THE SPECTRUM OF a^{2} CANUM VENATICORUM, 5000-6700 \AA^{*}

Judith G. Cohen, \dagger Armin J. Deutsch, and Jesse L. Greenstein
Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology
Received October 7, 1968; revised November 4, 1968

Abstract

A complete list is given of all lines observed between 5000 and $6650 \AA$ in the spectrum of $a^{2} \mathrm{CVn}$. Approximately three-quarters of the features have been identified. Lines of Pb II and P II are not present. Lines of Gd III and Pr III vary in equivalent width and radial velocity in a manner similar to the singly ionized rare earths. Lines of Cl II are present and also behave like those of a rare earth.

I. INTRODUCTION

The star $a^{2} \mathrm{CVn}$ is the prototype of the class of peculiar A stars known as spectrum variables. The spectral lines periodically vary in intensity and in wavelength. The variations in radial velocity have been studied most completely by Struve and Swings (1943), while Burbidge and Burbidge (1954) have examined the variation of equivalent widths. The lines of different elements have been roughly divided into three groups by Belopolsky (1913a, b, 1927), depending upon their intensity variations: Those of groups A and B have their maximum strength at phases 0.0 and 0.5 , respectively, while lines of group C are constant. Furthermore, the magnetic field (Babcock and Burd 1952) and the color (Provin 1953) vary with the same period of 5.47 days.

The principal source of line identifications for $a^{2} \mathrm{CVn}$ is the monumental work of Struve and Swings (1942, hereinafter called S2). It contains approximately 3000 lines in the wavelength region 3080-4710 \AA. Burbidge and Burbidge (1954, hereinafter called B^{2}) measured the equivalent widths of many features on spectra spread throughout the period and performed a crude abundance analysis based on the line identifications of S^{2}.

The study of the spectrum of $a^{2} \mathrm{CVn}$ in the yellow region is of great interest. In the blue and ultraviolet, misidentification can easily occur because the spectrum is unusually crowded, and the presence of elements not found in normal stars cannot easily be established because the number of random coincidences between stellar features and laboratory wavelengths is expected to be large. Furthermore, many elements of interest do not have strong lines in the blue region. In view of the great progress that has been made in the analysis of the spectra of the rare earths in the last ten years, it was thought desirable to investigate the spectrum of $a^{2} \mathrm{CVn}$ in the region 5000-6700 \AA.

II. OBSERVATIONS AND THE IDENTIFICATION PROCEDURE

Twenty spectra were taken with the 72 -inch camera of the coudé spectrograph of the Hale telescope in the first half of 1965. These plates (IIaD and IIaF emulsions) have a dispersion of $6.7 \AA \mathrm{~mm}^{-1}$. The observational material is listed in Table 1, which also includes the phase and usable wavelength range of each plate. (The phases used here were computed with the formula established by Farnsworth 1932; no change in period was noticed.) The plates together cover the range from 4800 to $6800 \AA$. Intensity tracings of the spectra were made on the microphotometer of the Robinson Laboratory,

[^0]using the wedges for calibration. It is possible that at a later date equivalent widths will be determined for some of the lines. The positions of the lines relative to the comparison spectrum of the iron arc were measured on an oscilloscope Grant machine for all the plates. In the case of blends, the central wavelength of the feature was measured.

The wavelengths of the stellar features as determined by their positions with respect to the comparison spectra we call the o wavelengths. The o wavelength of each feature was then corrected for the solar motion and for the average radial velocity, from the work of S^{2}, for lines of group A at the phase (ϕ) at which the plate was taken. This procedure yields the A wavelength of each stellar feature. Similarly, B and f wavelengths were calculated for each stellar feature using the appropriate radial velocities of Cr II and Fe II lines (see § VI).

TABLE 1
Observational Material

* Exposed 5 A.m. P.S.T. night of January 16-17, 1965.

Thus, each plate yields four different wavelengths for each line measured in that plate. Because the variations in radial velocity over the period differ from group to group, the wavelengths A, B, and f do not coincide, nor do they differ by a constant at all phases. For example, the Fe ir line at $5197.59 \AA$ is identified with a stellar feature whose A wavelengths at phases 0.09 and 0.49 are 5197.48 and 5197.62 ; the B wavelengths are 5197.68 and 5197.52, respectively, and the f wavelengths of the stellar feature are 5197.59 and 5197.56 , respectively. We note that the best agreement between the stellar wavelengths at these two phases is obtained for the f wavelengths; hence we can conclude that the identification as an Fe II line is probably correct.

With the o wavelengths, atmospheric lines can be eliminated. We have used the Solar Spectrum Tables by Moore, Minnaert, and Houtgast (1966) as a source of wavelengths for atmospheric lines. In a few cases, where the line in the spectrum of $a^{2} \mathrm{CVn}$ is obviously largely stellar, we have denoted the presence of an atmospheric line as a component in the blend.

Line identifications were assigned on the basis of the wavelengths A, B, and f of
each feature. Tolerance between laboratory and stellar wavelengths was taken as $\pm 0.15 \AA$, except where the laboratory wavelengths were known to be inaccurate. \bar{A} line was attributed to an ion of group A if the laboratory wavelength best matched the average over all plates of the A wavelength of the stellar feature. Assignments of lines to other groups were made in the same way. The variation in equivalent width of the feature over the period was also an aid in the identification. In ascribing lines to ions not previously recognized as present in $a^{2} \mathrm{CVn}$, it was required that all the lines of the ion behave in the same way with respect to variation in equivalent width and wavelength.

The basic lists used in the identification procedure were those of Moore (1959), Harrison (1939), and Meggers, Corliss, and Scribner (1961). The last reference is especially useful for the singly ionized rare earths. Many other lists have been consulted, and the most useful of these will be noted later.

It was impractical to use all of the plate material in obtaining the identifications. Three high-quality plates for each wavelength region were selected which were evenly distributed over the period, having phases near $0.0,0.5$, and 0.8 or 0.3 . It was found by comparison with the remaining plates that very few features occur on a plate somewhere in the cycle that do not occur on one of the three plates selected as typical for that wavelength region; perhaps one such feature occurs every $50 \AA$. For each of the three selected plates, the A, B, f, and o wavelengths were computed for each observed feature. These, plus the tracings, were used to identify the stellar features.

III. DESCRIPTION OF THE FINAL LINE LIST

The final identifications, covering the wavelength region $5000-6650 \AA$, are given in Table 2. The first two columns give the stellar wavelengths A, B, or f , at phases near 0.0 and 0.5 , respectively. The radial-velocity system for which the wavelength was derived is indicated by the letter following the wavelength. The plates used to obtain these wavelengths are listed at the top of each page. The wavelengths given are those of the velocity group corresponding to the identifications. Thus, for an Fe iI line, wavelength f of the stellar feature at phases 0.0 and 0.5 is listed. For unidentified features, the wavelength A is listed if the feature clearly is enhanced in strength near phase 0.0. In all other cases, wavelength f is listed if the wavelengths f obtained for the same stellar feature at different phases agree better than the A or B wavelengths of the same feature. The same holds for unidentified features with wavelengths of other velocity groups. The letters "bl" following the wavelength indicate that the feature on the tracings is wide and obviously blended. The beginning and end of regions of unusual complexity, where it is possible that more lines exist in the stellar spectrum than have been measured, have been indicated by asterisks.

Columns (3) and (4) contain estimates of the intensity of the stellar features at phases near 0.0 and 0.5 . The plates used to obtain these intensities are listed at the top of the columns. It is not always true that the spectra from which the wavelengths were calculated are the same as those from which the intensity estimates were derived, as the former were selected partially on the basis of maximum number of lines measured in the comparison spectrum, and the latter for the quality of the tracings. The intensities are on a scale from 0 to 9 , where 0 -intensity lines have a central residual intensity greater than or equal to 0.95 , and lines with intensity 8 have a central residual intensity of about 0.50 . Some care was taken to make the intensity scale uniform over a range of continuum intensities, but small variations in the scale have probably occurred over regions separated by more than $100 \AA$. The tracings from which the intensities were estimated have comparable continuum intensities, so that the relative intensities at phases 0.0 and 0.5 could be accurately obtained.

The last column contains the identifications. The ion and laboratory wavelength modulus 10 is given. A tabulation of only one digit after the decimal point means that

TABLE 2
LINE LIST FOR $\alpha^{2} \mathrm{CVn}$

TABLE 2 (CONT'D)

TABLE 2 (CONT'D)

Pb8701 ${ }^{\lambda}$	Pb8676	$\begin{array}{r} \text { Int } \\ \mathrm{Pb} 8701 \\ \hline \end{array}$	$\mathrm{Pb} 8710$	Identification	$\mathrm{Pb} 8701^{\lambda}$	$\mathrm{Pb} 8676$	$\begin{aligned} & \text { Int. } \\ & \mathrm{Pb} 8701 \mathrm{~Pb} 8710 \\ & \hline \end{aligned}$	Identification
5600								
4542 f	4543 f	0	1	$\begin{aligned} & \text { SII 5.62; } \\ & (\text { SiI } 5 \text { 67) } \end{aligned}$	$1360 \mathrm{~A}$	20 00Abl	$\begin{array}{ll}1 & 0 \\ 3\end{array}$	YbII 373 SmITI 972
47 19A		2	0	(SmIII 7 23)				GdIII 983
4882 f	4887 f	1	2			21 09B	$0 \quad 0 \mathrm{r}$	CrII 102
49 97f		0	0	FeI 001	24 63A		10 r	GdIII 466
51 62f	5165 f	2	2	f + YbII 199	26 42A	26 46A	21	
53.36A		2	0	YbII 324	30 24A	3033 Abl	2	YbII $002+$?
55 21f	5529 fbl	2	2	$\begin{array}{lll} \text { FeI } & 5 & 18 ; \\ \text { FeI } & 5 & 50 \end{array}$	31 52A		00	
				FeI 550	3304 f	3287 f	$0 \quad 0$	FeII 272
5652 f	5667 f	0	0	(NeI 6 66)	33 87A	33 67A	10 r	GdII 386
58 91A	5895 f	3	1	```FeI 8.83; GdIII 8.98;HfII 8 83;(AI 9 13)```	37 74f	3779 f	22 r	$\begin{aligned} & \text { FeII } 768 ; \\ & \text { SmII } 801 \end{aligned}$
6043 f	6034 f	1	$2 r$	SiII 0.65;	39 35A		$0 \quad 0$	(AI 9 52)
				SII 9.95	41.83A		$0 \quad 0$	NdII 208
61 34A		0	0	SmIII 132	46 45A	46 50A	1 l	YbII 636
63 11A		0	0	YII 295	48 10B	48 20B	$0 \quad 1$	(NaII 8 15)
65 26A		1	0 r	$\text { GdIII } 5 \text { 22; }$	49 35A		10 r	GdII 941
				(ErII 5 44)	51 48f	51.49f	$0 \quad 0$	
67 66A		0	0	SmIII 754	5543 f	55 54f	00	atm?
68 53A	68 80A	1	1	$\begin{array}{lll} \text { NdII } 8 & 87 ; \\ \text { CeII } 8 & 94(+?) \end{array}$	58 65A		00	
69 47f	69 56f	1	1 r	SiII 9 59;		5927 f	$0 \quad 0$	
				PrII 955	6304 f	63 08f	1	FeI 299
71 40A		0	0	LaII 155	65 33A	65 39A	$0 \quad 0 r$	PrIII 527
7277 Abl		2	0		66 91A	66 93Abl	$0 \quad 0$	YbII 7 20;
75 26B	75 26B	1	0					HfII 7 18, (+A)
77 11A	77 22A	2	1	PrII 7.04; (HgII 7 17)	68 88A	68 80Abl	10	$\begin{aligned} & \text { CeII } 8 \text { 90;LaII } \\ & 907 ; L a I I ~ \\ & 934 \end{aligned}$
	78 49B	1	2	CrII 842	71 05A		$0 \quad 0 \mathrm{r}$	GdII 120
	8454 f	1	0			7405 f	00	FeII 38
87 11A	87 31A	1	0	PrII 719	76 84A	76 84A	00	
$8877 \pm$	88 80f	1	2	$\begin{aligned} & \text { SiII } 8 \text { 81; } \\ & \text { NdII } 853 \end{aligned}$	80 20f	80 20f	4	FeII *
89 96A		1	0		8364 f	83 71f	1	
90 98f	91 04f	0	1 r	FeII 138	84 63f	8443 f	12	FeII *
92 03A		0	0	TiII 199	86 89A		$20 r$	$\begin{aligned} & \text { GdIII 6.96; } \\ & \text { SmII } 698 \end{aligned}$
	9433 f	0	0		9102 Abl		21	PrII l.38;
96 34A		0	0	(TmII 6 44)				(HgII 0.65 ; FeI
97 78A		0	0					1 O1;CrI 1 04)
5700						9585 f	$0 \quad 1 \mathrm{r}$	FeII 587
00 43A		0	0		9672 A		10	
$0135 f$	01 33f	1	1	SiII 1 37;	98 64B	98 68B	00	
				CrII 146	5800			
03 11A	03 50Abl	0	0	$\begin{aligned} & \text { LaII } 3 \text { 32; } \\ & \text { SmII } 346 \end{aligned}$	0045 f	0057 fbl	12 r	$\begin{aligned} & \text { SiII } 0 \quad 47 ; \\ & \text { FeII } 0 \quad 02 \end{aligned}$
06 53A	06 45A	1	1	SiII 637	02 68A	$0271 f$	22	
	07 37f	0	0	(SmIII 7 46)	03 88A		10	NaII 4 02; †
08 98A	08 88A	0	0		0513 f		00	FeII 49

TABLE 2 (CONT'D)

TABLE 2 (CONT'D)

TABLE 2 (CONT'D)

the laboratory wavelengths were felt to be inaccurate. Such cases (as well as the symbol "Fe ir*") are discussed individually later. In the case of blends the most important contributor is listed first, but for rare-earth blends this is often difficult to determine. If an important contributor cannot be identified, we indicate it by " + ?". In some cases it is possible to deduce the velocity group of the unknown contributor, which is then indicated by " +A, " " +B ," or " +f ." Identifications given in parentheses are considered less reliable because of the following: (1) the other contributors can account for all of the observed blend, though this contributor should be present; (2) there is an insufficient number of strong lines in the spectrum of the ion to verify that it is actually present; (3) the wavelength disagrees with that of the stellar feature by more than $0.15 \AA$, but the lines should be present; (4) the stellar line seems too strong to be due to this ion.

We note that in the region past $6200 \AA$ there are many unidentified lines of 0 intensity which on the tracings can barely be distinguished from the noise, and which resemble atmospheric lines. Furthermore, these features appear to be at different wavelengths from plate to plate. However, no atmospheric lines are listed at the appropriate wavelengths by Moore et al. (1966). We have included these features until $6300 \AA$; in the region beyond $6300 \AA, 0$-intensity lines which look like atmospheric lines rather than stellar features on the tracings have not been included in Table 2. It is probable that a large number of the 0 -intensity features between 6200 and $6300 \AA$ are atmospheric lines.

Lines which were judged sufficiently unblended to be used in determining radial velocities are indicated by " r " immediately following the intensity estimates. Table 2 includes nearly 900 lines, approximately three-quarters of which have been identified.

IV. COMMENTS ON INDIVIDUAL ELEMENTS

a) Oxygen

The lines at $\lambda \lambda 6156$ and 6158 of O_{I} are present, and are not noticeably weakened compared with normal B stars. However, these lines are blended with $\lambda 6156.9$ of Sm II and $\lambda 6157.8$ of Nd II. If a crude attempt is made to remove these blends by subtracting the equivalent widths of nearby features of Sm II and Nd II whose laboratory intensities are comparable with those of the rare-earth lines near $\lambda 6158$, the resulting strength of the O_{I} lines is consistent with the strength of the infrared triplet observed by Sargent and Searle (1962).

b) Neon

No lines can definitely be attributed to Ne $\mathrm{I} ; \lambda 6402$ is absent. However, using the reddening-free parameter Q, where $Q=(U-B)-0.72(B-V)$, as an indication of the effective temperature, Sargent, Greenstein, and Sargent (1968) have shown that $a^{2} \mathrm{CVn}$ is sufficiently cool for this neon line not to be expected to be present.

c) Phosphorus

Five strong lines of P II were measured by B^{2}, based on the identifications of S^{2}. The equivalent widths of these lines (two of which at some phase have equivalent widths of at least $40 \mathrm{~m} \AA$) correlate very poorly with the intensities given by Martin (1959). According to his list, multiplet 5 of $\mathrm{P}_{\text {II }}$ (near $6040 \AA$) and three other lines near $6500 \AA$ are stronger than the five lines that were measured by B^{2} in the blue. The uniformity of this intensity scale has been verified by comparing the laboratory intensities with unpublished equivalent widths for κ Cnc kindly supplied by Sargent and Jugaku (1968).

Of the eight strong lines of $P_{\text {II }}$ expected in the red, there are only two coincidences, and one of the stellar features has a satisfactory alternative identification. We there-
fore conclude that there is no evidence for the presence of $\mathrm{P}_{\text {II }}$ in the spectrum of \boldsymbol{a}^{2} CVn. Since P ir lines appear very weakly in the spectrum of γ Peg (Aller and Jugaku 1958), it is possible that the abundance of phosphorus in $a^{2} \mathrm{CVn}$ is normal.

d) Chlorine

Lines of Cl II are present in the spectrum of $\boldsymbol{a}^{2} \mathrm{CVn}$. The strong lines of multiplets 2 and 3 are all present, and their intensities correlate well with the laboratory intensities. The multiplets of higher excitation potential are also present, but appear somewhat weaker.

Although Bidelman (1966) has suggested that the wavelengths given by Murakawa (1931) are more accurate than those of Kiess and de Bruin (1939), we have used the latter, as their list contains more lines and their intensity scale appears more accurate. In nearly all cases the difference between the two wavelengths is less than $0.1 \AA$.

The lines of Cl II behave like those of Eu II, which is rather surprising since the atomic number of chlorine is only 17. The variation in intensity of the lines between phase 0.0 and phase 0.5 is large; the lines are quite pronounced (with W_{λ} up to about $70 \mathrm{~m} \AA$) at rare-earth maximum, and nearly disappear at phase 0.5 . The form of the radial-velocity curve, allowing for the poor accuracy of the wavelengths, resembles that of the rare earths. This implies that neither the mass nor the charge-to-mass ratio of the most abundant ion of an element suffices to determine the velocity group to which an ion will belong.

The synthesis of excess chlorine could normally be correlated with excesses of phosphorus and sulfur. Special modifications of the a-process and the light-element s process are required to understand excess Cl and Si , if nucleosynthesis is, in fact, involved.

e) Iron

Many of the strong lines of Fe I are present in $a^{2} \mathrm{CVn}$. However, in the region past $5000 \AA$, the Fe I lines are weak compared with the Fe I lines, so that it is difficult to ascertain the variation in radial velocity and strength of the neutral lines. It appears that lines of neutral and singly ionized iron behave in a similar manner over the period. Fe III is not present. Multiplet 5, which has strong lines of low excitation potential, is absent.

The Multiplet Table of Moore (1959) is incomplete with regard to the Fe iI spectrum in the red. Additional Fe II lines have been found by checking to see whether the strong unclassified lines of Fe III given in the Multiplet Table are present in the lists of Glad (1956). A large fraction of the lines designated by Moore as unclassified Fe iII are absent from Glad's extensive list, and since these show up strongly in the spectrum of a^{2} CVn (as well as in Kohl's [1964] line list for Sirius), we assume they are in reality Fe ir lines. Furthermore, the list of Dobbie (1938) furnishes many other Fe ir lines absent from the Multiplet Table. About 90 per cent of Dobbie's list is present in the spectrum of a^{2} CVn. The list of King (1938) has also proved helpful, especially those "lines which are wide and diffuse in the spark spectrum. . . . Their structure is denoted by ' N ' . . . after the intensity number and in some cases only very rough wavelength measures could be made" (King, p. 111). We have found that the " N " lines, very few of which are classified, are quite strong in the spectrum of $a^{2} \mathrm{CVn}$, when a wavelength error of up to $0.5 \AA$ is allowed. These lines are also present as unidentified in Kohl's (1964) work on the spectrum of Sirius. Since the stellar lines are very strong, their intensities vary as iron lines, and so many of the " N " lines are present, we have assumed that these also are Fe II lines, and have denoted them by " Fe II" " in Table 2 , as no accurate wavelengths are available. It is probable that these lines represent transitions between levels with excitation potentials of 8 eV or greater.

It is of great importance that a reexamination and classification of the laboratory spectrum of Fe ir be undertaken. Until then, most of the above identifications of Fe ir must be regarded as less than certain, but very probable.

f) Doubly Ionized Rare Earths

We were fortunate to be able to obtain unpublished line lists for Ho iII and Gd iII from Dr. H. M. Crosswhite, and analyses of Yb inf, Pr imi, and Ce iII have recently appeared (Bryant 1961; Sugar 1961, 1965, respectively). Of these ions, only Pr Iir and Gd III have strong lines in the wavelength region covered on our plates. Both are definitely present. It is difficult to judge the variation in phase of the few stellar Pr ini features, since all of the six strong observed lines are blended, five with either Cr II or Fe II lines. The presence of an important contributor which varies like the rare earths is required to explain why these stellar features are not greatly weakened at phase 0.0 compared with phase 0.5 .

More features have been attributed to Gd III, and for this ion the lines are definitely strongest at phase 0.0. We thus confirm the observation of Swings (1944) that the intensity variations are in phase for the singly and doubly ionized rare earths. Quantitative measurements of the lines of Gd III and Pr III will be made in the near future.

No analysis is available for Gd mir. The lines of Pr ini which are observed in $a^{2} \mathrm{CVn}$ have excitation potentials less than 5 eV .

Note added in proof.-We recently received from Dr. Crosswhite a line list for Sm III, which is probably present in $a^{2} \mathrm{CVn}$. In cases where there was not sufficient room to insert the appropriate entry in Table 2, we have indicated the presence of Sm III as a component in a blend by the symbol " \dagger ". No analysis is available for this ion.

g) Mercury

Osawa (1964) has classified $a^{2} \mathrm{CVn}$ as an "Si-Hg-Cr-Eu" star based on spectra with a dispersion of $60 \AA \mathrm{~mm}^{-1}$ and using the appearance of the line at $\lambda 3984$ as an indication of the presence of mercury. This line has an intensity ranging from 2 to 7 in S^{2}, so that it is clearly a strong line. According to Bidelman (1966), the first multiplet of Hg I has been seen in two stars showing the $\lambda 3984$ line of Hg II.

There is one line of $\mathrm{Hg}_{\text {II }}$ ($\lambda 6149$) in the red whose laboratory intensity is equal to that of $\lambda 3984$, and two lines $(\lambda \lambda 5677,5425)$ with slightly smaller intensities. No stellar features can be definitely associated with these three Hg II lines. It is possible that the absence of these red lines is due to their high excitation potential. Until transition probabilities for the strongest Hg II lines can be measured, such an explanation must be regarded as tenable.

There is a strong Hg I line at $\lambda 5460.7$. The nearest stellar feature, at $\lambda_{A} 5460.3$, cannot be attributed to Hg I because of the discrepancy in wavelengths.

The presence of mercury in the spectrum of $a^{2} \mathrm{CVn}$ is therefore uncertain, since a line of intensity 6 is observed at $\lambda 3984$ (according to S^{2}), which corresponds roughly to an equivalent width of $100 \mathrm{~m} \AA$, and Hg I is absent. However, no reasonable alternative identification of $\lambda 3984$ is available. It would be most useful to search for the line $\lambda 9946$, which arises from the same level as $\lambda 3984$, in stars where both $\lambda 3984$ and multiplet 1 of Hg I are observed.

h) Lead

It is claimed by B^{2} that lead is present in the spectrum of $a^{2} \mathrm{CVn}$. Since there are no Pb I lines in the red, we consider Pb II. Using the laboratory lists of Earls and Sawyer (1935), the Burbidges claim that two lines of Pb II, $\lambda \lambda 4243.1$ and 4386.4 , both with laboratory intensity 20 , are present in a^{2} CVn with a mean equivalent width of $22 \mathrm{~m} \AA$ each. One of these lines has been identified by S^{2} as a Fe I-Cr II blend; the other (4386.4)
is unidentified in their list. However, the second line may perhaps be $\lambda 4386.57$, a predicted line of Fe II, according to Moore (1959).

In the red region there are several strong lines of Pb iI. We list them and their identifications below (Table 3).

Since only one of the four lines, each of which should be stronger than the lines in the blue, is present, we conclude that there is no evidence for the presence of Pb iI in the spectrum of $a^{2} \mathrm{CVn}$.

v. Ionization equilibrium in $a^{2} \mathrm{CVn}$

Bidelman (1967) has suggested a reconsideration of the possibility of explaining the spectral variations in $a^{2} \mathrm{CVn}$ by simultaneously varying the temperature and the electron pressure. Swings (1944) and Struve and Swings (1942) criticized this hypothesis, originally presented by Tai (1939), on the ground that Eu II and Eu III vary together.

We have calculated the ionization equilibrium in the temperature range $12000-$ $14500^{\circ} \mathrm{K}$, with various electron pressures. We have assumed that $u_{i} / u_{i+1}=1$ for all the states involved, and have used an ionization potential of 22 eV for Eu iir, as suggested by Sugar (1963). For temperatures greater than 12000° and $\log P_{e}$ less than 2.1 (an unusually low value for a main-sequence A0 star), it is possible to have Eu iv the dominant ion of europium. Then Eu II and Eu ini can vary together as the temperature and electron pressure are changed.

TABLE 3
Strong Lines of Pb II

$\lambda_{\text {lab }}$	Lab. Int.	$\lambda_{\text {star }}$	Ident.	W_{λ} of Observed Feature
50425	50	5042 5A		15 m ¢
60758	40	absent		$<10 \mathrm{~m}$ A
60815	40	6081 6́B	60815 Cr II	$20 \mathrm{mÅ}$
66600	50	absent		$<15 \mathrm{~mA}$

We seek a solution such that at the maximum number density of Eu II the star is coolest, and at Cr II maximum, when the star is hotter, the Eu II and Eu iII number densities are lower. The number densities of the ions of interest are normalized so that the total abundance of the element is unity, and the total variation in temperature cannot be more than $1000^{\circ} \mathrm{K}$ according to data of Provin (1953) on the color changes throughout the period. We have assumed that the mean excitation potential of Cr II lines is 3 eV , whereas that of Eu II and Eu III lines is 0 eV . This is not unreasonable, since multiplet 1 of Cr ir has an excitation potential of 2.4 eV .

It is possible to find a case which marginally resembles this. The best solution, which has rare-earth maximum at $T=14000^{\circ} \mathrm{K}$ and $\log P_{e}=1.6$, and rare-earth minimum at $T=14500^{\circ} \mathrm{K}$ and $\log P_{e}=1.8$, has the correct phase relationships for the ions Cr ir, Eu ir, $\mathrm{Eu}_{\text {iII, and }} \mathrm{Cl}_{\text {II }}$, with no change in the number density of $\mathrm{Sr}_{\text {II }}$ over the period. However, even in this case the ratios of number density at maximum and minimum strength are far short of the observed ratios of equivalent widths in $a^{2} \mathrm{CVn}$. We are forced to conclude that only a small part of the observed spectral variations can be explained by change in temperature and pressure.

VI. DISCUSSION OF RADIAL VELOCITIES

As can be seen from Table 1, our observational material is poorly distributed in phase. The region from phase 0.0 to 0.65 is adequately covered, but from phase 0.65

＇дәரโセus Кโч

${ }^{\circ}$ ЧІр！м

00＊ 1 －	00．7ー	00．1＋	$\cdots{ }^{-3-9}\left(\chi\right.$ ums $\left.{ }^{0} 1\right)$
09 0－	$00 \cdot 1$－	$00^{\circ} 0+$	
SL $0+$	79＊－	$8 \mathrm{C} \cdot 8+$	$\cdots{ }^{-r}\left(x\right.$ uis $\left.{ }^{\circ} \Lambda\right)$
IS I－	IL＇ $\mathcal{E}-$	SI $2+$	
E0．0＋	¢0．0＋	100－	$\cdots \cdots{ }^{-\cdots-g}$
s0 0－	02\％ 0	S0 0＋	$\cdots \quad \cdot r-\mathrm{p}$
E0．0－	21．0－	ع0．0－	
$91^{\circ} 0$	$910-$	$\varepsilon \varepsilon^{\circ} 0+$	－p
（ ${ }^{\text {（I）}} \mathrm{I}$	（J） C		đnox

モ GTGVL

${ }^{2}$ を $\ddagger 0$

 ұนәұs！

Fig. 1.-Mean radial velocity as a function of phase for rare-earth lines. Filled circles denote V_{r} for singly ionized rare-earth lines, while open circles represent doubly ionized rare-earth lines. The solid curve is obtained from the ephemeris of Table 4.

Fig. 2.-Mean radial velocity as a function of phase for Cr II lines. The solid curve is obtained from the ephemeris of Table 4. The open circles are less accurate than the filled circles.

Fig. 3.-Mean radial velocity as a function of phase for Si ir lines.
at wavelengths less than $5600 \AA$, and many of them are blended. However, allowing for some scatter, it agrees well with the curve given by the ephemeris of Table 4 for group B, indicated by the solid line.

In determining the radial-velocity curve of Fe II, we have used only those lines which are listed as Fe II in Moore (1959), so that accurate wavelengths are available. The results, shown in Figure 4, are based on many lines, but are not consistent with the solid line, which is based on the ephemeris of Table 4 for Fe II. Rather, they are much closer to the radial-velocity curve obtained by Pyper (1968), indicated by dotted lines. We do not have sufficient resolution to see any doubling of the lines; however, at some phases the Fe ir lines appear unusually broad on the tracings. A detailed discussion of the cause of the different Fe II velocity curves and their theoretical significance will be published by Miss Pyper.

The assignment of ions to groups A, B, and C as defined in § I based on the present material is given in Table 5. It seems clear that group B must be further subdivided, and that the variations in radial velocity of its members probably are not similar to each other.

Fig. 4.-Mean radial velocity as a function of phase for Fe II lines. The solid curve is obtained from the ephemeris of Table 4, while the dotted curve is that of Pyper (1968).

TABLE 5
Grour Assignments of Ions in $\boldsymbol{a}^{2} \mathrm{CVn}$

	A	B	C
Cl II	Pr II	Cr II	Si II:
Ti II	Pr III:	Fe I:	
Mn II	Sm II	Fe II	
Y II:	Eu II		
La II:	Gd II		
Ce II	Gd III		
	Yb II		

VII. CONCLUSIONS

The unusual spectroscopic properties revealed by $a^{2} \mathrm{CVn}$ are not easily explained by the hypothesis of surface or interior nuclear reactions. The presence of Cl II and absence of $\mathrm{P}_{\text {II }}$, as well as the absence of $\mathrm{Pb}_{\text {II }}$, cast doubt on the possibility of creating a reaction network which could produce the observed peculiarities. In addition, the cause of the spectral variations is poorly understood. Further theoretical work on physical processes in stars with large magnetic fields which might produce patches of abnormal composition is required.

We wish to thank Mr. Jerry Dessinger and Mr. Robert Milton for assistance in measurements. Drs. Peter Conti and I. J. Danziger helped in the early stages of this investigation. We thank Dr. W. P. Bidelman for pointing out an error in an earlier version of this work.

REFERENCES

Aller, L. H., and Jugaku, J. 1958, Ap. J., 127, 125.
Babcock, H. W., and Burd, S. 1952, A p. J., 116, 7.
Belopolsky, A. 1913 a, A str. Nach., 196, 6.
——. 1913b, Bull. Acad Imp. Sci.St. Petersbourg, 7, 689.
-_ 1927, Bull. Obs. Pulkovo No. 101.
Bidelman, W. P. 1966, in Abundance Determinations in Stellar Spectra, ed. H. Hubenet (New York: Academic Press), p. 229.
__ 1967, in The Magnetic and Related Stars, ed. R C Cameron (Baltimore: Mono Book Corp.), p 38.
Bryant, B. W. 1961, Johns Hopkins Spectrosc Rept, No. 21
Burbidge, G. R., and Burbidge, E. M. 1954, Ap J Suppl., 1, 431
Deutsch, A. J. 1958, Proc. I.A.U. Symp., No. 6, p. 209.
Dobbie, J. C. 1938, Ann. Cambridge Solar Phys. Obs., 5, 1.
Earls, L. T , and Sawyer, R. A. 1935, Phys. Rev., 47, 115.
Farnsworth, G. 1932, Ap.J., 75, 364.
Glad, S 1956, Ark.f Fys., 10, 295.
Harrison, G. R 1939, MIT Wavelength Tables (New York: John Wiley and Sons).
Kiess, C. C , and de Bruin, T L. 1939, J. Res N.B S., 23, 446.
King, A. S. 1938, A p. J., 87, 109.
Kohl, K. 1964, Das Spektrum des Sirius (Kiel: Institut für Theoretische Physik und Sternwarte der Universität Kiel).
Martin, W. C. 1959, J. Opt. Soc. Am., 49, 1071
Meggers, W. F., Corliss, C. H., and Scribner, B F. 1961, Tables of Spectral Line Intensities, N.B.S. Monog. 32.
Moore, C. E. 1959, A Multiplet Table of Astrophysical Interest (Contributions from the Princeton University Obs. No. 20).
Moore, C. E., Minnaert, M. G. J , and Houtgast, J. 1966, The Solar Spectrum, N.B.S. Monog. 61.
Murakawa, K. 1931, Zs. f. Phys., 69, 510.
Osawa, K. 1964, Ann. Tokyo Astr. Obs., Series 2, 9, 123.
Provin, S. S. 1953, Ap J., 118, 484.
Pyper, D. 1968 (private communication).
Sargent, A., Greenstein, J. L., and Sargent, W. L. W. 1968 (private communication).
Sargent, W. L. W., and Jugaku, J. 1968 (private communication).
Sargent, W. L. W., and Searle, L. 1962, Ap. J., 136, 408.
Struve, O., and Swings, P. 1942, Observatory, 64, 291.

- 1943, Ap.J., 98, 361.

Sugar, J 1961, Johns Hopkins Spectrosc. Rept, No. 22.
—— 1963 (cited in Bidelman 1967).
——. 1965, J. Opt. Soc. Am., 55, 33.
Swings, P. 1944, Ap. J., 100, 132.
Tai, W. S. 1939, M.N.R.A.S., 100, 94.

[^0]: * This research was supported in part by the U.S. Air Force under grant AFOSR 68-1401, monitored by the Air Force Office of Scientific Research of the Office of Aerospace Research.
 \dagger National Science Foundation traineeship.

