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Summary. Recent studies have focused attention on the refractive effects of
long-wavelength (<10%cm) electron density fluctuations in the interstellar
medium upon radio observations of pulsars and compact extragalactic radio
sources. In earlier work, a simple scattering model was introduced which allowed
us to compute fluctuations in mean intensity, image size, pulse width and pulse
arrival time, along with their cross-correlations and fluctuation time-scales, when
there is a power-law spectrum of density perturbations in a thin ‘equivalent
screen’ of scattering material. In this work, we extend the analysis to include
refraction-induced fluctuations in intrinsically diffractive quantities such as the
scintillation time-scale, ¢, and the decorrelation bandwidth, v4.. We then use the
theory to study the drifting bands in dynamic scintillation spectra caused by the
dispersive steering of the diffraction pattern. We also estimate the fluctuations in
the position of the image on the sky, rates of variation of intensity and position,
and the root mean square elongation of the scatter-broadened image. We make
two further extensions of the theory. First we show that, despite certain formal
divergences, the theory can be extended to accommodate steeper density
fluctuation spectra (power-law indices f>4) than the conventionally assumed
Kolmogorov spectrum (=11/3). Secondly, we test the validity of the thin-screen
approximation, developing a formalism to treat scattering in an extended
medium. We find that the thin-screen theory sometimes underestimates the
refractive fluctuations by a factor ~2. The auto- and cross-correlations of the
various observables are calculated and comparison is made with the known
scintillation properties of pulsars to select those effects most suited to
observational verification. The predicted cross-correlation between decor-
relation bandwidth and flux fluctuations seems particularly suitable for this
purpose. These measurements should, in turn, provide insights into the density
fluctuation spectrum and the distribution of the scattering along the line-of-sight.
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1 Introduction

The effect of small-scale electron density perturbations in the interstellar medium upon the
propagation of pulsar radio signals has been recognized since the earliest observations (Scheuer
1968; Rickett 1977; Manchester & Taylor 1977). These inhomogeneities scatter the rays by a root
mean square scattering angle 6 in propagating a distance D to Earth. The extra path-length
traversed by a given ray leads to a mean time delay t~D #%/2c and the dispersion in this value
among a large number of received rays causes a pulse broadening of the same magnitude. Since
the phases of the independent rays are essentially uncorrelated, they can interfere to produce
deep scintillation, and this creates a diffraction pattern at Earth with a lateral coherence length
b~1/2x6. The motion of an observer relative to this pattern at a speed v, dominated by the
pulsar’s peculiar velocity, leads to a diffractive scintillation time-scale, t;~b/v, and a decorrelation
bandwidth, v4.~c/nD 6.

It has been argued on observational grounds (e.g. Lee & Jokipii 1975; Rickett 1977) that the
electron density perturbations have a three-dimensional power spectrum in the form of a power
law, ®ock™# 2< <4, i.e. the density fluctuations on a scale a vary as on(a)<a#3/2, The
scattering angle induced in scale a is 67 ~dn(a) r.A?/2x, where r.=e?/mc?. If there are D/a such
regions along the pulsar—Earth path then the scatterings will add incoherently to give an rms
scattering angle 6(a)~(D/a)"/?0n~a'#Y/242D'2, Hence, for <4, the scattering will be
dominated by the smallest scale a,;, (the ‘diffractive’ scale) for which phase fluctuations satisfy
@ (Amin) ~Amin@/A>m, the strong scattering condition. Provided a,,;,<6D (the multi-path
condition), as is true for interstellar scintillation, the angular size of the image scales as
QA2 pY/(F=2)  Observations reveal that d(log8)/0(logA)=2 (e.g. Mutel et al. 1974),
implying that £ is close to the critical value 4. Kolmogorov turbulence theory predicts that
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Figure 1. Schematic representation of the focusing and steering effects of refractive perturbations. The upper section
shows the effect of an incident plane wave of a thin screen with a single long-wavelength sine-wave perturbation.
As the observer moves relative to the resulting intensity distribution, the flux F and position of the source &
are modulated as shown below. F is maximal at A, varies most rapidly at B and is minimal at C. Thus F correlates
with the rate of change of 6 and vice-versa.
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F=11/3, and it has been argued that the observational data are consistent with this value (Lee &
Jokipii 1975; Armstrong, Cordes & Rickett 1981).

Recently, there has been increasing evidence that perturbations much larger than the
diffractive scale ap;, are also important in the propagation of radio waves in the interstellar
medium. In particular, it seems that electron density perturbations on a scale comparable to the
size of the scatter-broadened spot on the sky, 0~6&D (the ‘refractive’ scale), can cause refractive
focusing and defocusing of the pulsar image (see Fig. 1) on a time-scale ~T,.s=0/v. Rickett,
Coles & Bourgois (1984), following Sieber (1982) (cf. also Shapirovskaya 1978), proposed that
these effects may account for long period (~days—years) variations in pulsar intensity as well as
the low-frequency variability of compact extragalactic radio sources. In addition, the sloping drift
patterns of pulsar dynamic scintillation spectra could also arise from the influence of these large
scales (Shishov 1974; Hewish 1980; Roberts & Ables 1982; Hewish, Wolszczan & Graham 1985).

Blandford & Narayan (1984), pointed out that, in addition to the received flux, many other
observed parameters, such as angular size and pulse width, can also vary due to refractive
perturbations. In a later paper (Blandford & Narayan 1985, hereafter BN), they developed a
simple model based on the thin-screen approximation (reviewed in Section 2), to calculate the
magnitudes of the various fluctuations and the correlations among them. In this model, it is
assumed that short-wavelength fluctuations on scales =a;, scatter the incident radiation into an
approximately Gaussian beam when averaged over an area on the screen with dimensions > a;,,
but <o. Equivalently, an observer sees a Gaussian image provided the observations are averaged
over a time ¢, such that £,<<¢,<< T,;. The long-wavelength ‘refractive’ fluctuations on scales ~o are
then modelled as introducing a smooth large-scale slope and curvature to the phase front, which
are responsible for steering and focusing the independent Gaussian beams emerging from the
screen. The theory then goes on to assume that the refractive bending is small compared to that
due to the small scales and so linearizes the problem. This is an approximate model and there
would be no need for it if we were interested only in intensity fluctuations, since more powerful
and exact techniques have been developed for that purpose (e.g. Salpeter 1967; Gochelashvily &
Shishov 1975; Rumsey 1975; Prokhorov et al. 1975; Uscinski 1977; Rino 1979; Tatarskii &
Zavorotnyi 1980; Jakeman 1982; Goodman & Narayan 1985, hereafter GN, as representatives of
an extensive literature). However, in BN as well as the present paper, we are most interested in
giving a semi-quantitative discussion of fluctuations in other potentially observable quantities
for which we cannot perform accurate calculations, and this necessitates using our model.
Nevertheless we have used the above-quoted more accurate intensity fluctuation computations to
verify that our approximations are quite accurate (see Appendix C). We also show in Appendix B
that our two-scale approach can be motivated starting from a more formal theory. The discussion
there, as well as the qualitative argument given above, indicate that our approximations are most
accurate when the diffractive and refractive scales are well separated. This is equivalent to
requiring very strong scintillation [i.e. rms phase fluctuations in the Fresnel scale, p(JAD)>1],
which is fortunately the case in the interstellar medium at low radio frequencies.

There is a second feature of our model that deserves comment and this concerns the importance
of caustics. As we are concerned with strong scintillation from phase-thick screens, geometrical
optics is a valid description of the scattering due to refractive scales. If the diffractive scales were
missing altogether and if the rms curvature in the phase fluctuations were such as to bring rays
to a focus at the observer distance D, then the observed intensity record would display a series
of sharp spikes as the observer moved through successive caustic surfaces. Our theory, which
limits itself to the lowest order in a perturbative expansion of refractive effects, would be
quite inadequate to handle this situation. However, our primary interest in this paper is in an
extended power-law phase fluctuations spectrum ¢ (k) ek ~# with #<4. in this case, since the
scattering angle on scale a goes as 8(a) *<a#*/2, the typical focal length of fluctuations on the
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refractive scale o is ~D(0/ay,)# /> D. Thus we are justified in quantifying the refractive
effects through a linear approximation. Phase fluctuations on scales smaller than o do have
sufficient curvature to focus at the observer, but they do not produce sharp spikes in the intensity
record because of the presence of the other length-scales (cf. Salpeter 1967).

The technique employed in BN and in this paper involves intensity-weighted averages of
quantities of interest. A simple extension of the BN analysis allows us to estimate in Section 2 the
fluctuations in the observed source position, which is of interest for VLBI observations of radio
sources. The jitter in the source position should be correlated with fluctuations in F (the rate of
variation of flux F) as shown in Fig. 1. We also consider the random elongation of the
scatter-broadened image.

At first sight it might appear that an intensity-weighted approach such as ours would be quite
unsuitable for a description of diffraction-related phenomena like the decorrelation bandwidth
v4c or the scintillation time-scale 4. In actual fact, as we show in Section 3, the theory is capabie of
treating these phenomena as well. Since v, and ¢ are related to the angular spread in the rays
received, their fluctuations are correlated with variations in the flux, angular size Q, pulse
broadening 7, etc. Another interesting diffractive phenomenon that we study is the drifting bands
seen in dynamic scintillation spectra. The sloping patterns are believed to be produced by
gradients or ‘prisms’ in the scattering medium (Shishov 1974; Hewish 1980); they should thus be
correlated with position shifts and F. In Section 4 we evaluate the correlations among the various
observables for power-law spectra of density perturbations.

As mentioned above, the analysis used in BN and in this paper requires that the scattering due
to refractive scales be smaller than the small-scale scattering, 6. This is valid in the strong
scintillation regime provided the spectral exponent f=4. Recently, however, there has been
some suggestion that § may exceed 4 (BN, GN, Hewish ez al. 1985). We show in Section 5 that,
although the refractive scattering angle can in principle diverge for f>4, a simple
(‘renormalization’ of the theory enables us to handle even this regime to some extent. Another
important question concerns the validity of the thin-screen approximation when the scattering
probably occurs in several screens or an extended medium. We consider this issue in Section 6
using an extension of our formalism and find that a single screen underestimates the magnitude of
refractive flux fluctuations by a factor of ~2.

In Section 7 we give numerical estimates of the various fluctuations for power-law spectra with
F=11/3, 4 and 4.3. The magnitudes of the observable quantities as well as their scalings as a
function of A, D, velocity v, and the strength of the density perturbations C% are collected
together in Table 1. The magnitudes of the cross-correlations are presented in Table 2 and the
relevant formulae are given in Appendix A. Using these, we discuss in Section § the feasibility
of detecting the various refractive effects. Refractive fluctuations in diffractive quantities such as
t; and v4. seem to be quite suitable for experimental verification, particularly since the
measurements can be made at short radio wavelengths, where the refractive time-scale
T.s~D6/v is short. We urge that such observations be carried out in order to confirm that
refractive scintillation effects do occur in the interstellar medium.

A point to note is that the slopes of drifting bands in dynamic scintillation spectra are sensitive
to density fluctuations on scales much larger than the refractive scale 0. Hence they are
particularly well-suited to placing limits on the outer scale o, (i.¢. large length scale cut-off) of
the density fluctuation spectrum. The data on drift slopes presently available seem already to
suggest that an outer scale must be present and that a simple power-law model of the fluctuation
spectrum may be too simplistic. An outer scale is also suggested in several cases by the physical
requirement that the electron density fluctuation drn(a) on a scale a must not exceed the mean
density n. This places stringent limits on 7y, in regions of high C% , such as the lines-of-sight
to the Vela pulsar and the centre of our Galaxy.
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Table 1. Numerical estimates and scalings of scintillation parameters for power-law spectra of interstellar electron
density fluctuation with #=11/3,4and 4.3. Disinkpc,4inm, C_,=10*C%(C% asin Armstrong et al. 1984) and y is
defined in equation (7.4). The increase in amplitude of the refractive fluctuations with increasing 8 is explicitly seen.
An asterisk (*) denotes an estimate for the fluctuations about the measured mean (e. g. 5.5) over an observation
period T, in years. v; is the combined Earth-pulsar velocity in 10’ cm s ™*; the equivalent spatial lag of the observation
period is written s=v,T,,.

i ()
y045c(li/1201.5

is a logarithmic correction factor for 6, and §=4. For =4, e, and my depend strongly on the outer scale and are
therefore omitted.

B=11/3 B=4 B=43

6 (mas) 2.2C%4** D¢ 2.2y%°C%342D°* 22C%P4*4pO7s
T(us) 2.9C§3444 D22 2.9yCL944D? 2.9CL3448p2>
wq. (kHz) s4ctip44p-22 S4y~iCziy™*D™? 54CZ42p~47p—23
ls (S) 149Cig6/{—1420—046v—1 149}/_0'056‘:3'5&_1 D—0.5U7—1 149C :2.59}/—1.4D~O.76U7—1
Tret (D) 19C%§A*2 D ov5! 19y°°C%34° D" 3! 19C22P 2*4 D 0p5!
S6F 0.12C -2 A0 p~0¥7 0.38y 793 0.55
2A8 (mas) 0.17¢C%4 216 p023 0.58C%> 42 p03 0.89C%P 424 pO-76
At (us) 1.2C%3' 42 D055 083 43C%A° D055 6.7C%P A2 D052+
AT (us) 0.30Cc19138p18 1.0y%5CL, 24 D? 1.6CL3A*7 D23

i 1 1 1
AF (dfl) (1_5_0_>CZ€4]A801—2.8D~2.OU7 (‘S'G)Y_IC:%SA_ZD_I'SIM <§)C:2A59/1—2.4D—1.8U7
A6, (mas) 0.32C%°214 D% 0.62y *C%34* D% 1.5C 920 D030 15+

. 1 1 1
A6 (mas/d) (1_06) CZy0 05T p—14y,, <Z§) y 0Sp-1y, (%) D1y,
Avg. (kHz) 5.3CZ}4A0p-20 19y~13Czii*p—2 31CZ42 A 47p2s
A'ts (S) 7.1C:2'80171'8D70‘97U;1 257/—1CI2.5}'710—0.5U771 37C:2‘594_1'4D70'76U771
e 0.08CZ%20 47057 p—037 0.27y793 0.40
eq 0.36C:3‘201_0'57D_0'57 _ _
my O.SOC:Q‘ZOA—O‘S7D‘O'37 _ _

2 The scattering model and refractive fluctuations

BN treated the effects of long-wavelength (‘refractive’) fluctuations in the ISM as weak
perturbations of an underlying bundle of rays scatter-broadened by the diffractive scale
inhomogeneities. When averaged over a time much greater than the scintillation time-scale £,
the image of a point source, such as a pulsar, will be essentially Gaussian with a characteristic
angular radius #. This Gaussian bundle will be focused, defocused, steered, etc. (Fig. 1) by
density fluctuations on the scale of the ‘spot’ or image size, 0. For simplicity, the refractive effect
of the scattering medium is estimated in terms of an equivalent thin screen with large-scale phase
variations, ¢(r); the scattering strength of the screen and its distance from the observer, L, are
adjusted so that the observed angular size 6 of a point source as well as the mean geometrical time
delay (t= L 6%/2c) are the same as in the model of the medium (see Appendix A in BN). The spot
size on the screen will then be o~6L. The extra refractive bending angle 7(r) of a ray at
transverse location r on the screen is given by

7(r)=—x{3¢(r)/or}, (2.1)
where A=4/2r7.
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Table 2. Normalized cross-correlations as defined in equation (7.8) for power-law
spectra of interstellar electron density fluctuations. Each entry consists of three values
corresponding from top to bottom tof=11/3, 4 and 4.3, respectively. The flux F, angular
size Q, decorrelation bandwidth v, scintillation time-scale ¢, and the position shift
derivative @ correlate with one another. Cross-correlations with the pulse broadening 7
are identical to those with v4, but with the opposite sign. The rate of flux variation F
correlates with position shift &, and drift slope mq4. For =4, my diverges in the absence
of an outer scale and therefore the corresponding correlations have been omitted.

Q Vde I 0
0.61 -0.76 -0.50 -0.125
0.71 —0.80 —-0.58 0.00 F
0.78 —-0.84 —0.64 0.13
-0.91 -0.82 0.56
—-0.94 —-0.82 0.58 Q
~0.96 —-0.82 0.61
. 0.06 0.75 ~0.37
F 0.00 0.77 —0.44 Vae
- 0.79 -0.51
0.10 0.07 -0.69
my - - -0.71 t
- - -0.74
56, F

Since the diffraction pattern is moving relative to the observer (due to the motions of the
pulsar, Earth and the medium), the time dependence of the various observable quantities will be
given by their spatial dependence in the observer plane (see Fig. 1). Thus if F is the mean flux
from the source, then the intensity received at a general point x from unit area around the point
x+r on the screen is

F Lp+r\2
I(r, x)= ;exp{—( ) }, (2.2)

o

where 7 is evaluated at the point (x+r) and we have assumed a Gaussian spot shape. A more
formal justification of this approximation is given in Appendix B. As the deflection 7 is,
by assumption, small compared with o/L, we can expand the argument of the exponential to
first order in # and integrate over r to calculate the fluctuations in the observed flux. Substitut-
ing for 5 from (2.1), integrating by parts and normalizing to the mean flux, F, we obtain the
fractional intensity fluctuation
2
sry=2E0 L[ o) exp(—r—>, (2.3)
F  no® o?

with ¢=¢(x+r). Throughout the paper, we use the symbol A to denote the fluctuation in
some quantity and o to describe its fractional fluctuation, as above.

BN calculate similar expressions for fractional fluctuations in the angular size of the image,
Q, the mean time delay of the pulse, ¢, and the pulse width, ¢ (the last two are normalized
with respect to the mean pulse broadening L6%/2c). Each of these quantities is of the form
(c¢f. Appendix A)

5A,-(x,7r)=fd2r¢(x+r,7t)f,~(r,7t). 2.4)
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As the observer moves through the diffraction pattern at a speed v, these fluctuations will vary.
The random internal velocities of the phase screen will generally be much smaller than v, and
so a time lag T is equivalent to a spatial lag s=v7. The cross-correlations at lag s between
the fluctuations in two quantities A; and A; is given by

O0A (X, A1) SAy(x+s, ;r2)=jd2r1d2r2¢(x+r1%1)¢>(x+s+r2, X2) filry, X1) fa(ra, A3),

where fi, f, denote any of the f;. Taking two-dimensional Fourier transforms and averaging
over all x keeping s constant gives the mean correlation (BN)

d’q ~
<§A1(Xa Xl) 5A2(X+S’ 12»:7‘,17‘72{ a}%fl(q’il)ﬁ(q’db) Q(q) exp(iq-s), (25)
where
fan)= [ s 0exp (~ia-n) (2.6)
1 1 _
Q(Q)=<Z #(q, A1) Z¢*(q,%z)>/A (2.7)
5(q,/l’)=jd2r¢(x+r,/\’) exp (—iq-r). (2.8)

A random phase approximation has been used for ¢(q). Since ¢ xA, Q(q) is wavelength-
independent and is given by the power spectrum of density fluctuations. The f; for the various
parameters are listed in Appendix A. Each of these is of the form

fie= Pi(q) cos “(y) exp (~ Vaq’a?), (2.9)
where P;(q) is a polynomial in g and q - s=gs cos (). We compute the time averaged correlations
(2.5) with A;=4,. For an isotropic power-law spectrum

0(9)=0Qvq~ %, (2.10)

the angular integrals in equation (2.5) generate Bessel functions and the wavenumber integrals
give functions of the form
2.2

ha(s)= f (qa)<2"+3‘ﬁ>exp( 9 )Ja@q) d(qo)

§2 Na/2 pn+1-472) a— a— 2
=( ) F{n+2+( ﬂ)}M{n+2+( ﬁ), a+1, ——} (2.11)
20° I'(a+1) 2 2 20°

where M(a, b, x) is the confluent hypergeometric function (Abramowitz & Stegun 1970).
The different angular factors of the Fourier transforms (2.9) will cause various combinations
of the K (s) to appear, so we define the following linear combinations, g’ :

gi=V2hd—1ah2

gn=%h0—Vah2+Veht (2.12)
and g=h. At zero lag (s=0) the g, are proportional to hJ.

The mean auto- and cross-correlations of the fractional fluctuations are given by a
dimensionless constant, K, characterizing the strength of the scattering medium, multiplied
by some linear combination of the g, (s). The auto-correlation of the flux fluctuations, for
instance, is

(6F(x) SF(x+5))=Kgi(s), (2.13)
where
QoiT4L2
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Similar expressions for other auto- and cross-correlations of interest are tabulated in
Appendix A.

Correlations in wavelength can be derived by substituting thefiin equation (2.5) and evaluat-
ing with A;%A, and s=0. Several of the wavelength auto-correlations are also listed in
Appendix A, where it is noted that the correlations are generally quite broad band.

The spot size on the screen, o, can be calculated in terms of the assumed power spectrum,
Qoq~?. A simple order-of-magnitude estimate was given by BN who argued that the smallest
scale phase fluctuation that scatters a ray is one that contributes a total phase change A¢ = (see
also Gapper & Hewish 1981). The spectrum is thus truncated at an appropriate g = g, and the
mean square angular size of the image is estimated to be
o’ o™ d’q 2
| 70 (2.15)

9min

The integral is cut off below g,;,=0"" because the corresponding spatial wavelengths are larger
than o and do not contribute to the image size. (For f<44, ¢y, can be taken to be 0.) In this
paper, we use the following more exact evaluation of the angular size derived in Appendix B,

i [ T{(6—5)/2}#* Qo ]1/06"2)
z(4=)(f-2)T(5/2) '
Thus, given a power spectrum, one can solve (2.16) for o and substitute into (2.14) to obtain the
normalization of the fluctuation magnitudes.

We now consider the wander in the position of the image on the sky. If we take the vector v to

denote the x direction, then the instantaneous angular displacement of the image along x from its
‘true’ time-averaged position is

(2.16)

A6, 1 L
66,= =—— | d%rrI(r,x), (2.17)
o/L F o

where r, is the distance from the point x on the phase screen in the x direction and A&, is
normalized by the image half-width, o/ L. Substitution from equation (2.1) and integration of
equation (2.17) by parts gives

06,= (_Nf) j d*r p(r+x) r,(30%—2r) exp (—r?/d?). (2.18)
108

There will also be fluctuations in the direction transverse to v. This displacement 66, is obtained
by substituting , for r, in equation (2.18).

An examination of Fig. 1 reveals that one can expect some correlation between the angular
displacement of the spot, 6,, and the rate of change of the received flux. In particular, when the
spot is shifted farthest from its mean position, the flux will be varying most rapidly. Further, there
will be a similar correlation between F and the rate of change of 6,. To compute Fand 6 we take
the derivatives of (2.3) and (2.18) with respect to x and normalize by the refractive time-scale
T,ei~0/v. Thus

. o oF ALx [ _ dg

FET— d*r— (r*-o0*) exp(—r*/o?),
F or ot x( )exp(=r/o®)

ie.
8LX

fr=—=r(r’=20% exp (- r*/0?). (2.19)
o
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Similarly, we write the normalized rate of wander of 6, as

. 08, —2Lx d
b=0—=—7 f d’r— [¢r(30%—2r%) exp (—r¥o?)]
x 7o dr,
ie.
2LX
fi,=——{30°=2r"~r3(10-4r*/0%)} exp(-r2/d?). (2.20)
o

Next we consider the expected elongation of the Gaussian image. If one averages over a time
long compared to o/v, the mean shape of a point source scatter-broadened by an isotropic ISM
will be circular. However, since the fluctuations of the spot’s diameter in two orthogonal
directions are independent, the rms elongation of the scattering disc can be non-zero for an
instantaneous ‘snapshot’ [i.e. a single realization of ¢(r)]. The spot will have some major axis
with Gaussian width 207 and a minor axis of width 20,. The orientation of these axes will be
random, but we can relate 0y, 0, to the measured widths along fixed axes x and y via the relations

a%+0%=2<fr§+jr§>=2fr2 (2.21)
o%o%=4{ [ [3-(] )} 22

where we have introduced the following notation for intensity-weighted averages

[0 0= [ @t 165, 0.
Then, defining the elongation of the spot, e, as follows,
Ao o—o, (U%—U%)

e =—or0

o o 0% +03

(2.23)

and substituting from (2.21) and (2.22), we have
2 2
ri—r? } +<2fr r)
ey el
e = =
> \o?+03 ( f 2)2
r
16 L%?

T [{fdzrqﬁ(x, r)r’(20°—r?) exp(—rz/oz)}2

T

—4{ szrqj(x, r) r2(20%~r?) exp (—rz/az)fdzrq)(x, r)ri(20°—r¥)exp (- rz/az)}

+4{fd2r¢(x,r) rry(20°—r?%) exp(—rz/az)}z]. (2.24)

3 Fluctuations in diffractive phenomena

The flux received from a typical pulsar is found to be correlated at any instant over both a
frequency interval, the decorrelation bandwidth v, and a range of time lags, the scintillation
timescale £;. Moreover, when plotted as dynamic scintillation spectra in the frequency-time
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A — ]
8 &9 /
/Vdc

i 1
Figure 2. Refractive and diffractive contributions to the phenomenon of frequency drifts in dynamic scintillation
spectra. For pulsars observed through the interstellar medium (left panel), the effect is produced by the combined
action of small- and large-scale inhomogeneities. The scintillation time-scale £, and the instantaneous decorrelation
bandwidth v, are indicated in the resulting frequency drift patterns. On the right we depict an equivalent optical
system consisting of a diffracting mask and a dispersing prism. An observer moving past the pattern with velocity v
detects intensity maxima at the different frequencies v, to v; (v4>v,) at successively later times, leading to sloping
bands in the frequency—time plane. In the example give, the diffracting mask has only a small number of slits, thus
producing a periodic diffraction pattern as shown. Similar periodicities are sometimes seen in dynamic scintillation
spectra of pulsars, suggesting that at these times the pulsar image is dominated by a few bright well-separated spots.

plane, the patterns of enhanced flux do not display uncorrelated modulation in the two
coordinates but instead often show an organized drifting behaviour with a typical drift slope of
order a few kHz s™! (Fig. 2). These frequency drifts are believed to be caused by refractive
density perturbations on large scales, = o, pictured either as large prisms (Shishov 1974; Hewish
1980) or as gradients causing the interference of a few distinct bundles of rays (Roberts & Ables
1982).

To include diffractive effects in our scattering model we must explicitly deal with the phases of
the individual rays received by the observer. We conceptually decompose the image into a large
number of point scatterers, each located at a position of ‘stationary phase’. The mean separation
of these scatterers on the screen is dp;y, giving N~ (0/ayin)* scatterers. Since N>1 in the strong
scattering limit, we may use statistical methods in the analysis of the interference of rays from
these scattering centres. Consider a scatterer on the screen at a transverse distance 7; from the
observer located at x. The phase advance of a wave propagating a distance L to Earth after being
scattered at r; consists of two parts: a free rotation over the distance propagated,
6;=— (L+r?/2L)/x, and an advance intrinsic to the phase screen, 6;=@¢(x+r;)=¢;. The
difference in the total phase of a wave scattered from r; on the phase screen, when the observer
moves a distance Ax and changes his observation frequency to A+AX, is given by

2
Ty Art (L+ry/2L) Ax+ p(x+r;)
Lx x X

where we have taken the observer velocity to be in the x direction and have used the fact that
A¢=(¢/X) Ax. The electric vector received by the observer from the point j is described by
E;o<exp (i6;) and the total flux is |2 E 2. In the strong scintillation regime, we can assume that
the 6; are uniformly distributed and independent of one another. This is reasonable since the

A6;= AX, (3.1)
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Refractive effects in pulsar scintillation 29

scales that dominate diffractive scintillation are much smaller than o. We then have (exp (i¢;))=0
and (exp {i(6,— 6x)}) =, where 6;, 6, denote the phases of two electric vectors received at x, A
from two point rj, ry. Let 6,+A6;, 6+ A6, denote the phases from the same points as seen at
x+Ax, X+AX, where A6, is given by (3.1). The auto-correlation of the flux is then

(F(x, X) F(x+Ax, ;Y+AX)>=F2<$ z exp {i(é?j—é?k+6?1+A61—6?,,,—A6?m)}> (3.2)
Bk ilm

where for convenience we have assumed that the magnitudes of the electric vectors from
the various scatters are the same. The A#, of (3.1) have both a random part that is propor-
tional to ¢ and a deterministic part. As we are only interested in the 1/e width of the flux
correlation and not the details of its shape, it is reasonable to assume that the A#; are
distributed in a Gaussian manner. Then, summing (3.2) in pairs and using
(exp {i(AG;—AB)})=exp {—((AJ;—A6;)*/2)}, we can write the flux auto-correlation as

(F(x,X) F(x+Ax, X+ AX))—F>=F?exp {— ((A0,~ A6,)%)/2} . (3.3)

When the relative phases from the various scatters within the image fluctuate by ~1rad, the net
intensity becomes decorrelated.

Thus, we need to estimate ((A «9]-—A0k)2) as a function of Ax and AXin a given realisation of the
phase screen. Let ry, r; denote the points of origin at the screen of two rays received at x and let
(r{—ry)-Ax=(x;—x,) Ax. We now define via equation (3.1)

2,2
X1+x5—2x1%,
flri, 1)) =(A6-A6,)*= (T> (Ax)?

{ri‘+r‘z‘—2r%r% $1(F =) +a(r3—ri)

AX)?
41°x% L }( )

. { x1(ri=r3) +x,(ri—ri) N 2¢1(x1—x2) +2¢5(x2—x1)
Lx LA?
where, as before, we have kept terms to linear order in ¢. The number density of scatterers within
the image is clearly proportional to /(r, x) defined in (2.2). Thus, to find the flux auto-correlation,
(3.3), we must compute the intensity weighted average of f(r;, r,) over all ry, r, on the spot

} Ax Ax (3.4)

dzrljd?‘rzl(rl, x) I(r, x) f(ry, 12)
(flr, r2))= - G3:5)
dzrlfd2721(r1, X) I(rz, X)

We evaluate the integrals to lowest order in ¢ and use the fact that fis symmetric with respect to
ri, rp to write (3.5) in the form

(f) =((AO;—AB))=A(Ax)*+B(AX)*+ CAxAX

= o’ 4 2 2 r 2,2 2/ 2 2
| e 7lo'x jd r¢< 2x 2—;—2— —o°+roexp(—r°/o?) | (Ax)

ot 2 r® 5rt
+ + d*r (———+5r2—02) exp (—r/o? } AX)?
{2L27Y4 JrLsz\'Sf 4 ot o P ) (&%)
{ jdz (4 7}‘2 2r4> ( 2/ 2)}A Air (3 6)
+ rox\4———+—)exp(—r/o X . .
mo? Lx* ¢ o* ot P
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From (3.3) we see that the auto-correlation of the intensity will fall to 1/e of its maximum value
when (f)=2. Let us define the scintillation time-scale ¢ to correspond to the 1/e width along Ax
of the flux auto-correlation. Thus, since #is the spatial coherence length of the diffraction pattern
at Earth divided by the velocity v, we have

J2Lx

gv

tsE sO(1+§ts) =

[1+2L:Jd2r¢{2x2(2— r*/o®)—a*+r?}exp (—’2/02)] G.7)
o

where ty, is the mean scintillation time-scale and d¢ is its fractional fluctuation. Similarly, the 1/e
half width of the diffraction pattern in A can be converted to units of frequency to find the
instantaneous decorrelation bandwidth v,

Lc

2LA
V= vdc0(1+6vdc)=——~[1——10 d*rp{r®=5r*0*+5r*c*~0%} exp (-—r2/a2)] . (3.8)

no’? o

Since the mean pulse broadening is described by the time constant 7o=0%/2LC (cf. BN), we
see that

2.7Z'VdcT0=1. (39)

This ‘uncertainty relation’ has been verified observationally in the case of the Vela pulsar (Slee,
Dulk & Otrupcek 1980). Furthermore, the fluctuation dv4. is the exact negative of the fractional
fluctuation in the pulse broadening 67 [cf. (A.4) and (A.9)]. So we find that the uncertainty
relation holds even for the fluctuations about the mean. This encourages us in believing that our
simple scattering model can indeed be applied to diffractive phenomena.

The rotated ellipse described by (3.6) represents an ‘average’ frequency drift pattern for the
given realization of the phase screen ¢ or, equivalently, the shape of the 2-d auto-correlation
function in the (v, ) plane. It is of interest to calculate the expected tilt or drift slope that an
observer would measure. The angle of tilt will clearly depend on our scaling of the Ax and Ax
axes; accordingly, we normalise by o and A, respectively. Then, taking w to be the rotation from
the orientation in the absence of refractive effects, we write the drift slope, mgy, as

AxX (dv o )-1
mg=tanw=——=—-—] .
AXo dt vv

In terms of the coefficients A, B, C in (3.6)

(aZA—;rzB oXC \2)112
myg= ——) “1+{14+|{ ————
oxC 0?A—X*B

:4—% d*rox(4—1r2/a*+2r*/o*) exp (—r?/0?). (3.10)
o
The appearance of a dynamic scintillation spectrum is also characterized by the average
elongation of its drift bands, e4. This is a measure of the prominence of the frequency-drift
phenomenon, since a circular pattern in the (v, ) plane has no well-defined slope. As e4 again
depends on the normalization chosen, we make an unambiguous definition by calculating the
elongation at a fixed drift slope of 7/4. Since observers tend to record the drift patterns with the
most conspicuous drift, this will facilitate comparison with the data. We use a definition
analogous to that used for e, in Section 2. If the Gaussian drifting band has a semi-minor axis a and
a semi-major axis b, then we define

b*—a?
€q=

= . 3.11
b*+a? (3.11)
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We can eliminate a and b in favour of A, B and C to obtain

{(A_B)2+ C2}1/2
B A+B '

€4

Fixing the drift slope at /7/4 with our normalization corresponds to setting cA =A B and letting C
go to C-(0A/AB)Y2. Thus, to first order in ¢, we find that
Lx 7t 2t
ed=23/2——5fd2r¢x<4——2+—4)exp(—rz/oz). (3.12)
o o° o

4 Correlations

To compute the auto- and cross-correlations of the various quantities considered above, we take
the Fourier transforms fof the expressions for the fluctuations [(2.18), (2. 19), etc.] and substitute
into (2.5). These transforms, tabulated in Appendix A, can be grouped into two classes:

(I) Curvature-induced fluctuations (those fthat are real and proportional to even powers of ),
i.e. 8F, 8Q, dt, O, vy, 8, Ot

(IT) Gradient-induced fluctuations (those fthat are imaginary and proportional to odd powers
of g), i.e. F, 66,, my, eq.

In addition there are 86, and 2 which do not belong to either class. Class [ quantities correspond
to those effects which are caused by focusing or defocusing lenses. Class 11 effects, on the other
hand, are caused by prisms which steer the wavefronts. In general, one can expect Class I and

o
o

<BA(xIB A (x+S)>/K

-8.6 " e 1 L
2.0 1.8 2.8 3.8 4.0 5.0

(S/c)

Figure 3. Normalized auto-correlations as a function of normalized spatial lag (s /o), i.e. normalized time lag 7/ T,es
for a Kolmorogov spectrum (#=11/3). The flux F, its derivative E, the rate of position wander 4, the decorrelation
bandwidth vy4. and the scintillation time-scale #, are shown. The amplitudes are expressed in terms of the
dimensionless constant K (equation 2.14) using the expressions given in Appendix A.
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2.5

T T T T

<BA () A (x+S)>/K

2.2 3.8 6.0 9.0 12.0 15.08

(S/o)
Figure 4. Normalized auto-correlations for #=11/3 of ,, the fluctuation in image position parallel to the direction
of relative motion (dotted line), and &, (dashed line). The solid line corresponds to a tenth of the auto-correlation
of the drift slope my. Amplitudes are in units of K and expressions are given in Appendix A. Note that the
decorrelation time-scale of the fluctuations shown here is much greater than for those shown in Fig. 3. This is because
6., 8, and my all have a divergent variance for #=4 in the absence of an outer scale.

Class II quantities to co-vary among themselves, but not with each other. The strength of these
cross-correlations is discussed in Section 7 and Table 2. The auto-correlations of the refractive
fluctuations of the various observables that we have studied are shown in Figs 3 and 4 for a
power-law spectrum with f=11/3 (expressions are given in Appendix A). We note that the
variations with lag can be quite different from one another, although most of the curves have
half-widths that are characteristically of order ¢, as would be expected for a refractive effect. For
a combined Earth-pulsar velocity of v this corresponds to the refractive time-scale

ag
Tret=—. 4.1
v

However, 66, 66, and my decorrelate over a time =100/v, a consequence of the incipient
divergence in these quantities as f—4.

The Fourier transform of f,, (A.8) has, as expected, no angular dependence. It is, in fact,
identical to the square of ]?;2, which means that the rms elongation of the spot is equal to the
normalized rms fluctuation in the angular size. This is because the diameter fluctuations in
orthogonal directions in the image are independent. Formally, e? will correlate with the
parameters of group I, but as this is a higher-order effect, we do not calculate it. &, will be
uncorrelated with any of the other quantities.

We also note that f}ﬁf —]E’X fr, so that the cross-correlations of these two pairs will be equal but
opposite. This implies that, in the (0F, §6,) plane, a set of pulsar observations will statistically
follow elliptical trajectories with a fixed sense of rotation (clockwise). Thus, an observer can gain
a factor of |2 in the signal-to-noise ratio by measuring the curl of this field: AG-F—6-AF.
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Certain other pairs of Fourier transforms are related, as well. We have already noted that
]F‘;=—f~,,dc and so the correlation functions of the latter follow immediately from those of the
former. For frequency drifts, the rms elongation at fixed slope is seen to be half the rms value of
the slope, my, so the average stretching of the drift slope bands is directly related to their
inclinations. This is, however, a simple geometrical effect.

5 Density fluctuation spectra with >4

So far, we have considered spectra with =<4 for which the arguments of Section 1 shows that the
scattering is dominated by the small-scale density perturbations. Recent work (e.g. BN, GN,
Hewish et al. 1985) has indicated that spectral indices greater than the critical value §=4 may also
be relevant to electron density perturbations in the ISM. In this regime, the scattering is
dominated by the large spatial scales and, in the absence of an outer scale, the rms value of the
bending angle 7(r) of (2.1) diverges. Accordingly, the linearization of the exponential in (2.2),
which is central to the earlier development, is no longer valid. Most of the correlations computed
in the previous section are nevertheless finite even for £>4. This suggests that the divergence of
n(r) may be removable by a suitable modification of the theory.

For concreteness, we consider the variations in the flux, F. The auto-correlation function
Crr(s) has a zero-lag magnitude ~ K and has a half-width s, ,~0. This means that we are rarely
interested in correlating observers separated by more than ~o. The mean bending angle seen by
two such observers will be large but most of the bending is caused by large-scale perturbations
(g~ '>0) that contribute the same bending angle for both observers. This common steering will
be indistinguishable from a shift in the image position. The physically interesting quantity, the
difference in the bending between the two observers (equivalently the phase curvature or focusing
of the screen) is, however, finite and reasonably small as shown below. Therefore we should
obviously measure the bending angle with respect to some mean bending, 7y, common to the two
observers. (We can take 7, to be the refractive bending by the screen at a point half-way between
the observers.) Equation (2.2) can now be written

I(r, x)= %exp [_{M}Z] (5.1)

[

S T T

no*? o

where o< (7 —no)*(L/0)*. If we assume that ¢ is small compared to 1, we then have as before
-2L

OF= —J’dzr{ﬂ(r+x) —n0) T exp (—r*/d?).
not

Since 74 is a constant, terms proportional to it vanish by symmetry. Substituting (2.1) into this
equation and integrating by parts, we recover (2.3) as before.

We must now show that £ in (5.1) can, in fact, be neglected. To do this we compute
{({n(s)—no}?) for s~o/2 (half the observer separation). From (2.1), (2.9) we have

27y

7(s)= f 4(iq) $(q) exp (ig ). (5.2)

In computing ({#(s) —7,}?), we should include only the effect of the refractive scales since the
small scales <o have already been included in determining the spot size (Appendix B).

2
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Equivalently, one notes that all the f; have a weighting factor exp (—g20/2) which effectively damps
out the small scales. We thus have

L B-4 =
U—§<{77(S)—77(0)}2>=2K<'2) f X7 H(1=Jo(x)} exp {—x%/2(s/0)*} dx

0

— _ 2
=K2<4-b>/2r(¥>M<ﬁ, 1, ’ > (5.3)

2 ey

For >4 we can evaluate (2.15) between g=0"! and ® to obtain K=/—4. Substituting this
in (5.3), we then find that (5.3) is small compared to 1 for s<¢/2 so long as #=<35. Since the range
of S of interest to us is 3.5</=<4.5 (c¢f. GN), we are justified in neglecting ¢ in the expansion
of (5.1). Similar arguments show that, for each of the other correlations computed above that
remains finite for >4 (i.e. Cqq, Cq,, €tc.), we may continue to use the expressions derived
previously for f<4 as long as s<o.

Certain correlations, however, are formally divergent for S=4. For example, the position shift,
40, depends directly on the bending angle and thus diverges at f=4. A steep spectrum (in the
absence of some outer scale) will cause the image to wander arbitrarily far from its true position.
Since an observer must estimate the true position by the mean over his observation period,
Tovs=5/v, the relevant measure of the amplitude of refractive position fluctuations is then the
fluctuation across the duration of the observation, i.e.

({86(s) — 66(0)}*)=2(Cap (0) = Gy (s)), (5.4)

where Gy is the auto-correlation function of 98 (A.18). Although Cyy diverges, the difference
(5.4), equivalent to a first-order structure function in 7, is finite for f<6. When s>0, we can
use (2.5) and (A.6) to obtain the following approximate estimate

472 o
({06,(5)— 06, (0)}*)~ }(szf‘) J::/S dqq’~*f
=KlIn(s/270), p=4
K s \A-4
=(,6’j(%) ,  p>4. (5.5)

Thus, when #>4, the image wander diverges in the limit of large baselines s. In practice, of
course, the power-law spectrum (2.11) that we have considered will have a physical cut-off at
SOMeE G, and so the image wander will saturate for s=27/qmin.

The arrival time of pulses from a pulsar has a random delay whose dominant component is
proportional to the mean phase fluctuations of ¢ averaged over the spot size o on the scattering
screen. This formally diverges for f=2. We note, however, that observers measure pulse arrival
time residuals only after fitting a low-order polynomial model of intrinsic pulsar behaviour,
At=a;+a,T+a3T?, as well as sinusoidal components of period 1yr to refine the position and
proper motion of the pulsar. Consequentially, the post-fit arrival time residual At is finite for all
F<8. Blandford, Narayan & Romani (1984) have considered the effect of parameter-fitting on
post-fit residuals. For the timing noise contributed by phase fluctuations in the ISM, we can apply
their results in combination with (A.3) to obtain

472 © 2
(6t2)=wf dq ql_ﬂ(l—l q*o*+ L q“o“) exp (— lq202> T(q9), (5.6)
2no* Jo 2 8 2

where the transmission or filter function T(q) is defined in the above-mentioned paper.
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If the observations extend over a time T, >1yr and if vT,,,>0, then we can use Table 1 of
Blandford et al. (1984) to simplify (5.6) to

43412 @ 4K p-2
% ( u ) B~4 (5.7)

2y =7 -
o8] 2ot (,‘9/sdq 1 B-2\6.90
where the lower limit g.,;,=6.9/s in the integral is appropriate for f~4 (i.e. spectral index ~3 in
Blandford et al.). The divergences associated with arbitrarily large electron density perturbations
are thus absorbed into the timing model. A similar treatment will excise the divergences in the
cross-correlations of d¢ and other parameters.

The frequency drift slope dv/dt has, however, a divergence which cannot be removed by the
above techniques. The drift slope is directly proportional to the phase gradient on the screen just
as the position shift 44, but, unlike 66, the true mean value of dv/dt is known a priori to be 0.
Thus, in the absence of an outer scale, a >4 spectrum will cause frequency drifts with arbitrarily
large slope and this would be observed even in a single epoch of observations. Therefore, as
discussed in Section 8, the finite observed drift slopes place limits on the perturbation.

6 Scattering by a thick screen

In the development so far we have assumed that the source is distant and that all the scattering
is localized within a single thin screen at a distanceL from the observer. In many circumstances
(e.g. interplanetary scintillation) this will be a good approximation. It is, nevertheless,
important to understand the changes that are introduced if the scattering is shared between
several screens or indeed distributed uniformly along the line-of-sight to the source. Fortunately,
the present formalism allows us to treat these cases as well.

Suppose that there are n phase screens between the source and the observer. Let the strength
of the fluctuations on these screens be Q' and the associated scattering angles be o, (equal to
o/L in the single-screen case). Denote the separation between screen i and screen j by
L;, with i=0 signifying the source and i=n+1 the observer. The distant source case is
recovered by taking the limit Lg;— .

Now consider a ray propagating from the source to the observer and undergoing angular
deflections &; at each of the n screens (Fig. 5). We can relate the transverse position vectors
r; of the intersections of the rays with the screens to the &; through the recursion relation

£ iy~ =Ty
i= - .
Liiv1 Ly

Screen 1 Screen 2 Screen n

Observer

< Lnnei

Figure 5. Scattering geometry for an extended medium represented by n thin screens. The angles 8; and &; described
in the text are shown for screen 1 and a ray path that connects the source to the observer is denoted by the bold line.
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We set rp=0 and denote the observer position by r, ;=X to obtain

x— 2 M;E; (6.1)

L0n+1 j=
where
LojLins1
Lo,
Mij= On+1 . (6.2)
Loiljni1 1=sisj=n
L0n+l

The variables r; and &; are related by the Jacobian
6(1‘1, ra, ..., l',,) L01

= ( H Lu+1 (63)
(&1, &2 - - -, &) \Lonst/ i

Let I;(r;, 6;) be the intensity leaving the ith screen at an angle 6; to reference direction. The
intensity leaving the (i+1)th screen can then be written

Fig1™ L Fip1™ K
Li1(Tig1, 0i41)= j z+1{0i+1"( >; ri+1}1i{rix< l)} (6.4)
u+1 Lii+1 Lii+1

where G;(&;, r;) is the scattering kernel. Using the linear approximation outlined in Section 2, we
write

;- )CXP (= §2/92)
9

ar; Jrg,

Gi(gi) r,~)=<1+;t (65)

If the mean flux due to a point source as measured at the first screen is denoted by Fy, the intensity
at the observer plane can be written formally

I fdzr"‘l G J jdzrl G, G,F (6.6)
n=— 2 n CEEE L%z 2 141 .

n—1n

where the integration must be carried out along a ray connecting the observer to the source.
Let us initially ignore refractive effects. The mean flux received by the observer is

- d*r,
F=F,, =J I,
Lnn+l

[TH(557 ) oo (- 3 et =R (22 ) 67

j=

where we have incorporated the Jacobian from equation (6.3). This is just the inverse square law.
Similarly, the mean angular size of the observed image is

@)=~ f g (6.8)
Fl Ling ™" '
where 6, the angle of the ray incident on the observer plane at x, is given by
ry X " L0~
PRSI ST P Y 6.9)
01 Lon+1 i1 Lon+1
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So, using equations (6.3) and (6.7) we write the mean angular size of the image as

(6 exp (E/eD| (& Lok V(L \°
<92>=J' H{ § eXp(zg /Q )}(E 0k fk) _ 2( 0 > 012 (610)
i=1 i=1

TO; i=1 Lon+1 Lon+1

This is, as expected, the weighted sum of the individual scattering angular widths. Equation
(6.10) agrees in the continuum limit with equation (A2) of BN.

Now we introduce refractive effects by including the phase fluctuations on the screens. The
perturbation to the intensity can be written by combining equations (6.5) and (6.6) as

exp| — >, si/gi)
d*r; o [0¢; @ ( k=1
ol, KFIJ H( ) 2 (a_r,-'agj) - . (6.11)

n+1£71 TOn

In the spirit of the earlier development, we express the phases ¢, as Fourier transforms and
integrate by parts using equation (6.2) to obtain an expression for the normalized flux fluctuation

5F(x)=%J'Ldz2rn IH{d%,exp( 52/9)}2 (M”_Zg>

2
nn+1 u+1Qi j=1 a

=_z_f}fn{d2r,exp( Ez/p)}Ef

i=1 ”Ln+1Qz

(2 )2 CXp(lq] ])M]]quaj (612)

Equation (6.12) is the multi-screen generalization of equation (2.4). We obtain the
generalization of the flux correlation function [equation (2.5) with A;=4;] by averaging over x

5 “ dzq,- N . )
(OF(x) OF(x+8))=4> > f Zz—;r)—zf%(qi)f’p(qi) Q'(q;) exp {iq;* s(Loi/Lon1)} (6.13)
i=1
where
0 2
= (= — 2/02— 6.14
fr(@) <L01 )ﬁMlqujH{ ool - exp (—&7/0]—iMyq;- 5,)} (6.14)

We can change from the variables r; to the variables &; using the Jacobian (6.3) and carry out the
integrations to obtain

_ Lo Lin 1
Fir(@)=—4 ——" g% exp (— —q?O?) (6.15)
L0n+1 4

where o;, the effective size of the scattering disc at screen i, is defined by

o= 2 M2 (6.16)

If we have n evenly spaced similar screens and denote the distance from the source to the
observer by D, then we can use equation (6.10) to obtain

,i(n+1=){2i(n+1-i)+1} DX6?) (6.17)
gi= n(2n+1)(n+1)>2 ' |

Of greater interest is the continuum limit. We denote the distance along the line-of-sight
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from the source by z and the mean scattering rate by y(z)=(Ap?/Az). Then, letting n— o,
we obtain

D—2z\2 (? 22 (P
az(z)=<7> Ldz’.2"21,0(2:’)+l-)—2—fZ dz'(D—z')?y(z") (6.18)
and
SF(x) 6F L L LB <Z_)} —q%*/2). (6.19
(OF(x) (X+s)>_D2L z(D-z)z (2;;)2‘7 dzexp{tqs > exp(—q°0°/2). (6.19)

We have therefore expressed the auto-correlation function for the flux fluctuations as a sum (or
an integral) over the scattering screens. To proceed further, we must substitute an expression for
the spectrum of density fluctuations. For the spectrum in (2.10)

dQ dQo
— =g F— 6.20
dz 1 dz ( )
Substituting in (6.13) the n-screen case gives

X*T(B-F/2) & MAQ) {6—5 ~s? }
OF(0)OF(s))= M , 1, —2, 6.21
(OF(0)OF(s)) D 21 ey 5 Ay’ (6.21)
while for a uniform medium we obtain

3KT(3-8/2) ! 6—p —s2
(OF(0)OF(s))y=——7"——] dx{x(1—x ﬂ"‘M(—, 1, ——) 6.22

(0)6F(s)) A, {x(1-x)} 5 2120 (6.22)

where K is given by the single-screen value (2.14) and o is €, D/2 as for a single screen.

3.e
\
F ~
\
\

f 2.0 :_\ \
; o\
+ ™
% \‘\\
LL | | 4
«©
~
N
L
)
v )

L8 ... |

) | | | \-u.l-..-'.‘.:.'.‘_&

2.9 2.5 1.8 s - h

(S5/0>
Figure 6. Normalized flux auto-correlation functions for a f=4 spectrum are shown for 1 (dots), 3 (short dashes), 5
(long dashes) equally spaced thin screens and for a continuous scattering medium (solid line). Normalization is in
terms of the single-screen dimensionless constant K defined in equation (2.14).
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In Fig. 6 we show the flux auto-correlation function for a uniform scattering medium with =4
and compare this with the results for 1, 3, and 5 equally spaced screens. The single-screen case
corresponds to the equivalent screen approximation introduced in BN and used in the earlier part
of the present paper. We see that the rms refractive flux fluctuation at zero lag from a uniform
medium is larger by a factor /3 than was predicted by the equivalent screen. In the case of a
Kolmogorov spectrum (with S=11/3), the corresponding factor is 2.3, while for f=4.3 it is 1.4.
For these three spectra the flux auto-correlation functions for an extended medium and single
thin screen are shown in Fig. 7.

We have also calculated the angular size fluctuation auto-correlation and the cross-correlation
with flux fluctuations. For a uniform medium with f=4 their expectation values at zero lag are
7/8 and 3/4, respectively, of the single-screen correlations.

<8F () BF (x+8) >/K

(S5/c)
Figure 7. Comparison of the normalized flux auto-correlation functions for a single equivalent screen (dashed
lines) and a continuous medium (solid lines) for three values of #(11/3, 4, 4.3). Normalization is in terms of the
single-screen K in equation (2.14).

7 Numerical results

We now calculate the normalization, K, and numerical estimates of the fluctuations in various
observables for three power-law models of the interstellar medim; f=11/3, =4 and f=4.3. In
the following we specialize to a single-screen equivalent to a uniform distribution of
inhomogeneities between the source and the observer. (The theory of Section 6 for an extended
medium could be used to obtain more accurate estimates, but the present status of the
observations does not warrant such calculations.) For an extragalactic point source well out of the
galactic plane one should replace C_ 4D by 3C_4H csc(b) and D by 2H csc(b) in the expressions
below and in Table 1, where b is the galactic latitude of the source and H is the scale height of the
inhomogeneities in kpc (see Appendix A of BN for details).
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We first assume that the power spectrum of phase fluctuations on the scattering screen has a
Kolmogorov power-law form

Q(@)=0Q0g™ "3,  Q0=3.7x10"%C_yDcm (7.1)

which corresponds to C%=10"*C_,m 2% in the notation of Armstrong et al. (1981) (cf. BN).
D is the distance to the pulsar measured in kpc. The amplitude Q, differs from that used by
BN because they used an approximate estimate of the image angular size and needed to adjust
0, suitably to fit the observations. We avoid this by using the improved angular size estimate
given in (2.16). The scaling of C% has been selected such that the parameter C_, has a value ~1
for nearby pulsars. However, C_, can be as large as ~10* for distant pulsars in the plane of the
galaxy and for the particular case of the Vela pulsar (Manchester & Taylor 1977; Cordes,
Weisberg & Boriakoff 1984), and is >10° for the radio source at the galactic centre (Lo et al.
1985). We substitute (7.1) and (2.16) into equation (2.14) to obtain

K=1.27x10"2CZ3/5,~ 17/ p-1/15 (7.2)

where we measure the wavelength 4 in metres.

We next consider the ‘critical’ spectrum with f=4. Here we fix the normalization constant
Q, by requiring that the calculated angular size be the same as that for a Kolmogorov spectrum
when C_,=A=D=1:

Q(q)=0Q0q %, Qo=1.6x10"2'C_,Dcm™*. (7.3)
Substituting in equations (2.14) and (2.15), where we retain the lower limit, we obtain

1 1
K= = —
In (430C_,A3D?/KY?) 7y

(7.4)

where the correction factor y is unity for C_4=A=D=1 and has only a weak logarithmic
dependence on C_g4, 4 and D.

Finally, we consider a spectrum with f=4.3. Rather surprisingly, the scalings of various
observables with 4 and D in this case are quite close to those with the Kolmogorov spectrum,
so that a #=4.3 spectrum is equally compatible with scintillation observations as §=11/3 (GN).
The refractive effects, however, will be much larger for f=4.3. For >4, the lower cut-off at
Gmin~0 ! will dominate the integral (2.15). Taking gmax= %, we can solve for o

Qo V6B
o { } (6= [ 2165, (7.5)
2x(f—4)

If we again require that the calculated o equal that for the Kolmogorov spectrum when
C_,=A=D=1, we find that

0(9)=0Q0q™*%,  0p=3.6x10"5C_,Dcm™*>. (7.6)
Substituting in (2.14) we find
K=(8—4)=0.3. (1.7)

We use these three normalizations and the auto-correlation functions listed in Appendix A to
calculate the magnitudes of the zero-order quantities and their rms fluctuations for the three
spectra. These values, along with their scalings as a function of C_4, 4, and D are listed in Table 1.
As discussed in Section 5, certain quantities are formally divergent for large values of . For
these, we list approximate magnitudes of the fluctuations about the observed mean over the
observation period as a function of that period in years, T,,.
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The normalized cross-correlation of two parameters A and B is defined to be
(AB)

= (AV2(g2Y/2 7.8)

AB
Class I (curvature-induced) fluctuations will correlate with one another to varying degrees, but
will not be correlated with Class II (gradient-induced) fluctuations and vice-versa. We list the
non-divergent Class I and II cross-correlations in Table 2.

8 Discussion

In the preceding sections, we have extended the computations of BN to include several more
potentially observable effects arising from long-wavelength density fluctuations in the interstellar
medium. We now have the theoretical machinery to estimate the magnitudes and time-scales of
refractive effects for virtually any observable parameter in terms of any power-law spectrum of
density fluctuations, including those with #>4. We have also outlined the extension from a single
screen to an extended medium and have shown how this can introduce significant changes.

Since the theory depends on a simple linearized model of the scattering (equation 2.2), we
should address the question of the reliability of the theoretical predictions. Fortunately,
Goodman & Narayan (1985) and references cited therein have presented exact results for the flux
fluctuations produced by a single screen for both <4 and f>4. A comparison between their
results and those of our approximate theory is made in Appendix C. We find that the agreement is
extremely good for 3.55=<4.5, encouraging us to believe that the other computed correlation
functions are also quite accurate.

The detection of any of the fluctuations predicted by our theory, particularly the
cross-correlations, would confirm the importance of propagation effects for the long time-scale
variability of pulsars and compact extragalactic radio sources. The predicted magnitudes of the
fluctuations are relatively small in the case of the Kolmogorov spectrum (f=11/3), increasing
with the observation frequency. On the other hand, if f=4, the fluctuations are relatively large
butindependent of A. The shapes of the auto- and cross-correlations also depend on the value of #
and upon whether the density fluctuations are restricted to a thin screen or are distributed
throughout an extended scattering medium (see Fig. 7). Thus, observations of refractive effects
promise to be a sensitive probe of the spectrum of ISM density perturbations as well as the
distribution of the scattering irregularities along the line-of-sight.

Perhaps the easiest observations to make will be those that include fluctuations in the
scintillation time-scale, Jt,, the decorrelation bandwidth, vy, and the flux, dF. Since the
fluctuation time-scale T,.; decreases as one moves to shorter wavelengths (Table 1), observations
for a relatively short period at the highest frequency allowed by the multipath propagation
condition, namely 0> a.;,, should be sufficient to detect the predicted correlations. We note that
the thin-screen theory predicts normalized cross-correlation coefficients of between 50 and 75 per
cent (cf. Table 2), so the effects are large.

There are several possible VLBI experiments which could be carried out to detect refractive
scintillation. Direct resolution of the scattered image of a pulsar would be most valuable. At
meter wavelengths there are some candidates whose angular size fluctuations might just be
detectable (cf. Bartel et al. 1984) but the time-scales involved will be rather long. Another
possible VLBI experiment involves measuring the relative separation of pairs of pulsars close
enough in the sky to be contained within the same primary beam of a radio telescope (~1°), e.g.
PSR 2016+ 28 and PSR 2020+ 28. This observation should be carried out at two or more low
frequencies and it should be possible to achieve positional accuracies ~0.14/b~1 milliarcsec.
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The detection of a refraction-induced shift may be possible in the case of a steep spectrum of
interstellar density fluctuations (f=4), though the variation time-scale will again be quite long.
Some candidate pulsars are tabulated in BN.

Frequency drifts in dynamic scintillation spectra provide one of the best probes of large-scale
density fluctuations (Hewish 1980; Roberts & Abkes 1982; Smith & Wright 1985; Hewish et al.
1985). The correlations of the drift slope with Fand 66 are probably too small to be measured.
However, the magnitudes of the drifts and their scaling with 8, A, D, and C_, can be compared
with our theory. Smith & Wright (1985) have measured the drift slopes of 32 pulsars. They
present their data in the form

dv  wvu

d 6D

where &, is the rms refractive bending angle and ¢ is the angle between the plane of maximum
dispersion (i.e. the orientation of the ISM prism) and the pulsar velocity v. For 24 pulsars in which
an independent measurement of v is available, they define &, =m 6, where 6, is the rms scattering
angle (i.e. 0/L), and estimate the value of | mcos(¢) |, a measure of the relative importance of
long- and short-wavelength perturbations in the ISM. Noting that 8,D =20, we can compute
| mcos(¢) | directly in our model, using the measured distances and scattering strengths for these
24 pulsars. For f=11/3 we obtain | mcos (¢)|=0.40, somewhat larger than the observed value of
0.24. Thus, the observed magnitude of refractive fluctuations in frequency drifts is smaller than
that predicted by the Kolmogorov spectrum. On the contrary, the observed elongations of the
drift patterns seem to be significantly larger than the value e;<0.1 expected for a Kolmogorov
spectrum (although observational bias towards the most prominent examples may be reflected in
the published spectra). Further, the mean observed flux variation is also larger than that
predicted for a Kolmogorov spectrum (BN, GN). These conflicting indications might suggest that
the continuous Kolmogorov power-law spectrum commonly assumed is too simplistic. They may
also reflect deficiencies in the thin-screen model (cf. Blandford, Narayan & Romani 1985).

As further evidence that a single extended power-law spectrum with <4 is insufficient for the
explanation of all scintillation phenomena, we consider the observation of periodicities in the
spacing of the drift bands. Striking examples of quasi-periodic frequency drifts in dynamic
scintillation spectra have been presented by Hewish ez al. (1985). In these instances the patterns
are interpreted as arising from the interference of a few, well-separated bundles of rays which
have passed through an image-scale dispersive wedge on their way from the pulsar to the observer
plane (cf. also Ewing et al. 1970; Roberts & Ables 1982). Hewish et al. go on to argue that the
effective value of § can exceed 4. This attractive physical picture may, however, be difficult to
realize in an extended power-law spectrum as the inhomogeneities intermediate between the
diffractive scale and the spot size will generally break the image into too many beams to give the
observed patterns. An alternative possibility is that the small-scale irregularities are absent and
the spectrum has an inner scale somewhat smaller than the size of the image. This would create a
few caustics which could give the observed periodic modulation. A consequence of this idea is
that the periodicities of dynamic scintillation spectra should only be found at frequencies where
the spot size is comparable to this inner scale and that this frequency should be larger for the more
distant and more highly scattered pulsars.

Another implication of the observed quasi-periodicities is that a snapshot image of the pulsar
would reveal a few bright blobs within the time-averaged spot (Fig. 2). GN have argued that such
a ‘fractal’ geometry for the image is expected in theories with #>4. This may be testable with
VLBI on selected pulsars. The extended periodicities seen would probably still be rather rare
unless the effective B were close to 6. However, a spectrum with #>4 predicts extremely large
values for the average drift slope (in fact, mq will technically diverge) unless the spectrum cuts off

secq, (8.1)
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at lengths not much longer than the refractive scale 0. To maintain the large-amplitude refractive
fluctuations indicated by other observations (e.g. flux), it might be necessary to impose an inner
scale as well and invoke the focusing effects of caustics (cf. Section 1). (We note that there may
already be evidence for caustics in the cusp-like peaks in pulsar intensity fluctuation records, e.g.
Cole, Hesse & Page 197(; Helfand , Fowler & Kuhlman 1977.) The resulting spectrum of the ISM
density perturbations would thus be severely truncated at both ends, containing only a limited
power-law regime. GN showed that the 4 and D scalings of observed quantities are relatively
unaffected by the absence of short scales for f>4. If, however, f<4, then the absence of
short-wavelength fluctuations drives the scaling laws towards the ‘critical spectrum’ case, i.e.
B=4.

It is possible, for a given value of the spectral index £ and a given distribution of the scattering
inhomogeneities, to estimate an upper bound on the outer scale for the power-law spectrum from
the observed angular broadening and the physical constraint that the amplitude of the electron
density fluctations on this scale should be linear (i.e. dn<n). For spectra with =4 the scattering
is dominated by the smallest scale consistent with the strong scintillation condition, ap;,~A4/6(a).
To allow for the possibility that the spectrum cuts off at an inner scale somewhat larger than this,
we define ayi,~aA/0(am,) with a=1. If one has an independent estimate of the total number of
scattering electrons, for example from the dispersion measure DM in the case of pulsars, one can
use the scaling on(a)ocal$~3/2 (Section 1) to estimate the scale at which the perturbation
spectrum must become non-linear, i.e. dn~n. If we consider a source at distance z, a scattering
screen of thickness L at z; and use the typical pulsar observables vso=v. (in units of 50 kHz) and
DM (in units of 30 pccm ™), we find for a Kolmogorov spectrum

20\ 175
a,=4.2x10% cm[DMggL_l'5 (—O) {1/50(2—zo)}1'25a_0'5/15'5] (8.2)
z

where A is in metres and all other lengths are in kpc. This is an upper bound for the outer scale of
the power-law spectrum. For spectra with >4 the scattering is dominated by fluctuation scales
on the order of the spot size 0= 6.,s(z — zo). We can again scale the fluctuation strength with the
scale size to find an upper bound on the outer scale for a f=4.3 spectrum

, zo(z—2z() 088
a,,,=1.5x1016cm[DMng“L-W{ 9} vgbﬁw-l]. (8.3)

If the application of this formula predicts in any particular pulsar that a,, is less than the spot size
o, then refractive fluctuations cannot be important for that pulsar. For Vela and a few other
pulsars, (8.3) is actually a significant constraint, as the bulk of the scattering is believed to be
provided by the local effect of the Gum nebula. For Vela, a,,~ocwhen f=4.3, so refractive effects
such as frequency drifts are likely to be quite restricted in such a steep spectrum.
Propagation-induced fluctuations can also be significant for sources other than pulsars. Rickett
et al. (1984) suggested that the phenomenon of low-frequency variability of extragalactic radio
sources can, in many cases, be explained as a propagation effect. The time-scales inferred from a
spectrum of refractive fluctuations are compatible with those observed. Our theory predicts that
the flux variations will be correlated with position shifts and angular size variations. Although the
predicted magnitudes will be small, detection of this covariance using VLBI would allow a critical
test of the ISM modulation hypothesis. There is the further possibility that the flicker of
extragalactic radio sources (Heeschen 1984) could again be an effect of the ISM (Rickett et al.
1984; Simonetti, Cordes & Heeschen 1985; Blandford et al. 1985). In this context, it is worth
noting that interstellar refraction by density irregularities should not affect the direction of linear
polarization observed from pulsars and the compact components of extragalactic radio sources.
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Observations by Lo ez al. (1985) show that the VLBI resolved core of the galactic centre has a
diameter ~2.1 milliarcsec at A=1.35 cm and that it scales with the observation wavelength as ~A2,
suggesting scatter-broadening. The source appears to be elongated at 3.6 cm with an axial ratio of
1.8:1, which corresponds to an elongation parameter e;=0.54. From the source broadening we
can estimate the scattering strength to be C_;,~5x10° (for #=4). Using this value, we estimate
the expectation value of e at 3.6 cm for an isotropic scattering medium to be <0.1 unless £ is
somewhat greater than 4. We note, however, that observations of other sources near the galactic
centre indicate significantly lower scatter-broadening. Hence, the bulk of the scattering medium
is probably within ~100 pc of the galactic centre (Backer, private communication). Estimating
the total number of electrons along the line-of-sight via the observed total extinction, one can use
(8.2) to show that refractive effects in the galactic centre must be very small. As further
confirmation for the unimportance of refractive effects for this source, we note that the data of
Backer & Sramek (1982) place a limit of <10 milliarcsec on the wander of the source over a 5-yr
baseline. Moreover, they find the centroids of the images at 3.6 and 11cm to agree within
10 milliarcsec, indicating that there are no large-scale ‘prisms’ in the line-of-sight. A possibility
one should consider is that the scattering medium in the vicinity of the galactic centre could be
strongly anisotropic, as in the model by Higdon (1984), in which case the image spot would be
elongated in the ratio of the scattering strengths along the two principal axes. For magnetic fields
stretched in the plane of the Galaxy by differential rotation, the long axis of the image should be
perpendicular to the galactic plane, as observed. A distinction between this picture and the
random elongation we have considered (in Section 2) is that the position angle of the elongation
will not change as a function of time for the anisotropic medium, whereas in our theory it is
expected to do so on a time-scale ~ Tyt ~0/v. A second epoch of observations separated by =T ¢
would be helpful in clarifying this question.

In conclusion, we urge that future single-dish observations of radio pulsars include accurate
measurements of the mean flux and the parameters 7, dvy., dt,, mg, and eq which characterize the
scintillation properties. In addition we advocate a modest simultaneous VLBI programme of
observation of pulsars such as PSR 1818—04 designed to resolve the scatter-broadened image and
detect position wander. Successful detections of the predicted correlations would, in addition to
determining which variations in pulsars and extragalactic radio sources are intrinsic, also yield
valuable data on the interstellar turbulence spectrum of particular relevance to theories of cosmic
ray propagation. They would also motivate further calculations using the techniques outlined in
this paper.
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Appendix A:

The f described by (2.7) are listed below for the various observables that we have considered,
namely flux F, angular size Q, pulse arrival time ¢, pulse width 7, time derivative of flux F ,
position shift 86,, time derivative of position shift §, spot elongation €2, decorrelation
bandwidth v, scintillation time-scale ¢, drift slop my and elongation of drift pattern ey.

fr=— % g0 exp <—:l£ q202>. (A1)

fo=- Zr—lz‘ <q202_ : q404> exp (_lqz(]z)_ (A2)
o 4 4

ﬁ=2%€— (1—% q202+% q404) exp (-— %q202>. (A3)

fi==3/2 ;;—I; (qzaz— —; q4a4+:11g q606) exp (—%q202>. (A4)

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

610z Aey £z uo Jasn ABojouyoa ] Jo ainyisu| eluloyeD Aq Z18996/6L/1/02ZA0rASqe-a|o1e/selul/wod dnotojwapese//:sdiy woly papeojumoq


http://adsabs.harvard.edu/abs/1986MNRAS.220...19R

FT9BBVNRAS. Z20- ~.J19R!

46 R. W. Romani, R. Narayan and R. Blandford

_ AL 1

p=—(i9:0)q’0” exp (— " q202> : (AS)

o 4
- AL 1 1
Joox=~—(iq,0) (1 -3 qzaz) exp <— n q202>~ (A6)
o
_ AL 1 1
fi=——(gz0?) (PE q202> exp <— Zqzaz)- (A7)
o
L AL? 1 1 1
fal?=— (q“04—5q606+ qugag) exp (—71202). (A8)
o
N AL 1 1 1
f.=3/2 —2—<q202—gq4a4+28—q606> exp (—Zqzaz) (A9)
g

_ AL 1 1

fi= —07 q,%a2 (1— Z q202> exp (— Z q202> . (A10)
- AL 5 1 1

Fng=—4 —(iq.0) (1— LS q“a“) exp (— Zq202>~ (Al1)

g
. ~ AL 5 1 1
Foi=1/\2fm==2\2 — (iq.0) (1— nga2+ 1—6q404> exp (— Zq202>. (A12)
g

We substitute these expressions into (2.5) and evaluate according to (2.11) and (2.12) to obtain
the various correlations. The auto-correlation functions are

(6F(x)0F(x+s))=Kg3. (A13)
1 1
<5Q(x)d9(x+s)>=K<g?— 5g8+ Eg%). (Al14)
1 1 1
(61(x) Ot (x+3))=K (g91—g8+ ——g?—g‘§+—g§’>~ (A15)
2 °°8°7 64
(87(x) S7(x+3)) 9K(°2°”° Loy ! 0) (AL6)
7(x)07(Xx+s8))= — ——gyt—g3——gast .
4 \81T 3BT BT BT s
(F(x) F(x+s))=Kg3. (A17)
1
(06,(x) 86, (x+s))=K <g%—g%+ Zg%>. (A18)
1 1,1
(60y(x)6«9y(x+s))=EK(h8+h%—h?—h%+Zh2+Zh2 . (A19)
. 1
(B(x) 8(x+s))=K <g‘1‘—g3+ Zg§> (A20)
(O(va) () S(va) (x+5)) 9K(° Zeoe oo Lo, * ) (A21)
Vac) (X) O(Vac)(X+8))=— - —g3——— —
d d 4 81 382 7283 7284 230485
1 1
(51,(x) (srs<x+s>>=z<(g;‘— ) (A22)
(0 tanw(x) O tan w(x+s))=2(eq(x) eq(x+s))
5 33 _ 5 1
=16K| g——gi+—g3——gi+— 2>. A23
(go 4g1 6482 6483 25684 ( )

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

610z Aey £z uo Jasn ABojouyoa ] Jo ainyisu| eluloyeD AQ Z18996/6L/1/0ZzAorASqe-a|o1e/selul/wod dnotolwapese//:sdiy woly papeojumoq


http://adsabs.harvard.edu/abs/1986MNRAS.220...19R

FT9BBVNRAS. Z20- ~.J19R!

Refractive effects in pulsar scintillation 47

Equation (A15) diverges for =2 and (A18), (A19) and (A23) for #=4. These are discussed in
Section 5. The others are convergent for f<6, but are reliable only for #=<5.
Auto-correlations with respect to changes in the observation frequency may also be of interest
and we give these for certain parameters in (A24) to (A27). The frequency behaviour of position
shifts are of interest since VLBI measurements can be performed at several frequencies.
Fluctuations in v4. and f# should also be accessible over a moderate frequency range.

. . /1%/1%0’102
(OF(41) OF(4;)) W (A24)
00(A,) 66(A Gz ! 3+(6-p)(4— ik A25
(000) 200 = 5 M{ﬂ +HE-A=A) = 2)2} (A25)
2323 26-9 (6-B)B-p)( (oi+03) (B-2)

<5Vdc(/11)5Vdc(/12)>“(a%+0%)(6_ﬁ)/2[ 3 6(0%-&—0%)2{ 5 + 3 oio}
+-—:-l~ 04 0-4)(12— ] A26
i Tz 0P ﬁ)} (A26)

/12/12 2

(8t,(hr) Ot(12)) o< (~—~—12)—(6—;)/—2{2ﬂ - E-H6A) 2)2} (A27)

where 01 ,=0(41,) and o0xA# P for =24 and oxA*®~P for fz4. The constants of

proportionality are given by the corresponding spatial auto-correlations evaluated at zero

lag (s=0). Numerically, we find that for #=11/3 the correlations reach their half-power points

at the following values of A;/4,: F, (0.6, 1.4); 56, (0.6, 1.8); vy, (0.6, 1.4); ¢, (0.6, 1.4). For

f=4.3 the half-power points are: F, (0.7, 1.8); v4c, (0.6, 2.5); ¢, (0.6, 2.3). The fluctuation

06 grows arbitrarily large for §>4. In general, the correlations are seen to be quite broad-band.
Normalized cross-correlations are given in Table 2.

Appendix B:

We wish to formalize the separation of the perturbation spectrum into diffractive and refractive
regimes, leading respectively to angular broadening and refractive steering of the image of a point
source. Let us imagine that we image the source with a Gaussian aperture of full-width W. We
assume that Wis intermediate between the diffractive scale, ann, and the Fresnel scale, rp= \//1_1: .
(Note that, in the strong scintillation regime, @,i,<<rr<0.) The angular amplitude of the signal
received at the aperture is

<I>(a)=%J'J‘d2x exp (—z%—-z—x—> E(x), (B1)

where E(x) is the instantaneous electric vector measured at the point x on the observer plane. If
we represent the source by a plane wave incident on the phase screen at a distance L and account
for the phase rotations of the electric vectors received from different positions r on the phase
screen, we can write this as

2

)2
@(a)oc”d2xd2r exp [—i%—%+i{¢(r)-—(;l;) H (B2)
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Since W<rg, we neglect the term in x2/LA. Integrating over x we then obtain
(I)(a)ocjdzr exp{i¢(r)— i (r_aL)ZWZ}

2LX 8L*A?

We see that ®(a) is dominated by a region on the screen around the point r=aL of width
ro~8LA/W. We now handle separately the phase fluctuations ¢ -(r) due to scales smaller
than r, and those ¢..(r) due to scales larger than r,. By Taylor expanding ¢~ about r=aL,
we can write the argument of the exponent in (B3) as

(B3)

10)=i{ ) +9-(aL) +pL(aL)(—aL)
+l¢" (aL)(r—aL)Z—r2/(2L;r)}— W (r—aL)? (B4)
277 8L2A> '

The angular intensity is then given by
I(@)=|®(a) > ffdzrdzr’ exp {y(N)+x*(")}.

We now introduce new coordinates u=r-+r'—2aL, v=r—r' and perform the integral over u.
Since there are many diffractive scales @, within the range of integration, we can ensemble
average over ¢.. Thus

2 1 i W2 1 " \2 2
I(a)ocjd v exp {—ED¢<(U)} exp {;(a—%qﬁg) v} exp [—{ VTP +—v;5(1—/rL¢>) }v ]

(B3)
where D, -(v)=({¢<(0)— ¢(v)}?) is the phase structure function at lagv due to scales smaller
than r,,.

Noting that the first exponential in (BS) cuts off at v~a,;,,, we now show that, over this
range of v, the third exponential can be set to 1 with negligible error. For W<rp, the first
term in the argument of the third exponential is ~W?2v?/ri<aZ;,/r<1. Next, we have

v /Wi~ak,,/W?<1, providled W>a,;, as already assumed. Finally, noting that
Umin~ (A*Q0)™/#7? and @L(r,)~A*Qorf°, we have

X2L2¢">zarznin - ( & min w )4_ﬂ<1
w? re
for the assumed range of W. Thus, (BS5) simplifies to

I(a)mjdzv exp {1— —;—D,,,((v)} exp {— i(a-—/ﬂp;) v}. (B6)

Let us first neglect the contribution from @< in the second exponential. I(a) is then given by
the Fourier transform of exp {—%2D,, _(v)}. Now, D, (v) varies as v/~ 2 which, for f~4, is not
very different from v?. We can therefore conveniently approximate I(e) by a Gaussian

F a?
I(a)=——exp| — —|, B7
@=— o 95) (87)

where the beam-width 6, can be determined in terms of the 1/e width of exp {—%2D, (v)}
to be

B [ T{(6-8)/2} #* Qo ]vw—»
" La@-p)(B-2) T(B/2) ‘

(B8)
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This leads to equation (2.16) for 0=6,L. When the contribution from @< is included in
(B6), the angular intensity received is modified to

[_ {a—m;(aL)}z]

7 (B9)

I(a) r
a)=——-ex
763 P

which is equivalent to equation (2.2).

Appendix C:

To test the accuracy of the approximations in our formalism, we compare our results with the
exact results obtained by Goodman & Narayan (1985) for the flux fluctuations produced by a
- thin-scattering screen for power-law spectra with 2<f#<6. From (2.6) we see that the spectrum
of the correlation (8A;(x)8A(x+s5)) is given by A%f(q) f;(q) Q(q). For flux fluctuations,
we substitute from (A1) to obtain for a power-law spectrum of index S

- 1
Crr(q)=Qox*L?q*~Pexp (-*2‘ q202>~ (C1)
In comparison, GN give for <4,

~ B2
Crrt)= W)= 0ur't2q*Pexp [ ~( L)} )
ref
We note that the normalization as well as the power-law index below the cut-off is identical.
Moreover, the cut-off scales in the two formulae, namely \/2/0 and gy, are also exactly equal,
showing that our approximate theory is extremely accurate for #<4. The form of the cut-off is
Gaussian in our theory because we have made the simplifying assumption of a Gaussian image
whereas the exact result has the true spot shape. For #=<4, however, the difference is small.
When >4, our theory again predicts the form (C1) and GN still give

Cer(q)=Qox*L2q*~#, G <qref (C3)

so that the form and normalization of the spectrum below the cut-off continue to be in perfect
agreement. However, whereas in (C1) we have a Gaussian cut-off at g,.¢, the true spectrum has a
second power-law regime Cppocg™¥(#~9, g..+<g<gin OUt to an intermediate scale gin.. This
region of the spectrum arises from the patchy ‘fractal’ nature of the image and s filtered outin our
Gaussian approximation of the spot shape. Its contribution to the flux variance is, nevertheless,
quite small. Thus the rms fluctuation of flux predicted by the present theory is

OFims={Khi(0)}/2=(5—4)/220~ DT (3-4/2), (C4)
whereas the exact result given by Goodman & Narayan is
6Frms={2\/16_3/(6_ﬁ)_1}1/2’ (CS)

This agrees with a similar result obtained by Jakeman & Jefferson (1984). A numerical
comparison of (C4) and (C5) confirms that the agreement is quite good up to f~4.5.

We thus find that the approximate theory that we have developed is in very good agreement
with more exact calculations in the regimes of interest. The advantage in our approach is that it
can be extended to calculate a variety of effects that would be very difficult to compute using the
more rigorous theory.
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