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Summary. Several recent observational and theoretical investigations have 
suggested that long-wavelength (::; 1014 cm) density fluctuations in the interstellar 
medium may have a major influence on observations of pulsars and extragalactic 
radio sources. These long-wavelength fluctuations are responsible for refractive 
focusing (in contrast to the diffractive scintillation which is conventionally 
attributed to shorter wavelength fluctuations), and may cause the monthly to 
annual variations in pulsar flux densities observed at low frequency. Fluctuations 
in the angular sizes, pulse arrival times and pulse widths of pulsars should also be 
observable and should be cross-correlated with the flux density variations. The 
magnitude of these correlations, and their dependence upon the time lag and the 
observing wavelength, for different power-law spectra of density fluctuations are 
estimated. It appears that if the flux variability is interstellar in origin, then the 
spectrum must have a somewhat steeper logarithmic slope that the value (-11/3) 
given by the standard 'Kolmogorov' spectrum. Sensitive observations on 
selected pulsars will be able to confirm the importance of refractive effects in the 
interstellar medium and also determine the slope of the density fluctuation 
spectrum. 

1 Introduction 

The narrow-band intensity fluctuations of pulsars that occur on time-scales of order several 
minutes, and the smearing of pulse profiles at low frequencies have long been attributed to 
scattering caused by small-scale inhomogeneity in the electron density of the interstellar medium 
( e.g. Scheuer 1968). The standard explanation of these variations goes as follows. The observed 
angular radius 0 of a point source is of the order of the root mean square angle through which a ray 
is scattered in traversing the distance D between the pulsar and Earth. There is then a mean 
geometric time delay t- D0 2 /2c and an associated pulse broadening of the same order. This leads 
to a decorrelation bandwidth for the scintillations given by the uncertainty principle, ~v-1/2.nt. 
The scattered radio waves create a diffraction pattern at Earth with a lateral coherence length, 
b~).../2.Jr0, where)... is the wavelength of the radiation. The Earth moves through this diffraction 
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pattern with speed v (a combined velocity including the motions of the pulsar, Earth and the 
intervening interstellar medium), and so the corresponding decorrelation time-scale for the 
( diffractive) scintillations is Mctif~ b Iv. 

Observations on pulsars are roughly consistent with the scaling laws ( e.g. Rickett 
1977) 0~)-2·2 D0·6 milliarcsec t~A4·4 D2·2 µs ~v~100A- 4.4D- 2·2 kHz v~lOOkms- 1 and 

' ' ' ' 
~tctif~3..1. -1.2 D- 0-6 s where A is in metres and D is in kpc henceforth. There is, however, a 

considerable dispersion in these quantities; in particular, distant pulsars lying in the Galactic 
plane have systematically enhanced scattering (Manchester & Taylor 1977; Cordes, Weisberg & 
Boriakoff 1984). 

The power spectrum of interstellar density fluctuations is often supposed to be a power law, 
<Pkrx.k-13, 2</3<4 (e.g. Rickett 1977). A convenient way of understanding the scattering 
properties of such a medium is as follows. The typical mean square density fluctuation due to 
waves within a unit logarithmic range of wavevectors around k~a- 1 goes as <'5n2(a)rx.af3-3 _ The 

number of clouds of size a encountered by a ray traversing the distance D between the pulsar and 
the observer is proportional to D / a. (The proportionality factor could be quite small if strong 
interstellar turbulence is localized within isolated supernova remnants and H II regions with a 
small filling factor.) Hence the integrated rms fluctuation in the phase ¢ on scale a goes as 
<'5¢(a)~[<'5n2(a)]112ar.).(D/a) 112rx.aCf3-Z)/ZAD112, where re=e2/mc 2 is the classical electron radius. 
An equivalent way of stating this is in terms of the phase structure function 

which measures the mean square phase difference between two paths with a lateral separation a. 
Consider next the rms angular scattering due to a given scale a, which goes as 

<'50(a)~<'5¢(a)..1./a~a(f3-4)l 2..1.2D 112. For {3<4, the scattering increases at smaller scales. Neverthe­

less, there is an effective cut-off at very small scales since, in order for fluctuations on scale a to 
contribute to strong scintillation, the phase difference along two paths with a separation a must 
exceed ~n. Thus only length scales a::::::amin, where D(amin)~n2 , i.e. amin~A-Z/(/3-Z), can 
contribute to strong scintillation. The angular radius 0 of the image can then be estimated by 
integrating the scattering over all scales greater than amin up to the size of the image, i.e. 

02~ f:~~" [<'50(a)]2d(lna) 

or 0~,1./31(/3-2) D 11(/3-2l. (The upper limit can be set to oo when /3<4 since the scattering is 

dominated by small scales; but if /3>4 as we advocate later, the large scales dominate the 
scattering, and the upper limit should be taken to be amax~D0 with amin~O.) If we use the 
observed scaling, 0rx.,1. 2·2 , then /3 is of the order of the Kolmogorov spectrum value of 11/3 
(Rickett 1977), just consistent with the assumption that /3<4. Numerically, 
amin~l0 10 A-1.2 D- 0-6 cm. Note that the transverse separation of typical rays from the image, 
~D0~10 13..1.2·2 D1.6 cm, exceeds amin as long as ..1.::::::,1.*~0.lD-0·6 and so there is multipath 
propagation - an additional requirement for strong scintillation - for wavelengths larger than A*. 

The above (standard) argument indicates that the scattering <'50(a) contributed by length scales 
~a goes as a- 116 . Thus, although short length scales a~amin contribute the majority of the 
scattering, the influence of the longer length scales amin <{ a-:5 D0==amax may not be negligible. (We 
ignore the possibility of an outer scale smaller than D0 in the turbulence spectrum.) The influence 
of these larger scale density fluctuations in the interstellar medium has long been suspected; they 

were invoked by Shishov (1974), Hewish (1980) and.others to account for the observed drifting of 
scintillation patterns in frequency through refractive effects. Now, refraction is dominated 
by fluctuations on scales ~amax which will partially focus or defocus the diffuse image of the 
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( f) 

Figure 1. Schematic illustration of the effects of interstellar refraction. (a) Rays from the pulsar Pare scattered by 

small-scale irregularities in the interstellar medium into a conical beam with angular radius 8 at the observer 0. (b) 

Large-scale density inhomogeneities steer the beams to focus them at 0, increasing the observed angular size and 

flux density. (c) Screen, equivalent to (a), in which all the scattering is localized at a distance L from 0. The average 

angular radius of the beam is a/ L. ( d) Superposition of refraction at the screen, equivalent to (b). ( e) Pulse 

broadening and delay due to lengthened geometrical path of scattered rays. (f) Dispersive contribution to the pulse 

broadening and delay. If there is a density excess centred on the beam, the phase fronts will be advanced at the centre 

of the beam and the pulses, which propagate at the group velocity, will be retarded. 

pulsar (see Fig. 1). This will cause the observed flux to change on time-scales 

~tref-amaxl v- 106 A 2·2 Dl.6 v71 s where v= 100 v7 km s- 1. In fact, long-term variation of just this 

type is common among pulsars (Cole, Hesse & Page 1970; Helfand, Fowler & Kuhlman 1977; 

Sieber 1982). In particular, all three components of the Crab pulsar (main pulse, interpulse and 

precursor) are known to vary in phase at a wavelength of 1 m (Rankin, Payne & Campbell 1974). 

This explanation for the long-term variability of pulsars has been given explicitly by Rickett, 

Coles & Bourgois (1984) and partly by earlier authors referred to therein. The explanation is 

compelling because it successfully explains the scaling of the variability time-scale with pulsar 

distance and the wavelength of observation. Furthermore, as these authors speculate, it may also 

account for the phenomenon of low-frequency variability in extragalactic radio sources. 

21 
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In this paper, we present a model (a simplified version of one introduced by Shishov 1974) 
which allows us to relate the observed intensity variation of a point radio source like a pulsar to 
the strength of the interstellar fluctuation spectrum when the focusing effects are not too large. 
We then use this model to show that there should also be variability in the arrival times and widths 
of pulses from radio pulsars, as well as in the observed angular sizes. Furthermore, there should 
be correlations among the fluctuations of all these parameters. We give general expressions for 
the various auto- and cross-correlations and present results for the specific choice of a power-law 
spectrum for the density fluctuations. Finally we estimate the order of magnitude of the expected 
fluctuations in the various observables and discuss the feasibility of looking for the effects we 
describe in pulsars and compact extragalactic radio sources. On the basis of our estimates, we 
conclude that if refractive scintillation is to account for the long-term flux variability of pulsars 
and the low-frequency variable extragalactic radio sources, then the power spectrum of density 
fluctuations should have a slope {3?:-4, somewhat in excess of the Kolmogorov value. Roberts & 
Ables (1982) reached a similar conclusion on the basis of their observations on dynamic pulsar 
scintillation spectra. 

After this work was largely completed, we obtained a copy of an unpublished thesis written by 
R. V. E. Lovelace in 1970. Several of the qualitative ideas contained in the present paper are also 
explored in this thesis. However, the calculation technique presented here is believed to be 
original and the observational data base has increased dramatically since 1970. This allows us to 
give quantitative estimates of the influence of refractive scintillation. 

A more detailed discussion of intensity fluctuations, including the case {3>4, is contained in 
Goodman & Narayan (1985). 

2 The scattering model 

We idealize both the short-wavelength ('diffractive') and the long-wavelength ('refractive') 
fluctuations by regarding them as distinct entities, rather than as two regions of an extensive 
turbulence spectrum. This approximation should be valid so long as the length scales associated 
with the two phenomena, amin and amax, are well separated. Fig. l shows qualitatively the effects 
we are studying. A bundle of rays leaving the pulsar in a given direction spreads out because of the 
scattering by small-scale inhomogeneities and reaches the observer plane over an extended area. 
Consequently, at a given point on the observer plane, rays are received from a range of directions 
(Fig. la). If we neglect large-scale fluctuations for the moment and average over a time much 
greater than the scintillation time-scale ~tctif, the image of the pulsar will be essentially circular 
with a characteristic angular radius 0. We approximate the intensity distribution over this 'seeing 
disc' by a Gaussian with angular radius 0, although in actual fact there is a power-law tail, 
I(0')rx.0'--f3, 0''p0. The error from this approximation is expected to be very small since the 
Gaussian gives a good fit down to 1 per cent of the intensity maximum (see.fig. 1 of Woolf 1982). 

Next, for simplicity we replace the distributed density fluctuations between the source and the 
observer by a single scattering screen located a distance L from Earth (Fig. le). In this 
'equivalent' geometry, we regard the source as being very distant compared with L so that the 
incident radiation from the source can be modelled as plane waves. We believe that the 
inaccuracy introduced by this approximation is no greater than that already inherent in the 
problem through our ignorance of the distribution of scattering along the line-of-sight to the 
pulsar. Given a model of the scattering medium, we fix the distance L of the equivalent screen and 
adjust the strength of its scattering so that the observed angular size 0 of a point source as well as 
the mean geometrical time delay (t=L0 2/2c) are the same as with the model of the medium. 
Appendix A discusses how we do this. We define a=L0 to be the linear size of the image when 
projected on the equivalent screen. 
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Fig. 1 (b) and ( d) show the effect of the large-scale refractive inhomogeneity in the scattering, 
which again we take to be localized to the equivalent screen. The effect is primarily to steer the 
local Gaussian angular intensity distribution to a new direction determined by the local phase 
gradient of the refractive fluctuation. Depending on whether there is focusing or defocusing, one 
has either an increase or decrease in the received flux and the image size. There are similar 
fluctuations in the time delay and pulse width caused by variations in the image size (Fig. le) as 
well as the propagation velocity of the radiation (Fig. lf). 

3 Expressions for the fluctuations 

We treat the refractive inhomogeneity in th~ weak deflection limit, i.e., we assume that therms 
deflection due to this is smaller than therms diffractive scattering angle a/ L. It is convenient to 
work with the phase change along an unscattered ray induced by the density fluctuations <5n in the 
refractive inhomogeneity 

<j>=r,) {D dz<5n(z). (3.1) 

In line with our thin-screen approximation we localize this</> to the screen. The associated extra 
bending angle q(r) of a ray at transverse location r on the screen is then given by 

q(r)= -X( a<j>(r )/ ar] 

where X=},,/2Jr. 

(3.2) 

We now compute the observed flux near Earth by integrating the received itensity over the 
solid angle subtended by the equivalent screen. In order to compute the time dependence due to 
the relative motion between the observer, the screen and the Earth, we calculate the flux at a 
general point x in the observer plane perpendicular to the line-of-sight (see Fig. 2). If Fis the 
mean flux from the source, then the intensity received at x from unit area around the point x+r on 
the screen is 

F [Lq+r]2 
/(r,x)=--exp- --· 

na 2 a 
(3.3) 

where 11 is evaluated at the point (x+r). As the deflection Lq is, by assumption, small compared 
with a, we expand the argument of the exponential to first order, 

F ( r2 
) [ 2Lq · r] /(r,x)= na2 exp - a2 1- a2 . (3.4) 

s 

L 

Screen 

Figure 2. Scattering geometry with the equivalent screen. Rays from the pulsar are scattered at the point S on the 
screen located at a displacement x+r from an arbitrary origin, to be received by the observer Oat a displacement x. 
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The fluctuation in the observed radio flux is then given to first order by 

!1F(x) 2L I ( r2
) _ =-- d2r(q·r)exp -- . 

F na 4 a2 
(3.5) 

Substituting for 1/ from equation (3.2) and integrating by parts we obtain the normalized intensity 
fluctuation to be 

(3.6) 

with </J=</>(x+r). 

We define the mean angular area of the image to be 

nf d2rrl(r,x) 
Q(x)=-----

L2[d2r /(r, x) 
(3.7) 

The mean value of Q is na 2 / L 2 and the normalized fluctuation about the mean is 

L
2
Q 2L I ( r2

) bQ(x)= ---1=-- d2r(r 2 -d 2)(q·r)exp --
na2 na 6 a2 

(3.8) 

where we have retained only terms linear in the phase fluctuation. Simplifying as before we obtain 

(3.9) 

A further quantity that can be measured is the mean time delay associated with the refractive 
density fluctuations. There are two contributions to this: a geometric time delay fgeom from extra 
path length and a dispersive time delay tdisp due to reduced group velocity. Combining both 
contributions, the signal from the point x+r is delayed with respect to the mean arrival of the 
central ray from x by an amount 

. r2 X</J 
t(r, x)= -- + -, 

2Lc c 
(3.10) 

where we have allowed for the fact that a radio pulse with advanced phase ( and hence an 
increased phase velocity) has a reduced group velocity. The mean time delay of the pulse, i.e. the 
time delay corresponding to the centroid of the pulse profile, is 

t0=a 2/2Lc. (3.11) 

and the normalized fluctuation in the delay is 

!it(x) 2LX I ( r2 
) bt(x)= --=bQ(x)+- 4 d2r<j>exp -- 2 • 

to JW a 
(3.12) 

A related quantity is the pulse width r, which will also fluctuate. We define r(x) as follows 

f d2ri2(r x) /(r x) 
r2(x)=[i2(x)]-[t(x)]2= ' ' 

f d2rl(r, x) 

The mean pulse width is then 

r0=a 2/2Lc=t 0 

[ f d
2rt(r, x)/(r, x) ]2 

f d2rl(r, x) · 
(3.13) 

(3.14) 
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and the normalized fluctuation in the width is 

597 

(3.15) 

where only terms linear in <P have been retained in t2(x) and [t(x)]2 and we use ~.~~(i2)/2r 0 • 

4 Correlations and power spectrum 

In the previous section we obtained expressions for the normalized fluctuations about their mean 

values of various observable quantities, F, Q, t and r, using the equivalent screen model. Because 
of the motion of the source, observer and the medium, the screen will move with respect to the 

Earth-source line, causing these parameters to vary. We now estimate the correlations of these 
quantities with themselves and each other. 

As we are continually sampling fresh interstellar medium, an average over time, denoted by 
(. .. ), is equivalent to an average over space and will be treated as such. We assume that the 

random motion of the interstellar density inhomogeneities is much slower than the transverse 
speed of the Solar System through the diffraction pattern, which we denote by v. Two 

observations made a time T apart will then correspond to sampling two areas on the screen a 
distance s=vT apart. Let A 1 and A2 be any two of the four fluctuations, oF. oQ, bt, or. The 

fluctuations bA 1(x, X1) and bAz(x+s, X2) at two points separated by s and measured at 
wavelengths X1 and X2 are of the general form [see equations (3.6), (3.8), (3.12) and (3.15)] 

bA1(x,X 1)= J d2r<j)(x+r,X1)f1(r, X1) (4.1) 

bAz(x+s, X2)= J d2r<j)(x+s+r,X2)fz(r, X2) (4.2) 

where we note that f 1 and fz depend on the respective X both explicitly and implicitly through a. 
The product of the two fluctuations is 

bA1(x, X1)bAz(x+s, X2)= J d2r1 d2r2¢(x+r1, X.1) ¢(x+s+r2, X.2) fi(ri,X 1)fz(r 2, X2). ( 4.3) 

Take two-dimensional Fourier transforms and average over all x keepings constant to obtain the 
mean correlation 

(4.4) 

where 

f;(q,X)= J dr2f;(r, X)exp(-iq·r) (4.5) 

( 1 _ 1 _ )/ Q(q)= -cp(q, X1)-<j)*(q,X2) A 
Xi X2 

(4.6) 

cp(q,X)= J d2r¢(x+r,X)exp(-iq·r) (4.7) 

and we use the fact that the fluctuations are real quantities. In averaging over x we have made the 

standard approximation that the phases of different <P( q) are uncorrelated with each other and 
that the total screen area is A, chosen so that a2~A. If we further assume that the power spectrum 
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Q(q) is isotropic we can simplify equation (4.4) to the one-dimensional integral 

(4.8: 

Given the power spectrum Q(q) of the refractive fluctuations, equation ( 4.8) can be used to 
predict the correlations between any two of the pulsar parameters that we have considered, by 
means of the following expressions for the respective Fourier transforms 

(4.9) 

(4.10) 

(4.11 

f,(q X)=-- q2a2--q 4a4+-q6a6 exp --q2a2 . 
_ 3X L ( 1 1 ) ( 1 ) 
T' 2a2 3 48 4 (4.12) 

In fact, given measurements of the fluctuation correlation functions we can invert equation 
( 4.8) to compute the associated power spectrum of the phase fluctuations 

(4.13) 

It is not clear how useful these inversions will be in practice. 
Now consider the case X1 =X2 and assume that the spectrum of density fluctuations is a power 

law 

(4.14) 

Note that Q0 is related to ci of Rickett (1977) by 

(4.15) 

where the numerical factor a ( of order unity) is necessary to correct for small differences in the 
assumptions regarding the equivalent screen. We consider two values for the exponent f3 in this 
paper, the 'Kolmogorov' value (3=11/3 and the 'critical' value {3=4. In the former case, the 
angular size of the source attributable to density inhomogeneity on the diffractive scale exceeds 
the effective scattering due to the refractive scale by a factor ~(qmax/ qmin)116~(a / amin)116. In the 
latter case, the factor is ~In (qmax/ qmin). The Taylor expansion in equation (3.4) is acceptably 
accurate for our present approximate calculations as long as qmax;:::100 qmin• 

We substitute equation (4.14) into equations (4.8) and (4.9) and use standard results (e.g. 
Abramowitz & Stegun 1970) to obtain the autocorrelation of the intensity fluctuations 

(oF(x)oF(x+s) )=Kh 1(s) (4.16) 
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where 

(4.17) 

h (s)=2n+l-f:i/2r(n+2- f!_)M[n+2-f!_ 1 _ _!_)] 
n 2 2 ' ' 2a2 (4.18) 

and M(a, b, x) is the confluent hypergeometric function. The constant K measures the strength of 
the fluctuations. It decreases with increasing wavelength as the focusing power of the scale a 
decreases. 

Similarly, the cross-correlation between the intensity and image size fluctuations is given by 

(c5F(x)oQ(x+s) )=K[h 1(s)-¼hi(s)]. (4.19) 

Expressions are given for the 10 correlations among the four observable parameters we have 
considered in Appendix B. Numerical evaluations of these expressions are contained in Figs 3 and 
4. 

1.5 

<FF> 

1. 0 

A 
,,..._ 
I-
+ 
.µ 

"' < 121. 5 
"° ,,__ 
.µ ....,, 
< 
"° V 

121. 0 

121 121 1. 121 2. 0 3 121 

-121. 5 

TI (c:,-/v) 

Figure 3. Autocorrelation functions for relative fluctuations in flux density, angular area and pulse width for 
'Kolmogorov' (,6=11/3, bold lines) and 'critical' (,6=4, dashed lines) spectra of density fluctuations. The 
autocorrelation functions are measured in terms of the dimensionless constant K defined in equations ( 4.17), ( 4.25) 
and as functions of time difference, measured in units of a/v. The expressions evaluated are given in Appendix B. 
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Figure 4. Cross-correlation functions for relative fluctuations in flux density (F), angular area (Q) and pulse width (r) 
for 'Kolmogorov' and 'critical' spectra as in Fig. 3. Finite cross-correlation coefficients with the arrival time 
fluctuations can be computed when there is a Kolmogorov density fluctuation spectrum (Appendix B). These are not 
useful, because the arrival-time autocorrelation function diverges, and are therefore not plotted. 

We can also explore the correlations in wavelength. We substitute expressions ( 4. 9), ( 4.10), 
and ( 4.12) in equation ( 4.8) with s=O to obtain 

AtJ.~ 
(4.20) 

Expressions for ( bQ(J. 1)bQ(J. 2)) and ( bi'(J.1)&(J. 2)) are also given in Appendix Band displayed in 
Fig. 5. We confirm that broad-band variations should be seen. 

We can now relate K to the angular scattering measured by a, assuming that the power 
spectrum, equation (4.14), extends down to short length scales. These small-scale fluctuations 
will only be effective at scattering a ray so long as they contribute a total phase change !!ii<j>-zn (see 
for example Gapper & Hewish 1981). We can then define a shortest scale for scattering by 
truncating the spectrum at q=qmax· For ,6=11/3, we have 

(4.21) 
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Figure S. Autocorrelation functions for simultaneous fluctuations in the flux density F, angular area Q and pulse 
width rat two different wavelengths .1.1, .1.2 and variation with wavelength ratio .1.2/.1.1. The bold lines correspond to a 
'Kolmogorov' spectrum and the dashed lines to a 'critical' spectrum. 

= [ 3A2Qo]3;s 
qmax lOJil (4.22) 

The mean angular area of the image is now given by 

:rur f qmax d2q 
(Q)=n(0 2 )= -=nX 4 --q2Q(q) 

L 2 a-1 (2Jr)2 ' 
(4.23) 

where the integral is cut off below q=a- 1 because the corresponding spatial wavelengths are 
larger than a and do not contribute to the image size. (They do, however, contribute to image 
wander.) If qmax~qmin, then for /3<4, qmin can be taken to be 0. Hence, substituting for a2 in 
equation (4.17), we find 

K=1.u-11;1s Q02;s L -1/3_ 

For /3=4, we retain the lower limit in (4.23). We find that K solves 

( QoX3L ) 
K- 1=ln 3/2 2 1;2 · 

2 n K 

(4.24) 

(4.25) 
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We should also consider the possibility that the density fluctuation spectrum may have a slope 
in excess of the critical value /3=4. In this case, the angular scattering will be dominated by 
fluctuations of size ~a, and the assumption that the focusing effects are small, which underlies our 
calculation of the expected variability, is no longer strictly valid. The integral in equation ( 4.23) 
for the scattering angle will now be dominated by the lower cut-off at qmin ~a- 1. This cut-off is 
crucial if one is to obtain a finite answer. Waves with q<qmin have infinite scattering power as 
q-O, but they only contribute to image wander, which formally diverges, and do not affect the 
size of the image. Replacing qmax by 00 , we obtain 

[ 
Q ] 1/(6-/3) 

a= 0 x_4/(6-/fJ L2/(6-/JJ_ 
2-n(/3-4) 

(4.26) 

Note that the observed scaling of the angular size with wavelength, namely 0=a/ Lr:f.A2 ·2 can be 
just as well reproduced by a spectrum of slope {3=4.2 as by a Kolmogorov spectrum. Although we 
cannot compute the correlation coefficients in the case /3>4, we can see that they will be 
non-linear [i.e. of magnitude 0(1)] and that they should have the same sense and roughly the 
same dependence upon s as the expressions computed for /3~4. 

5 Applications to pulsars 

In the preceding sections we have described a simple, approximate model of interstellar 
scattering that separates the small-scale density variations responsible for diffraction from the 
large-scale variations responsible for the refractive effects and used it to show that fluctuations in 
the intensity, the arigular size, the arrival time and the pulse width should be correlated. In this 
section we use present knowledge of the interstellar medium to demonstrate that some of these 
correlations ought to be measurable in radio pulsars using existing techniques. If these 
correlations can be detected, then it might be possible to invert the procedure and use the 
observations to refine our understanding of the interstellar medium. 

In the following we specialize to a uniform distribution of inhomogeneities between the pulsai 
and the observer, which is case (a) in Appendix A. (For case (b), which corresponds to a source 
well of out of the Galactic plane, one should replace C_4D by 3C_ 4Hcosec(b) and Db) 
2H cosec (b) in the expressions below, where bus the Galactic latitude of the source and His the 

scale height of the inhomogeneities in kpc.) 

5.1 'KOLMOGOROV' SPECTRUM (/3= 11/3) 

We first assume that the power spectrum of refractive fluctuations has a Kolmogorov power-law 
form given by equation (4.14) with 

Qo=7 X 10- 18 C_4 D cm- 1113 (5.1) 

which is equivalent to ci= 10- 4 C_4 m - 2013 in the notation of Armstrong, Cordes & Ricket1 
(1981). Dis the distance to the pulsar measured in kpc. We note that the values of C_4 inferred 
from decorrelation bandwidth and pulse broadening measurements are ~ 1 for nearby pulsars bu1 
can exceed this by factors up to 104 for distant pulsars in the plane of the galaxy (Cordes, Weisberg 
& Boriakoff 1984). We substitute equation (5.1) into equation ( 4.23) to obtain 

(5.2: 

where we measure the wavelength A in metres. We can use this value of a to estimate the mear 
source angular diameter 20, the scattering time delay t0, the pulse broadening i-0 and th( 
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20=4C~l J.1115 D 315 milliarcsec 

To=fo=2.4 C~l). 22/5 Dll/5 µs 

.1.v=70 c=r ;.- 2215 D- 1115 kHz. 
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(5.3) 

(5.4) 

(5.5) 

(The pulse broadening and decorrelation bandwidth are conventionally used to estimate C _4 .) 

It is convenient to express the normalizing constant K in equation ( 4.17) as 

K=(J./J. *)-17;15 

where 

J. *=0.05 c=f 17 D- 11/17 m. 

(5.6) 

(5.7) 

). * is roughly the wavelength at which the pulsar rays are scattered into the first Fresnel zone. Our 
model can only be self-consistent if the angle through which a ray is refracted is somewhat smaller 
than the angle through which it is scattered. This in turn requires that J.2'.:4). *. 

Substituting numerical values the rms intensity fluctuation is given by 

.1.F 
IJF= -=0.l 8 c=f5 ;.-17/30 D-11;30, 

F 
(5.8) 

If we assume that the Earth moves relative to the source screen frame with a speed of 
100 v7 km s- 1, then we can use Fig. 3 to estimate the decorrelation time-scale, that is the 
half-power width of the autocorrelation function, for the intensity fluctuations, 

TF=l8 c~l J.1115 D 815 V71 day. (5.9) 

Equation (5.9) for the fluctuation time-scale agrees within 10 per cent with that given by 
Rickett et al. (1984), which in turn is consistent with the data tabulated by Sieber (1982). We also 
find that the amplitude of the fluctuations should decrease with increasing wavelength, as is 
evident in the expression of Rickett et al. (1984). However, our model allows us to derive further 
relations. In particular, we predict that the angular size, arrival time residual and pulse-width 
residual should also fluctuate. The mean angular size fluctuation can be estimated through 
.1.0/0~15Q/2. Hence, from Fig. 3 and equations (4.24) and (5.3), we have 

2.1.0=0.24 C~l J. 49130 D 7130 milliarcsec. 

The pulse-width fluctuation can likewise be calculated to be 

.1.r=0.4 C_4J.23/6 Dll/6 µs. 

The corresponding decorrelation times are, from the half-widths in Fig. 3, 

Te=2l C~]J.1115 D815 vi 1 day 

Tr=30 C~l A 1115 D815 vi 1 day. 

(5.11) 

(5.11) 

(5.12) 

(5.13) 

In Appendix B we show that the arrival-time residual formally diverges. Physically this means 
that there is a limit to the timekeeping quality of pulsars. As pulsars are observed for longer 
periods of time, larger clouds can interpose themselves along the line-of-sight giving 
progressively larger dispersion measure fluctuations. To estimate the timing residuals we 
truncate the relevant integral over Q(q) at qmin~2.Jr/vt0 bs, where fobs is the length of the observing 
period, assumed to exceed the time a/v to cross the scattering disc. (For tobs<{.a/v, there is a 
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random component in the pulse centroid due to the fluctuating pulse width and this can be 
competitive with the dispersion fluctuation.) We then estimate 

At~ 1.9 c~f A 2 D112 vr t5rftsµs, (5.14) 

where tabs is measured in years and only the contribution due to dispersion fluctuations has been 
included. This result agrees with the timing noise previously calculated by Armstrong (1984, see 
also Rickett 1977) who computes the power spectrum of the relative frequency fluctuations and, 
equivalently, the Allen variance. Note that, as pointed out by Armstrong, the dispersion measure 
fluctuations are removable, at least in principle. If this can be accomplished, then there will be a 
much smaller residual delay ( ~Ar) caused by geometrical path-length fluctuations. Even this is 
partly removable by monitoring the flux and pulse width variability. The arrival-time fluctuations 
considered here are well correlated over a wide frequency range. Equation (5.14) is only an 
approximate estimate of the timing noise, since we have allowed fot the reduction in the residuals 
from fitting pulsar parameters like the period, period derivative and position by somewhat 
arbitrarily cutting off the spectrum at qmin=hr/vt 0 bs· A more careful analysis is being published 
elsewhere (Blandford, Narayan & Romani 1984). 

Perhaps the most specific prediction of the present model is that the four fluctuating quantities 
should be cross-correlated as shown in Fig. 4. We can express this in terms of normalized 
cross-correlation coefficients at zero time lag, 

(AFAQ) 
Cro=---- 0.61 

AFrmsAQrms 

CFr=0.76 

Cili=0.91. 

(5.15) 

(5.16) 

(5.17) 

The flux, angular area and pulse width fluctuations are also quite strongly correlated with the 
arrival-time fluctuations, but, since Atrms increases with the duration of the observation as shown 
by equation (5.14), the normalized correlation coefficient will decrease with time. 

We can also use the scattering model to explore the correlation in observing wavelength. Using 
equations ( 4.20) and (5.2), we see that the correlation coefficient for flux fluctuations at two 
different frequencies -11, -12 and zero time lag satisfies 

(5.18) 

The half-power points are at-12/-11 =(0.5, 1.5) and we confirm that flux fluctuations should be well 
correlated in wavelength as appears to be the case (e.g. Helfand et al. 1977). Carrying out a 
similar calculation for the angular size and pulse width correlations we find that the half-power 
points of the two correlation functions are located at-12/-11 =(0. 7, 1.3) and (0.5, 1.5) respectively. 
These autocorrelation functions are plotted in Fig. 5. The wavelength correlation of the 
arrival-time fluctuations again requires a more careful discussioin. 

We have thus been able to use our model to compute expressions for the fluctuating quantities 
assuming a standard Kolmogorov spectrum. Where there is overlap, these expressions are 
consistent with those given by earlier authors. As discussed by Rickett et al. (1984), the dispersion 
measure and wavelength dependences ( equation 5. 9) of the intensity variability time-scale T Fis 
compatible with the obervational data. However, the theory appears to underestimate the 
strength of the fluctuations. The highly correlated nature of the variation in the intensities of the 
main pulse, precursor and interpulse of the Crab pulsar over a 3-yr period observed by Rankin et 
al. (1974) strongly argues in favour of a propagation effect, but the magnitude of the intensity 
fluctuation (nearly a factor of 10) is incompatible with equation ( 5 .8). Similarly, the observations 
of Cole et al. (1970) and Helfand et al. (1977) indicate that the flux variability in most pulsars 
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extends down to low frequency with an amplitude of typically :c30 per cent, whereas the 
calculated variability is somewhat less than this, particularly at long wavelengths. For instance, 
Helfand et al. measure bF to be 0.35 and 0.50 in PSR0329+54 and 1919+21 at J~2m, while 
equation (5.8) with appropriate values of C_4 from Cordes et al. (1984) predicts bF of only 0.09 
and 0.10 respectively The reason for the low predicted variability can be seen from equation 
( 4.24) for the constant K. As the wavelength of observation increases, so does the size of the 
pulsar image a, and interstellar lenses of size ~a which are responsible for the refractive 
fluctuations become progressively weaker. It thus appears that, if the observed strong (low 
frequency) variability of pulsars is to be explained as a propagation effect alone, there must be 
relatively more power in the longer wavelength fluctuations, i.e. the spectral slope /3 must exceed 
the Kolmogorov value. 

5.2 'CRITICAL' SPECTRUM (/3=4) 

We therefore present expressions for the limiting value for which our calculations can be valid, 
i.e. /3=4. (The above arguments suggest that f3 may actually exceed 4, but the calculation 
techniques developed in this paper are not strictly valid in this regime.) If we again normalize the 
density fluctuation spectrum to be consistent with Armstrong et al. (1981), then 

(5.19) 

where a scaling factor C_4 of order unity is equivalent to ci~10- 4 m- 6·7 as in the Kolmogorov 
spectrum. We substitute in equation ( 4.25) to obtain 

1 1 
K=------ = - (5.20) 

In ( 430 C_4 J 3 D2 / K 112) 7y 

where y=l for C_4=J=D=l and has only a weak logarithmic dependence on C_4 , A andD. From 
this we compute as before, 

20=5y 112 C 1!~J 2 D112 milliarcsec 

r0 =t 0 =4yC_ 4 J 4D2 µs 

~v=40y-l c=iJ- 4 v- 2 kHz. 

The magnitudes of the long-term fluctuations are 

~F 
bF= --=0.4y- 112 

F 

2~0=0.6 C 1!¾J2 D 112 milliarcsec 

~r=l.3y 112 C_4 J 4 D2 µs. 

The corresponding autocorrelation time-scales are 

Tp~0.7 Te~0.6 T,~25 y112 C1!~J 2 D312 V71 day, 

the arrival time fluctuation is 

the normalized cross-correlation coefficients are 

CpQ=0.71 

CFr=0.80 

Cili=0.94, 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 
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and, finally, the half-power widths of the two wavelength autocorrelation coefficients for the flux, 
angular size and pulse-width variations are respectively 

(c5F1c5F2) :).2/A1 =(0.5, 1.9) 

(c5Q1c5Q2):).2/A1=(0.7, 1.4) 

(br1&2):A2/A1=(0.5, 1.8). 

(5.32) 

Thus, a steepening of the slope of the density fluctuation spectrum from /3=11/3 to /3=4 
increases the predicted flux variation and makes it roughly independent of observing wavelength, 
in better agreement with observations. There are corresponding changes in the estimates of the 
other observable quantities as seen by comparing equations (5.20)-(5.31) with (5.3)-(5.17). In 
fact the actual value of f3 could possibly exceed 4 by a small amount. In this case the scattering is 
dominated by large-scale density fluctuations and our theory is no longer valid, though the 
estimates embodied in equations (5.20)-(5.31) are probably still useful and accurate to a factor 
!S3. Goodman & Narayan (1985) present a more careful discussion of intensity fluctuations when 
/3>4. 

5.3 OBSERVATIONS ON PULSARS 

The angular size variations predicted for a few nearby pulsars with unusually large C_4 are 
probably within the capabilities of low-frequency VLBI. An extreme case, regrettably 
inaccessible to northern hemisphere VLBI, is the Vela pulsar which lies at a distance of 0.5 kpc. 
The measured pulse broadening at a wavelength of 75 cm is ~ 15 ms. The pulsar should therefore 
subtend an angular diameter of~ 300 milliarcsec at this wavelength. Therms fluctuations in the 
angular size are expected to be ~30 milliarcsec for /3=4 and should occur with a decorrelation 
time ~ 3 yr. (In fact it may be possible to monitor changes in the centroid of the VLBI image which 
should be of the same order of magnitude as the size changes and should also be correlated with 
dF / dT and the slope of the drifting patterns in dynamic scintillation spectra, Blandford & 
Narayan 1984.) 

The predicted fluctuations in pulse widths and arrival times are also measurable in a few 
pulsars. In particular, in the case of the millisecond pulsar 1937+21, we can use the measured 
decorrelation bandwidth of 6.3 kHz at 430 MHz (Cordes & Stinebring 1984) and the distance 
estimate D~5 kpc to estimate that C_4 =0.9 for /3=4. We then find that the expected pulse-width 
fluctuation is Ar~34). 4 µsand therms timing residual is At~8A 2 tabsµs (taking v7=0.8, Cordes, 
private communication). 

Table 1 gives a short list of relatively bright pulsars that appear suitable for monitoring 
refractive low-frequency variability. For the calculations, v was taken to be the measured pulsar 
transverse velocity and the wavelengths have been selected so as to give refractive time-scales 
!Sl yr. PSR 1818-04 seems to be the most interesting for VLBI observations. Several of the 
pulsars listed are predicted to have significant pulse-width fluctuations at metre and decametre 
wavelengths. A long-term low-frequency observational programme to look for correlated 
fluctuations of flux and pulse width in these pulsars appears to be worthwhile. It should be noted 
that the strengths of fluctuations quoted correspond to /3=4. If the spectrum is still steeper, the 
fluctuations will increase significantly. On the other hand, it the spectrum is Kolmogorov 
(/3=11/3), therms variations will be reduced by a factor ~3. 

Decorrelation bandwidth fluctuations can also be monitored at sub-metre wavelengths, where 
pulse widths are too small to be measured. An important advantage in going to short wavelengths 
is that the refractive time-scale goes as). 2 ( or A n;s for /3= 11/3) and so most pulsars will have 
convenient time-scales for observations, leading to a much wider selection of potentially 
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Table 1. Examples of pulsars displaying large refractive fluctuations. Values of C_4 are from Cordes et al. (1984) and velocities from Lyne et al. (1982) 
except those in brackets which have been estimated from scintillation data by Cordes, private communication. Other pulsar parameters are from Manchester 
& Taylor (1981). All calculations are for a critical spectrum with /3=4. 

Flux D(kpc) v(km s- 1) A(m) 26(mas) T (ms) ~(days) 
LIF 268 (mas) LIT(ms) 

Llt(ms) 
PSR 

S4oo(mJy) 
C_4 - tobs (yr) V F 

0329+54 1400 2.3 229 1.1 3 90 3 400 0.28 9 0.8 0.2 

0531+21 800 2.0 123 2.5 1.5 30 0,3 200 0,30 3 0.08 0.03 

0833-45 5000 0.5 (60) 14000 0.4 90 0,6 300 0,28 8 0.15 0.04 

1133+16 340 0.15 264 11 10 800 20 200 0,28 80 4 2 

1237+25 160 0.33 178 2.2 10 600 20 500 0.28 50 4 0.8 

1508+55 125 0.73 346 4.1 3 100 1 90 0,30 10 0.3 0.3 

1818-04 170 1.5 194 89 1 70 1 300 0.28 7 0.3 0.1 

1937+21 100 5.0 (80) 0.9 0.7 6 0.03 200 0,33 0.7 0.007 0.004 
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interesting pulsars. The decorrelation bandwidth is expected to be anticorrelated with the pulse 
width because of the approximate relation brr: Ll v~ 1, and so the present results on Ll r: could be 
borrowed to make rough estimates of the magnitude of the fluctuation in Llv. However, the 
present geometrical optics approach may need to be modified to handle diffraction phenomena. 
We plan to discuss this in a future paper. 

6 Extragalactic radio sources 

The majority of low-frequency variable extragalactic radio sources are at high Galactic latitude 
and model (b) of Appendix A is appropriate. If we assume that the scale height of the electron 
density layer is ~0.5 kpc (Cordes et al. 1984) and that the fluctuations are spatially uniform, then 
the time-scale for the variability should be ~30A2 cosec312 (b)v 71 day (assuming /3=4 and 
C_4 = 1), where now v7 is an effective velocity including the motion of the Earth and the medium. 
Variability should only occur for A~lOcm. These predictions are compatible with the observed 
range of variability wavelengths and time-scales, as concluded by Rickett et al. (1977). The 
correct choice of the relative velocity is problematical, however, and if we add to this uncertainty 
the real possibility that the fluctuations may be spatially inhomogeneous, then there is probably 
enough scatter to mask the rather weak predicted dependence of the variability time-scale on 
Galactic latitude. The scaling with wavelength may also be confused because we know that there 
must be intrinsic variability at centimetre wavelengths and that this must contribute to the 
observed variation at intermediate wavelengths. The predicted interstellar scattering angular 
sizes [20~4A 2 cosec 112 ( b) milliarcsec] are probably just too small to influence the source 
structures derived from normal ground-based VLBI (although they should be taken into account 
in the design of the proposed QUASAT mission). Low-frequency VLBI should be able to 
monitor the fluctuations in the position and angular size of the sources. It would be interesting to 
look for correlations of these with flux variations. 

7 Conclusions 

It has been suggested that the ~monthly variability observed in pulsars and compact extragalactic 
radio sources could be largely an extrinsic, interstellar effect. This is an appealing idea for which 
there is already some observational support. In this paper, we point out that it should be testable 
using careful observations of selected pulsars. 

The long time-variability is attributed to long-wavelength electron density fluctuations. We 
have introduced a simple model that localizes all these fluctuations in a thin screen and computes 
their focusing and defocusing effects on a beam of radio waves that is already broadened by 
smaller scale fluctuations. This geometric approach is only valid if the small-scale scattering 
exceeds the large-scale scattering, a condition that is at best marginally satisfied in the interstellar 
medium. 

When the beam is focused, the flux, pulse width and angular size should simultaneously 
increase and the pulse should arrive early. We have estimated the associated auto- and 
cross-correlation coefficients for fluctuations in these quantities together with their variations 
with time and wavelength difference. We have also suggested some candidate pulsars (Table 1) in 
which to seek these correlations. If the correlations are found then they should confirm the 
importance of interstellar refraction. They should also motivate more detailed calculations of 
these effects. 

Since strong flux variation is observed at low frequency, we have tentatively concluded that the 
amplitude of the spectrum of the fluctuations should have a spectral slope somewhat steeper than 
the traditional 'Kolmogorov' value, /3=11/3. It may exceed the 'critical' value of 4, in which case 
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the calculations of this paper are strictly invalid. Roberts & Ables (1982) suggested that /3 may be 
greater than 4 because of the occurrence of periodicities and multiple drift slopes in dynamic 
scintillation spectra, arguing that these arose from the interference of a few beams (see also 
Ewing et al. 1970). An immediate consequence of this picture is that the intensity variation across 
the pulsar image will not be the smooth Gaussian that we have assumed but may be 'patchy' with 
a few dominant bright spots. VLBI maps of pulsar images should clarify this issue. 

There are two further implications of the ideas presented in this paper that are of immediate 
observational relevance. First, arrival-time fluctuations may limit the accuracy with which the 
millisecond pulsar 1937+21 can be timed. This will in turn limit its usefulness as a sensitive 
detector of long-wavelength gravitational radiation (e.g. Romani & Taylor 1983; Armstrong 
1984; Blandford et al. 1984). We believe that it may be possible to correct for some of these effects 
by carefully monitoring the flux, pulse width and dispersion measure variation. We plan to discuss 
this elsewhere. The second issue concerns the direct influence of the refractive effects on the 
diftractive scintillation. In particular, variations in the decorrelation bandwidth and the rate of 
frequency drifting of the scintillation pattern can be used as a more sensitive probe of interstellar 
refraction. As the analysis of these effects goes beyond the purely geometrical optics discussion of 
the present paper, we have deferred this also to a subsequent publication. 

In conclusion, we urge pulsar observers to schedule their monitoring programs so that the 
predicted cross-correlations can be detected or shown to be absent. Whatever the outcome of 
such investigations, they should tell us more about the interstellar medium and the nature of 
extragalactic radio sources. 
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Appendix A 

We study the scattering of rays by the inhomogeneities in the interstellar medium in the limit 
when different rays within the image suffer uncorrelated deflections. Let the rays be scattered 
through a small angle ~g on traversing a distance ~z of the medium. If the scattering is isotropic 
about the ray direction, then it can be described by a mean scattering rate, 'lj)(z)=< (~g) 2 / ~z ). 
Define 0 to be the angle between the local direction of propagation of a ray and the radius vector 
from the source. Then 02 can be shown to satisfy the following differential equation 

1 d(z 202) 
-2 -- 'lfJ(z). 
z dz 

(Al) 

Hence, integrating along the line-of-sight from the observer to the pulsar at distance D, 

l fD 
02 = - 2 dz z2'lj)(z). 

D o 
(A2) 

A point source will have a circular Gaussian brightness distribution of angular radius 0. Likewise, 
the mean geometric time delay satisfies 

dt 02 

c-=-. 
dz 2 

Solving, we obtain (cf. Alcock & Hatchett 1978) 

l fD 
t= - dzz(D-z)'lj)(z). 

2cD o 

We locate the equivalent screen at distance 

L=2ct/0 2 

(A3) 

(A4) 

(A5) 

and ad just the strength of the inhomogeneities on the screen so that the mean angular size of the 
image becomes 0. 

For illustration purposes, we shall consider two simple scattering models. 

(a) The scattering is uniform between Earth and a pulsar lying in the Galactic plane. In this 
case, 

L=D/2 (A6) 

and the strength of the fluctuations on the screen is equivalent to collapsing a slab of the extended 
medium of thickness L', where 

L'=D/3. (A7) 

(b) The scattering is distributed exponentially with scale height H cosec ( b), and the pulsar is 
located at a height much greater than H above the Galactic plane. In this case 

L=L'=H cosec (b). (A8) 
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Appendix B 

We present here the correlation coefficients for the normalized fluctuations calculated using the 

method described in Section 4. If we adopt a power-law spectrum of density fluctuations, 
Q=Q 0q-f3, then we find that 

(oF(x)oF(x+s) )=Kh1 

(oF(x)oQ(x+s) )=K(h 1-¼h2) 

(oF(x)&(x+s) )=-2K(h 0-½h 1 +1/sh2) 

( oF(x)or(x+s) )= 3/2K(h 1 -1/3h 2+¼sh 3) 

(oQ(x)oQ(x+s) )=K(h 1 -½h 2+1/16h3) 

(oQ(x)&(x+s) )= -2K(h 0 -¾h 1 +¼h 2-½2h3) 

(oQ(x)or(x+s) )=3/2K(h1 - 7/12h2+ 5/4sh3-1/192h4) 

(&(x)&(x+s) )=K(h_ 1-h 0+½h 1 + 1/sh 2+%4h 3) 

(&(x)or(x+s) )=3K(h 0-5/6h 1 + 15/4sh2 - 5/96h3+1/Js4h4) 

( or(x)or(x+s) )=%K(h1 - 2/3h2+ 11/nh3-1/nh4 +½304hs), 

(Bl) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 

(BS) 

(B9) 

(BlO) 

where Kand hn(s) are defined by equations (4.17), (4.18). The functions hn(s) only exist for 
n>/3-4. Consequently the expression for (&(x)&(x+s)) is only valid for /3<3 and the 
cross-correlations ( ot(x)oA(x+s)) for /3<4. When these conditions are violated, then we must cut 
off the integral in equation (4.8) at q=qmin~2JT:/vt0 bs as described in Section 5. 

We can also derive expressions for the auto-correlations of oF, oQ, or with respect to changes 
in the observing wavelength. Evaluating these at s=O, we obtain 

Ai A~ 
(oF(A 1)oF(o 2)oc 2 2 c6-{3)/Z 

[a1 +a2] 

AiA~[2(/3-4) ( at+ifi)2 + (8-/3) ( 6-/3)ara~] 
(0Q(A1)0Q(A2))oc 2 2 c10-13);2 

4(a 1+a 2) 

(/3- 2) 2 2 
+--a1a2 

3 

(Bll) 

(B12) 

1 GiGi ]} +- ----(10-/3) (12-/3) 
24 (ar+a~)2 

(B13) 

where aocA/3/(/3-Z) and a 1,2=a(A 1,2). These autocorrelations can be normalized using equations 

(Bl), (B5) and (B10). 
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