvature in the
coordinate system—and thus there is approximately a linear
relationship between (Δx, Δy) and (ΔR.A., Δdecl.). In such
cases, R.A. and decl. or any other linearly related coordinate
system could be used. As long as the transformation between
coordinate systems is linear, a uniform distribution in one
implies a uniform distribution in the other. In this work, relative
astrometric positions, defined as D = { ( ) ( )}x t y t, , are used
because a linear transformation converts measurements from
pixel space to positions on the sky (defined with respect to the
position of the primary). Relative astrometry is commonly
measured in this way (e.g., Konopacky et al. 2016; Gillessen
et al. 2017). Further, a functional form exists for x(t) and y(t)
such that a prior can easily be formulated.
The measured observables D are related linearly to a set of

orbital observables X(E), Y(E), VX(E), and VY(E) that describe
the position and velocity in the orbital plane by

= + + +( ) ( ) ( ) ( )x t
B

R
X E

G

R
Y E v t x 13

o o
x o o,

= + + +( ) ( ) ( ) ( )y t
A

R
X E

F

R
Y E v t y 14

o o
y o o,

= + +( ) ( ) ( ) ( )v t CV E HV E v , 15z X Y z o,

where the orbital observables X(E), Y(E), VX(E), and VY(E)
(e.g., Ghez et al. 2003) are defined as

= -( ) ( )X a E ecos , 16

= -( ) ( )Y a e E1 sin , 172

= -
-

( )V
E

e E

M

a

sin

1 cos

G
, 18X

=
-
-

( )V
e E

e E

M

a

1 cos

1 cos

G
, 19Y

2

and A, B, C, F, G, and H are the Thiele-Innes constants (e.g.,
Hartkopf et al. 1989; Wright & Howard 2009), defined by

w w= + W - W ( )A icos cos sin sin cos 20

w w= + W + W ( )B isin cos cos sin cos 21

w= ( )C isin sin 22

w w= - W - W ( )F icos sin sin cos cos 23

6 The Jeffreys prior for multiple epochs is:

O

M

O

M
 å=

¶
¶

S
¶
¶

-( ( ))
( )

· · ( ( ))
( )

( )t t
, 7

i

i
i

i1

where Σ is the covariance matrix ( sS =i j i j, ,
2 ).
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w w= - W + W ( )G isin sin cos cos cos 24

w= ( )H icos sin . 25

The factor of Ro in Equations (13) and (14) is included to
convert from angular distance to physical distance. Here, M is
the mass of the system (approximated as Mcent), G is the
gravitational constant, a is the semimajor axis of the orbit,
defined as

p
=

⎛
⎝⎜

⎞
⎠⎟ ( )a

MPG

4
, 26

2

2

1 3

and E is the eccentric anomaly, defined in terms of the mean
anomaly m as

p
- = - =( ) ( )E e E

P
t T msin

2
. 27o

To obtain a form of the observable-based prior in model-
parameter space, as defined in Section 2.1, we must transform
from observable space to model-parameter space. Because the
measured and orbital observables are linearly related, a uniform
distribution in one parameter set implies a uniform distribution
in the other—and thus we can use the orbital observables for
the transformation. In this paper, we explore two observable-
based priors: (a) a prior based solely on astrometric observables
 = { }X Y, , and (b) a prior based on both astrometric and RV
observables  = { }V V,X Y .

To perform a one-to-one transformation, we apply the
transformation only to a subset of the model parameters,
 = { }e P, . Applying the transformation to e and P is the
natural choice, for the reasons described below, though in
theory there are innumerable forms that an observable-based
prior could take. This one-to-one transformation causes the
observable-based prior to be conditioned on the parameters that
appear in the Jacobian transformation (Mcent and To; see
Equations (33) and (34)).

For multiple star or planet fits, the orbital parameters are
unique for each orbiting body, while the central potential
parameters are shared. Thus, to generalize our prior to multiple
star or planet fits, the priors on the global parameters should be
specified separately, and we base our transformation only on
the orbital parameters.

For each of the global parameters that act as translation
parameters (xo, yo, vx,o, vy,o, and vz,o), we assume a uniform
prior—the standard objective prior for parameters that only
shift the probability distribution (Bernardo 2005):

 µ( ) ( )x y v v v, , , , constant. 28o o x o y o z o, , ,

For the prior based solely on astrometric observables, we
assume a log-uniform prior on Ro to ensure scale invariance
because Ro acts as scale parameter. However, we assume a
uniform prior on Ro for the prior based on astrometric and RV
observables because of the Ro dependence that appears in
Equation 36(a) below. A log-uniform prior is also assumed on
Mcent. For (a) the prior based solely on astrometric observables
and (b) the prior based on both astrometric and RV
observables, these assumptions on Ro and Mcent yield

 µ( ) ( )R M
M R

,
1 1

29ao
o

cent
cent

 µ( ) ( )R M
M

,
1

. 29bo cent
cent

Alternatively, without RV measurements, Ro and vz,o cannot be
independently constrained, and should be fixed if these values
are known. In this paper, for directly imaged planets where we
have astrometric but not RV data, we assume that the mass of
the primary is well-defined and that positional measurements
are defined relative to the host star. We therefore fix all global
parameters that describe the central potential in this case.
Of the remaining six orbital parameters, four can easily be

specified separately. Because To is a translation parameter with
respect to time, we again assume a standard objective prior of
uniformity:

 µ( ) ( )T constant. 30o

A uniform distribution in X and Y guarantees uniformity in x(t)
and y(t) as described above, so the ω, Ω, and i prior components
can be specified separately because X and Y do not depend on
these angular parameters (Equations (16)–(19)), reducing the
choice of model parameters to e and P. For the angular
parameters, we assume a prior whose spatial orientation is
uniform in direction (e.g., uniform in cosine of the inclination),
as suggested by Ford (2006):

 µ( ) ( ) ( )i isin , 31

and

 w W µ( ) ( ), constant. 32

For the prior based on astrometric observables, we set
 = { }X Y, and = { }e P, in Equation (9). The transforma-
tion from X and Y to P and e produces a Jacobian:

p
º

¶
¶

= -

´
- + + +

-

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

[ ( ) ( ) ] ( )

J
X Y

e P

M P

e E e m E m E

e

,

,

G

2

2 2 sin 3 sin 2 3 cos

6 1
. 33

astro

2

4

1 3

2

2

Similarly, if given RV data, the RV observables ( = {V ,X

}VY ) produce a Jacobian of:

p
º

¶
¶

=

´
+ - + -

- -

( )
( )

( )
( )

[ ( ) ( )]
( )

( )

J
V V

e P

M

P

E e E e E m e E

e e E

,

,

G

3 2

sin cos 2 3 2 cos 6 2 sin

1 1 cos
.

34

X Y
RV

2 3

1 3 5 3

2 2

2 3

Finally, the s ( )ti i j term in Equation (9) must be defined
within the orbital observable space in units of the measured
uncertainties of x, y, and vz. Because s ( )ti i j represents some
volume in parameter space, equivalent volumes between
measured and orbital observable space can be related by the
Jacobian that defines the transformation between these
observable spaces. Because the orbital and measured obser-
vables are related linearly via Equations (13) and (14),
equivalent volumes in parameter space can be transformed by

s s s s w s s= = W( ) ( )R

B G
A F

f i R, , , 35X Y
o

x y o x y

2
2

4
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which reduces to s s s sµ RX Y o x y
2 because the Jacobian is

simply some function f of the angular parameters. Analogously,
s s sµV V v

2
X Y z

, where the factor of Ro
2 does not appear because

the observable vz is measured in units of physical distance per
unit time, and thus there is no conversion from angular to
physical distance. Plugging these relations into Equation (9),
we obtain a form of the two observable-based priors used in
this paper:

 å
s s

µ( )
( ) ( )

∣ ( )∣ ( )P e
R t t

J t,
1

36a
i o x i y i

i2 astro

 å

å

s s

s

µ

+

( )
( ) ( )

∣ ( )∣

( )
∣ ( )∣ ( )

P e
R t t

J t

t
J t

,
1

1
. 36b

i o x i y i
i

j v j
j

2 astro

2 RV

z

3. Methodology and Observational Data

We implement the new observable-based prior in Efit5
(Meyer et al. 2012), an orbit fitting code developed by the
Galactic Center Orbits Initiative. Efit5 performs a Bayesian
analysis using MULTINEST (Feroz & Hobson 2008; Feroz
et al. 2009), a multimodal nested sampling algorithm.

The following analysis uses astrometric and RV data
published by Boehle et al. (2016) for the short-period star
S0-2, and astrometric data published by Konopacky et al.
(2016) for the HR 8799 directly imaged exoplanet system. We
use only Keck HR 8799 data, rather than data from multiple
cameras and reduction pipelines, to isolate the effects of phase
coverage by eliminating the additional systematics originating
from the use of multiple data sets (Konopacky et al. 2016). The
model for the HR 8799 analysis assumes that the origin of the
system is fixed and that the mass of and the line-of-sight
distance to the host star are known. The mass of the star was set
to 1.516Me (Baines et al. 2012) with an uncertainty of
±0.15Me (Konopacky et al. 2016), and the distance to the star
was set to 39.4±1.1 pc (van Leeuwen 2007). A summary of
the S0-2 and HR 8799 observations is provided in Table 1, and
the data are plotted in Figure 1.

In the following section, we test the performance of the
observable-based prior compared to that of commonly assumed
uniform priors, using simulations based on these data. We then
apply the prior directly to these S0-2 and HR 8799 data in
Section 5, to evaluate the scientific impact.

4. Testing the Observable-based Prior

4.1. Simulated Data Sets

In this section, we describe the simulated data sets that are
used to evaluate the effects of the observable-based prior on
fitted model parameters. The simulated GC data are based on
the short-period star S0-2, and exoplanet data are based on HR
8799d. The input parameter values from which mock data were
generated are provided in Table 2. One hundred simulations
were run for each test case. Mock data were drawn from a
normal Gaussian distribution with a mean equal to the value
predicted by the model at each epoch and a standard deviation
equal to the assumed error, as described below.
For the GC test cases, we simulated S0-2 data with varying

angular phase coverage—defined here as the percentage of the
orbit that is swept by observations, with respect to the true
anomaly. The simulations are based on a single star in order to
keep variables such as angular orientation constant while only
varying phase coverage, though future work will probe the
effects of differences in intrinsic orbital parameters. To date,
S0-2 is the brightest star in the central cluster with full orbital
phase coverage. As such, S0-2ʼs relatively well-defined orbit
provides a realistic data set as a basis for comparison. A model
orbit was created from a set of assumed parameter values
published by Boehle et al. (2016). All simulated data points
assume an astrometric and RV error equal to S0-2ʼs average
observational error.
Exoplanet mock data were generated in the same manner as

were the S0-2 simulations, with sampling dates and average
errors based on HR 8799d astrometry published by Konopacky
et al. (2016). Simulations were only run for one of the HR 8799
planets, as an example, because the statistical measures used to
evaluate prior performance with these simulations are not as
robust to multimodality as that which is used to evaluate prior
performance with the true data for these astrometry-only cases
(see Sections 4.2 and 5.2.1).
Table 3 summarizes the simulated data sets. Test Case 1,

which serves as a full-phase-coverage example, samples S0-2
mock data on the same dates for which astrometric and RV data
were reported by Boehle et al. (2016). For all subsequent GC
test cases, evenly spaced observations of S0-2 were simulated
every 6° on the plane of the sky (±0°.5 to simulate multiple
observations per year). In Test Case 2, data points are centered
in time on the periapse. The simulated observations in Test
Case 2 cover ∼86% of the orbit based on the true anomaly, but
only ∼50% of the orbit on the plane of the sky. All variations
of Test Case 3 are centered on the apoapse, with varying
degrees of phase coverage but the same observing cadence.

Table 1
Summary of Observational Data

Object δfastro
a δfRV

b Number of Number of Data Source
Astrometry Points RV Points

S0-2 ∼102% ∼96% 38 47 Boehle et al. (2016)
HR 8799b ∼3% L 13 L Konopacky et al. (2016)
HR 8799c ∼5% L 13 L Konopacky et al. (2016)
HR 8799d ∼7% L 12 L Konopacky et al. (2016)
HR 8799e ∼11% L 9 L Konopacky et al. (2016)

Notes.
a Angular phase coverage: percentage of the 3D orbit covered by astrometric observations, based on true anomaly.
b RV phase coverage: percentage of the 3D orbit covered by RV observations, based on true anomaly.
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This is achieved by systematically removing data points closest
to the periapse for each subsequent simulation, such that the
total orbital phase coverage (and thus the number of data
points) decreases without affecting the cadence of remaining
measurements. Test Case 4 samples HR 8799d mock data on
the same dates for which astrometric data were reported by
Konopacky et al. (2016).

4.2. Simulation Results and Statistical Measures

For the simulations described in Section 4.1, two statistical
measures are used to evaluate the general performance of our
observable-based prior compared to that of uniform priors. We

define a new statistic, the Bias Factor, which we use along with
a classical statistic, the statistical efficiency, to quantify how
well regions near the true value are sampled. Consistently
sampling regions of parameter space that are favored by the
data is one property that must be satisfied for posteriors to be
truly objective (Bernardo 2005). Although observable-based
priors are weakly informative rather than truly objective, we

Figure 1. Left: S0-2 Astrometric data published by Boehle et al. (2016), with the best-fit orbit shown in blue. The gray star indicates the position of the central SMBH.
The time baseline of observations extends from 1995 to 2013, so although 2002 data (taken during the previous closest approach) are not plotted (to avoid possible
effects of confusion between S0-2 and the SMBH), there is full orbital phase coverage. Middle: S0-2 RV data from the same source, with the best-fit RV curve shown
in blue. Right: HR 8799 astrometric data published by Konopacky et al. (2016). The best-fit orbits are not plotted here because, with such low phase coverage,
parameter posteriors are multimodal. The gray star indicates the position of the central star.

Table 2
Simulation Input Parameter Values

aS0-2 Simulations bHR 8799d Simulations

Global Parametersc

Mcent (Solar Masses) 4.02×106 1.516
Ro (pc) 7860 39.4
xo (mas) 2.74 0
yo (mas) −5.06 0
vx,o (mas yr−1) −0.04 0
vy,o (mas yr−1) 0.51 0
vz,o (km s−1) −15.84 0

Orbital Parametersc

Ω (deg) 228.0 59
ω (deg) 66.8 92.4
i (deg) 134.2 29
P (yr) 15.92 112.7
To (yr) 2002.347 1995.4
e 0.892 0.02

Notes.
a Input values for S0-2 simulations, derived from a simultaneous orbital fit of
S0-2 and S0-38 with a jackknife bias term added for the reference frame
(Boehle et al. 2016).
b Input values for HR 8799d simulations, based on values used for simulations
from Konopacky et al. (2016).
c See Section 2.2 for description of parameters.

Table 3
Summary of Simulated Test Cases

Test
Casea δfastro

b δfRV
c Number of Number of Description

Astrometry
Points RV Points

1 101.9% 95.8% 38 47 S0-2 True
Sampling

2 86.0% 86.0% 18 18 S0-2 Periapse
Centered

3.1 71.9% 71.9% 56 56 S0-2 Apoapse
Centered

3.2 66.5% 66.5% 55 55
3.3 41.4% 41.4% 53 53
3.4 31.7% 31.7% 52 52
3.5 27.2% 27.2% 51 51
3.6 25.9% 25.9% 51 51
3.7 21.4% 21.4% 50 50
3.8 18.3% 18.3% 48 48
3.9 16.2% 16.2% 45 45
3.10 15.3% 15.3% 46 46
3.11 13.9% 13.9% 44 44
3.12 13.7% 13.7% 42 42
3.13 11.1% 11.1% 40 40
4 7.2% L 12 L HR 8799d

True
Sampling

Notes.
a See Section 4.1 for a description of the simulated data sets.
b Angular phase coverage: percentage of the 3D orbit covered by astrometric
observations, based on true anomaly.
c RV phase coverage: percentage of the 3D orbit covered by RV observations,
based on true anomaly.
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show that the less-subjective nature of these priors (compared
to that of commonly assumed uniform priors) indeed promotes
consistent sampling due to improvements in the Bias Factor
and statistical efficiency.

4.2.1. Bias Factor

Given a hypothetical large set of N orbital fits resulting from
N mock data sets, we define the Bias Factor βF as

b b=
Î

{ } ( )median , 37
i N

iF

where βi is defined to be the Specific Bias in parameter θ for the
ith orbital fit. Here, θ denotes any parameter in the set of model
parameters, M. The Specific Bias βi is given by the difference
between the median parameter value (q̂i) and the assumed true
value (θtrue), normalized by half the 68% central credible
interval for that parameter (σi, see Section 4.2.2):

b
q q

s
=

-ˆ
( ). 38i

i

i

true

The Specific Bias effectively measures the deviation from
the assumed true parameter value, in units of σ. Ideally, for
each orbital fit, q̂ has a 50% probability of being greater than
θtrue, and a 50% probability of being less than θtrue. If no bias
were present, the probability distribution of βi values would be
normally distributed about zero. For a large number of data
sets, the Bias Factor should thus, in theory, be consistent with
zero. A Bias Factor greater (less) than zero indicates that the
parameter is statistically biased high (low).

We first illustrate the Specific Bias by looking at the effects
of the prior on a single simulation. Figure 2 shows margin-
alized 1D Mbh and Ro posteriors for a randomly chosen fit in
Test Case 3.9 (Table 3), which serves as a low-phase-coverage
example. The resulting posteriors shift closer to the assumed
true value when using an observable-based prior rather than
uniform priors, indicating a Specific Bias value closer to zero
(less biased). Figure 3 shows the set of βi values for all 100
orbit fits for the same test case to confirm that the improvement

detected in Figure 2 is significant. Here, the distribution of βi
values shifts closer to zero with the observable-based prior.
We quantify this shift toward a less-biased result by

evaluating the Bias Factor, βF. Figure 4 shows the Bias Factor
for Mbh and Ro for all GC test cases as a function of phase
coverage. As phase coverage decreases, the prior has a more
profound impact on parameter estimates. When more than half
of the orbit (based on true anomaly) has been observed, the
Bias Factor is low and remains roughly consistent between the
uniform prior and the observable-based prior. Below ∼40%
phase coverage, the Bias Factor increases more rapidly with
uniform priors than it does with the observable-based prior.
This cutoff is consistent with the onset of bias seen by Lucy
(2014). With the observable-based prior, the Bias Factor
improves by a factor of two at low phase coverage. For
example, the Bias Factor for Ro rises to greater than 1.2 with
uniform priors, but remains ∼0.6 with the observable-based
prior. Similarly, the Bias Factor forMbh rises to greater than 1.0
with uniform priors, but remains less than 0.5 with the
observable-based prior. If the Bias Factor for a given parameter
is 1.0, then the average output value of that parameter is 1σ
greater than the true value. A Bias Factor of 1.0 would indicate
a consistent shift from the “true” value, which can have
profound effects on the accuracy of resulting inferences.
Although we only highlight the Bias Factor for Mbh and Ro

in Figure 4 for clarity, the Bias Factor is improved with the
observable-based prior for all global and orbital parameters in
cases of low phase coverage. Figure 5 shows this improvement
in the Bias Factor for all parameters for Test Case 3.9, which
again serves as an example of a low-phase-coverage test. In this
case, by assuming an observable-based prior rather than
uniform priors, the Bias Factor decreases from 0.98±0.06
to 0.35±0.06 for Mbh (a 65% improvement), and from
1.02±0.07 to 0.46±0.06 for Ro (a 54% improvement).
There are similar improvements in all parameters in this case—
a 55% improvement in xo, 40% in yo, 64% in vx,o, 61% in vy,o,
57% in vz,o, 57% in Ω, 75% in ω, 62% in i, 80% in P, 36% in
To, and 31% in e.

Figure 2. Marginalized 1D Posteriors for the black hole mass (left) and the line-of-sight distance to the GC (right) from a single orbital fit for Test Case 3.9, ∼16%
phase coverage centered on the apoapse, assuming uniform priors (blue) and a new prior based on uniformity in the astrometric and RV observables (red). All curves
are normalized such that the area under the curve is equal to one. For reference, the assumed true value from which the mock data are generated is indicated by the
dashed vertical line. The observable-based prior, as compared to standard uniform priors, allows the posteriors to shift closer to the assumed true value, indicating a
less biased result (smaller specific bias value).
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Because credible intervals are difficult to define for multimodal
distributions, data must have some minimum constraining power
in order for the Bias Factor to be a robust performance metric.
With greater than ∼10% phase coverage and with both
astrometric and RV data, resultant posteriors are monomodal
and we can define a central credible interval for the GC cases
presented. We do not present the Bias Factor for GC test cases
with less than ∼10% phase coverage, because the errors become
so large that nearly the entire parameter range is covered and the
utility of the Bias Factor as a performance metric breaks down.
Similarly, in astrometry-only cases such as HR 8799, posteriors
are often multimodal without the additional constraints provided
by RV data, causing central credible intervals not to be well-
defined. We therefore do not run simulations for all HR 8799
planets, because the applicable analyses depend on central
credible interval construction. However, it is interesting to
evaluate the statistical properties of eccentricity estimates none-
theless, because low phase coverage is known to bias eccentricity
estimates toward artificially high values (e.g., Konopacky et al.
2016). As an example, we run simulations for HR 8799d and
evaluate the eccentricity bias using the 68% error on the mode
rather than central credible intervals. Eccentricity estimates
indeed are biased high when uniform priors are assumed, but
are consistent with the input value with our new observable-based
prior. For HR 8799d, the Bias Factor on e is reduced from
3.17±0.21 with uniform priors to an unbiased value of
0.07±0.26 with the observable-based prior. This result indicates
that using the observable-based prior with low-phase-coverage
data can help mitigate the known risk of biasing eccentricity
estimates toward artificially high values. We discuss the reason
for this improvement in Section 5.2.

4.2.2. Statistical Efficiency

We use the statistical efficiency to investigate how the
observable-based prior affects the reliability of calculated

confidence intervals. Bayesian confidence intervals (credible
intervals) and classical confidence intervals are fundamentally
different in both construction and interpretation (Host et al.
2007). Unlike credible intervals, which are defined simply as
regions containing a prescribed posterior probability, classical
confidence intervals have a more intricate definition. In the
classical definition, for a sufficiently large number of experi-
ments, the confidence interval inferred from each experiment
will contain, or cover, the universally “true” value a prescribed
fraction of the time (confidence level×100%) (Neyman 1937).
By this definition, a 68% confidence interval requires that 68
out of 100 possible observed (or randomly drawn) data sets
produce a confidence interval that covers the true value.
Confidence intervals that cover the true value more than the
prescribed frequency are said to over-cover, whereas con-
fidence intervals that cover the true value less than the
prescribed frequency are said to under-cover. Unfortunately,
most algorithms used to calculate confidence intervals do not
guarantee exact coverage, and thus can either under- or over-
cover. Under- or over-covering is common in prior-dominated
regimes where data are not rigorously constraining. In such
cases, prior information can have a profound impact on the
resulting confidence intervals (Lucy 2014).
Statistical efficiency is a powerful performance diagnostic

that is used to investigate the accuracy of calculated confidence
or credible intervals. Statistical efficiency is defined as the ratio
of effective coverage (the experimentally determined percent-
age of data sets in which the inferred confidence or credible
interval covers the true value) to stated coverage (68% for a 1σ
confidence interval). While based on the classical definition of
confidence intervals, effective coverage can be used to evaluate
the effectiveness of both credible and confidence intervals
(Cameron 2011). An efficiency of 1 indicates exact coverage,
whereas an efficiency less (greater) than 1 indicates that the
credible interval under-(over-)covers.

Figure 3. Probability distribution of Specific Bias values (Equation (38)) for the set of N=100 orbit fits in Test Case 3.9, ∼16% phase coverage centered on the
apoapse. The distributions are plotted for the black hole mass (left) and the line-of-sight distance to the GC (right) assuming uniform priors (blue) and a new prior
based on uniformity in the astrometric and RV observables (red). All curves are normalized such that the area under the curve is equal to one. The dashed line at zero
indicates an unbiased result. The distribution shifts closer to zero with the observable-based prior as compared to the uniform prior, indicating that the reduction in bias
seen in Figure 2 is statistical. The Bias Factor is then defined as the median of each of the above distributions.
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Figure 6 presents the statistical efficiency as a function of
phase coverage for all simulated GC test cases, again focusing
on the black hole mass (Mbh) and the line-of-sight distance to
the GC (Ro), for clarity. With phase coverage greater than
∼40%, credible intervals are well-defined because the
statistical efficiency is consistent with one for both Mbh and
Ro, indicating nearly exact coverage. Below ∼40% phase
coverage, the statistical efficiency decreases to less than one
with uniform priors, indicating that the derived credible
intervals under-cover and errors are underestimated. This drop
in statistical efficiency is consistent with the onset of bias
around 40% phase coverage (Section 4.2.1). The risk of
underestimating errors below ∼40% phase coverage is
mitigated by assuming an observable-based prior. The
statistical efficiency remains greater than or equal to one for
all S0-2 test cases with the observable-based prior. With
statistical efficiencies greater than one, the credible intervals
over-cover and error estimates are overly conservative. While
exact coverage is ultimately desired, it is better to be too
conservative than to underestimate the errors.

In light of the predicted and detected eccentricity biases for
HR 8799d, we also investigate the HR 8799d eccentricity
efficiency. As with the Bias Factor, statistical efficiency
depends on credible interval construction, and thus must be
evaluated cautiously for cases such as HR 8799 where
posteriors are multimodal and central credible intervals are
not always well-defined. As such, we again use the 68% error
on the mode of the posterior distribution rather than using
central credible intervals. For HR 8799d, statistical efficiency

for eccentricity increases from 0.6±0.05 (under-covering) to
greater than one (sufficiently defined credible intervals) with
the observable-based prior, indicating that the errors on the
mode are no longer underestimated with the new prior.

5. Application of the Observable-based Prior

We now apply the observable-based prior to real S0-2 and
HR 8799 data (described in Section 3), to evaluate the scientific
impact.

5.1. S0-2 Results

Table 4 shows that, with full orbital phase coverage, the
orbital solution for S0-2 derived with the observable-based
prior is consistent with that published by Boehle et al. (2016).
S0-2 astrometric and RV data have high constraining power,
and thus the orbital solution is not influenced heavily by prior
effects. This result is supported by simulation results for the
high-phase-coverage limit in Figures 4 and 6. There are many
stars with low phase coverage in the GC whose orbital solution
could be improved by the observable-based prior; as such,
future work will include using the new prior to fit orbits to
these stars in order to probe the effects of the prior on stars with
different eccentricity distributions and angular orientations.

5.2. HR 8799 Results and Statistical Analysis

Here, we investigate how the inferred orbital plane configura-
tions of the HR 8799 planets change based on prior choice. Prior
choice affects whether the planets are hypothesized to have

Figure 4. Bias Factor (Section 4.2.1) as a function of phase coverage for the black hole mass and the line-of-sight distance to the GC, assuming uniform priors (blue)
and a new prior based on uniformity in the astrometric and RV observables (red). Error bars indicate 1σ standard errors on the Bias Factor. The onset of bias occurs at
less than ∼40% phase coverage, and is less dramatic with the observable-based prior than with uniform priors. At low phase coverage, there is a factor of two
improvement in the Bias Factor with the observable-based prior over standard uniform priors.
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consistent inclinations, and thus prior influences must be taken
into consideration in this low-phase-coverage regime. The
observable-based prior provides stronger evidence that the four
planets have a consistent inclination of ∼30° to within 1σ (see
inclination posteriors in Figure 7). Figure 8 shows 1σ contours for
the joint probability distribution functions between eccentricity
and inclination, as well as between angle of ascending node (Ω)
and inclination, for each of the four HR 8799 planets. While we
cannot claim coplanarity between the host star and the planets,
because the Ω posteriors remain largely unconstrained, the
possibility is allowed by this analysis (bottom panel of Figure 8).
Table 5 lists the median values of the inclination posteriors
derived with both flat priors and the observable-based prior, for
each of the four planets.

Further, the observable-based prior favors lower eccentricity
estimates for all four planets than those inferred with uniform
priors, providing more stringent eccentricity upper limits than
those inferred with uniform priors and allowing for the
possibility of nearly circular orbits (top panel of Figure 8).
This result is consistent with the HR 8799d simulation reported
in Section 4.2.1, which shows that HR 8799d eccentricity
estimates are biased high with uniform priors but are unbiased
with the observable-based prior. Previous works have noted
that such artificially high eccentricities can result from To
estimates being biased toward the epochs of observation (e.g.,
Konopacky et al. 2016). The reason for this is that higher
eccentricity modes that correspond to this biased region of To
parameter space are accentuated with flat priors (see e, To joint
posterior in left panel of Figure 9). The observable-based prior
accounts for this bias by suppressing these regions (right panel
of Figure 9). For completeness, 1D marginalized posteriors for

all orbital parameters for HR 8799 b, c, d, and e are presented
in the Appendix (Figures 11–14), and the Monte Carlo chains
are available in the .tar.gz package.

5.2.1. Expected Information Gained

Biases introduced in the previous analysis affect the
posterior information content. Ideally, a prior should be chosen
such that the data contribute maximally to the posteriors (e.g.,
the prior, as compared to the likelihood, adds the least amount
of information possible to the posterior). For a given data set
D, this is equivalent to maximizing the relative entropy
(Kullback & Leibler 1951) between the posterior and prior of
some model parameter set M,
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Equation (39) is not an ideal measure of information gained, as
it assumes only one possible data set. Instead, the average
relative entropy between the posterior and the prior, or the
average information gained in the posterior over the prior
(defined as “expected information” by Lindley (1956)), can be
used for this purpose:
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Figure 5. Bias Factor (Section 4.2.1) for all parameters for Test Case 3.9, which serves as an example of low angular phase coverage (∼16%), assuming uniform
priors (blue) and a new prior based on uniformity in the astrometric and RV observables (red). Error bars indicate 1σ standard errors on the Bias Factor. The Bias
Factor is reduced for all parameters by assuming an observable-based prior rather than standard uniform priors.
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Other objective-prior frameworks (e.g., Berger et al. 2009)
derive priors by maximizing the expected information. The
sampling algorithm that we use to estimate the expected
information is described in Appendix A (Algorithm 1).

Table 6 lists the expected information—gained in the
posteriors over the prior—for orbital fits of each of the HR
8799 planets. When assuming an observable-based prior rather
than a uniform prior, the expected information increases by
∼29% for HR 8799b, ∼26% for HR 8799c, ∼35% for HR
8799d, and ∼33% for HR 8799e. This increase in expected
information indicates that, with respect to the prior, the
information contained in the data contributes 25–35% more
to the posterior for each of the HR 8799 planets when assuming
an observable-based prior.

6. Discussion

Many stars in the Galactic Center and many directly imaged
exoplanets have low orbital phase coverage, causing data to
have low constraining power. Prior assumptions dominate
parameter estimates in these low-phase-coverage regimes,
potentially introducing biases in fitted parameters and produ-
cing inaccurate confidence intervals. Uniform priors, com-
monly assumed in orbit fitting, exacerbate these issues in
regions of prior-dominance. In this paper, we propose a new

prior that is based on uniformity in observable space, rather
than in model parameter space, to limit the impact of subjective
model selection. Statistical tests applied to both simulated and
real GC and HR 8799 data indicate that observable-based
priors perform better than uniform priors in prior-dominated
regimes.

6.1. Galactic Center Orbits

Orbits of the short-period stars within the central arcsecond
(the S-stars) can be used to probe the dynamics of the GC.
There are currently ∼40 S-stars with measured orbits, 17 of
which have been used in a multistar fit to constrain the central
potential (Gillessen et al. 2017). Although this multistar fit
reduces the uncertainty on fundamental parameters such as the
mass of and distance to the central SMBH, it is essential to
ensure that accuracy is not jeopardized for this precision. As
such, we must ensure that using low-phase-coverage stars in a
multistar fit does not introduce biases due to the statistical
effects of prior dominance. In the multistar fit from Gillessen
et al. (2017), each star is weighted according to the number of
data points it contributes to account for biases; however,
simulated S0-2 test cases indicate that bias is correlated with
orbital phase coverage, though not necessarily with the number
of observations. This is evidenced by the fact that Test Case 1
and Test Case 2 have fewer data points than do all other S0-2
test cases (Table 3), yet have higher phase coverage and
smaller bias values. However, the number of data points or

Figure 6. Statistical efficiency (Section 4.2.2) as a function of phase coverage for the black hole mass and the line-of-sight distance to the GC, assuming a uniform
prior (blue) and a new prior based on uniformity in the astrometric and RV observables (red). Errors on the statistical efficiency are derived from a binomial
distribution (with N=100 trials). The dashed horizontal line at one indicates exact coverage. Below ∼40% phase coverage, the statistical efficiency decreases to less
than one when assuming a uniform prior, indicating that credible intervals under-cover (errors are underestimated). Credible intervals remain well-defined when
assuming an observable-based prior, as the statistical efficiency remains at or greater than one. In this case, the observable-based prior eliminates the problem of
underestimated errors.
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cadence of observations may affect prior performance for orbits
with different angular orientations or eccentricities. As such,
future work will include testing the performance of the
observable-based prior for additional S-stars, and using
information on how each star affects global parameter biases
to appropriately weight the contribution of each star in a
multistar fit.

In addition, orbital estimates of the S-stars are used to test
formation hypotheses that attempt to explain the observed

abundance of early-type stars in the GC—the so-called
“paradox of youth” (e.g., Morris 1993; Ghez et al. 2003). For
example, the eccentricity distribution of the S-stars can be
compared to distributions expected for different formation
scenarios (e.g., Gillessen et al. 2009, 2017; Perets et al. 2009;
Chen & Amaro-Seoane 2014; Madigan et al. 2014). One
proposed mechanism of S-star formation is tidal capture of a
binary star system, which would result in an ejected
hypervelocity star and a highly eccentric bound star whose

Figure 7. Inclination posteriors for HR 8799b, c, d, and e, assuming uniform priors (left) and a new prior based on uniformity in the astrometric observables (right).
The observable-based prior provides stronger evidence that the inclinations of the four planets are consistent around 30° to within 1σ.

Table 4
Orbital Parameter Estimates for S0-2 Derived with the Observable-based Prior, Compared to Previously Published Values

aPrior Ranges bObservable-based Prior c Boehle et al. (2016)

Global Parametersd

Mbh (10
6 Solar Masses) [2.3, 7.0] 4.01±0.31 4.03±0.31

Ro (kpc) [5.90, 10.5] 7.98±0.36 8.01±0.36
xo (mas) [−6, 8] 2.04±0.56 2.02±0.56
yo (mas) [−8, 8] −3.70±1.34 −3.64±1.32
vx,o (mas yr−1) [−0.3, 0.8] −0.10±0.03 −0.10±0.03
vy,o (mas yr−1) [−0.5, 1.5] 0.71±0.07 0.72±0.07
vz,o (km s−1) [−120., 120.] −20±10 −19±10

Orbital Parametersd

Ω (deg) [221, 233] 227.9±0.8 227.9±0.8
ω (deg) [60, 71] 66.6±0.9 66.5±0.9
i (deg) [128, 139] 134.6±0.9 134.7±0.9
P (yr) [15.4, 16.9] 15.90±0.04 15.90±0.04
To (yr) [2002.29, 2002.38] 2002.344±0.008 2002.343±0.008
e [0.865, 0.915] 0.890±0.005 0.890±0.005

Notes.
a Prior ranges for the observable-based prior are still specified in model-parameter space.
b Mean posterior estimates for S0-2 derived using same data as in column 4, but with the observable-based prior. All results with the new prior are consistent with
previously published values, as expected with full phase coverage.
c Mean posterior estimates reported by Boehle et al. (2016) derived from an individual orbital fit of S0-2, without the jackknife bias term added for the reference
frame. Though Boehle et al. (2016) also report values derived from a simultaneous fit of S0-2 and S0-38, we compare the values for S0-2 alone here, for simplicity.
d See Section 2.2 for description of parameters.
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orbit would circularize over a relaxation timescale (e.g.,
Hills 1988; Brown 2015). Whereas a relaxed stellar system
expects a thermal distribution, this binary capture scenario
expects the eccentricity distribution to peak toward higher

eccentricities because the two-body relaxation time (∼109 yr;
Perets et al. 2007) is an order of magnitude longer than the
maximum lifetime of a B star (∼108 yr). On the other hand, a
lower-than-thermal distribution may indicate a disk-migration
scenario. Gillessen et al. (2009) found that the eccentricity
distribution is consistent with a thermal distribution to within
3σ, though they highlight a slight peak toward higher
eccentricities. With a larger sample of stars, Gillessen et al.
(2017) subsequently found that the eccentricity distribution
indeed is consistent with a thermal distribution, leaving
inconclusive evidence of the formation history. We can also
look at the orbital plane orientations of the S-stars to see if they
are compatible with the clockwise stellar disk. The inclination
and angle of ascending node distributions reported by Gillessen
et al. (2009) and confirmed by Gillessen et al. (2017) indicate
that a majority of the S-stars have randomly distributed
orientations and do not appear to be associated with the
clockwise disk of stars located outside the central arcsecond.
To confirm these findings or perform more robust tests of these
formation scenarios, we must ensure that the measured orbits of
the early-type stars with low phase coverage are not biased.
Future work will include using observable-based priors to test
the effects of the prior on stars with different eccentricity
distributions and angular orientations.

Figure 8. The 1σ contours for the joint probability distribution functions between eccentricity and inclination (top) and between angle of ascending node and
inclination (bottom) for HR 8799b, c, d, and e, assuming uniform priors (left) and a new prior based on uniformity in the astrometric observables (right). With the
observable-based prior, low-eccentricity orbits are favored for all four planets with an inclination of ∼30° to within 1σ, placing stronger constraints on the orbital plane
configuration of the HR 8799 system. The bottom panel shows that coplanar solutions are still allowed, though not necessitated, with the observable-based prior.
Using the same data set, prior choice can influence our physical constraints on the system, highlighting the fact that prior effects must not be ignored.

Table 5
Inclination Estimates for the HR 8799 Planets, Derived with Uniform Priors

and with the Observable-based Prior

Planet

aPrior Ran-
ges (deg)

b,cObservable-based
Prior (deg)

d,cUniform
Priors (deg)

HR 8799b [0, 180] -
+33.4 4.3

6.6
-
+35.1 5.1

7.0

HR 8799c [0, 180] -
+26.7 11.2

3.4
-
+26.9 11.8

2.7

HR 8799d [0, 180] -
+35.5 7.8

5.6
-
+38.1 13.5

9.9

HR 8799e [0, 180] -
+25.0 9.5

6.2
-
+17.5 10.7

9.0

Notes.
a Prior ranges for the observable-based prior are still specified in model-
parameter space.
b Inclination posterior median with the associated 68% credible interval,
derived using the observable-based prior.
c Monte Carlo chains are made available so that posterior distributions can be
evaluated independently, because MAP estimates differ slightly from the
median.
d Inclination posterior median with the associated 68% credible interval,
derived using uniform priors.
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Accurate orbital estimates in the GC are also critical, as S0-2
has recently gone through its closest approach to the SMBH in
2018, and small deviations from a Keplerian orbit are under
investigation. Because S0-2 has full phase coverage, Keplerian
orbital estimates with the observable-based prior are consistent
with previously published results. However, for a given data
set, prior choice becomes more important because the size of

the effect under consideration decreases and the complexity of
the likelihood increases (Gelman et al. 2017), indicating that
prior choice may play a larger role in deciphering small post-
Newtonian effects. Future work will include extending this bias
analysis to post-Newtonian parameters in General Relativity.
Without considering prior influences on posteriors, statistical
aberrations may be confused with actual physical processes. In
prior-dominated regimes, statistical effects can obscure physi-
cal effects such as those from General Relativity (e.g., Grould
et al. 2017; Hees et al. 2017; Parsa et al. 2017). For example,
biases induced by prior dominance can cause inferred model
parameters to differ when we fit an orbit to the upper and lower
portions of S0-2ʼs trajectory independently. Note that, because
of the angular orientation of S0-2ʼs orbit, the on-sky projection
of the orbit in the left panel of Figure 1 does not properly
convey how eccentric the true 3D orbit is. As such, angular
phase coverage differs greatly from the apparent coverage on

Figure 9. Joint probability distribution functions between eccentricity and To, assuming uniform priors (left) and an observable-based prior (right) for HR 8799d. With
uniform priors, an artificial To mode emerges near the epochs during which observations were taken, indicated by the green shaded region. The left panel indicates
that, with uniform priors, this biased region of To parameter space corresponds with an artificially high eccentricity mode. The observable-based prior mitigates this
bias by suppressing the artificial To mode and consequently the artificially high eccentricity mode.

Figure 10. Bias Factor (Section 4.2.1) for the argument of periapse ω derived
from simulations with uniform priors (blue) and observable-based priors (red).
Values are plotted for Test Cases 2 and 3.9 (Table 3), which are centered on
S0-2ʼs periapse and apoapse with ∼86% and ∼16% angular phase coverage,
respectively. These two simulations both cover ∼50% of the orbit on the plane
of the sky, making for an interesting comparison. Differences in ω between two
such fits could, in theory, hint at a detection of the precession of the periapse
(Parsa et al. 2017); however, the fact that Bias Factor values with the
observable-based prior are consistent between the two tests, while values with
uniform priors differ by over 0.5σ, indicates that differences in ω could in fact
be due to statistical biases if prior effects are not considered.

Table 6
Expected Information Gained in the Posterior Over the Prior for the HR 8799

Planets

Planet aUniform Prior bObservable-based c Percent
(Commonly Assumed) Prior Increase

HR 8799b 16.4±0.1 21.2±0.1 29.3%±0.1%
HR 8799c 16.7±0.1 21.0±0.1 25.7%±0.1%
HR 8799d 16.1±0.2 21.7±0.3 34.8%±0.4%
HR 8799e 14.0±0.1 18.6±0.4 32.9%±0.4%

Notes.
a Average relative entropy between posteriors and uniform priors as a measure
of information gained (Section 5.2.1).
b Average relative entropy between posteriors and observable-based priors as a
measure of information gained (Section 5.2.1).
c Observable-based priors allow information from data to contribute 25%–35%
more to resulting inferences than it could with uniform priors.
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the plane of the sky. For example, simulated data in Test Case
3.9 (apoapse-centered) and Test Case 2 (periapse-centered)
both cover ∼50% of the orbit on the plane of the sky, though
they differ greatly in angular phase coverage (∼16% and
∼86% of the 3D orbit based on true anomaly, respectively).
Because of this difference in angular phase coverage and
consequent difference in information content, the Bias Factor
on the argument of periapse ω differs between these two
simulations by over 0.5σ with uniform priors (Figure 10). With
the observable-based prior, however, the Bias Factor on ω
remains consistent between the two test cases (Figure 10),
indicating that differences in ω between these apoapse- and
periapse-centered fits could be due to statistical effects of prior
dominance rather than a hint of the precession of the periapse.

6.2. Exoplanet Orbits

Similarly, physical models for planet formation depend
heavily on orbital estimates. The four directly observed young
giant planets that comprise the HR 8799 system provide an
unparalleled opportunity to study the formation and evolution
of giant planets (e.g., Marois et al. 2010). Accurate constraints
on the planets’ orbital plane parameters are essential to
understanding the system’s dynamical history. Consequently,
our physical interpretation can be obscured by the statistical
effects of low-phase-coverage data that are not rigorously
constraining.

We show that prior choice affects the inference of orbital
plane parameters, especially eccentricity and inclination—key
parameters that provide constraints on dynamical models.
Konopacky et al. (2016) note that low phase coverage can
cause eccentricity estimates to be biased high. By calculating
the statistical efficiency and Bias Factor on eccentricity for HR
8799d simulations (based on the 68% error on the mode of the
posterior distribution rather than on central credible intervals,
due to the multimodality of resulting posteriors), we confirm
that eccentricity estimates indeed are biased high when uniform
priors are assumed, but are unbiased with the new observable-
based prior. Additionally, the errors on the mode of the
posterior distribution are no longer underestimated with the
new prior. This improvement in statistical efficiency and
reduction in bias allows greater confidence to be placed in
eccentricity estimates inferred with an observable-based prior
than in those inferred with uniform priors. In fits to the HR
8799 astrometry, lower eccentricity estimates are favored with
the observable-based prior than are estimated with uniform
priors, allowing for the possibility of nearly circular orbits—
particularly for planets d and e (Figures 11–14). In contrast to
this result, analyses presented by Wertz et al. (2017) do not
support assumptions of circular orbits, as they estimate an
eccentricity of approximately 0.35 for HR 8799d—similar to
the value we infer with uniform priors. Although Wertz et al.
(2017) argue against the circular orbit hypothesis, they note
that astrometric biases or underestimation of astrometric errors
should not be neglected. Building off of this caveat, we suggest
that biases and underestimation of errors in posterior parameter
estimates—not just in initial astrometric measurements—also
cannot be ignored. We therefore suggest that prior considera-
tions be taken into account before ruling out any dynamical
models.

The relative inclination of the four planets is another open
question whose investigation could provide constraints on

dynamical models. Evaluating whether the planets have
consistent inclinations requires obtaining accurate estimates
of the orbital plane parameters. As such, this question has been
widely disputed due to the low constraining power of the data.
In this paper, we show that the evidence for consistent
inclinations of the four HR 8799 planets is stronger when
assuming an observable-based prior than when assuming
uniform priors (Figure 8). Early works suggest that the HR
8799 planets do not have similar inclinations (e.g., Currie et al.
2012; Pueyo et al. 2015); however, using a self-consistent data
set, Konopacky et al. (2016) found evidence that the orbital
planes of the four planets are consistent within 2σ. Building off
of this work, using the same self-consistent data set, we provide
stronger evidence that the four planets have a consistent
inclination of ∼30° to 1σ. Although the Ω estimates are
disjointed, there remains a large overlap in Ω parameter space
with the observable-based prior, indicating that coplanar
solutions could still be consistent with the data. While Wertz
et al. (2017) similarly show that the HR 8799 planets have
consistent inclinations between ∼20° and 38° with respect to
the plane of the sky, they use 3D dynamical modeling
techniques to suggest that the system might not be coplanar,
at 2σ significance, due to the disjointed Ω estimates. Future
work will include combining an assessment of the three-
dimensional orientations of the orbits (Wertz et al. 2017) and of
the system dynamics and stability with this prior analysis to
further assess the possibility of coplanarity. Here, we simply
demonstrate that the prior has a profound effect on parameter
estimates and consequently on our physical understanding of
the system itself. Prior considerations must be taken into
account before confirming or denying physical models when
fitting data with such low phase coverage.

6.3. Statistical Context

Basing an objective prior on experimental design is not an
unprecedented idea in Bayesian statistical inference. Reference
priors and the Jeffreys prior are objective priors that are defined
by the structure of the likelihood. Like reference priors,
observable-based priors are dependent on a form of the
likelihood, with the goal that the resultant inference is
maximally dominated by data (Berger et al. 2009). Observa-
ble-based priors differ from these paradigms in that they are not
based on the asymptotic nature of an experiment. This protects
against the statistical consequences of asymptotic priors, but
also implies that our observable-based prior is weakly
informative rather than truly objective (Gelman et al. 2017).
There is some subjectivity added by the choice of the prior in
observable space and the wide choice of conversions from
higher-dimensional parameter space to lower-dimensional
observable space (Equation (1)). For example, we transform
from the observables to e and P for the reasons stated in
Section 2, though we could in theory have transformed to e and
To instead. In short, while including relevant information that
can influence possible observations, we seek to limit prior
influence in regions of prior dominance and thus maximize
areas of data dominance. Because we base our prior analysis on
possible data that can be observed (not in the asymptotic limit),
we do not achieve the same objectivity as standard objective
priors. However, because the prior’s parameterization is
determined by the observables, it is less subjective than are
uniform priors. Thus, our prior analysis lies between that of
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truly objective priors and uniform priors, which are commonly
assumed in orbit fitting.

7. Conclusion

Data sets with low orbital phase coverage have low
constraining power, and thus prior assumptions can bias
parameter estimates, produce inaccurate confidence intervals,
and profoundly impact inferred posteriors. To improve orbital
estimates for objects with low phase coverage—in particular,
stars in the Galaxy’s central stellar cluster or directly imaged
exoplanets—we develop a prior framework that is based on
uniformity in observable space rather than in model parameter
space. This observable-based prior limits prior influence and
allows the data to contribute more heavily to resultant
posteriors.

Compared to uniform priors, which are commonly assumed
in orbit fitting, the observable-based prior reduces biases in
model parameters by up to a factor of two and ensures that
credible intervals are not underestimated for simulated Galactic
center data with less than ∼40% phase coverage. Applying the
new prior to simulated HR 8799d data shows that the
observable-based prior can mitigate the known issue that
eccentricity estimates are biased high when data are not
rigorously constraining.

While S0-2 astrometric and RV data have full phase
coverage and thus high constraining power, HR 8799
astrometric data have low phase coverage without the
additional constraints of RV data. Thus, Section 5.1 shows
that S0-2ʼs orbital solution derived with the new prior is
consistent with that published by Boehle et al. (2016), while
Section 5.2 shows that orbital solutions for the HR 8799
planets are impacted by the observable-based prior, thus
influencing our physical interpretation of the system. By
limiting prior influence in prior-dominated regions and
allowing data to have stronger influence over inferred poster-
iors, we see stronger evidence for lower eccentricity orbits and
for consistent inclinations of the four HR 8799 planets at ∼30°
to within 1σ, and do not exclude the possibility of coplanarity.

There are innumerable forms that an observable-based prior
can take, though we have only specified two in this work. The
objective choice of the prior form can vary and thus should be
tested for other models. This framework of prior creation and
evaluation can and should be extended to different models and
data sets to more accurately estimate orbits of objects with low
phase coverage. Such applications include (but are not limited
to) Galactic Center orbits, directly imaged planetary systems,
and visual binaries.

We thank the staff of the Keck Observatory, especially
Randy Campbell, Jason Chin, Scott Dahm, Heather Hershey,
Carolyn Jordan, Marc Kassis, Jim Lyke, Gary Puniwai, Julie
Renaud-Kim, Luca Rizzi, Terry Stickel, Hien Tran, Peter
Wizinowich, and former director Taft Armandroff for all their
help in obtaining observations. We also thank Dimitrios Psaltis,
Eric B. Ford, and David W. Hogg for their feedback and
contributions. Support for this work at UCLA was provided by
the W. M. Keck Foundation, NSF grant AST-1412615, and the
Preston Graduate Fellowship. The W. M. Keck Observatory is
operated as a scientific partnership among the California

Institute of Technology, the University of California, and the
National Aeronautics and Space Administration. The Observa-
tory was made possible by the generous financial support of the
W. M. Keck Foundation. The authors wish to recognize and
acknowledge the very significant cultural role and reverence
that the summit of Maunakea has always had within the
indigenous Hawaiian community. We are most fortunate to
have the opportunity to conduct observations from this
mountain. The Observatory was made possible by the generous
financial support of the W. M. Keck Foundation.

Appendix A
Expected Information Sampling

Calculation of the expected information comes directly from
Equations (41) and (42), which imply that the expected
information is the expectation of D M D [ ( ∣ ) ( )]log over the
joint probability distribution D M( ), , e.g.,
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over some large N. Equation (43) implies a simple algorithm to
calculate  : iteratively sample D and M from D M( ), and
calculate the average D M D [ ( ∣ ) ( )]log . Here, D M( ), is
sampled by first sampling M from the prior, M( ), and then
drawing a mock data set, D, from the likelihood, D M( ∣ ).
This is summarized in Algorithm 1.

Algorithm 1:Expected information sampling algorithm.
Draw samples, M{ }, from M( )
n⟵0
whilen<N do
Draw Mmock from M{ }
Draw Dmock from D M( ∣ )mock

Find evidence, D( )mock , of D M M ( ∣ ) ( )mock

 D M

D
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mock mock

mock

n⟵n+1
end
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Appendix B
HR 8799 Orbital Parameter Posteriors

Figures 11–14 show 1D marginalized posteriors and the
prior for all orbital parameters for HR 8799b, c, d, and e,
respectively. Prior choice affects the resulting posteriors, and
thus must be taken into consideration. All probability densities,
including the prior probability densities, are derived from
Monte Carlo simulations. The Monte Carlo chains are available
in the .tar.gz package.
Note that the form of the observable-based prior defined in

Section 2.2 is approximated by summing the Jacobian over all
epochs. For each individual epoch, the prior distribution in To
should be uniform (modulo boundary effects) according to
Equation (30). However, when summing over a finite number
of epochs, the sum is not guaranteed to be flat, as is evident in
Figures 11 and 13.
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Figure 11. Marginalized 1D posteriors, assuming a uniform prior (blue) and a new prior based on uniformity in the astrometric observables (green) for all orbital
parameters resulting from a fit to HR 8799b astrometric data from Konopacky et al. (2016). The observable-based prior itself is also shown with the dashed green line.
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Figure 12. Marginalized 1D posteriors, assuming a uniform prior (blue) and a new prior based on uniformity in the astrometric observables (green) for all orbital
parameters resulting from a fit to HR 8799c astrometric data from Konopacky et al. (2016). The observable-based prior itself is also shown with the dashed green line.
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Figure 13. Marginalized 1D posteriors, assuming a uniform prior (blue) and a new prior based on uniformity in the astrometric observables (green) for all orbital
parameters resulting from a fit to HR 8799d astrometric data from Konopacky et al. (2016). The observable-based prior itself is also shown with the dashed green line.
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