Supplementary Materials for

Repurposing a macromolecular machine: Architecture and evolution of the F7 chemosensory system

Davi R. Ortega¹, Poorna Subramanian¹, Petra Mann², Andreas Kjaer^{1,†}, Songye Chen¹, Kylie J. Watts³, Sahand Pirbadian⁴, David A. Collins⁵, Romain Kooger⁶, Marina G. Kalyuzhnaya⁵, Simon Ringgaard², Ariane Briegel^{7*}, Grant J. Jensen^{1,8*}

Correspondence to: jensen@caltech.edu, a.briegel@biology.leidenuniv.nl

This PDF file includes:

Materials and Methods Figs. S1 to S4 Tables S1 to S9 Captions for Datasets S1 to S2

Other Supplementary Materials for this manuscript include the following:

Datasets S1 to S2

Materials and Methods

Strains and growth conditions

<u>Vibrio cholerae</u> Strain list and construction: Wild-type: *Vibrio cholerae* C6706 Strain PM6: Δvca1088 Strain PM7: Δvca1093, Δvca1094, Δvca1095 (ΔF7) Strain PM18: Δvca1092

V. cholerae deletion strains were generated using standard allele exchange (47) with the plasmids listed below.

Plasmid for deletion of vca1093, vca1094 and vca1095:

Plasmid pPM045 was constructed by PCR amplification of the up- and down-stream regions of *vca1093* and *vca1095*, respectively. PCR1 was performed with primers ccccctctagaaattggctaatccctctaaactc / aatcttgcgcagttgttccatatc and C6706 chromosomal DNA as template. PCR2 was performed with primers gatatggaacaactgcgcaagatt cgcttaagcaccactgccgaa / ccccctctagacatcatcaaattcgtcgtcatgc and C6706 chromosomal DNA as template. A third PCR was then performed using primers ccccctctagaaattggctaatccctctaaactc / ccccctctagacatcatcaaattcgtcgtcatgc and PCR1 and PCR2 as template. The product from PCR3 was then digested with XbaI and ligated into the equivalent site of plasmid pCVD442 (*47*) resulting in plasmid pPM045.

Plasmid for deletion of *vca1092*

Plasmid pPM051 was constructed by PCR amplification of the up- and down-stream regions of *vca1092*. PCR1 was performed with primers ccccctctagaacggttgtcttgatcttgagtgc / aacaaactggggcacaacctg and C6706 chromosomal DNA as template. PCR2 was performed with primers caggttgtgccccagtttgttatgcataaagcaccgataaatcagg/ ccccctctagaattgccttgctgatcttgacct and C6706 chromosomal DNA as template. A third PCR was then performed using primers Ccccc tctaga acggttgtcttgatcttgagtgc / ccccctctagaattgccttgctgatcttgagtgc / accact tgagtgc / ccccctctagaattgccttgctgatcttgacc and PCR1 and PCR2 as template. The product from PCR3 was then digested with XbaI and ligated into the equivalent site of plasmid pCVD442 resulting in plasmid pPM051.

Plasmid for deletion of vca1088

Plasmid pSR1228 was constructed by PCR amplification of the up- and down-stream regions of *vca1088*. PCR1 was performed with primers ccccctctagaaagccaatgtagggtttgtgcag / tatcgccgttattttgtgttttctcg and C6706 chromosomal DNA as template. PCR2 was performed with primers cgagaaaacacaaaataacggcgataaaccgtgggggattggctg / ccccctctagatgcgataatgtgcctgtactttg and C6706 chromosomal DNA as template. A third PCR was then performed using primers ccccctctagaaagccaatgtagggtttgtgcag / ccccctctagatgcgataatgtgcctgtactttg and PCR1 and PCR2 as template. The product from PCR3 was then digested with XbaI and ligated into the equivalent site of plasmid pCVD442 resulting in plasmid pSR1228.

During plasmid and strain construction, *V. cholerae* and *E. coli* were grown at 37°C in LB medium or on LB agar plates containing antibiotics in the following concentrations: 200 mg/mL

streptomycin; 50 mg/mL kanamycin; 100 mg/mL ampicillin; 50 mg/mL carbenicillin; and 20 mg/mL chloramphenicol for *E. coli*, and 5 mg/mL for *V. cholerae*.

For cryo-ET microscopy *V. cholerae* cells were grown as described previously (*16*): after growth in LB medium for 24 hours at 30°C with shaking, 150 μ l cell suspension was diluted into 2 ml Ca-HEPES buffer and grown for an additional 16 hours with shaking at 30°C.

Pseudomonas aeruginosa

The *P. aeruginosa* mutant strains imaged in this study were acquired from the transposon mutant collection from the University of Washington, Table S4. Wild-type *P. aeruginosa* PAO1 and a PAO1 *aer2* deletion mutant [PAO1047](*30*) were imaged in this study. Cells were grown in MOPS-based nitrogen starvation medium for ~24 hours at 30°C with shaking. MOPS-based minimal medium limited nitrogen(*48*): 43mM NaCl, 50mM MOPS (from 1M stock of MOPS/NaMOPS pH 7.2), 40 mM Sodium Succinate, 1mM MgSO4, 2.2mM KCl, 0.1mM CaCl, 10µM FeNH4SO4*7H₂O, 1 mM NH₄Cl, 1.25mM NaH₂PO₄.

Shewanella oneidensis

For imaging the chemosensory systems, *Shewanella oneidensis* MR-1 wild-type cells were cultured using continuous flow bioreactors (chemostats) or batch cultures as previously described(*20*).

Methylomicrobium alcaliphilum

For imaging intracellular structures wild type *M. alcaliphilum* $20Z^{R}$ cells were grown in a modified nitrate mineral salts medium(*49*) with a final pH of 9.0 consisting of: 9.9mM KNO₃, 0.8mM MgSO₄ x 7 H₂O, 13.6µM CaCl₂ x 2 H₂O, 0.5M g*L⁻¹ NaCl, 2mM KH₂PO₄, 2mM Na₂HPO₄, 22.5mM NaHCO₃, 2.5mM Na₂CO₃ along with trace elements 13.4 µM Na₂EDTA, 7.2µM FeSO₄ x 7 H₂O, 4.8µM CuSO₄ x 5 H₂O, 1 µM ZnSO₄ x7 H₂O, 0.9 µM Na₂O₄W x 2H₂O, 0.8 µM CoCl₂ x 6 H₂O, 0.5µM H₃BO₃, 0.2 µM MnCl₂ x 4 H₂O, 0.2µM NiCl₂ x 6 H₂O, 0.2µM Na₂MoO₄ x 2 H₂O. Cultures were grown at 30°C in septated bottles containing 20% CH₄ headspace. Cell samples for cryo-ET preparations were taken at mid-exponential phase, at a cell density of OD₆₀₀ = 0.5.

Electron cryotomography

Cells were prepared for electron cryotomography as described previously(50). Images were collected using either an FEI Polara 300 keV field emission gun microscope or an FEI TITAN Krios 300 keV field emission gun microscope with lens aberration correction (FEI Hillsboro, OR). Both microscopes were equipped with Gatan imaging filers and 'K2 summit' counting electron detector cameras (Gatan, Pleasanton, CA). The data collection software used to collect the tilt series was UCSFtomo (51). The cumulative electron dose was 160 e⁻/A² or less for each individual tilt series. CTF correction, frame alignment and SIRT reconstruction were done using the IMOD software package (52). The tomograms used in this study are available in the Electron Tomography Database – Caltech (53) and their identifiers can be found in Table S5.

1D electron density profiles

To measure the distance between the inner membrane (IM) and the CheA/CheW base plate, we used a custom script written in Node.js that takes as input the tomogram and the model points

that delineate the inner membrane using 3dmod. The script calculates the average pixel value in profiles running perpendicular to the model points but in the same plane as the model points were collected. These averaged profiles are output in a JSON formatted file. The script and instructions for installation and use are available in a GitLab repository at https://gitlab.com/daviortega/sideview-profile-average. To visualize the profile we used the ObservableHQ notebook located at https://beta.observablehq.com/@daviortega/generic-notebook-to-analyse-1d-averaged-electron-density-p. For each profile, we measure the distance between the peaks corresponding to the electron density of the IM, the CheA/CheW baseplate and the intermediate layers when possible, in pixels. The measurement uncertainty was estimated as the expanded uncertainty using k = 2 as a coverage factor propagated from the uncertainty in determining the center of each peak in pixels, as recommended by (54). The values reported in nanometers were calculated by multiplying the measurement and uncertainty by the pixel size for each tomogram.

Bioinformatics resources and software packages

All sequences in this study were collected in the MiST database (55), domain architecture predictions from PFAM(56) were selected from SeqDepot (57), and 3D atomic models were taken from the Protein Data Bank (PDB) (58). Domain architecture prediction was performed with CD-VIST (http://cdvist.zhulinlab.org/)(25). We used CD-HIT v4.6 to reduce redundancy in unaligned sequences(59). Multiple sequence alignments were performed with the algorithm L-INS-I from the package MAFFT v7.305b (60). We used Gblocks v 0.91b (61) to eliminate poorly aligned columns in multiple sequence alignments. To perform sequence alignments with structural information we used STRAT from the MultiSeq (62) tool for VMD v1.9.3 (63) which in turn was used to visualize and manipulate 3D structures. Homology modeling was performed using MODELLER v9.17 (64). Secondary structure predictions were performed with JNet Structure Predictions(65) in the Jalview(66) software, which was also used to visualize multiple sequence alignments. Similarity searches for sequences were conducted using BLAST v2.7.1+ (67) and HMMER v3.1b2 (68). Phylogenetic reconstructions were performed using RAxML v8.2.10(69). To collapse branches with low support in phylogenetic trees we used TreeCollapseCL4 (70). Tomograms and model points were manipulated using 3dmod v4.9.9 (52).

Protein domain architecture prediction

The domain architecture of the C-termini of chemoreceptors are poorly conserved among members of this protein family(71). Further, protein domains commonly appearing in this region, such as HAMP(72) and PAS(26), are so diverse that in several instances predictive models have difficulty identifying them. To address this problem we used CD-VIST on the two Aer2-like receptors without known domain architectures from *S. oneidensis* and *M. alcaliphilum* with TMHMM prediction, skipping HMMER3 and RPSBLAST steps, but adding three consecutive HHSEARCH steps against the PDB database with HHBLITS using uniclust30 at different thresholds for minimum probability: 60%, 40% and 20%. Analyzing the CD-VIST domain coverage we predicted that *S. oneidensis*'s Aer2-like receptor has a PAS-PAS-HAMP-HAMP-MCPsignal domain architecture, similar to *V. cholerae* and that the *M. alcaliphilum*'s Aer2-like receptor has a HAMP-PAS-HAMP-HAMP-MCPsignal domain architecture. We further enhanced our confidence in this predictions by aligning the Aer2-like sequences to the sequence of the templates used to produce the homology models.

Homology modeling

To build homology models for the Aer2-like receptors in *V. cholerae*, *P. aeruginosa*, *S. oneidensis* and *M. alcaliphilum* we used several crystal structures available in the Protein Data Bank (PDB), Table S6. The files used in this process are described in Table S7 and can be found in the Supplementary Dataset S1.

First we built a homology model with two HAMPs followed by the MCPSignal domain that we name 2H+S. For that we used the structures 3ZX6 and the second HAMP of 4I3M to form a chimeric template. We manually aligned the structures of the templates against the Aer2 in *P. aeruginosa* (PA1076) and performed a multiple sequence alignment using L-INS_I and MultiSeq. To construct the homology model of this structure, we use MODELLER with the following parameters: a.library_schedule = autosched.slow, a.max_var_iterations = 1000, a.repeat_optimization = 100 and a.max_molpdf = 1e6. To make sure that the connection between both HAMPs remained the same, we added a restraint in both chains A and B from residues 359 to 385. We built 100 homology models with these parameters and chose the one with the lowest DOPE score.

Next, to add a PAS domain to this structure, we used the 3VOL and 4HI4 structures. First we aligned chain B of 3VOL with the 2H+S homology model produced in the previous step. We noticed that this alignment produced clashes between the PAS domains. To overcome this obstacle, we used chains B and D in the 4HI4 structure as a model for the dimerization of the two PAS domains. We aligned chain B of 4HI4 to the 3VOL structure using the residues QWTDRT and then manually manipulated the dimer of PAS to be positioned in line with the 2H+S model to build the next homology model: P+2H+S. Sequence alignment was performed as described before against the sequence of Aer2 in *P. aeruginosa* (PA1076). This homology model was used as the basis of the complete homology models of all the Aer2-like receptors.

To build the homology model of Aer2 in *P. aeruginosa* (PA1076), we used the P+2H+S model together with the 4I3M structure. For that we manually aligned the structures to build the template. However, there is a 13 residue region unresolved in both structures (R156 – G169) but predicted to be alpha helical. We assume that these two structures then are around 2.2 nm apart and took that into consideration while positioning the structures. Finally the homology model was built using MODELLER with the parameters described above and with a restraint to force alpha helical conformation between residues 140 to 181.

To build the homology model of the Aer2-like receptor in *V. cholerae* (VCA1092) we used the P+2H+S model together with 4HI4. The sequences of the templates and VCA1092 aligned pretty well with only a minor gap in the residues ELLRD, also predicted to be alpha helical. We aligned the end of chain B of the already aligned 4HI4 used in the P+2H+S model to the beginning of chain A of P+2H+P using STAMP and manually adjusted the position of the structures using VMD. The homology model was constructed with MODELLER and we imposed a restraint to force alpha helical conformation between residues 21 to 43 (C terminal) and 151 to 171 (unresolved gap).

To build the homology model of the Aer2-like receptor in *S. oneidensis* (SO_2123) we used the VCA1092 model since they have the same domain architecture. The sequences of the templates and SO_2123 also aligned pretty well with only a minor gap in the residues ESIDA, also predicted to be alpha helical. The C-terminus of the sequence is also predicted to be alpha helical up to the residue PHE7. We aligned the end of chain B of the already aligned 4HI4 used in the P+2H+S model to the beginning of chain A of P+2H+P using STAMP and manually adjusted the position the structures using VMD. The homology modeling was performed with MODELLER and we imposed a restraint to force alpha helical conformation between residues 21 to 43 (C terminal) and 151 to 171 (unresolved gap).

To build the homology model of the Aer2-like receptor in *M. alcaliphilum* (MEALZ_2872) we used the P+2H+S model and the 4I3M structure. To find out which of the 3 HAMPs in the 4I3M structure is most closely related to the C-terminal HAMP of MEALZ_2872 we used BLAST to find HAMP sequences in the *Pseudomonas* group similar to each of the HAMPs in the 4I3M and to the C-terminal HAMP of MEALZ_2872. We aligned the sequences using L-INS-I and perform a phylogenetic reconstruction using RAxML with -m PROTGAMMAIAUTO -p 1234555 -x 9876545 -f a -N 100 as parameters. Tree nodes were collapsed to a certainty score of 50. The phylogenetic analysis showed that the C-terminal HAMP of MEALZ_2872 is closely related to the second HAMP of 4IM3. We truncated the 4IM3 structure to contain only the second HAMP and aligned an extended helix connecting to the third HAMP with the PAS domain of the P+2H+S model. We used this alignment to place the HAMP at the right position and deleted the extended helix. These structures were used as a template for the MEALZ_2872 homology model built with MODELLER as described above and with restraints to force alpha helical conformation in residues 194 to 216, 255 to 270 and 721 to 728.

Chemotaxis system classification

Relevant protein sequences of chemotaxis components were classified using HMMER and the hidden Markov models previously published (9). The model with highest score was used to assign chemotaxis components to classes.

F7 system identification in γ-Proteobacteria.

To estimate how widespread F7 systems are in γ -Proteobacteria, we randomly picked 310 genomes from γ -Protebacteria from MiST. From those, we selected the CheA protein sequences and then classified them using HMMs provided by the authors of (9). The CheA proteins classified as F7 systems belonged to 176 genomes. Table S8 list all 310 genomes and marks the presence of the F7 systems in the 176 genomes.

Phylogenetic tree of F7 systems in Proteobacteria

To build a tree of the F7 and F8 systems in Proteobacteria we used a concatenated alignment of the protein sequences of CheA, CheB and CheR, as previously described (9). We first collected every CheA belonging to these two classes from 1152 Proteobacteria genomes in MiST (547 from F7 class and 168 from F8 class) and used CD-HIT to eliminate redundancy at the 85% identity level (201 from F7 class and 119 from F8 class). To find CheB and CheR proteins that confidently function with the selected CheAs, we searched for genes that code for these proteins in the range of 10 genes upstream and downstream from each *cheA* gene. Conflicts of multiple or missing *cheB*, *cheR*, or *cheA* genes within that range were manually resolved or the system was

removed from the dataset. At this stage the dataset contained 272 protein sequences of CheAs, CheBs and CheRs. We aligned each protein individually with L-INS-I from MAFFT. We used Jalview to examine the alignment and removed 10 sequences for not being complete genes and re-aligned the sequences with L-INS-I. The final dataset had 262 sequences from 246 genomes. For each protein family, we used Gblocks to remove alignment positions with low information. The Gblock parameters were: b3=8 -b4=10 b5=h. The resulting alignments of the protein sequences of CheA, CheB and CheR were concatenated into a single alignment with 698 columns. We used RAxML with parameters -m PROTGAMMAIAUTO -f d -d -N 25 with different seeds 10 times and 3 partitions set to evolutionary model AUTO with boundaries 1-312, 313-559 and 560-698 to accommodate possible differences in the evolutionary models selected for CheA, CheB and CheR sequences. We selected the tree with best maximum likelihood score. We also ran 1000 rapid bootstrap on the same alignment with the parameters -m PROTGAMMAIAUTO -p 1234555 -x 9876545 -f a -N 1000. We mapped these bootstrap values to the best tree and used TreeCollapseCL4 to collapse nodes with less than 50% uncertainty to polytomies. We also mapped the CheA gene neighborhoods (15 genes up and downstream) to the CheABR tree using custom scripts written in Python to produce Fig. S1. BLAST all vs. all to all CheAs and selected neighboring genes was used to loosely define homologous sets of proteins with at least 10E-40 E-value and query coverage of 95% to any member of the set. As an exception to this rule, the anti-signa factor antagonists were selected with the threshold of 1E-5 and query coverage of 50%. Homologs of relevant proteins are highlighted in different colors. We manually selected representatives of relevant genes neighboring CheA for major branches relevant to this study for display in Fig. 3.

Phylogenetic profiles of F6 and F7 systems

We first selected the genomes of the organisms we imaged: *Methylomicrobium alcaliphilum*, 20Z, Pseudomonas aeruginosa PAO1, Shewanella oneidensis MR-1, Vibrio cholerae O1 biovar El Tor str. N1696. In order to perform phylogenetic profiling of the chemotaxis systems in γ -Proteobacteria, we added 162 genomes from this class and 10 genomes from β -Proteobacteria as an outgroup, for a total of 176 genomes (Table S9). The number of selected genomes is coincidently the same as the number of genomes are present in both sets. To build the organism tree we used the same procedure as described in (73) with the difference that the final concatenated alignment served as an input to RAxML to generate 164 inferences with the parameters -m PROTGAMMAIAUTO -p 12345 -f d -d -N 164. Chemotaxis proteins from these genomes were classified as described above and mapped onto the organism tree to produce Fig. S2.

Domain architecture prediction of chemoreceptors present in stage 3 and 4 F7 systems

We selected the protein sequences of chemoreceptors present in the gene neighborhood used to build Fig. S1 and use CDVIST to predict the domain architecture using TMHMM, HMMER3 against Pfam 30.0 database. The results are shown in Fig. S3.

Identification of Aer2-like and McpA-like receptors

We first collected all 3389 chemoreceptors from the 176 genomes used to build the phylogenetic profiles. We defined a protein as a chemoreceptor if it contained the MCPsignal PFAM domain. Then we grouped them in clusters of orthologous groups using the same technique described in

(18). To pick Aer2-like receptors we used an E-value of 1E-135 and selected all 144 receptors present in the same group as the Aer2 (PA1076) from P. aeruginosa. From those, we removed 6 receptors from the β -Proteobacteria outgroup, 5 that were not classified as 36H receptors and 3 other sequences that did not seem to align well with the group. The final set of Aer2-like receptors had 130 Aer2-like receptors and was aligned using L-INS-I and manually inspected with Jalview. Chemoreceptor families and subfamilies are prone to have diverse C-terminal domain architectures so following the procedure in (71) we manually trimmed the sequences to only contain the regions common to all receptors. This final alignment was used to build a phylogenetic tree with RAxML. We built 200 independent inferences with parameters -m PROTGAMMAILG -p 1234555 -f d -d -N 200 and 1000 rapid bootstrap trees with -m PROTGAMMAILG -p 1234555 -x 9876545 -f a -N 1000. Bootstrap scores were mapped to the tree with best maximum likelihood from the 200 independent inferences. Nodes were collapsed to polytomies at 50% uncertainty using TreeCollapseCL4. The same procedure was executed to make the tree of McpA-like receptors but with an E-value threshold of 1E-30. The McpA-like cluster was defined as the one containing McpA from P. aeruginosa (PA0180). There were 40 McpAs in the final dataset. Both trees are displayed in Fig. S4.

Phylogenetic tree of CheY

The CheY protein comprises a single domain, known in the PFAM database as Response Regulator (Response_reg). However, this domain appears in several other proteins as well. In order to select proteins with one and only one response regulator domain, we collected the domain architecture information from PFAM v30 and predicted transmembrane regions by TMHMM from SeqDepot for all sequences from the 246 genomes and used Regular Architecture (https://www.npmjs.com/package/regarch) to filter only single CheY domains with the following rule:

```
"name": "$",
"resource": "regarch"
}
]
}
```

This pattern selected 4941 sequences. We then used the same clustering techniques described for Aer2-like and McpA-like receptors with an E-value threshold of 10E-30 and selected the largest group, with 1394 sequences. This group contains the known CheYs of the model organisms in this study and others. We aligned this dataset with L-INS-I and manually removed 3 sequences that were highly divergent using Jalview. We built the tree with 500 rapid bootstraps with RAxML and searched for the best tree of this set with the parameters -m PROTGAMMALG -p 1234555 -x 9876545 -f a -N 500. Finally we collapsed nodes with less than 50% support into polytomies using TreeCollapseCL4 to produce Fig. 4.

Fig. S1.

Phylogeny of CheA, CheB and CheR concatenated alignments of F7 and F8 systems and gene neighborhood of 15 genes up and downstream from CheA.

Enterobacteriales

Fig. S2.

Phylogenetic profile of the F7 and F6 systems in γ -Proteobacteria shows that only organisms with stage 1 (red) and from stage 2 (green) has F6 systems but not from stage 5 (blue). Note that the distribution of stage 1 and stage 2 are mixed in the non-enteric group. Genomes with empty circles were genomes included in this part of the research but not in the analysis of classifying the F7 systems.

Ra_sol_196(RCF8P_mp30178(YP_003748644.1)|36H Pe_se_7915(X636_10160(R6F_PR3NA230133:X636_10180([36H Pe_pp_7915(X926_10175(R0F_PRINA230133:X636_10175(126H Bu_sp__1548[87123_A001200[YP_004975935.1]]36H
 Ru, w. 1.300(07).3003(07).3003(07).3013(1))01
 Image: Comparison of the second sec
 Image: Second - MG) - MOregon - MOregon -Co_fun_1482[CPU_0975]YP_004751630.1||36H
 O. 11.127/MAUA.1620109-001794075.11304
 Important

 Mr. ghr. 110010940, 40113070, 50000881.11304
 Important

 Mr. ghr. 110010940, 40113071.11304
 Important

 Mr. ghr. 110010940, 5010071.11304
 Important

 Mr. ghr. 110010940, 5010071.11304
 Important

 Mr. ghr. 110010940, 5010071.11304
 Important

 Mr. ghr. 110010940, 501007.50100403, 11304
 Important

 Mr. ghr. 11001094, 5010403, 11304
 Important

 Mr. ghr. 11001094, 5010109, 5010403, 11304
 Important

 Mr. ghr. 11001094, 5010109, 5010403, 11304
 Important

 Mr. ghr. 11001094, 1100109, 50010403, 11304
 Important

 Mr. ghr. 11001094, 100109, 5001094, 11004
 Important

 Mr. ghr. 11001094, 100109, 50010403, 11004
 Important

 Tatt MOrsignal
 ML_RL2010F6_120107_54694_11[201
 Image: MS1292

 ML_RL2010F6_020017_01[201
 Image: MS1292
 Pa_57915[0036_10185[887_PR3W220133130636_10185][3041 [304] [304]
 Nr. gor. 1105/9495.4.003799.003998.11084

 Nr. gor. 1005/04.07.91079.0039798.11084

 nr. gor. 1005/04.07.91079.0039798.11084

 nr. gor. 1005/04.07.91079.0039798.11084
 Ac_NI_7922[AX27061_2427[REF_ETEC:AX27061_2427]]36H
 Ns_nos_1121/Hns_1154/07_00054867_111044
 = (m_2) + (m_2 m_2) + (m_2 m_3) + (m_2 m_3) + (m_2 m_3) + (m_3 m_3) + NOPsignal Ch_vio_507(CV_3438(MP_503108.1))36H

100 aa

Fig. S3.

Protein domain architecture of chemoreceptors in the gene cluster of stage 3 and 4 of F7 systems shows the high incidence of receptors with transmembrane regions and periplasmic sensory domains (TarH, Cache superfamily, 4HB_MCP_1).

Fig. S4.

Phylogenetic tree of Aer2-like receptors and McpA-like receptors. The tags in the tips are built using the name of the organism and the locus of the receptor. Tips with red dots belong to chemoreceptors from stage 1 and green to stage 2. The only exception to the monophyletic distribution of Aer2-like receptors were in *V. cholera*, where an addition to the Aer2 homolog, a second, orphan 36H receptor (VC0098) was likely introduced by a recent lateral gene transfer from *Marinomonas*. Genomes with empty circles were genomes included in this part of the research but not in the analysis of classifying the F7 systems.

Table S1.

Presence and absence of the chemosensory arrays in imaged strains of *V. cholerae*, *P. aeruginosa*, *S. oneidensis*, and *M. alcaliphilum*.

	Imaged cell poles	Short array	Tall array	
Vibrio cholerae				
Wild-type C6706	29	20	7	
<u> Атср (VCA1088)</u>	20	19	5	
$\Delta F7$ cheW, cheW, cheA	29	18	0	
(VCA1093, VCA1094, VCA1095)				
<u> Атср (Aer2/VCA1092)</u>	27	24	0	
Pseudomonas aeruginosa	1	1	1	
Wild -type PAO1	16	7	5	
$\Delta F6 cheW$	15	8	6	
<i>∆тср 'тсрА' (PAO180)</i>	8	4	2	
$\Delta F7$ cheW (PAO177)	33	12	0	
ΔF7 cheA (PAO 178)	34	24	0	
<i>∆mcp 'aer2', 'mcpB' (PAO176)</i>	21	11	0	
Shewanella oneidensis MR-1				
Chemostat growth	29	20	7	
Batch culture growth	29	18	0	
Methylomicrobium alcaliphilum 20Z				
Wild-type	8	5	2	

Table S2.

Chemosensory gene clusters in the genomes of *V. cholerae*, *P. aeruginosa*, *S. oneidensis* and *M. alcaliphilum*.

	Classification	Alternative name in literature	Function	Gene cluster
Vibrio cholerae				
Cluster I	F9	-	Unknown	VC1394- VC1405
Cluster II	F6	-	Chemotaxis	VC2059- VC2064
Cluster III	F7	-	Unknown	VCA1090- VCA1095
Pseudomonas aeruginosa				
Cluster I/V	F6	Che I	Chemotaxis	PA1457- PA1464
Cluster II	F7	Che II	Unknown	PA0173- PA0180
Cluster III	ACF	Wsp	Biofilm formation	PA3703- PA3708
Cluster IV	TFP	Chp	Twitching motility	PA0410- PA0415
Shewanella oneidensis		-		•
Cluster I	F7	CheA-1	Unknown	SO_2117- SO_2126
Cluster II	F6	CheA-3	Chemotaxis	SO_3200- SO_3209
Methylomicrobium alcaliphilum				
Cluster I	F7	-	Unknown	MEALZ_2869- MEALZ_2879
Cluster II	F8	-	Unknown	MEALZ_2939 - MEALZ_2942
Cluster III	F6	-	Unknown	MEALZ_3148 - MEALZ_3158

Table S3.

Locations of electron density layers in arrays. Distances are measured from the CheA/CheW baseplate in nanometers. Uncertainties reported are the expanded standard uncertainty.hemosensory gene clusters in the genomes of *V. cholerae*, *P. aeruginosa*, *S. oneidensis* and *M. alcaliphilum*.

Layer	V. cholerae	P. aeruginosa	S. oneidensis	M. alcaliphilum
Inner membrane (IM)	38.4±1.9 nm	40.3±1.8 nm	35.5±2.7 nm	35.1±2.8 nm
Layer 3 (L3)	29.5 ±1.9 nm	30.7±1.8 nm	30.7±4.3 nm	-
Layer 2 (L2)	24.8±1.9 nm	24.0±1.8 nm	24.0±2.7 nm	25.3±4.4 nm
Layer 1 (L1)	17.5±1.9 nm	17.9±2.9 nm	17.3±2.7 nm	17.4±4.4 nm
Signaling Layer (SL)	-	7.0±1.8 nm	6.7±4.3 nm	7.5±2.8 nm

Table S4.

P. aeruginosa strains			
Strain name	PA ORF	Gene	
PW1307	PA0178	CheA F7 system	
PW1305	PA0177	CheW F7 system	
PW1312	PA0180	MCPA	
PW3654	PA1464	CheW F6 system	

Table S5.

Cryo-Electron Tomograms used in this study available on ETDB. Tomograms can be found on ETDB by the Open Index Protocol id (OIP id).

Jensen Lab id	OIP id	Organism
ab2015-06-02-1	6cef7c25e66ce42e4e2440490a68845a551303 77f7bc9e096c48fd83b47ae9cd	Vibrio cholerae
ab2015-06-02-2	98d93b8c8e390eb6c200fc2d30c9626cb1a7c1 40cd930a60eddb3a179aa8226b	Vibrio cholerae
ab2015-06-02-3	39a5d8490ee3823eaf785268aba1593d3be05b 8bf6cc029d2e0c247bb7b0a6ba	Vibrio cholerae
ab2015-06-02-5	2620f1ee27c5e63853bb3f3d09796b19d7bd91 fbdb5781daa892d68fb31be735	Vibrio cholerae
ab2015-06-02-6	9ba344e00d31084d2aef8a799f3089e46ead3b 28a02c0e73c5852337f67121fc	Vibrio cholerae
ab2015-06-02-7	1e00525c41a9faaa849befd686b70757a6f25a9 ceacbcde951b6eeef99006f09	Vibrio cholerae
ab2015-06-02-8	3cb8dc276fb373a99af2ee54301fcb0989eb003 7b9c3c2bd21f8e035f0f98215	Vibrio cholerae
ab2015-06-02-9	5739b1525b6a0e906de41a8e024e0b502f964 e19193feed1a62ced0e41b5dc17	Vibrio cholerae
ab2015-06-02-10	7e869e97212b3df06af70decf577ef3836c1ec4 787f1cbe677da60aca3bda727	Vibrio cholerae
ab2015-06-02-11	8329b3a0b5373c89d5280c42ca8aabb19a38a6 ee03e5910275b82776ff8745fa	Vibrio cholerae
ab2015-06-02-12	de04da0f550b2f37d4a0847e13b637877ed699 4bb5d8d0c24c87ad9f3cf52924	Vibrio cholerae
ab2015-06-02-13	4caf0202a48c92372ca3a24101d9c5e2b446fad bf80109b5d0710598a11fa3aa	Vibrio cholerae
ab2015-06-02-14	b2f7beb0de38a1eb8d0eab4d8493616c912293 1ec0490e1bb5b45474a032098f	Vibrio cholerae
ab2015-06-02-15	bd8198a02bd66929811014f1b15a243f47054 33876cb56c784bdc8fb91378c00	Vibrio cholerae
ab2015-06-02-16	87c298d70069315af599618c344d80bf2fc48f4 4c0057002798241842b58b5c9	Vibrio cholerae
ab2015-06-02-17	066cf7fae820b463b2e7405a9078e97b6de991 0587458dfd904759d75fb4ed2c	Vibrio cholerae

Jensen Lab id	OIP id	Organism
ab2015-06-02-18	82fdc6778793542fad9bfe7c18a6fa972dc3bf23 0b2e108aa53a5807811bdad7	Vibrio cholerae
ab2015-06-02-20	2524250ba11140c386c211aa14d164a166926 ee9ca7af5566eedbbba29856c48	Vibrio cholerae
ab2015-06-02-21	95a8202f59bdcfc9814f417aa40b3c355fc6f12c b147784d1d1665d8ccce8221	Vibrio cholerae
ab2015-06-02-22	09443b1917375d0f2755c3f4c2029dc847c654 efdb2e5a3df0c5938a9afaa1a9	Vibrio cholerae
ab2015-06-02-23	453536f21d3074fd3f6fcae6d834c6e37335f46 6611e2f1842c6beb8ee77681e	Vibrio cholerae
ab2015-06-02-24	03ab91b142bf62ed9c21e1da4b17e25d7c73b7 0cbd6a25481342d9736f2a2290	Vibrio cholerae
ab2015-06-02-25	8853aea7df6d8a168b62b9db8694ad82dfa23c 9b00eafb3f71b025f20cb34abd	Vibrio cholerae
ab2015-06-02-26	8770b212ceddc32db6f1ae0b8a40a5eaa1ec42c 31bceda0c4919b86dcde7246b	Vibrio cholerae
ab2015-06-02-27	e1b34b3df7aa6367398010bf8b96d5a003759a 2dd71a473e45a43d598e779d29	Vibrio cholerae
ab2015-06-02-29	08324bf01302b1db927045548218ff3e317aea e74602363e669a187c52e234be	Vibrio cholerae
ab2015-06-02-30	2eda58ca01240b7486bda36c36e36217918c8 9fcb1361ddda13eeda95afc4271	Vibrio cholerae
ab2015-06-02-31	6b6b8ba7f2127c66614756b85d4bb0efde943c bfc305e40a3330181009bd893e	Vibrio cholerae
ab2015-06-02-32	61c86c9a912eb1bcada440939a48d46e99128f feca99578b16e00e22031f4a22	Vibrio cholerae
ab2015-06-03-1	197f9f4bbc9f5fa49c4644f3f40df46cbf2b82399 e8137db7799b9e030bc8455	Vibrio cholerae
ab2015-06-03-2	544970e8e49ff409d4f61730c89757fdbee6fff3 64c1c604d355bc522c8d0f12	Vibrio cholerae
ab2015-06-03-3	e87e0b6e154e5dfec0120ce92e6400764ae249 64aa592553e49de6187b7ffb57	Vibrio cholerae
ab2015-06-03-4	20d581e5578e3156ddf96496119c1296494e0 62deecf45634c79f19f331368b6	Vibrio cholerae
ab2015-06-03-5	10c8a0be7b87b3d95eb2d8573e782a856e493 b65735aab290c0a772092d2ecfc	Vibrio cholerae

Jensen Lab id	OIP id	Organism
ab2015-06-03-6	0c1b01aa1ed45fcba7d17500c4829f9480924fa 210f9706d6a1a5da9d4dc1477	Vibrio cholerae
ab2015-06-03-7	21482339f240527367c699214ba438d2b9a7a c6376d611f2d69e0f4c1d1d0039	Vibrio cholerae
ab2015-06-03-8	453a055bebf6eb8d65f2154f51a568cfc3f58c36 aa445ff6be7a820c0d3963e9	Vibrio cholerae
ab2015-06-03-9	faed3ad567cb4667d1986bb9a7869a4a9da0a9 e2d016dbb6d823e15f5d1cc149	Vibrio cholerae
ab2015-06-03-10	1c8abd7e25085cccce2ce38fb25ff51ac70ddfc8 8cad18322406467298bfaa3e	Vibrio cholerae
ab2015-06-03-11	920321536f97c55c300ad77d279265973442b d4ec0e7286a95f2d134ec384b42	Vibrio cholerae
ab2015-06-03-12	9262dbfb593f79bf0c9cac6f9125326ede755dd 3e4edc569b68b0fc279f84d8d	Vibrio cholerae
ab2015-06-03-13	72b627c7010d0ea37a8aa011925069437195c 51f77e5adcf41f6a8330e75cc65	Vibrio cholerae
ab2015-06-03-14	223d692a658a507a7085c75f8c757b05c1cf1d 2ee8e352a1db4371f2062e3ec4	Vibrio cholerae
ab2015-06-03-15	c55cf52f955779f23cda1c2244e2b64315f8fbb 490f10689f9c32b7a87a99512	Vibrio cholerae
ab2015-06-03-16	b59e667fadb1914c70ad191dad31a30a87ba41 6e8de4877000d1f6cb52869601	Vibrio cholerae
ab2015-06-03-17	067ac5b8ce49dffe5254c958a0ef6bfd601de87 78c47f17d8db6c76f2b03d882	Vibrio cholerae
ab2015-06-03-18	c9dd866db34f7ed34af143d2a879e5b28035fce 2a4392aceb54f7824ceec0e37	Vibrio cholerae
ab2015-06-03-19	fabd724070997b695344be1bc4ad91faa2b2c8 2876f6bda65aeeee18eb39ca29	Vibrio cholerae
ab2015-06-03-20	34ff16d0af7b7a6cfbe49d20981049070d2b9b9 f5a1919896a839eb62dc8c6a8	Vibrio cholerae
ab2015-06-03-21	4440060c9b511b30ec0b7c123b3891a3823a7 7a8393437862aa5344392e0be26	Vibrio cholerae
ab2015-06-03-22	48c976b5ec236342fdd4aefe521086e3657da4 a45c4afad6003efdb44a5e8275	Vibrio cholerae
ab2015-06-03-23	1c1e69acb1c51ec5655f2fc7e1296de6494c1c6 8785e7f4a7ce0cc651d2125c9	Vibrio cholerae

Jensen Lab id	OIP id	Organism
ab2015-06-03-24	aa070936e1aee30b373bc2d2aed88f1576cd3e d6766dbc9f92f120be46aeeabe	Vibrio cholerae
ab2015-06-03-25	d84b38caf03c63be65666a628fa8f90aeaec899 1ba29dad0b539585fbcf3b96c	Vibrio cholerae
ab2015-06-03-26	f38ac8c272b532e7dd3e3da38b1fff38f42385a 2aa55872dda24bf10720544ba	Vibrio cholerae
ab2015-06-03-27	9d8070fbfbab0e5bfdd555544219789104fb5d cbda613d24385c416ccd3c3158	Vibrio cholerae
ab2015-06-03-28	bd0aaf3c9bb4904c623c2304b5ca71f3e7dbbb d15fdbe2eb481dbdb01d561986	Vibrio cholerae
ab2015-06-03-29	81345effbcb7600a9f57a2f556a10f3a20a6845 df3ca51ccc1d67d964ee8e21f	Vibrio cholerae
ab2015-06-04-5	e95c286a1ca5b5b3b3b5bf0a318a30c627623d 2b63b68c9991dab337ae48e8c2	Vibrio cholerae
ab2015-06-04-6	79b0258243f18a1752dac35aa7e0bff1a711f79 1ddd0379c184e05d9d1c5dd86	Vibrio cholerae
ab2015-06-04-7	6b8f4ae3d17ab82176fe1bb2c79c55d5ce757c 5355323bbadc84d17a5a6f75dd	Vibrio cholerae
ab2015-06-04-8	18fca4c49057b64129c9dbd0f9c8be7562fcee4 d5fff21a449b1fd79a5e910f8	Vibrio cholerae
ab2015-06-04-9	a9e50ed3ce23097a99fdaa4d949f5353bcba9f5 ce3cd7a49d5f3df08d668a989	Vibrio cholerae
ab2015-06-04-10	275fbd79f1fb013309e3dc4a22c607ab406b6b 2a16489a508c3490ede71dac93	Vibrio cholerae
ab2015-06-04-11	eadc30e57a5bbceba8e69544d43debdb4d7139 2ef20f16c8d9a5659a2dc877a9	Vibrio cholerae
ab2015-06-04-12	82b9550d3ebda9a078ece5cea3cfd02ceece06d f9115d8b2d558d5b5c073f9dd	Vibrio cholerae
ab2015-06-04-13	204dea6006208b691ae45b1aa8a62421894c0 d956a5d5bf6aaa8a3e75253345d	Vibrio cholerae
ab2015-06-04-14	7504bd89ddb0fd83ed926065c9d2cf7b57db00 72ebb740cfefdc957f1d5c4c81	Vibrio cholerae
ab2015-06-04-15	7bc4afbf390105748d85295198579497fd0d67 12da0eb190eec2436cf6617349	Vibrio cholerae
ab2015-06-04-16	c99f6e5934554670fe2166f2f8deb7ad17f4536 96c914b4ca1ea88f7e009f0a4	Vibrio cholerae

Jensen Lab id	OIP id	Organism
ab2015-06-04-17	095901997ad173f1a9cf5804cd7f92e2c95ee7b d4be14b1fa1fe94ed74e6a85d	Vibrio cholerae
ab2015-06-04-18	2f236dac0a263b2e3278aef8ab2aad6c7ace83b de857c6916683146369424e93	Vibrio cholerae
ab2015-06-04-19	b4daca6e8f77b714d01faac2b7dc9933c4617d 736b0a6ef29eb9e1056c0214f8	Vibrio cholerae
ab2015-06-04-20	ed95dd31b7e3a97a2bedc0e8985ad471dad7c7 447a7070d5d5b37b8f259da41a	Vibrio cholerae
ab2015-06-04-21	a41257cc5f1d3c4a84cd9645921671bff4e5b58 de593872740a35172fd4102a5	Vibrio cholerae
ab2015-06-04-22	863a029fcd72521b29fa741b7a13b2df4420fcc 9491a090eab709c7c7d727514	Vibrio cholerae
ab2015-06-04-23	c63edc39ab954f54d3ec80607005b54739f694 0f8e317c3ea88d951b0e63ed82	Vibrio cholerae
ab2015-06-04-24	5f040233e108f1d0d81448d4b7c44476947e2 075742fd79ad2f0d0adf9f686fa	Vibrio cholerae
ab2015-06-04-25	9a31271d398507a3e7cb0694927dbda47043f 35bf8171cbd4f56df5896c7e060	Vibrio cholerae
ab2015-06-04-26	687d83b774894a40b9f35c54e0e50d2e11613 d6260723ab83573e3fd6c55b309	Vibrio cholerae
ab2015-06-04-27	5cc452dfbe2e22d09dd2102b010e926f7c9735 5c0c209148f049292cf3b910de	Vibrio cholerae
ab2015-06-04-28	49ffb9f6a24a7d07799479b844a01ed91a204f9 5afa28a8d59561b858d9a4d19	Vibrio cholerae
ab2015-06-04-29	38f8ed8a6cba9fdab947246fd283023b21353f1 66c6e41f949320a028cea2f1a	Vibrio cholerae
ab2015-06-04-30	92c05f4866a31ee526bac1d95d513c9d0063e7 94554cdc124651fabc1e8c9395	Vibrio cholerae
ab2015-06-04-31	60d87f38e11916f13cf6345b22f0b5fc567d6ec ba651e7ed98c1ba23faca1a27	Vibrio cholerae
ab2015-06-04-32	2b200698dc605f2234c28d33d12a2eeed4bfb6 808399563791bf228fda34936e	Vibrio cholerae
ab2015-05-29-38	71b7016135114ee9988faf24a00aec627349d8 610625a8925152e418ce042cb8	Pseudomonas aeruginosa
ab2015-05-29-33	3bc9419d595c59d2ffb177294ceb038f5c4a402 87cc1d2ff95ab43e42e22c5b5	Pseudomonas aeruginosa

Jensen Lab id	OIP id	Organism
ab2015-05-29-34	baf59323b4cd6b20e471b0587f4349bb437cc8 9feba37eb726c76d2b35996859	Pseudomonas aeruginosa
ab2015-05-29-35	375ec0e6c3542bc3d33e7ec94c751bd1669ffe9 984a4ccb8948ddc246bd02517	Pseudomonas aeruginosa
ab2015-05-29-36	dda73882e77f51644ba4d9fc73810f58c0789cf 5ebd5c4c64108940c978d3913	Pseudomonas aeruginosa
ab2015-05-29-37	e0d1b4daa89125bfae9539157ab0d459e9a10b 53148d17af60eb3afadf667e37	Pseudomonas aeruginosa
ab2015-05-29-38	71b7016135114ee9988faf24a00aec627349d8 610625a8925152e418ce042cb8	Pseudomonas aeruginosa
ab2015-05-29-39	9ff1533aa7d28d3d64439293ea263ca3ce6a61 01f19c7367426d9a3bba3773e6	Pseudomonas aeruginosa
ab2015-05-29-40	c5f0fcf46599f6ee48fe23a59fc1d752cd64ab40 31c3846ffb85d078a8bfaf5c	Pseudomonas aeruginosa
ab2015-05-29-41	fe52314687302e52d76a76292a84a8e7730dac 37451c7026621190f2185cd7df	Pseudomonas aeruginosa
ab2015-05-29-42	fc8e9658e5fe5d5e30364f389fc123f474537bd a5132fb71b12af99aaf02e7a2	Pseudomonas aeruginosa
ab2015-05-29-43	433cf08b0ab2269a91f4e946b17c551e8a92a3 0c8c5214bc8384072fc8915b85	Pseudomonas aeruginosa
ab2015-05-29-44	9162280a2e505e7a74c03de6202f084eb4b838 82453525539fdf87da3905d77c	Pseudomonas aeruginosa
ab2015-05-29-45	9db0388f6a5482eb6cad84cd7abf0ddad7bcd4 a3d741d971cc9dd3a2c378cda2	Pseudomonas aeruginosa
ab2015-05-29-46	31eee1b22c3f3010a3a31df973be75ff1a12606 9e78bfbb1dbed30cd3985330d	Pseudomonas aeruginosa
ab2015-05-29-47	799edd343b37e6dff51118d39052ad7241e7c0 5238286bcc779c1ab9227f8a4c	Pseudomonas aeruginosa
ab2015-05-29-48	72025551790f3ada513cffe56e1f0971b3844f1 c985e4f3e3b7579dd349aecd1	Pseudomonas aeruginosa
ab2015-05-29-49	76b1c8f739812662c22aee910f2e1a2bc7ac72f 9c79ee19df0493c60be7f6711	Pseudomonas aeruginosa
ab2015-05-29-50	2f3db7b47e7d42594be348214e07578d7ea1f0 8a10f8cd937bec3abb8692c6aa	Pseudomonas aeruginosa
ab2015-05-29-51	dbe07cf9023a7c8d67cea0f6bc02eeaea93f5c2e 60453ca2aa4685d8e3a53654	Pseudomonas aeruginosa

Jensen Lab id	OIP id	Organism
ab2015-05-29-52	8f861e2f49e3b2155f99422428acb7ca764c5c2 2352dd6f5c411d89daaa99c8c	Pseudomonas aeruginosa
ab2015-05-29-53	8bbc0699df1ecaeff06813ea816ded484d90867 9412e938d42afbb30e0f47747	Pseudomonas aeruginosa
ab2015-05-29-54	87be5d50a167d3c23ad2126bc4d72844c0ed6 af2848768fd1bb764ad0a05355b	Pseudomonas aeruginosa
ab2015-05-29-55	975a50a6ac4a0a1ce191d3f339c433b73ba15a 3a8eff22b3768a9327e1ca5a21	Pseudomonas aeruginosa
ab2015-05-29-56	d0799bdb371912d4370d6226ae8263e1f9bf4 19c49c42c16514c657f11f05f37	Pseudomonas aeruginosa
ab2015-05-29-57	dfd11ff2b7b5261968452f994235bece1d208b 793f0c7768b883163fa0cad72c	Pseudomonas aeruginosa
ab2015-05-29-58	06dc2aa14271a7d5c79c6e112a3aeacc8c6432 46c659fab33b3bbb01fbe25356	Pseudomonas aeruginosa
ab2015-05-29-59	f92bcceb78dac999467e57653d9e3ab4017261 8fc09fb5806e64040e8a3410f5	Pseudomonas aeruginosa
ab2015-05-29-60	bd0b6b93ba4f3528fe3f78a789dd847ee83a6d 4b08cd6e652053e72aefa6897b	Pseudomonas aeruginosa
ab2015-05-29-61	37d4d1c6d5229a5db3700596859b305aea3aa 460d67362ba176424c9217ebf28	Pseudomonas aeruginosa
ab2015-05-29-62	4e059367636fa821409e894b49151556c01d6 5ebe01eca3e4d4fedec6531adc7	Pseudomonas aeruginosa
ab2014-010-14-1	b9d6746d36ee7943e0eb19c9299214e60080c 78b367558d6748820c84c2aec76	Pseudomonas aeruginosa
ab2014-010-14-10	c8c1989c09901dd7a257d86497a713e85a761 edd2209efe0d8784d228e5b3585	Pseudomonas aeruginosa
ab2014-010-14-11	18ec447aac947d6ed610084fbb9e808bdb761b f68919b853ac4946632d6c6e50	Pseudomonas aeruginosa
ab2014-010-14-12	58c0a2aab1b8f0322fcc4b93838458a820fc8db 74f716b53ba166ae2cbe92001	Pseudomonas aeruginosa
ab2014-010-14-13	9e8108ef3cf66406b628ec973b10079efc0ca57 81a05ca1a875ed6fdecc2fe02	Pseudomonas aeruginosa
ab2014-010-14-14	7935084f249ec5bc222b38951cd369dab76cfa b95a769d42d0eb1312cc5bb50c	Pseudomonas aeruginosa
ab2014-010-14-15	51b27c3cf74ce394c1d54773bd1a7d15d3379f c8db4aa2f8b9dbdbaabdd71251	Pseudomonas aeruginosa

Jensen Lab id	OIP id	Organism
ab2014-010-14-17	764f7220c7323438d65b7d4334916e9aadb0b e04be1b662615be1ad1312407c6	Pseudomonas aeruginosa
ab2014-010-14-22	797a818b0722e811f5ed0d6d22bdfdb158fabb cd22e8bfc7f1010ad265af8897	Pseudomonas aeruginosa
ab2014-010-14-23	322a5ff8d6dda5854aaafec4883226c8463c2e9 a08ce553c969ca6b98cfedef9	Pseudomonas aeruginosa
ab2014-010-14-3	2c11ded42bbc0cd87dc67464474187c3c82d7 1742a8b50f346516a958361706a	Pseudomonas aeruginosa
ab2014-010-14-4	20cd19c0fa4b3e32b33075348be5ab3102def5 083cce6fd7ac55b01ac0cb5835	Pseudomonas aeruginosa
ab2014-010-14-5	3e6133278fc31ba361c1cd7c95c081a822d972 3dc3b7f3549870510a422e2522	Pseudomonas aeruginosa
ab2014-010-14-6	3cbeac672c18cd66252b47d65f0ec124b17baf5 19849a6844fab4af70fbbcea1	Pseudomonas aeruginosa
ab2014-010-14-8	cb237b8021a9e653613163394c11258bb3b72 fe09720a977596c18478e5d43c2	Pseudomonas aeruginosa
ab2014-010-14-9	8bf9ec4e43a3e6bd11c44bb6d341d138e14b41 c776e66e21a8a17d399c1c69c2	Pseudomonas aeruginosa
sc2014-02-14-1	ecfe996b6c698beb104f0cf84bda7955a48c7ed b6049ce2b9256cb3b1e2b85b0	Methylomicrobium alcaliphylum
sc2014-02-12-1	37a38f6896b2fbc3379ebba9976e69ccefd45da a011b009f9fc498f40ab5b68e	Methylomicrobium alcaliphylum
sc2014-02-12-3	82c7e7111fad00bd9de9be253c966a0d87b3b5 85cf47a4e3ada52b7a90ae362f	Methylomicrobium alcaliphylum
sc2014-02-12-6	c807ab328c5bd06874ad4f9fb731fafd888f238 94d00cafed1089f988407ed99	Methylomicrobium alcaliphylum
sc2014-02-12-7	99a62dfe3b6bedf92f6bd93916b1fe055c1abd7 d4d2f781348c01ae89c45dbd5	Methylomicrobium alcaliphylum
sc2014-02-12-8	6ce0a323a040374567356e08c438fd42806aef 88c73f105e2d9e13684d940ae8	Methylomicrobium alcaliphylum
sc2014-02-12-9	9e828a83fb3538f1f6f9942ea4216cd7fe20ebcc 1c82ed3dba8f7e34bdc3a1e9	Methylomicrobium alcaliphylum
sc2014-02-12-12	262b60a13fbcd486cc7c4ac73b739ddccb23d9 3cf8d5d4138ae911af40f95480	Methylomicrobium alcaliphylum

Table S6.

Atomic models used to produce the homology models used in this work.

Domain(s)	PDB code	Reference
HAMP(A. fulgidus) + MCP_Signal(E. coli)	3ZX6	(74)
PAS(P. aeruginosa)	4HI4	(22)
PAS + HAMP (P. aeruginosa)	3VOL	(75)
3xHAMP (P. aeruginosa)	4I3M	(76)

Table S7.

Relevant files used to build the homology models produced in this work.

File	Туре	Description
3XZ6_4I3M.pir	Sequence alignment	Sequence alignment used to build the 2H+S homology model
3XZ6_4I3M_74.pdb	3D atomic model	Best homology model from 2H+S
4HI4_BD.pdb	3D atomic model	chains B and D of 4HI4 aligned with 2H+S model
3ZX6_4I3M_4HIH.pir	Sequence alignment	Sequence alignment used to build the P+2H+S homology model
3ZX6_4I3M_4HIH_99.pdb	3D atomic model	Best homology model from P+2H+S
4I3M.bio.pos.pdb	3D atomic model	Model of 4I3M positioned against 3ZX6_4I3M_4HIH_99.pdb to build the model for Aer2 (PA0176)
3ZX6_4I3M_4HI4_4I3M.pir	Sequence alignment	Sequence alignment used to build the model for Aer2 (PA0176)
Aer2Pa_3HAMP_PAS_2HAMP.B999900 41.pdb	3D atomic model	Best Aer2 (PA0176) homology model
3ZX6_4I3M_4HI4_4HI4.pir	Sequence alignment	Sequence alignment used to build the model for Aer2-like (VCA1092)
VCA1092.B999900035.pdb	3D atomic model	Best Aer2-like (VCA1092) homology model
3ZX6_4I3M_4HI4_4HI4_SO.pir	Sequence alignment used to build the model for Aer2-like (SO_2123)	

File	Туре	Description
SO_2123.B99990017.pdb	3D atomic model	Best Aer2-like (SO_2123) homology model
hamp_sequence_for_MEALZ.linsi.fa	Sequence alignment	Sequence alignment of HAMP domains in the group of Pseudomonas group similar to the 3 HAMPs in 4I3M and the C-terminal HAMP of MEALZ_2872
RAxML_bipartitio ns_50coll.hamp_sequence_for_MEALZ.li nsi.rec.tree	Phylogenetic Tree	The tree with maximum likelihood based on hamp_sequence_for_MEALZ .linsi.fa
4I3M.bio.HAMP2.withtail4alignment.pdb	3D atomic model	Model of the second HAMP of 4I3M with part of the helix connecting to the third HAMP.
4I3M.bio.HAMP2.alnMEALZ.pdb	2\3D atomic model	Model of the second HAMP of 4I3M without part of the helix connecting to the third HAMP.
3ZX6_4I3M_4HI4_HAMP2_MEALZ.pir	Sequence alignment used to build the model for Aer2-like (MEALZ_28 72)	
MEALZ_2872_wHAMP.B99990020.pdb	3D atomic model	Best Aer2-like (MEALZ_2872) homology model

Table S8.

310 randomly selected non-redundant γ -Proteobacteria genomes used in this work. The presence of an F7 system is indicated.

Genome	has F7
Acidithiobacillus caldus SM-1	no
Acidithiobacillus ferrivorans SS3	no
Acidithiobacillus sp. GGI-221	no
Acidithiobacillus thiooxidans ATCC 19377	no
Acinetobacter baumannii AB5075	no
Acinetobacter bereziniae LMG 1003	no
Acinetobacter calcoaceticus RUH2202	no
Acinetobacter haemolyticus ATCC 19194	no
Acinetobacter johnsonii SH046	no
Acinetobacter junii SH205	no
Acinetobacter lwoffii SH145	no
Acinetobacter nosocomialis Ab22222	no
Acinetobacter oleivorans DR1	no
Acinetobacter parvus DSM 16617 = CIP 108168	no
Acinetobacter radioresistens DSM 6976 = NBRC 102413	no
Acinetobacter sp. NCTC 10304	no
Acinetobacter ursingii DSM 16037 = CIP 107286	no
Aeromonas aquariorum AAK1	no
Aeromonas caviae Ae398	no
Aeromonas hydrophila SSU	no
Aeromonas media WS	no
Aeromonas salmonicida subsp. salmonicida A449	no
Aeromonas veronii AER397	no
Alcanivorax borkumensis SK2	no

Genome	has F7
Alcanivorax dieselolei B5	yes
Alcanivorax hongdengensis A-11-3	no
Alcanivorax pacificus W11-5	yes
Alcanivorax sp. DG881	no
Aliivibrio salmonicida LF11238	no
Alishewanella aestuarii B11	no
Alishewanella agri BL06	no
Alishewanella jeotgali KCTC 22429	no
Alkalilimnicola ehrlichii MLHE-1	no
Allochromatium vinosum DSM 180	yes
Alteromonadales bacterium TW-7	yes
Alteromonas mediterranea MED64	no
Alteromonas sp. SN2	yes
Azotobacter vinelandii DJ	yes
Beggiatoa alba B18LD	yes
Beggiatoa sp. SS	yes
Cardiobacterium hominis ATCC 15826	no
Cardiobacterium valvarum F0432	no
Cellvibrio japonicus Ueda107	no
Cellvibrio sp. BR	yes
Chromohalobacter salexigens DSM 3043	yes
Citrobacter freundii 4_7_47CFAA	yes
Citrobacter koseri ATCC BAA-895	yes
Citrobacter rodentium ICC168	yes
Citrobacter sp. 30_2	yes
Citrobacter youngae ATCC 29220	yes

Genome	has F7
Colwellia psychrerythraea 34H	no
Cronobacter sakazakii ES15	yes
Cronobacter turicensis z3032	yes
Dichelobacter nodosus VCS1703A	no
Dickeya dadantii Ech703	yes
Dickeya zeae Ech1591	yes
Ectothiorhodospira sp. PHS-1	yes
Edwardsiella ictaluri 93-146	yes
Edwardsiella tarda ATCC 23685	yes
Endoriftia persephone 'Hot96_1+Hot96_2'	no
Enhydrobacter aerosaccus SK60	no
Enterobacter asburiae LF7a	yes
Enterobacter cancerogenus ATCC 35316	yes
Enterobacter cloacae subsp. cloacae GS1	yes
Enterobacter hormaechei ATCC 49162	yes
Enterobacter radicincitans DSM 16656	yes
Enterobacter sp. 638	yes
Enterobacteriaceae bacterium 9_2_54FAA	yes
Erwinia amylovora CFBP1430	yes
Erwinia billingiae Eb661	yes
Erwinia pyrifoliae Ep1/96	yes
Erwinia sp. Ejp617	yes
Erwinia tasmaniensis Et1/99	yes
Escherichia albertii TW11588	yes
Escherichia coli KTE229	yes
Escherichia fergusonii ECD227	yes

Genome	has F7
Escherichia hermannii NBRC 105704	yes
Escherichia sp. TW09276	yes
Ferrimonas balearica DSM 9799	no
Fluoribacter dumoffii Tex-KL	no
Frateuria aurantia DSM 6220	yes
Gallaecimonas xiamenensis 3-C-1	yes
Glaciecola agarilytica NO2	yes
Glaciecola arctica BSs20135	no
Glaciecola chathamensis S18K6	yes
Glaciecola lipolytica E3	no
Glaciecola mesophila KMM 241	no
Glaciecola nitratireducens FR1064	yes
Glaciecola pallidula DSM 14239 = ACAM 615	yes
Glaciecola polaris LMG 21857	no
Glaciecola psychrophila 170	no
Glaciecola sp. 4H-3-7+YE-5	yes
Grimontia hollisae CIP 101886	yes
Grimontia sp. AK16	yes
Hafnia alvei ATCC 51873	yes
Hahella chejuensis KCTC 2396	yes
Halomonas boliviensis LC1	yes
Halomonas elongata DSM 2581	yes
Halomonas sp. GFAJ-1	yes
Halomonas titanicae BH1	yes
Halorhodospira halophila SL1	yes
Halothiobacillus neapolitanus c2	no

Genome	has F7
Hydrocarboniphaga effusa AP103	yes
Idiomarina loihiensis L2TR	no
Idiomarina xiamenensis 10-D-4	no
Kangiella koreensis DSM 16069	no
Klebsiella aerogenes KCTC 2190	yes
Klebsiella pneumoniae subsp. pneumoniae HS11286	no
Legionella drancourtii LLAP12	yes
Legionella longbeachae NSW150	no
Legionella pneumophila subsp. pneumophila	no
Listonella anguillarum M3	yes
Marichromatium purpuratum 984	yes
Marinobacter adhaerens HP15	no
Marinobacter algicola DG893	no
Marinobacter hydrocarbonoclasticus ATCC 49840	no
Marinobacter hydrocarbonoclasticus VT8	no
Marinobacter manganoxydans MnI7-9	no
Marinobacter santoriniensis NKSG1	no
Marinobacter sp. ELB17	no
Marinobacterium stanieri S30	yes
Marinomonas mediterranea MMB-1	yes
Marinomonas posidonica IVIA-Po-181	no
Marinomonas sp. MWYL1	yes
Methylobacter tundripaludum SV96	yes
Methylococcus capsulatus str. Bath	no
Methylomicrobium album BG8	yes
Methylomicrobium alcaliphilum 20Z	yes

Genome	has F7
Methylomonas methanica MC09	yes
Methylophaga aminisulfidivorans MP	yes
Methylophaga frappieri	no
Methylophaga lonarensis MPL	no
Methylophaga thiooxydans DMS010	no
Moraxella macacae 0408225	no
Morganella morganii subsp. morganii KT	yes
Moritella sp. PE36	yes
Nitrosococcus halophilus Nc 4	no
Nitrosococcus oceani ATCC 19707	no
Nitrosococcus watsonii C-113	no
Oceanimonas sp. GK1	no
Pantoea agglomerans 299R	yes
Pantoea ananatis LMG 20103	yes
Pantoea sp. aB	yes
Pantoea stewartii subsp. stewartii DC283	yes
Pantoea vagans C9-1	yes
Pectobacterium atrosepticum SCRI1043	yes
Pectobacterium carotovorum subsp. brasiliensis PBR1692	yes
Pectobacterium sp. SCC3193	yes
Pectobacterium wasabiae CFBP 3304	yes
Photobacterium damselae subsp. damselae CIP 102761	no
Photobacterium leiognathi subsp. mandapamensis svers. 1.1.	no
Photobacterium profundum SS9	no
Photobacterium sp. AK15	no
Photorhabdus asymbiotica	yes

Genome	has F7
Photorhabdus luminescens subsp. laumondii TTO1	yes
Proteus mirabilis WGLW6	yes
Proteus penneri ATCC 35198	yes
Providencia alcalifaciens DSM 30120	yes
Providencia burhodogranariea DSM 19968	yes
Providencia rettgeri Dmell	no
Providencia rustigianii DSM 4541	yes
Providencia stuartii ATCC 25827	yes
Pseudoalteromonas arctica A 37-1-2	no
Pseudoalteromonas atlantica T6c	no
Pseudoalteromonas citrea NCIMB 1889	yes
Pseudoalteromonas haloplanktis ANT/505	yes
Pseudoalteromonas luteoviolacea $B = ATCC 29581$	yes
Pseudoalteromonas marina mano4	yes
Pseudoalteromonas piscicida JCM 20779	yes
Pseudoalteromonas rubra ATCC 29570	yes
Pseudoalteromonas sp. Bsw20308	yes
Pseudoalteromonas spongiae UST010723-006	yes
Pseudoalteromonas undina NCIMB 2128	yes
Pseudomonas aeruginosa LESB58	yes
Pseudomonas avellanae BPIC 631	no
Pseudomonas brassicacearum subsp. brassicacearum NFM421	no
Pseudomonas denitrificans ATCC 13867	yes
Pseudomonas entomophila L48	no
Pseudomonas extremaustralis 14-3 substr. 14-3b	no
Pseudomonas fluorescens F113	no

Genome	has F7
Pseudomonas fragi A22	no
Pseudomonas fulva 12-X	no
Pseudomonas fuscovaginae UPB0736	no
Pseudomonas geniculata NI	yes
Pseudomonas mendocina ymp	no
Pseudomonas monteilii SB3078	no
Pseudomonas poae RE*1-1-14	no
Pseudomonas protegens CHA0	no
Pseudomonas pseudoalcaligenes KF707	yes
Pseudomonas psychrotolerans L19	no
Pseudomonas putida GB-1	no
Pseudomonas resinovorans NBRC 106553	yes
Pseudomonas sp. TKP	no
Pseudomonas stutzeri KOS6	no
Pseudomonas syringae pv. phaseolicola 1448A	no
Pseudomonas viridiflava UASWS0038	no
Pseudoxanthomonas spadix BD-a59	no
Pseudoxanthomonas suwonensis 11-1	yes
Psychrobacter arcticus 273-4	no
Psychrobacter cryohalolentis K5	no
Psychrobacter sp. PRwf-1	no
Psychromonas sp. CNPT3	no
Rahnella aquatilis CIP 78.65 = ATCC 33071	yes
Rahnella sp. Y9602	yes
Rheinheimera nanhaiensis E407-8	no
Rheinheimera sp. A13L	no

Genome	has F7
Rhodanobacter fulvus Jip2	yes
Rhodanobacter sp. 116-2	no
Rhodanobacter spathiphylli B39	no
Rhodanobacter thiooxydans LCS2	yes
Saccharophagus degradans 2-40	yes
Salinisphaera shabanensis E1L3A	yes
Salmonella bongori N268-08	yes
Salmonella enterica subsp. enterica serovar Gallinarum str. 9184	yes
Serratia liquefaciens ATCC 27592	yes
Serratia marcescens VGH107	yes
Serratia odorifera 4Rx13	yes
Serratia plymuthica S13	yes
Serratia proteamaculans 568	yes
Serratia sp. AS13	yes
Shewanella amazonensis SB2B	yes
Shewanella baltica OS155	yes
Shewanella benthica KT99	yes
Shewanella denitrificans OS217	no
Shewanella frigidimarina NCIMB 400	no
Shewanella halifaxensis HAW-EB4	no
Shewanella loihica PV-4	yes
Shewanella oneidensis MR-1	yes
Shewanella pealeana ATCC 700345	no
Shewanella piezotolerans WP3	no
Shewanella putrefaciens CN-32	no
Shewanella sediminis HAW-EB3	yes

Genome	has F7
Shewanella sp. MR-4	yes
Shewanella violacea DSS12	yes
Shewanella woodyi ATCC 51908	yes
Shigella boydii CDC 3083-94	yes
Shigella dysenteriae 1617	no
Shigella flexneri 4343-70	yes
Shigella sonnei Ss046	yes
Shigella sp. D9	yes
Simiduia agarivorans SA1 = DSM 21679	yes
Stenotrophomonas maltophilia K279a	yes
Stenotrophomonas sp. SKA14	yes
Teredinibacter turnerae T7901	yes
Thalassolituus oleivorans MIL-1	yes
Thioalkalimicrobium aerophilum AL3	yes
Thioalkalivibrio sp. K90mix	no
Thioalkalivibrio sulfidiphilus HL-EbGr7	no
Thiocapsa marina 5811	no
Thiocystis violascens DSM 198	yes
Thiomicrospira crunogena XCL-2	yes
Thiorhodococcus drewsii AZ1	yes
Thiorhodospira sibirica ATCC 700588	yes
Thiorhodovibrio sp. 970	no
Thiothrix nivea DSM 5205	no
Vibrio alginolyticus 40B	no
Vibrio anguillarum 775	yes
Vibrio brasiliensis LMG 20546	yes

Genome	has F7
Vibrio campbellii CAIM 519 = NBRC 15631	no
Vibrio caribbenthicus ATCC BAA-2122	no
Vibrio cholerae HC-23A1	no
Vibrio coralliilyticus ATCC BAA-450	yes
Vibrio fischeri MJ11	no
Vibrio furnissii CIP 102972	yes
Vibrio harveyi 1DA3	no
Vibrio ichthyoenteri ATCC 700023	no
Vibrio metschnikovii CIP 69.14	no
Vibrio mimicus MB451	yes
Vibrio nigripulchritudo ATCC 27043	yes
Vibrio ordalii ATCC 33509	yes
<i>Vibrio orientalis CIP 102891 = ATCC 33934</i>	yes
Vibrio parahaemolyticus O1:Kuk str. FDA_R31	no
Vibrio rotiferianus DAT722	no
Vibrio scophthalmi LMG 19158	no
Vibrio shilonii AK1	no
Vibrio sinaloensis DSM 21326	yes
Vibrio sp. HENC-01	no
Vibrio splendidus ATCC 33789	no
Vibrio tubiashii NCIMB 1337 = ATCC 19106	yes
Vibrio vulnificus MO6-24/O	yes
Vibrionales bacterium SWAT-3	no
Wohlfahrtiimonas chitiniclastica SH04	no
Xanthomonas albilineans GPE PC73	yes
Xanthomonas axonopodis pv. malvacearum str. GSPB2388	yes

Genome	has F7
Xanthomonas campestris pv. musacearum NCPPB 4381	yes
Xanthomonas citri subsp. citri Aw12879	yes
Xanthomonas fuscans subsp. aurantifolii str. ICPB 10535	yes
Xanthomonas gardneri ATCC 19865	yes
Xanthomonas oryzae pv. oryzicola BLS256	yes
Xanthomonas perforans 91-118	yes
Xanthomonas sacchari NCPPB 4393	yes
Xanthomonas translucens DAR61454	yes
Xanthomonas vesicatoria ATCC 35937	yes
Xenorhabdus bovienii SS-2004	yes
Xenorhabdus nematophila ATCC 19061	yes
Xylella fastidiosa Temecula1	no
Yersinia aldovae ATCC 35236	yes
Yersinia bercovieri ATCC 43970	yes
Yersinia enterocolitica subsp. palearctica Y11	yes
Yersinia frederiksenii ATCC 33641	yes
Yersinia intermedia ATCC 29909	yes
Yersinia kristensenii ATCC 33638	yes
Yersinia mollaretii ATCC 43969	yes
Yersinia pestis PY-16	yes
Yersinia pseudotuberculosis PB1/+	yes
Yersinia rohdei ATCC 43380	yes
Yersinia ruckeri ATCC 29473	yes
Yokenella regensburgei ATCC 43003	yes
endosymbiont of Riftia pachyptila (vent Ph05)	yes
gamma proteobacterium HdN1	no

Table S9.

Genomes used in phylogenetic profiles.

Genomes imaged in this study

Methylomicrobium alcaliphilum 20Z

Pseudomonas aeruginosa PAO1

Shewanella oneidensis MR-1

Vibrio cholerae O1 biovar El Tor str. N16961

Gamma-Proteobacteria

Acinetobacter baumannii AB0057

Acinetobacter calcoaceticus PHEA-2

Acinetobacter oleivorans DR1

Aeromonas hydrophila subsp. hydrophila ATCC 7966

Aeromonas salmonicida subsp. salmonicida A449

Aeromonas veronii B565

Alcanivorax borkumensis SK2

Alcanivorax dieselolei B5

Aliivibrio salmonicida LFI1238

Alkalilimnicola ehrlichii MLHE-1

Allochromatium vinosum DSM 180

Alteromonas macleodii str. 'Ionian Sea U7'

Alteromonas sp. SN2

Azotobacter vinelandii CA6

Cellvibrio japonicus Ueda107

Chromohalobacter salexigens DSM 3043

Citrobacter koseri ATCC BAA-895

Citrobacter rodentium ICC168

Colwellia psychrerythraea 34H

Cronobacter sakazakii ATCC BAA-894

Cronobacter turicensis z3032

Dichelobacter nodosus VCS1703A

Dickeya dadantii Ech703

Dickeya zeae Ech1591

Edwardsiella ictaluri 93-146

Edwardsiella tarda C07-087

Enterobacter aerogenes KCTC 2190

Enterobacter asburiae LF7a

Enterobacter cloacae subsp. cloacae NCTC 9394

Enterobacter sp. 638

Enterobacteriaceae bacterium strain FGI 57

Erwinia amylovora ATCC 49946

Erwinia billingiae Eb661

Erwinia pyrifoliae Ep1/96

Erwinia sp. Ejp617

Erwinia tasmaniensis Et1/99

Escherichia coli O157:H7 str. EDL933

Escherichia fergusonii ATCC 35469

Ferrimonas balearica DSM 9799

Frateuria aurantia DSM 6220

Gammaproteobacteria gamma proteobacterium HdN

Glaciecola nitratireducens FR1064

Glaciecola psychrophila 170

Glaciecola sp. 4H-3-7+YE-5

Hahella chejuensis KCTC 2396

Halomonas elongata DSM 2581

Halorhodospira halophila SL1

Halothiobacillus neapolitanus c2

Herminiimonas arsenicoxydans

Idiomarina loihiensis GSL 199

Kangiella koreensis DSM 16069

Legionella longbeachae NSW150

Listonella anguillarum M3

Marinobacter adhaerens HP15

Marinobacter aquaeolei VT8

Marinobacter hydrocarbonoclasticus ATCC 49840

Marinobacter sp. BSs20148

Marinomonas mediterranea MMB-1

Marinomonas posidonica IVIA-Po-181

Marinomonas sp. MWYL1

Methylococcus capsulatus str. Bath

Methylomonas methanica MC09

Methylophaga sp. JAM1

Morganella morganii subsp. morganii KT

Nitrosococcus halophilus Nc4

Nitrosococcus oceani ATCC 19707

Nitrosococcus watsonii C-113

Oceanimonas sp. GK1

Pantoea ananatis LMG 20103

Pantoea sp. At-9b

Pantoea vagans C9-1

Pectobacterium atrosepticum SCRI1043

Pectobacterium carotovorum subsp. carotovorum PCC21

Pectobacterium sp. SCC3193

Pectobacterium wasabiae WPP163

Photobacterium profundum SS9

Photorhabdus asymbiotica

Photorhabdus luminescens subsp. laumondii TTO1

Proteus mirabilis BB2000

Providencia stuartii MRSN 2154

Pseudoalteromonas atlantica T6c

Pseudoalteromonas haloplanktis TAC125

Pseudoalteromonas sp. SM9913

Pseudomonas aeruginosa PA1

Pseudomonas brassicacearum subsp. brassicacearum NFM421

Pseudomonas denitrificans ATCC 13867

Pseudomonas entomophila L48

Pseudomonas fluorescens A506

Pseudomonas fulva 12-X

Pseudomonas mendocina ymp

Pseudomonas monteilii SB3101

*Pseudomonas poae RE*1-1-14*

Pseudomonas protegens Pf-5

Pseudomonas putida BIRD-1

Pseudomonas resinovorans NBRC 106553

Pseudomonas sp. TKP

Pseudomonas stutzeri DSM 4166

Pseudomonas syringae pv. syringae B728a

Pseudoxanthomonas spadix BD-a59

Pseudoxanthomonas suwonensis 11-1

Psychrobacter arcticus 273-4

Psychrobacter cryohalolentis K5

Psychrobacter sp. PRwf-1

Psychromonas sp. CNPT3

Rahnella aquatilis CIP 78.65 = ATCC 33071

Rahnella sp. Y9602

Rhodanobacter sp. 2APBS1

Saccharophagus degradans 2-40

Salmonella bongori NCTC 12419

Salmonella enterica subsp. enterica serovar Typhi str. Ty21a

Serratia liquefaciens ATCC 27592

Serratia marcescens WW4

Serratia plymuthica AS9

Serratia proteamaculans 568

Serratia sp. AS12

Shewanella amazonensis SB2B

Shewanella baltica BA175

Shewanella denitrificans OS217

Shewanella frigidimarina NCIMB 400

Shewanella halifaxensis HAW-EB4

Shewanella loihica PV-4

Shewanella pealeana ATCC 700345

Shewanella piezotolerans WP3

Shewanella putrefaciens 200

Shewanella sediminis HAW-EB3

Shewanella sp. ANA-3

Shewanella violacea DSS12

Shewanella woodyi ATCC 51908

Shigella boydii CDC 3083-94

Shigella flexneri 2a str. 301

Shigella sonnei Ss046

Simiduia agarivorans SA1 = DSM 21679

Stenotrophomonas maltophilia JV3

Teredinibacter turnerae T7901

Thalassolituus oleivorans MIL-1

Thioalkalivibrio sp. K90mix

Thioalkalivibrio sulfidophilus HL-EbGr7

Thiocystis violascens DSM 198

Thiomicrospira crunogena XCL-2

Vibrio alginolyticus NBRC 15630 = ATCC 17749

Vibrio anguillarum 775

Vibrio campbellii ATCC BAA-1116

Vibrio cholerae O395

Vibrio fischeri ES114

Vibrio furnissii NCTC 11218

Vibrio harveyi ATCC BAA-1116

Vibrio nigripulchritudo

Vibrio parahaemolyticus RIMD 2210633

Vibrio sp. EJY3

Vibrio splendidus LGP32

Vibrio vulnificus CMCP6

Xanthomonas albilineans GPE PC73

Xanthomonas axonopodis pv. citrumelo F1

Xanthomonas campestris pv. vesicatoria str. 85-10

Xanthomonas citri subsp. citri Aw12879

Xanthomonas oryzae pv. oryzae KACC 10331

Xenorhabdus bovienii SS-2004

Xenorhabdus nematophila ATCC 19061

Xylella fastidiosa subsp. fastidiosa GB514

Yersinia enterocolitica subsp. enterocolitica 8081

Yersinia pestis Antiqua

Yersinia pseudotuberculosis YPIII

Beta-Proteobacteria

Achromobacter xylosoxidans NBRC 15126 = ATCC 27061

Acidithiobacillus caldus SM-1

Bordetella pertussis 18323

Candidatus Accumulibacter phosphatis clade IIA str. UW-1

Collimonas fungivorans Ter331

Gallionella capsiferriformans ES-2

Janthinobacterium sp. Marseille

Ralstonia pickettii 12J

Ralstonia solanacearum Po82

Variovorax paradoxus S110

Data S1. (separate file)

Files used to produce the homology models as described in Table S7.

Data S2. (separate file)

Phylogenetic trees in Figure 4, S1, S2 and S4.