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1. Introduction

We first describe the problems we are studying in this article. Let us fix an algebraically closed
field £ throughout this article. Let G be a connected simply-connected semisimple group over k,
and let k[G] denote its ring of regular functions. Consider the conjugation action of G on itself, and
let J = k[G]C(G) denote the space of conjugation invariant regular functions on G. More generally,
for an algebraic representation V of G, let

JV) = kG V) D ={f:G>V|flgrg™") =g f(z), z.9€G}

denote the J-module of V-valued conjugation invariant (algebraic) functions on G, where G acts
on k[G] ® V diagonally. There are also similarly defined rings of invariants Jy and J; and the
corresponding modules Jo(V') and J(V), when G is replaced by its asymptotic cone Asg and the
corresponding Vinberg monoid V. Our first result is as follows.

arXiv:1802.05299v2 [math.RT] 15 Jan 2019

THEOREM 1.0.1. Assume that V' admits a good filtration. Then the module J(V') (resp. J+(V),
resp. Jo(V')) is finite free over J (resp. J 4, resp. Jo) of rank dim V' (0), where V(0) denotes the
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zero weight space of V' (with respect to a mazimal torus of G). In addition, if chark = 0, there are
natural bases of J(V'), J+(V), and Jo(V') determined by certain bases of V.

We refer to §[4.4]for detailed discussions regarding to the last statement. This theorem resembles
the classical result of Kostant ([Ko63|): Assume char k = 0, and let g be the Lie algebra of G. Then
(k[g] ® V)@ is a graded free k[g]“-module with a basis given by harmonic polynomials. Recall that
the study of (k[g] ® V)¢ leads to a natural filtration on the weight spaces (the Kostant-Brylinski
filtration), which can be studied either via the geometry of the flag variety (as in [Br89]) or via the
geometric Satake correspondence (as in [Gi95]). Likewise, our proof of the above theorem leads
us to define a multi-filtration on the weight spaces (see § , which can also be studied either
via the geometry of the flag variety (§[3.4)) or via the geometric Satake correspondence (§ . In
particular, we obtain a multivariable analogue of the weight multiplicity P, ,(¢) of a representation
(see Remark [3.3.3). Note that Kostant’s theorem has a very simple proof ([BL96]). It would be
interesting to see whether there is a similar argument in the group case (at least when char k = 0).

Note that finite freeness of J(V') over J was previously known to Richardson (see [Ric79])
when char £ = 0 and Donkin (see [Do88b| and the appendix) in positive characteristic, under the
same assumption on V', but by a different metho

Now let V* be the dual representation of V', which is also assumed to admit a good filtration.
Then there is a natural J-bilinear pairing
(1.0.1) JV)JV*) = J
induced by pairing V-valued functions with V*-valued functions. One can show that this pairing is
a certain deformation of the natural pairing between V(0) and V*(0) (see Remark (2)). Our
main result (Theorem calculates the determinant of this pairing as an element in J up to a
unit (or more precisely as a divisor on SpecJ.) We choose a maximal torus T' of G. Let ®(G,T)
denote the root system of G. For a root a of G, let e® denote the corresponding character function
on T. For a weight X of T, let V()\) denote the corresponding weight space. Using the classical
Chevalley isomorphism, we identify J = k[G]C(G) with the Weyl group invariant functions on 7.

THEOREM 1.0.2. Assume that chark > 2. Then the determinant of the pairing (1.0.1) is

c H (ea - 1)<a7

ac®(G,T)

where c is a non-zero constant and (o =), ~, dim V(na).

As mentioned above, when char k = 0, it is possible to construct bases of J(V) and J(V*) so
the pairing can be represented by a matrix. We refer to § for some examples where the
matrices are calculated explicitly. Our main interest in these matrices (and their determinants) lies
in the fact that under the Satake isomorphism they exactly correspond to the intersection matrices
for certain cycles on the mod p fibers of some Shimura varieties; we refer to [XZ17] for more details.

In fact, in this article, we will consider a more general situation. Assume that 7 is an automor-
phism of the algebraic group G. We consider the m-twisted conjugation action of G on itself

(1.0.2) c-(h)(g) = hgr(h)™Y, for g,h € G.

This is equivalent to considering the usual conjugation action of G on the coset G7 inside the
semidirect product G'x (7). We can similarly define J(V) := (k[G]®V )7 (©) as the space of V-valued
functions f on G satisfying f(gz7(g9)"!) = ¢- f(z), x,9 € G, and in particular J := k[G]¢~(%).
We prove the above mentioned results for general 7 (see Theorem and Theorem for

Lror example, the method in loc. cit. requires the flatness of the Chevalley map G — G/c¢(G) as an input,
whereas our approach could deduce the flatness as a corollary (see Corollary [4.3.3)).
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the general statements). This generality is needed in [XZ17] for applications, but will cause some
additional complications for this article. Readers who are happy with 7 = id can skip § [5] and parts
of § [ and §[6]

We expect that results in this article can be generalized to the case of symmetric pairs. In
addition, by reformulating the argument purely algebraically, it is likely that they also extend to
quantum groups.

We briefly describe the remaining parts of the note. In § [2| we discuss multi-filtered vector
spaces and the corresponding Rees construction in some generality. Unlike the classical situation,
the dimension of the associated graded vector space might be larger than the dimension of the
original vector space. Whether the two dimensions are equal is a subtle question and is closely
related to the flatness of certain Rees modules. We give some sufficient conditions for the equality,
which might be of independent interest.

In§ we define the canonical filtration on a G-representations and study the associated Rees
modules. We apply these discussions to the Vinberg monoid in §

In § we discuss twisted conjugacy classes of G for the action . In particular, we
discuss the notion of 7-regular conjugacy class, and study the (twisted) Chevalley map and the
Grothendieck—Springer resolution, generalizing some well-known results for 7 = id. _

In § we study J(V ® V*). It is naturally the space of endomorphisms of a vector bundle V'
on the quotient stack [G/c,(G)] for the T-twisted conjugation action of G on itself, and therefore
is a J-algebra. This is non-commutative in general. But we will study a commutative subalgebra
generated by a “tautological” element in it € J(V @ V*).

Acknowledgments. Some of the work was finished when both authors visited Beijing Inter-
national Center of Mathematical Research, we thank the staff members for the hospitality. We
thank Xuhua He, George Lusztig, and Jun Yu for useful discussions, Stephen Donkin for useful
comments and the referee for carefully reading the early version of this article.

Notations and conventions. Throughout the note, let k denote an algebraically closed field.
By a variety over k, we mean a separated, integral scheme of finite type over k. If X is an affine
algebraic variety over k, let k[X] denote the ring of regular functions on X. If X is an algebraic
stack of finite presentation over k, let Coh(X) denote the category of coherent sheaves on X.

For an algebraic group H, let BH = [Speck/H] denote the classifying stack. We identify
Coh(BH) with the category Rep/ (H) of finite dimensional representations of H, and use them
interchangeably. In particular, the trivial representation, sometimes denoted by 1 corresponds to
the structure sheaf of BH. If X is an H-space and V' is an H-representation, let Vix gy := X xHvy
be the locally free sheaf on [X/H] via the usual associated construction. Alternatively, it is the
pullback of V' (as coherent sheaf on BH) along the natural projection [X/H]| — BH.

For a reductive group H acting on an affine variety X over k, we write X/ H := Spec k[X]"
for the GIT quotient. There is a natural morphism of stacks [X/H| — X/ H.

The ind-completion Rep(H) of Rep/ (H) is the category of algebraic representations of H. If
H, C H is a closed subgroup, and V an H;j-representation, let

indf, V := (k[H]|®@ V)" =T(H/Hy, Vi)
be the induced H-representation. It is the right adjoint of the restriction functor Resg1 from H-
representations to Hi-representations. If no confusion will likely arise, for an H-representation V,
we write V' for Resglv for simplicity.

For an algebraic group H, let Dist(H) denote the Hopf algebra of invariant distributions on H.

Sometimes, Dist(H) is also called the hyperalgebra of H.
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Let X be a set (or scheme) with an automorphism 7. We denote by X7 the subset (subscheme)
of fixed points. If X is an abelian group, let X denote its group of coinvariants.
Throughout this note, N stands for the set of nonnegative integers.

2. Filtered vector spaces and Rees modules

2.1. Filtered vector spaces. We need to first discuss (multi)-filtered vector spaces and
(multi)-graded modules. It seems best to start with the following setup. Let (S, <) be a par-
tially ordered set (or sometimes called a poset for simplicity). As usual, we write s < s9 if $1 < $9
but s; # so. Recall that S is called directed if for s,s’ € S, there exists s” € S such that s < s”
and s’ < s”. We say a partially ordered set poly-directed if S = L;S; is a disjoint union of directed
poset S;, and if s € S; and s’ € S; are incomparable if 7 # j.

DEFINITION 2.1.1. Assume that S is poly-directed. We define an S-filtered vector space (or a

vector space with an S-filtration) to be a vector space M, equipped with a collection of subspace
{fily M, s € S} such that fily M C fily M if s < s/, and that

(2.1.1) M= fil.
S; SES;

Let Vect® ™ denote the category of S-filtered vector spaces, with morphisms given by k-linear
maps preserving the filtrations. Similarly, we define an S-graded vector space to be a vector space
M equipped with a direct sum decomposition M = @4cgM, indexed by S. Let Vect® 8" denote
the corresponding category. There is a natural functor

gr: Vect™ ™ — Vet &, M s grgM = Per,M, gr,M =fil, M/ fily M.
ses s'<s

In the above definition, if s is minimal in S, i.e. the set {s’ € S | s’ < s} is empty, then we set
Y osesfily M = 0 so gryM = fil,M. If S is clear from the context, we write grM for grgM for
simplicity.

We say a nonzero element m € grM is of homogeneous of degree s if m € gr,M. For a
homogeneous element m of degree s, a lifting of m is an element m € fily M whose projection to
gr M is m.

ExampLE 2.1.2. (1) If S = N equipped with the natural order, an S-filtered vector space is
a vector space M equipped with an increasing filtration filg M C fily M C --- in the usual sense
such that M = U, filg M. In this case, for every non-zero element m, there is a unique s such that
m € filg M —fil;_; M and its projection to gr,M is called the symbol of m, denoted by m.

(2) Assume S = N" with the partial order (si,...,s,) < (s],...,s;) if s; < 8} for every j. Let
M be a vector space equipped with r independent increasing filtrations ﬁlé M C ﬁl{ M C --- such
that (J, ﬁlgM = M, for each j = 1,...,7r. Then one can define an S-filtration of M as follows: for
5= (S1,.-,8), let fil, M = n; ﬁlgj M.

The partially ordered sets we encounter in this article will satisfy the following descending chain
condition

(DCC) Every descending chain sy > s; > --- is finite.

It is clear that the condition (DCC) passes to subsets of a partially order subset.

The following lemma is usually referred to as the graded Nakayama lemma.

LEMMA 2.1.3. Let S be a poly-directed poset satisfying (DCC). Let M be an S-filtered vector
space.

(1) If grM =0, then M = 0.



(2) Let {m;} be a set of homogeneous elements that span grM , and let {m;} be a set of liftings.
Then {m;} span M. In particular, dim M < dimgrM.

PROOF. (1) Assume M # 0. Then there should exist some s; € S such that fil;, M # 0. Since
grM = 0, there should be another sy < s; such fil;, M # 0. In this way, one could produce a
descending chain s; > s > - -+ of infinite 1engthf.vContradiction.

(2) We may assume that S is directed. Let M C M be the subspace spanned by {m;}, and let
M = ]\/.I'/]/\\/_I'/7 equipped with an S-filtration defined as fil; M’ = Im(fil; M — M"). By construction,
grgM' = 0. Therefore M’ = 0 by Part (1). O

REMARK 2.1.4. In the classical situation, i.e. Example2.1.2](1), it is always true that dim grM =
dim M. One can also show that this is the case if S is as in Example [2.1.2] (2) with r = 2. However,
the inequality dimgrM > dim M could be strict in general. For example, take S as in Exam-
ple (2) with » = 3 and let M be a 2-dimensional vector space equipped with three filtrations
0=fl)M C filj M C i, M = M, j = 1,2,3 such that filj M, fil} M, il M are three different
lines in M. Then if we define the S-filtration on M as in Example (2), the graded spaces
8r(1,2,2)M, 8r(2,1,2)M, 8r(2.2,1)M are all nontrivial. It then follows that dimgrM =3 > 2 = dim M.

As we shall see soon, whether dim M = dimgrM is closely related to the flatness of certain
Rees module. So it would be desirable to have some criteria for the equality. Here is one which is
a direct consequence of the above lemma.

COROLLARY 2.1.5. Let (S, M) be as in Lemma[2.1.3 If
(*) there is a basis {m;} of grM consisting of homogeneous elements (such a basis is called a
homogeneous basis), and for each i a lifting m; of m;, such that {m;} form a basis of M,
then dim M = dim grM.
Conversely, if dim M = dimgrM < oo, then for every homogeneous basis of grM, any set of
liftings of elements in this basis to elements in M form a basis of M.

A particular situation where the above criterion is applicable is as follows.

LEMMA 2.1.6. Consider an S-filtered module M as in Example (2). Assume that there
is a basis B = {m;} of M such that for each j, the corresponding symbols {m;’} for the filtration
{8} form a basis of gt/ M = @4 fit), M/fil}, | M. Then dim M = dimgrM.

Proor. For m; € B, define its multidegree to be d(m;) := (di1(m;),...,d;(m;)) € N" such that

with respect to the jth filtration fil M, m; € ﬁlilj(mi) M — ﬁlilj (miy1 M- Given d = (dy,...,d,), let

Bi = {mz cB ’ d](ml) = dj}a BSQ = '—'d’gdﬁg"
Then it is easy to show that B<; form a basis of filj M. Indeed, let m € filg M, and write
m = a;m; in terms of the basis B. If not every element in {d(m;) | a; # 0} is < d, we can
find some 1 < j < r such that d; := max{d;(m;) | a; # 0} > d;. Then projecting to grfi;M gives
0 = > a;m;’ for the sum over those m; with d;(m;) = d;. This contradicts our assumption.

It follows that the projection of elements in By in gryM form a basis of gryM. The lemma
follows from Corollary 2.1.5] O

We will also use of the following lemma.

LEMMA 2.1.7. Let (S, M, {fils M }scs) be an S-filtered vector as above (in particular S is poly-
directed), and assume that S satisfies (DCC). Let S C S be a subset. Assume for every s € S,
the set {s' € S' | s < s'} is nonempty and has a unique least element, denoted by s". Then

S’ with the induced partial order is also poly-directed, and also satisfies (DCC). In addition,
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dimgre M < dimgrgM, where gro M denotes the associated graded of M with respect to the
sub-filtration {fils M }scgr. In particular, if dim M = dimgrgM, then dim M = dim grg, M .

PROOF. The statement for S’ is clear. We prove the inequality. Then last equality follows from
it by Lemma [2.1.3

If s € S, the s-graded piece in grgM is denote by gr M while the s-graded piece in grg, M is
denoted by griM. Fort € S, let S; = {s € S | s" =1} C S. Note that this is a partially ordered
set with the greatest element t and S = Ll;cgS;. We can define a filtration on gr;M labeled by S;
as filg gryM = Im(fily M — gr;M). Note that fil; gr}M C fily gr;M if s < s’. Let

gr g/ M = fil, gr) M / S il g
s'<s,s'€S
Note that S; also satisfies (DCC), so by Lemma > ses, dimgrogriM > dimgriM. On the
other hand, for a fixed s € S, if & < s and /" # ¢, then s’ < t and therefore the image of

fily M — griM is zero. It follows that gr.griM is a quotient of gr,M = fil, M/%",_ fily M.
Therefore, it follows that for every t € S’,

Z dimgr. M > Z dim gr gr; M > dim grj M,

sES s€SE
giving dimgrgM > dim grg M. O

2.1.8. Monoid and partially ordered set. The partially ordered sets we encounter in this paper
will mostly arise in the following way. Let " be a commutative monoid, and let S be a non-empty
set with a I-action (where multiplication and the action map will be written additively). Consider
the following condition

(Can) The only invertible element in I" is the unit element (such a monoid is called sharp), and
the action of I' on S is free, i.e. for s € S and v,7 € I, the identity s+~ = s+~ implies
7=7"

This condition in particular implies that I' is integral, i.e. the map from I" to its group completion
I'®P is injective. In addition, there is a well-defined partial order on S defined by s < s if ' = s+~
for some v € I'. Note that since s1 < s9 and so < s1 will imply s; = s9, this is indeed a partial
order.

LEMMA 2.1.9. The set S equipped with the above partial order is poly-directed.

PROOF. The only property of this partial order we need is the following: if s < s; and s < s9,
then there is s’ such that s; < s’ and s < s’. Indeed, by definition s; = s + 9, and s = s + .
Then we can choose s = s + 1 + 72. We show that any partially ordered set S satisfying this
property is poly-directed.

Consider the equivalence relation on S generated by the partial order. It is enough to show
that every equivalence class equipped with the induced partial order is directed. But if s, s" are in
one equivalence class, then there exists a chain of elements s = sg, s1,...,s, = s’ € S such that
either s; < s;41 > sjq2 or 85 > 841 < s;42. By replacing the second relation by s; < 52+1 > Sit+2
repeatedly, one find s” such that s < s” > s’

2.2. Rees construction. Let I' be a commutative monoid acting on a set S. Let R = k[I]
be the monoid algebra. For v € T', the corresponding element in R is denoted by e7. Let Iy C R
be the ideal generated by ¢¥ — 1 for all v € I, and let Iy C R be the ideal spanned by e” for all
0#~el.
We define an S-graded R-module to be a k-vector space N with a direct sum decomposition
N = ®ses5Ns, such that ¢€?Ny C Nyi,. They naturally form a category, with morphisms given
6



by R-module homomorphisms preserving the grading, denoted by R—Mod®~8". There is a natural
functor
R—Mod® ™8 — Vect® 8, N~ N/IjN,
where (N/IgN)s = Ns/ >y ¢’ Ny. Given a homogeneous element n € N/IgN of degree s, a
homogeneous lifting of n to N is an element n € N, which projects to n.
If (I, S) satisfies (Can), there is also a natural functor

R—Mod®# — Vect®~ il N — N/I|N,

where we define the S-filtration by fil,(N/I; N) = Im(Ny - N — N/I;N). The following lemma
is another version of the graded Nakayama lemma.

LEMMA 2.2.1. Let (T, S) be as above and assume that (Can) and (DCC) hold for (I',S). Let
R =k[I']. Let N be an S-graded R-modules.
(1) If N/IgN =0, then N = 0.
(2) Let {n;} be a set of homogeneous elements that span N/IoN, and let {n;} be a set of
homogeneous liftings. Then {n;} generates N as an R-module.
(3) Assume that in addition, the images of {n;} in N/I1N form a basis of N/I1N. Then
N = ®;Rn;. In particular, N is a free R-module.

PRrOOF. The proof of Part (1) and (2) is the same as the proof of Lemma For Part (3),
let " r;n; = 0 be a homogeneous linear relation in N, and write r; = a;e”. Then in N/I; N, there
is a linear relation _ a;n; = 0, which implies all a; = 0. ]

We continue to assume that (I',.S) satisfies (Can). Then the functor N — N/I; N as above
admits a right adjoint

Vect®™ M — R-Mod™#, M — RsM = (Pfil, M,
ses

where we define the multiplication €7 : fily M — fil,1, M (i.e. the R-module structure) to be the
natural inclusion. The functor M — RgM sometimes is called the Rees construction and RgM
is called the Rees module. It is convenient to introduce the formal symbols e®, s € S and write
elements in the degree s summand in RgM as me® for m € fily M. Then the R-module structure
on RgM is given by €7 - me® = mes*7.,

We need some criteria of flatness of RgM over R. Note that if it is the case, then by
dim grM should be equal to dim M (if both are finite). It turns out that under some mild assump-
tions on M, this condition is also sufficient. First, note that

(2.2.1) RsM/IoRsM = grM, RgM/IRsM = M,
where the second isomorphism makes use of (2.1.1)).

LEMMA 2.2.2. Let (T, S, M, {fil; M }scs) be as above and assume that Conditions (Can) and
(DCC) hold for (I',S). Let RgM be the corresponding Rees module. Assume that Condition (*) in

Corollary [2.1.5 holds. Then RgM is free over R with basis {m;e}. In particular, if dimgrM =
dim M < oo, then RgM is free over R.

Proor. This follows from Lemma [2.2.1{ and (2.2.1)). O

2.2.3. Rees algebra. Let (T', S, M, {fil; M }scs) be as before, where (T", S) satisfy condition (Can).
If S itself is a commutative monoid such that the action of I' on S is induced by a monoid ho-
momorphism f : I’ — S (the action of S on itself is the natural translation), and if M is a (not
necessarily commutative) k-algebra, then it makes sense to assume that the filtration {fily M }.cs
satisfies the additional condition
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(Alg) k C fily M and fil, M - fily M C fily, oy M.

In this case, RgM is naturally a (not necessarily commutative) algebra over R, with the multipli-
cation given by me® -m’e® = mm/es™s' and the map R — RgM is given by ¢ — 1-e/(V). We call
it the Rees algebra of M.

If in addition, M has a co-algebra structure such that each fil; M is a sub-coalgebra, then RgM

is also a coalgebra.

3. Filtration on representations

In this section, let G be a connected reductive group over k. We discuss the canonical filtration
on G-representations and the associated Rees modules in §[3.1] and apply discussions to the Vinberg
monoid in § In § we define and study a multi-filtration on the weight spaces of a
representation of G. Just as the Kostant—Brylinski filtration plays an important role in the study
of vector-valued invariant functions on g, this filtration is important for the study of vector-valued
invariant functions on the group. We will make use of the following notations and conventions
throughout this section.

We fix a maximal torus T of GG, contained in a Borel subgroup B. Let U denote the unipotent
radical of B. Let ® = ®(G,T) denote the root system, and A C ® the set of simple roots with
respect to B. For every a € ®, we fix an isomorphism z,, : G, ~ U,, where U, is the root subgroup
corresponding to «. The tuple (G, B,T,{xs}aca) forms a pinning of G.

The Lie algebra u, of U, is spanned over k by E, := dy% (here we regard y, = z;! as a
coordinate function on U,). More generally, the algebra of invariant distributions Dist(U,) of U,
is spanned over k by {E&n), n > 0}, where Ec(yn) (yfl) = <7jz> y27". In particular, E&n) (yé) =0if

n > j. Informally, we may think EM = E”/nl.

Let B~ be the opposite Borel with respect to (7, B) and U~ its unipotent radical. Let N =
Ng(T) be the normalizer of T in G, and let W = N/T denote the (absolute) Weyl group. Let
wg € W be the longest Weyl group element. Let pu — p* := —wg(u) be the involution on the
character lattice X*(T'), which preserves the set of dominant weights X®*(T')" (with respect to B).
When we regard a weight v € X*(T') as a regular function on 7', we write it as e”.

Let Zg denote the scheme-theoretic center of G. Let T,q be the adjoint torus of G, i.e. the
quotient of T by Zg. Its character lattice X®(T,q) is the subgroup of X*(T") generated by roots.
We write X®*(T,q)pos for the monoid of nonnegative integer linear combinations of simple roots in
A. We consider the partial order < on X*(7") induced by the action of X®(T,q)pos in the sense of
§ i.e. A1 X Ag if and only if Ay — A\ is a nonnegative integral linear combination of simple
roots of G.

For a root «, let G, be the rank one subgroup of G generated by T,U,,U_,. Let B, = TU,
and B, = TU_, be the pair of opposite Borel subgroups of G,. We similarly have the partial
order <, on X*(7T') induced by the action of Z>pa. We say A is a-dominant if (\,aV) > 0, where
o is the coroot corresponding to a. Note that if 0 <, A, then ) is a-dominant.

For a weight v € X*(T'), let k,, denote the corresponding one-dimensional 7-module. For a repre-
sentation V of T and v € X*(T"), we write V (v) for the v-weight space, so V(v) = Homy (k,, V) ®k,.

3.1. The canonical filtration on G-modules. We first review Weyl and Schur modules.
Via inflation, the T-module k, can be regarded as a representation of B or B~. Let

S, = indg, k, = indg k?wo(l,)

be the Schur module of highest weight v, and let

W, :=S).
8



denote the Weyl module of highest weight v. More geometrically, we write
Oc/p(v) =G xPk,, Og/p-(v)=Gx" k,
to denote the line bundle on the flag variety. Then
S, =T(G/B~,0(v)) =T(G/B,O(wy(v))).

It is known that S, = W, = 0 unless v is dominant.

We call a dominant weight w € X*(T)" minuscule if all weights in S, form a single orbit under
the action of the Weyl group W. Note that in this case, the multiplicity of each weight space is
one-dimension and S, = W,,. The set of minuscule weights is denoted by Min C X*(T")*. Note that
in our convention, the zero weight is minuscule.

LEMMA 3.1.1. Let X*(T)}t., C X*(T) be the submonoid generated by X®(Toq)pos and X*(T)".

pos
Then under the natural action of the monoid X*(Taq)pos,

X.(T);)ros - |_| (w + X.(Tad)pos)'
w€Min
In particular, the pair (T',S) = (X*(Tad)pos, X*(T)s) satisfies Conditions (DCC) and (Can) in
the previous section.

PRrROOF. It is known that the set Min gives a collection of coset representatives of the quotient
X*(T')/X®*(Twa) so that every A € X*(T') can be uniquely written as A = vy +wy with vy € X*(Thq)
and wy € Min. In addition, if A € X*(T)", then vy € X*(Tad)pos- The lemma then clearly
follows. ]

For a representation V of G, we define an X*(T')} ofiltration on V, called the canonical filtration
of VE| as follows. For A € X*(T), we denote by V<) the mazimal subrepresentation of G such that
Va(v) # 0 implies v < \. Clearly, V<, # 0 only if A € X*(T) . Moreover, the functor V — Vx)

pos*
is left exact. Therefore, we obtained the quadruple
(1,8, M, {filsM}ses) = (X*(Taa)poss X*(T)gos: Vo {Varbnexce ()

Let R = k[X*(Tad)pos], and let Ry, V be the associated Rees module, which is an XO(T) fos
graded R-module. Note that the functor

G—Mod — R—Mod™ (M8 v iy By 0 V

is left exact.

There is an important class of G-modules, whose Rees module associated to the canonical
filtration is R-flat. Recall that a good filtration of a representation V of G is a filtration of V' by
G-submodules (in the classical sense as in Example (1)) whose associated graded are Schur
modules. We recall some important properties of this class of representations.

THEOREM 3.1.2. (1) If V admits a good filtration, then its restriction to every Levi sub-
group M C G also admits a good filtration (as an M-module).
(2) The tensor product of two G-modules that admit a good filtration also admits a good fil-
tration.
(3) The following are equivalent.
o V admits a good filtration.
o Ext'(W,+,V) =HYG,S, ®V) =0 for every dominant weight v and every i > 0.
e Ext!(W,-,V) =HYG,S, ® V) =0 for every dominant weight v.

2This is closely related, but not the same as the notion of canonical filtration in [Ma90, §3]. In particular, our
definition is independent of any choice.
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(4) Regard k|G as a G x G-bimodule via left and right translations. Then k|G| admits a good
filtration. For every dominant weight v, S, ® Sy« appears in the composition factors of any
good filtration of k|G| exactly once.

Part (1) and (2) are due to Mathieu [Ma90|] (and were already obtained earlier by Donkin
[Do85] in most cases) and (3) is due to Donkin [Do81]. Part (4) is due to Donkin [Do88a] and
independently Koppinen [Ko84]. It follows easily from Part (3) that the number of factors in the
successive quotients of a good filtration of V' that are isomorphic to S, is equal to dim Homg(W,, V),
and therefore is independent of the choice of the good filtration. In particular, if V is finite
dimensional

(3.1.1) dimV =) "~ dim Homg(W,, V) - dim$,,.

The main result of this subsection is as follows.

PROPOSITION 3.1.3. Let V' be a (finite dimensional) G-module that admit a good filtration.
Then the Rees module RX‘(T):;OSV associated to the canonical filtration is a (finite) flat R-module.

PROOF. As every G-module V' that admits a good filtration is the union of finite dimensional
G-submodules V; that admit a good filtration, and as Ry, (T)S“osv is the union of RX.(T);)SVZ‘, we may

assume that V is finite dimensional. Now by Lemma[2.2.2] it suffices to show that dim V' = dim grV'.
But this follows from (3.1.1)) and the following lemma. O

LEMMA 3.1.4. Let V be a representation of G that admits a good filtration. Let A be a weight.
(1) Both V<) CV and V/V<y admit good filtrations.
(2) Let V2y = Z/\,j)\ Vax C Vza. Then Vi admits a good filtration, and V<x/V<y is iso-
morphic to Homg(Wy, V) ® S,.

Proor. This is a special case of [Do85) 12.1.6]. We include a proof for completeness. (1) By
Theorem (3), it is enough to show that for every dominant v, the map

(3.1.2) Homg(W,, V) — Homg(W,, V/V<))

is surjective. If v < A, then Homg(W,, V/V<)) = Homg(W,, (V/V=y)<x) = 0, since (V/Vzy)<) is
evidently zero. Assume v A A. By Frobenius reciprocity, the map (3.1.2) may be identified with
the map Homp(k,,V) — Homp(k,,V/V<,). Let L C V(v) be a line, such that B acts on its image

in V/V<, via the character B — T % Gyn. Then B acts on L by the same way (as any weights
= v does not appear in V<y). Therefore (3.1.2) is an isomorphism in this case.
(2) The same argument as in the proof of Part (1) shows that

e both V., and V<) /V., admit good filtrations; and that
e the natural map Homg(W,, V<)) — Homg(W,, V<y/V<y) is zero unless v = A, in which
case, the map is an isomorphism.

Now the isomorphism V<, /V<y = Homg(Wy, V) ® Sy follows by combining the isomorphisms
o Van/Van = (Voa/V2a)(N) ® Sy
° (V._<>\/V<)\)()\) = Homg (W, Vj)\/v<)\) =~ Homg (W), Vj)\) =~ Homg (Wy, V). O

We end this subsection with the following results.

LEMMA 3.1.5. Let V' be a G-module that admits a good filtration, and let \ € X’(T);;OS. Then
the following sequence is exact

(3.1.3) 0— Vj)\,alf...,ar — @Vj)\,ai,% — @Vj)\fai — Vj,\ — Vj,\/v<)\ — 0.
i<j i
10



ProOF. Note that (e™, ..., e ) form a regular sequence in R generating the ideal Iy C R, and
since Ry, (T);fosv is R-flat, they form a regular sequence in RX.(T);)SV. The lemma follows from

taking the A-graded piece of the corresponding Koszul complex. ([l

COROLLARY 3.1.6. In the exact sequence (3.1.3), both the kernel and the image of @, Vr—a, =
V< admit good filtrations.

ProoOF. By Theorem (4) and Lemma each term in (3.1.3]) admits a good filtration.
The corollary follows from the criteria for existence of good filtrations in Theorem (3. O

3.2. Vinberg monoid via the canonical filtration. We apply the previous discussion to
the G x G-modules k[G], with the G x G-module structure given by left and right translation of
G on itself. We regard a pair of weights (v1,12) as a weight of T' x T. Then for v € X*(T), by
regarding k[G] as a G x G-representation, we can define

(321) ﬁlyk[G] = k[G]j(V*7y).
LEMMA 3.2.1. The above X*(T) s filtration {fil, k[G]}ueX'(T);TOS of k|G| satisfies the following
properties.

(1) fil, k[G] C fil, 42 k[G] if A € X*(Tad)pos-
(2) fil, k[G] - fil,s K[G] C fil, 1 k[G];
(3) Each fil, k[G] is a sub-coalgebra of k[G].
(4) grk[G] = @, exe(1)+Su+ @ Sy;
PRrROOF. Properties (1)-(3) are clear. Property (4) follows from Theorem (4) and Propo-
sition 0

Write T;i = Spec R. This is a natural monoid (in fact, the affine space with coordinate function
indexed by simple roots, and equipped with coordinate multiplication), containing the adjoint torus
T,q of G as the open subset of the group of invertible elements. In particular, R has a coalgebra
structure. To avoid possible confusion of notations in later discussions, we write € (instead of e®)
for the coordinate function on T;& corresponding the simple root «. The comultiplication sends e*
to e* ® e”.

According to the discussion of Rees algebra in § Ry. (T);)_osk[G] is an R-algebra, and the
map R — Ry, (T),?osk[G] is also a coalgebra homomorphism. Then

is a monoid, which is usually called the Vinberg monoid (at least when G is semisimple and simply-
connected, see Remark below). In addition, it is equipped with a monoid homomorphism

(3.2.2) 0: Vo= Th,

usually called the abelianization map. We pick two distinguished representatives for the open and
closed Thq-orbit on T 1= (1,...,1),0=(0,...,0) € A" = T, Then by (2.2.1),

2 1(1) = Spec(k[G]) = G, 071(0) = Spec(gr k[G]) =: As¢ .

The affine scheme Asg is usually called the asymptotic cone of G. We will make use of the following
basic facts.

PROPOSITION 3.2.2. (1) Let G x%6 T be the quotient of G x T by the action of Zg given
by z - (g9,t) = (2g,2t). The affine monoid Vg contains the open affine scheme G x%6 T
as the group of invertible elements, such that the abelianization map extends the
natural group homomorphism G x%¢ T — Toq, (g,t) — (t mod Zg). In particular, there
s a natural G x G x T-action on Vg, where G X G acts on Vg by left and right translation
and T acts on Vg by multiplication.

11



(2) The map o is faithfully flat.
PrOOF. Part (1) is clear. Part (2) follows from Proposition O

REMARK 3.2.3. The original construction of the Vinberg monoid as in [Vi95] (when char k = 0)
and in [Rit01] (in general) is different. However, it is easy to see that Vi is uniquely characterized
by the properties in Proposition and the fact that 971(0) = Asg. Therefore Vg is indeed what
people usually call the Vinberg monoid.

Let Vr be the closure of T x%¢ T C G x%S T in V. The image of the X*(T )jos-filtration on
k[G] under the map k[G] — k[T'] defines an X'( )+ filtration on k[T] given by

pos
(3.2.3) il kT) = @ k- e
)‘dom-<1/

where for a weight A, Ajom denotes the unique dominant element in the Weyl group orbit WA of
A. Then the embedding T' x4¢ T — Vi is given by

k[Vr] = P k(e} @ eb) &y k(e @ ey) = k[T x%¢ T,
()\,l/) v— )‘domex ( )POq ()‘71/) v— )‘GX'( ad)
where ¢!’ are the correspondlng character functions on the ith factor of T x%¢ T, and the map

Vi — Td is given by é* —» 1 ® 62 for A € X*(Tad)pos-

3.3. The filtration on the weight spaces. To prepare our study of vector-valued conjuga-
tion invariant functions Jg(V'), we need to introduce a different filtration on each weight space of
a representation V' of GG. This is not directly related to the filtration we discussed in the previous
subsections. Fix a simple root o of G. Let V be a representation of G and let v be a weight of T
Define a filtration on V' (v) as follows

(3.3.1) 18V (v) == V(v) N (Res& V)< vtia-
There are two equivalent descriptions of the filtration. First, we claim that
(3.3.2) B9V (v) = ker (EB E{) V() = @V + i+ j)a)),
Jjz1 Jj=1
Indeed, let v be a vector in the right hand side of (3.3.2). Then Dist(G4)v is a Go-module whose

weights <, v + ia. Conversely, if v € V(v) N V<, 4ia, then clearly E(H] )

The claim follows.
In addition, recall that if V' is a finite dimensional representation of G, whose weights <, A,
then all of its weights =, so(A). It follows that we can also define the filtration as

(3.3.3) A1V (v) = ker (@ F{e 40 V) » @V (v - ((na) +i + j)a)).

j=1 j21

v = 0 for every j > 1.

Next we define the multi-filtration we need. Let T denote the preimage of T in the simply-
connected cover Gg. of G, and T' = S = X*(Ty.)* be the monoid of dominant weights, which acts
on itself by translations. We identify

(3.3.4) X* (Tt 2 N2, s (1,0%)aea.

Under this identification, the partial order on X®(Ty.)" induced by the translation action (as in
§ is just the standard partial order on N, as in Example- (Note that this is different
from the restriction to X®(Tx.)" of partial order < on X*( SC) induced by the action of X*(T4d)pos-)
We define an X*(Ty.) " -filtration on V(v ) as in Example 2 (2), ie.

A V() = [ flfy vy

acA
12



We obtain a quadruple (T, S, M, {fily M }scs) = (X‘(TSC)+,X‘(TSC)+,V(V), {fil V(V)}/\EX'(TSC)+)~
The main result of this section is

THEOREM 3.3.1. Assume that V' admits a good filtration, then dimgrV (v) = dim V (v).
We prove this theorem here, assuming two ingredients that will be established in § [3:4}-§

PROOF. We first reduce to the case when V is a Schur module. Indeed, suppose we have a
short exact sequence of G-modules

0>V -V -=V"—0.

We deduce easily from (3.3.2) or (3.3.3) an exact sequence 0 — fil,V'(v) — filiV(v) — ilLV"(v).
In addition, if V’ admits a good filtration, by Theorem and Proposition below, this
sequence is also exact on the right.

It follows that it is enough to prove the theorem for a Schur module V. In this case, by
Lemma it is a consequence of the following proposition. O

PROPOSITION 3.3.2. Let V' be a Schur module. Then there exists a basis {vj} of V(v) such that
for every simple root o, the corresponding symbols {v;} for the filtration fil* form a basis of the
associated graded gr*V (v) = @; il V(v)/fil | V(v).

There are several ways to construct such a basis. For example, the canonical basis constructed
by Lusztig and Kashiwara, or the semi-canonical basis constructed by Lusztig satisfies the required
properties in the proposition (see [Lu00, Theorem 3.1 and Corollary 3.9]). At the end of § we
will give an alternative construction of a basis with the needed properties using the MV basis from
the geometric Satake correspondenceﬂ

REMARK 3.3.3. For u,v € X*(T) with ;4 dominant, we define

Pu(g)= ) dimgn8,(v)q* € ZIX* (i) "]
AeXe (Tsc)t

as an element in the monoid algebra for X*(Ti.)*. (Here we use ¢ instead of e to denote the
element in Z[X*(Ty.)"] corresponding to \.) If we identify X*(T..)" with N’ as above, it becomes
to a polynomial of [-variables

Pu,u(Ql; ceey QI) = Zdimgr(sl,...,sl)sﬂ(y)qfl o QZSZ'

Then Theorem implies that P,,(1) = dimS,(v). This may be viewed as a multivariable
analogue of the Lusztig—Kato polynomials (which give the g-analogue of the weight multiplicities
[ILu83]).

3.4. The filtration via Borel-Weil. We will explain how to obtain the filtration defined in
§ using the geometry of flag varieties.

Recall that by Frobenius reciprocity, there is a canonical morphism of B~ -modules S, — k,,
and a canonical morphism of B-modules S, — k(.-

Let p1, v be two dominant weights. Let V' be a representation of G. The map S, ® 8, @ V —
k_, ®k, ®V induces a natural map

bpw (S ®8, V)Y = (k_, @k, @ V)T 2V (u—v).
3This is the set of basis we use in [XZ17]. On the other hand, it is expected that the MV basis coincide with

the semi-canonical basis. We thank Lusztig for pointing this out.
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Note that the collection of the maps {¢,,} has the following property. For a dominant weight
7, there is a canonical G-equivariant map in Homg(W,,S,), which gives a G-invariant element
oy € 8+ ® Sy). Multiplying by o, induces

(Sur @8, @ V)Y = (Spurins @ Sy @ V)C.
We denote this map still by o,,. Then it is clear that

(3.4.1) Cygnpin ooy ="Ly,.
This subsection is devoted to proving the following.
PROPOSITION 3.4.1. The map £, above induces an isomorphism
(Spr @8, @ V)G 2fil, V(n—v) CV(p—w).
Here by abuse of notations, the image of v under the map X*(T) — X*(Tx.) is still denoted by v.

We will later in § deduce this proposition from the following natural exact sequence of
B-modules

(3.4.2) 0—8S, — 1Dd¥ ky — @Hldga M?a(u)—oz‘
a

Here, for a weight A € X*(T),
M3 := Dist(Ga) ®pist(Ba.) K

is the restricted Verma module of G, of highest weight A\. The sequence is in fact the first
two terms of the (restricted) dual BGG complex. Since this sequence in the above form (and in
characteristic p > 0) might be not familiar to some readers, we give a self-contained construction.

3.4.2. Case of SLy. First, we review some facts about representations of G = SLy. Let B (resp.
B7) be the subgroup of upper (resp. lower) triangular matrices in SLy, and let T = BN B~ = G,,
be the group of diagonal matrices. We identify /B~ = P! in the way such that

e j: Al = P! corresponds to the open B-orbit and i : {oo} — P! corresponds to the closed
B-orbit,
e 0c Al is fixed by B™.

For n € N, consider the exact sequence of sheaves
(3.4.3) 0— O(n) — jj"O(n) = 4.5 O(n)/O(n) — 0

on PL. Since the sequence is B-equivariant, we may also regard it as an exact sequence on [B\G/B~]
via descent.

We fix two nonzero sections ty and ¢, of O(1) that vanish at 0 and oo respectively and view
T = tg/tso as a coordinate function on A!. Then

LAY, O(n)) = k[z]t?, = k[z] =: M)

n

is a (Dist(G), B)-module with highest weight n, on which e acts as <=, h acts as n — 2z-L and f
acts as z(n — x%). Note that as a Dist(G)-module, it is isomorphic to the restricted dual Verma
module, and as a B-module, it is isomorphic to the induced representation ind? k,. The subspace

L(B',O(n)) = {f(x) € k[z] | deg f < n} :=S,
is the Schur module for SLs of highest weight n. The section of the quotient sheaf is
(P, j.j*O(n)/O(n)) = 2™ kx] = M_,,_o,

which as a Dist(G)-module is isomorphic to the restricted Verma module for SLy of highest weight
—n— 2.
14



For a B-module V', write V = @&V (j) for the weight decomposition with respect to T, then
(Vou)B = { Z(—l)ie(i)v Rz |ve V(—n)} = V(—n).

It follows that the following diagram is commutative with horizontal sequences exact

(3.4.4) 0 (Ves,)? (Veu)s (VoM _, 9)B
i_ i 1 n+ie(n+i) l
0 (V @58,)P V() 22t Doy V(0 +2i),

where the right vertical map is the inclusion (V @ M_,,_9)8 — (V@ M_,_2)T =2 @,., V(n + 2i).

Note that the above discussions may equally apply to G, with n replaced by a weight v of
T such that (v,a¥) > 0. The corresponding (Dist(G,), By)-modules MY, S,, and M_,_o will be
denoted by Mf,“’v, S¢, and M?a(y)_a, respectively.

3.4.3. General case. Recall that the B-orbits on G/B~ are parameterized by the Weyl group
W. For w € W, let C\, denote the corresponding B-orbit through w € G/B~, where w is any lifting
of w to Ng(T'). In particular, C. is open and isomorphic to B/T, and C,’s are of codimension
one, where s, is the simple reflection corresponding to the simple root a. In addition, the natural
map B xB« (G,/B,) — G/B~ is an open embedding, with the image C<s, = C. U Cs,. Let
Ca = UnenC<s, be the open subset of G/B~ complement to the union of B-orbits of codimension
at least two. The inclusion j : C. — Ca is open and the inclusion ¢ : UC, — Ca is closed. For
simplicity, the restriction of Og/p-(v) to Ca is denoted by O(v). Consider the following exact
sequence of B-equivariant quasi-coherent sheaves on Ca

(3.4.5) 0= O®W) = j2j* OW) — j.i*OW)/O(v) — 0.

Note that C. = B/T, and O(v)|c, & B xT k,. In addition, the restriction of the map j.j*O(v) —
J«7*O(v)/O(v) to C<s, is the pullback of (with n replaced by v) along the natural projection
C<s, = B xPe (Go/B,) — [Ba\Ga/B;]. It follows from these observations and the previous
discussions about SLo that is obtained by taking the global sections of .

3.4.4. Proof of Proposition[3.4.1. We may assume that V is finite dimensional. Using Frobenius
reciprocity, we have

(Sur ® S, @ V)Y = Homg(Wy+, S, @ V) = Homp(W,«, k_, ® V) = Homp(k,S, @ k_, @ V).
Then by (3.4.2)), there is an exact sequence
0 — Homp(k,8, @k, ®V) = (ky @k, @ V)" = PMS ) @k, @ V).

It is easy to check that the resulting map (S,+®S,®V)% = Homg(k, S, ®k_,@V) = (k,@k_,V)T
is £,, . In addition, using (3.4.4) and (3.3.2)), we see that the kernel of the map

Vip—v)=(ky @k_p@ V)" = ( Sa(v)—a Dk ® V)Pe
is exactly filf}, ,v, V(u—v). Proposition now follows from the definition of the X*(7T") *-filtration
on V(u—v).

3.5. The filtration via geometric Satake correspondence. We give a geometric construc-
tion of the above filtrations via the geometric Satake correspondence and in particular give a proof
of Proposition [3.3.2}

We refer to [Gi95, MV07] for the geometric Satake correspondence (see also [Zhul7, BR17]

for an exposition). Let G be the Langlands dual group of G over C. Let Gra = LG / L*G denote
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its affine Grassmannian over C, equipped with the analytic topology. Here for an affine variety
Z over C, let LZ (resp. LTZ) denote its loop (resp. jet) space as usual, so LZ(C) = Z(C((t)))
and LT Z(C) = Z(C[[t]]). Let P, 4(Grg) be the category of L*G-equivariant perverse sheaves on
Grg, with k-coefficients as in [MVO07]. Tt is known from loc. cit. that this is an abelian tensor
category. Recall that the geometric Satake correspondence is a natural equivalence of abelian tensor
categories
Sat : Rep/ (G) — P, a(Greg),

such that its composition with hypercohomology functor H*(Grg, —) is isomorphic to the forgetful
functor from Rep” (G) to the category of finite dimensional k-vector spaces. Let us also recall from
loc. cit. the dictionary between some geometry and representation theory under this equivalence.
For a weight v € X*(T) = X,(T), let t denote the T-fixed point of Grp corresponding to v as
usual, i.e. it is the image of t € C((t))* = LG,,(C) under the map LG,, = LT — LG — Grg.

(1) For each A € X*(T), let Gr , denote the L*G-orbit through !, and Grg , its closure.
They are (2p, A\)-dimensional, where 2p is the sum of positive coroots of G. Let iy :
Grs, — Grpa denote the closed embedding and iy : GrG y — Grga the locally closed

embedding. Let k[(2p, A)] denote the constant sheaf on GrG ,» shifted to degree —(2p, \).
Then ) )
Sat(Wx) ~ PHO(ix)ik[(25, )], Sat(Sx) =P H%(ix).k[(2p, A)].
(2) We fix a Borel subgroup B of G, and a maximal torus 7' C B. Let U C B denote the
unipotent radical. Let S, be the LU-orbit through #¥. Then the functor

(3.5.1) F,.=H <2p’ >(GI‘ —): ch’(Gré, k) — Vecty,

is exact when restricted to P 1+ (Grp), which corresponds to the weight functor V'~ V (v)
under the geometric Satake correspondence.

(3) For a simple root « of G, let P, be the standard parabolic subgroup whose Levi quotient
G is the Langlands dual group of G. There is the following diagram

Grpa
N
GI‘G Gr

The morphism i, is a locally closed embedding and hence we also regard S, as a subscheme
of Gr p,- The connected components of the affine Grassmannian GrG are parameterized

by X*(T)/Z«. For 0 € X*(T)/Zcv, let Gr‘g be the corresponding component and Gr?, 5 =

(Gr ) The restrictions of i, and gq to Gr are denoted by % and ¢¢ respectively.
Recall that (2p, a) = (&, ) and therefore (2p — &, ,0) makes sense, which we denote by ly.
Then there is a perverse exact functor

0 -0\!
CTy == @(qa)*(la) [lo] : PL+G(G1"G) L+G (Gr )
0
which corresponds under the geometric Satake correspondence to the restriction functor
from G-representations to Ga-representations. For a weight v, let S7 C Grg  be the
LU,-orbit through t”, and FY = Hfgégu>(Gréa, —) the corresponding weight functor on
P, .q.(Grg ). Since gy 1(S2) = S, the proper base change theorem implies that there is
a canonical isomorphism F, = F o CT,, which corresponds to the natural identification

Vv) = (Resga V)(v) under the geometric Satake correspondence.
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Now we give a geometric construction of the filtration defined in § First, we define a
filtration on S, by open subsets

S,,>V+ia = (]071(53 N (GI‘ A GrGa,y—f—za))

PROPOSITION 3.5.1. Let V' be a finite dimensional representation of G. Then we have an ezxact
sequence
0 — filf V(v) — HE? (Grg, Sat(V)) — HZ2Y) (Gr, Sat(V)).

S>1/+'La

REMARK 3.5.2. It will follow from the arguments in § - 3.5.4] that if V' is a Schur module (or
more generally V' admits a good filtration), the above sequence is also surjective at the right.

ProoOF. For an a-dominant weight v of GG, we denote the closed embedding Gréa L= Gréa by

iy, and the complementary open embedding by j;*. Then for A € P, G(Gré), there is the following
distinguished triangle of sheaves on Gréa

(0 ia)x (0 l/—i-za) CTa (A) = CTa(A) = (1ia)«(Utia)” CTa(A) =
Applying the functor F as in , and noticing by the proper base change,

e} - * 2p,v
F; <<Jy+m> (7%ia)* CTa(A)) = HEL (Grg, A),
we obtain

0= F(i5yi0)e" HO(i510)! CTa(A) = HE (Grg, A) — HILY (G, A).

v

The injectivity at the left follows from the fact that (jo, ;,)«(jo1ia)” CTa(A) lives in perverse
cohomological degree > 0 and the exactness of F. Now let A = Sat(V'). To conclude the proof,
we apply the following lemma (which follows from the description of the Weyl modules under the
geometric Satake correspondence as in (1) above) and the definition of the filtration (3.3.1) to
replace F2(i%, ;)" H*(i% ;) CTq(Sat(V)) by 13V (v). O

v
LEMMA 3.5.3. Let A be a dominant weight of G. Under the geometric Satake correspondence,
the left exact functor V — V< corresponds to (ix).? H'(i))' : P, 4(Grg) = P, a(Grg).

3.5.4. Proof of Proposition|3.3.4 We construct the needed basis explicitly via MV cycles. Let
V be a Schur module so Sat(V) =P Ho(z#) E[(2p, )] for some dominant weight p of G. In this case,
the natural map P H° (%M)*k[@p, ] — (i 1)«k[(2p, 1)) induces the following commutative diagram

HE?") (Gre, P HO(1,) .k [(20, 1)]) —— HE2M, (Gra, P HO (i) oK[(27, 1)])

Sy>u+za
(3.5.2) | |
2ov+u) (A (2p,v+p) S
H pﬂGrﬂ (Gré’“,k) - H Syfmfm dr@’u(Gré’#’k)'

The two vertical arrows are 1somorphisms by (the proof of) [MV07, Proposition 3.10], and therefore
we identify their sources and targets. The groups in the bottom row are canonically isomorphic to
the top Borel-Moore homology of S, N GrG and of S v+ GrG respectively, and therefore have
a basis given by the fundamental classes of thelr irreducible components Such a fundamental class
in the lower left corner maps to zero under the horizontal arrow if and only if the corresponding
irreducible component does not intersect with SV,

Now we take the basis of V(v) = F,(Sat(V')) given by the aforementioned fundamental classes

{v;} in H;plj]'gm (dréu’ k), i.e. the MV basis. The discussion above says that, for every a € A

and every ¢ € Z>0, those v;’s which lie in the kernel of the top horizontal arrow of (| -, or
equivalently in fil’V'(v) by Proposition in fact span fil'V(v). Therefore, their symbols 75
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for the filtration fil* form a basis of the associated graded gr“V(v). This concludes the proof of

Proposition [3.3.2

4. Vector-valued twisted conjugation invariant functions

In this section, we start to study the space of vector-valued (twisted) conjugation invariant
functions on a group.
We will continue making use of the conventions and notations in § In particular, we have
a pinned reductive group (G, B,T,{xq}aca) over k. Let o be an automorphism of G preserving
(B,T), and hence the root system ®(G,T). We define the o-action on the character group X*(7T')
by
o(a)(t) = a(c7L(t), foraeX(T), teT.

so that 0(Us) = Uy(q). For a G-representation V, let oV denote the representation

G 75 G GLV).

We identify elements in oV with {ov|v € V} and thus g(ov) = o(071(g)v) for g € G. This way,
we have 08, = S,(,) and oW, = W,(,) for p € X*(T)".

4.1. Vector-valued twisted conjugation invariant functions on a group. Let H be a
linear algebraic group over k equipped with an automorphism 7. We still denote the 7-twisted
conjugation action of H on itself (as defined in (1.0.2))) by ¢, i.e

cr(h)(g) = hgr(h)™', h,g € H.

Let Jg = k[H]") denote the space of T-twisted conjugation invariant functions on H, i.e. those
f € k[H] satisfying f(hgr(h)™1) = f(g) for h,g € H. More generally, for a representation V of H,
we will denote by

Tu(V) = (k[H] @ V)«
the space of vector-valued 7-twisted conjugation invariant functions on H. Equivalently, let [H/c,(H )]
(or sometimes [H7/H]) denote the quotient stack of H by the 7-twisted conjugation action of H
on itself, and let V := Vit /e, () denote the corresponding vector bundle on [H/c,(H)] (see § 1| for
the notations and conventions). Then

Jy =T(Hr/H],0), Jy(V)=T(Hr/H],V).
Moreover, J (V) is naturally a J g-module.

REMARK 4.1.1. Note that the spaces Jg(V) depend only on the image of 7 in the outer
automorphism group Out(H) of H. Indeed, if 7o = c(h) o 71, where c¢(h) : H — H, g+ hgh™!
is the inner automorphism of H induced by some h € H, then the map H — H, = — xh is an
isomorphism intertwining the action c¢;, and c¢;,, and therefore induces isomorphisms between the
spaces of vector-valued twisted conjugation invariant functions.

We discuss a few basic properties of these spaces. First, if H = Hy x Hy and V = V; X V5 is
the exterior tensor product of two representations of Hy and Ha respectively, then clearly J g (V)
is compatible with tensor product

(4.1.1) JH(V) :JHl(Vl) Rk JHQ(VQ)

Next, if K is another linear algebraic group equipped with an automorphism 7 and there is a
T-equivariant homomorphism K — H, we have a natural homomorphism

Resy, : Jug(V) — Jg (V)
18



by restricting (a.k.a. pulling back) of the V-valued functions on H to K; this is compatible with
the Jg-module and J g-module structure through the natural restriction map Res] : Jg — Jk,
and in particular induces the map of J g-modules

Resjy @ 1 : Iy (V) ®g, Jk — Jr(V).

Next we discuss the compatibility of J g (V') with tensor induction. Let Hy be a linear algebraic
group equipped with an automorphism 7. Suppose we have an embedding (m9) C (1) of cyclic
groups of finite index so that 79 = 7¢. Then we can form the tensor induction H = Ind<:O>H0,
which is the group of 7p-equivariant maps from (7) to H, where 7y acts on (7) by translation. In
addition, 7 acts on H since it acts on () by translation. Since {id,,...,7% '} forms a set of
representatives of (7)/(70), we may explicitly identify H with the product H?;ol Hy, on which 7
acts by (ho,...,hq—1) = (t0(hg—1), ho, ..., hqg—2).

We have two natural maps from Hy to H, given by embedding i into the Oth factor of H and
by the diagonal embedding A, i.e.

io(h) = (h,1,...,1), A(h) = (h,...,h).
It is straightforward to check that these two embeddings satisfy the following relation: for g, h € Hy,
CT(A(h))(ZO(g)) = CT(ha s 7h)(gv 17 SERE) 1) = (hgTO(h)_la hh_la s 7hh_1) = iO(CTO(h)(g))a

i.e. i intertwines the mp-twisted conjugation action of Hy on the source, and the 7-twisted conju-
gation action of A(Hp) on the target:

Hy— " —H

ery () e

Hy 2 -~ H.

From this, we naturally deduce a morphism of stacks
(4.1.2) (i0/A) : [Ho/cr,(Ho)|] — [H/cr(H)].

If Ky C Hy is a 1g-stable subgroup, then K = Indg()] >Ko is a T-stable subgroup of H, and we obtain

a commutative diagram
[Ko/ery (Ko)] —— [K/er(K)]

! !

[Ho/ery(Ho)] —— [H/cr(H)].

LEMMA 4.1.2. (1) The morphism (ig/A) in is an isomorphism of stacks.
(2) If V is an H-module, regarded as a representation of Hy via the diagonal embedding A,
then we may form Jg,(V') and J g, (V') with respect to the to-twisted conjugation action,
and Jg (V) and J (V') with respect to the T-twisted conjugation action. Then we have a
natural commutative diagram,

Res{,®1
JH(V) QRJ JK JK(V)
(io/A)*i l(io/A)*
Res7‘})®1
T, (V) @74, Ko I (V)

where the two vertical morphisms are isomorphisms.
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PROOF. (1) The group {1} x H{™! is a coset representative of H/A(Hjp). It is enough to show
that the following map is an isomorphism

er(—io(=)) : ({1} x HE YY) x Hy — H = Hf
((h1,... ha1),9) —> (1 ha, ..., ha—1)(i0(g))
= (gTO(h;_ll)) hl) h2hflu v 7hd—1h;_12)'

But this is clear, and the inverse map is given by

(905 -, 9d-1) = (91,9291, - - -, 9d—19d—2 - 91), Go70(gd—19d—2 " * - 91))-
So (4.1.2)) is an isomorphism.
(2) follows from (1) immediately. In an explicit form, the inverse of the pull back (ig/A)* is
given by sending f € Jp, (V) to a 7-twisted conjugation invariant function f: H — V defined by
the following formula: for go,...,94-1 € Ho

Fgos--y9a-1) = (97 g5 gt 0905090 9701 1) - F(9a—19d—2 - 90)- O

Finally, let us discuss the compatibility of J (V') with central homomorphisms. Let FF C H
denote a T-stable central subgroup of H. We assume that F' is of multiplicative type, i.e. if
A = Hom(F, G,,) denote its character group, then F' = Spec k[A]. The exact sequence

15 AT AL A A o1

induces
15 F s F XS PSR 1.
Let H = H/(1 — 7)F and H” = H/F. Then the kernel of the map H' — H” is F;. Left
multiplication by F' induces an F-action on k[H] via (z - f)(h) = f(zh). Then we have the
decomposition k[H| = @yecpk[H]y according to the weights of F', where k[H]y—=1 = k[H"] and each
k[H'] is an invertible k[H"]-module. In addition, ©yecark[H|y = k[H'], and for given x € (1—-7)A,
©r(p)—p=xFk[H]7(y) is an invertible k[H']-module.
Let V' be an H-module, decomposed as @,V according to the weights of F'. Then

Tu(V) = @ (KHl ) © Vo)™ = P ( D FHlw @V
YEA xE(T—DA  7(¥)—¢p=x

)CT(H”).

)CT(H//)

Each direct summand ( Dr(p)—yp=x k[H ]T(w) ® Vy is acted on by F. In particular,

Ty = k[H)e ")

is acted by F;, and the J g-module structure on J (V') is compatible with this action. Note that
if V is a representation of H”, then

(4.1.3) Ta(V)'" =T (V).
In particular, J ET =Jgn.

LEMMA 4.1.3. Let V' be a representation of H”. Assume that the above F.-action realizes
Spec J g1 as an Fr-torsor (in fpgc topology) over Spec J g, then the natural map

Resy, @ 1: Jgn(V) Qg0 S — Ju(V)
18 an isomorphism.

PRrROOF. Note that the action of Fr on J g (V) equips J (V') with a descent datum for the map

J g — Jg. The lemma now follows from (4.1.3) and faithfully flat descent. O
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4.2. Vector-valued twisted conjugation invariant functions on the Vinberg monoid.
Now let H = G be the reductive group as fixed at the beginning of the section. Let 7 be an
automorphism of G. Let V' be a representation of G. Sometimes we write J(V) = Jg(V) and
J = Jg for simplicity. We now define their their analogues J (V') (resp. Jo(V')) of vector-valued
twisted conjugation invariant functions on Vi (resp. Asg).

We consider the G-action on Vi via the twisted diagonal embedding G — G x G, g +— (g,7(g))
so that its restriction to 07(1) = G is the 7-twisted conjugation action of G on itself. For this
reason, we also denote this action of G on Vi and on Asg by ¢.. Let [Vio/c-(G)] and [Asg/cr(G)]
denote the stack quotients. The map ? induces

] : Va/er(G)] = T, PI7'(1) = [G/er(G)], []7H(0) = [Asc/cr (G)].

Write V. := Ve /er (@) (T€sp. Vo = Viasg /e @ @) for the vector bundle on [Vg/c;(G)] (resp.

[Asq /¢ (G)]) corresponding to V. Then clearly V := V+| p)-1(1) and Vo= V+| p]-1(0)- Now we can
define

Ji =T([Va/er (@), 0), T+ (V) =T([Va/er (G)), V4,
and
Jo =T([Asg/c-(G)], 0),  Jo(V) = T([Asa/cr(G)], Vo).
Then J (V) (resp. Jo(V)) is a J4 (resp. Jp)-module.
Remark also applies to the study of the spaces J1 (V') and Jo(V'). Recall that a choice of
a pinning of G defines a section of the projection Aut(G) — Out(G). Therefore, to study J.(V)
for x = +,0, (), without loss of generality we may and will assume that 7 = ¢ is an automorphism
preserving the pinning (G, B, T, {x4}aca) we fix at the beginning of this section.
We explain the relations between J(V),Jo(V) and J(V). Let Vi) cs(G) = SpecJ 4 be the
GIT quotient. Then [?] factors as

Ve co(G)] = Ve flea(G) 2 T

LEMMA 4.2.1. (1) For any representation V, J+(V)®y, ko~ 1(1)] =2 J(V). In particular,
kp~1(1)] = J.
(2) IfV admits a good filtration, then J . (V)®y, k[0~1(0)] = Jo(V). In particular, k[o~1(0)] =
Jo.

PROOF. Recall that there is an X*(T)} filtration on k[G] by (3.2.1)). Then

pos

TV e kd'w= @ lm (6kG V).

WEMin p€w+X*(T)os

Since taking G-invariants commutes with taking direct limits, Part (1) follows.

To prove Part (2), first notice that for p € X*(T') ., there is the following commutative diagram
with all rows exact.
(4.2.1)

pos»

D, (filu—a; k(G @ V) — (1,k[G] © V)@ — (I (V) @, kpH(0)]), —0

| |

0— (X fily—a;k[G] ® V)CU(G) — (fil,k[G] ® V) (&) (gr,k[G] ® V)@ — .

Here (J1(V)®., k[071(0)]), denotes the p-graded piece of J 4 (V)®y, k[0~1(0)], and >~ fil,_ o, k[G]

denotes the image of @, fil,—n,k[G] — fil, k[G]. The second row is clearly left exact, and the right

exactness follows from the fact that ), fil,_,k[G] has a good filtration as a G x G-module, by
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Theorem Corollary By the same reasoning, the left vertical map is also surjective. It
follows that the right vertical map is an isomorphism. Part (2) follows. O

REMARK 4.2.2. If V is the trivial representation, one can directly show the surjectivity of the
map

(6K (G — (gr, k]G]
by constructing a splitting. Namely, note that

dim(gr,, k[G])* (@) = { Vo7 "

In the latter case, the composition
(1 © W) = BLEIGI) 5 (5,0 ©5,)7(C)

is an isomorphism, giving the splitting.
In addition, by applying Lemma to the case M = k[Vg]C"(G), we conclude that 0 :
Vo co(G) — T is flat.

We finish this subsection with the following twisted Chevalley isomorphism. Recall that we
denote by W = N(T)/T the Weyl group. Let Wy = W7 and let Ny be the preimage of Wy in N.
It acts on T via the twisted conjugation c, and it also acts on Vp via c,.

PROPOSITION 4.2.3. The restriction of a function on Vg to Vp induces an isomorphism
Res? 1 : K[V (@ =5 klv]er (o),

In particular, restricting a o-conjugation invariant function on G to T induces the twisted Chevalley
isomorphism

Res : J = k;[G]CU(G) = k‘[T]CU(NO)_

The last statement was also proved in [Sp06, Theorem 1], essentially by the same argument
given below.

PROOF. Recall the X*(T)J filtration on k[T defined by (3.2.3), which is the image of the

pos

X* (T filtration on k[G] defined by (3.2.1)). Then

e @ (3 )

AEX® (T)+e VEWoA
p—AeX® (Tad)pos

By Remark it is straightforward to see that grk[G]¢(¢) = grk[T]¢ (No) | Therefore, Res?] 4 is
an isomorphism. O

4.3. Freeness. Here are the main results of this section. We define a number
ry = dim V|zs(0).

ASSUMPTION 4.3.1. In this subsection, let G be a simply-connected semisimple group over k
and V a G-representation that admits a good filtration.

THEOREM 4.3.2. Keep Assumption |4.3.1. Then J (V) (resp. Jo(V), resp. J(V)) is a free
J +-module (resp. Jo-module, resp. J-module) of rank ry .

COROLLARY 4.3.3. Keep Assumption[{.3.1. The morphisms
X+ : Vo = Vo /co(G), xo:Asg — Asg Jco(G), x:G — GJce(G)

are faithfully flat.
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We call these morphisms the (twisted) Chevalley maps. When o = id, this corollary is also
proved by [Boul5] by a different method.

PROOF. Let Reg denote the regular representation of G, i.e. the representation of G on k[G]
induced by left multiplication, which as mentioned before admits a good filtration. Since for
any affine variety X = Spec R with a G-action, (R ® Reg)® = R, the statement follows from
Theorem [4.3.2] O

REMARK 4.3.4. The Chevalley map x : G — G//¢,(G) is not flat in general, and therefore
Theorem cannot hold for arbitrary reductive group. We refer to [Ric79), Proposition 4.1] for
a discussion of this point when o = id.

Nevertheless, there is a sufficient condition for the flatness of J(V') over J when G is a general
connected reductive group. Let G be the simply-connected cover of the derived subgroup of G,
and let F' be the kernel of the central isogeny 1 — F — G’ := Gy X Zg — G — 1. It is known that
o lifts to a unique automorphism of Gy (e.g. see [St68] §9.16]). We decompose V = @, Vi, ® ky,
according to the central character for the action of Zg on V' so that each Vy, is a G.-module. Then

by (4.1.1)
Jo(V) =P Ja..(Vp) @ T z5(ky) = @ Ja.. (Vi) ® T 75 (ky),
¥ Ylzg=1
which is free over G’ /¢, (G') =2 G5 /)/co(Gs) X (Zg)e of rank ry by Theorem It follows from
Lemma that if the action of F,, on G'//c,(G') is free, then J(V) is finite projective of rank
ry over G/c,(G). In particular, if the map F, — (Z¢), is injective, then Jg (V) is finite projective
over Jg. For example, this is the case if Ggc = Gger and o = id.

The rest of this subsection is devoted to the proof of Theorem [£.3.:2l We will first prove the
statement for Jo(V'), and then deduce from it the statement for J (V') and J(V'). Note that by

Lemma B.21) (4),
Jo(V) =T([Asc /co( @], Vo) = B (o) @8, @ V)Y,
vexe(T)+
Let us fix £ € X*(T"). Clearly, the part of Theorem for Jo(V') will follow from the following

refinement.

PROPOSITION 4.3.5. Assume that V' admits a good filtration. Then

JoV)e= P Gopy®8, @ V)¢
o(v)—v=¢
is a finite free Jo-module of rank = dim V' (§). Moreover, we may choose a basis {e;} of Jo(V)¢ as
a Jo-module such that each e; € (gr,, k[G]® V) (&) for some v; € X*(T)t satisfying o(v;) —v; = €.

PRrROOF. Set X*(T)™7 ={v e X*(T)* | o(v) = v} and X‘(T)gr ={veX(D)"|olv)—v=_¢}
Then X*(T')™7 naturally acts on X*® (T)gr We shall apply the discussions from § [2| to the following

tuple
(F’ 57 M7 {ﬁls M}SGS) = (X.(T)+’Uv X. (T)g_’ V(f)? {ﬁlu V(&)}VEX'(T);) .

The following lemma implies that (X*(7)"7, X*(T );) satisfies (Can) and (DCC), and Lemmam

is applicable (with S" C S being X*(T){ € X*(T)* = X*(Tio)*).
LEMMA 4.3.6. We equip X*(T)* with a partial order by identifying X*(T)* = N? as in (3.3.4),

i.e. A1 > Ao if and only if (A1, &) > (Ao, &) for every simple coroot &. Then for every vy € X*(T)™,
the set

veX(T)" o) —v==¢Ev > )
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has a unique minimal element, denoted by I/g. In addition, in each o-orbit of simple coroots, there
is at least one & such that (v}, &) = (v, &).
Specializing this discussion to vy = 0, we deduce that X'(T)%F =yl +X(T)*e.

PROOF. The last sentence of the lemma, is a direct corollary of the existence and the properties
of 1/5”. We focus on constructing the needed element 1/5”. Since G is a simply-connected semisimple
group, we may take the set of fundamental weights {wq aca such that (we, ) = dqp for any pair
a, 3 € A. Then every weight can be written as & = > (£, &)wq.

If we write v =), Vowa With v, € Z, the equality o(v) — v = £ is equivalent to the system of
equations

Vo = Vo(a) = (§,0(d)), a €A,
with variables {v,} € Z?, and the condition v > 1y is equivalent to that
(4.3.1) Vo > (vg,&) forany o€ A.

For every o-orbit O C A, let wo = Y c Wa- Then after modifying a solution v by a multiple of
wo if necessary, we can always find v satisfying the additional inequalities (4.3.1)) and such that in
each o-orbit O C A, there is at least one o € O such that the equality in holds. Then this
is the desired V(’}. 0

We now return to the proof of Proposition [1.3.5] By Proposition [3.4.1] and (3.4.1]), we have an
isomorphism

@UZU(V),V
ToVe= @ Gopn@s,01)® =7 @ VO = Ry VO,
vexe (1) o(v)—v=¢
as modules over Jg = k[X*(T) ™).
Therefore, by Lemma the lemma will follow if we can show that

(4.3.2) dim ng.(T)gLV(Q = dim V().
But by Lemma [4.3.6] we can apply Lemma to deduce this equality from Theorem [3.3.1, [

By Proposition [4.3.5,we may choose a basis {e;} of Jo(V)¢ as a Jo-module such that each
ei € (gr,,k[G] @ V)(©) for some v; € X*(T)T. By the exactness of the bottom row of ({.2.1)), we
can lift each element in {e;} to J; (V) so that ¢ € (fil,, k[G] ® V) (%), By Lemma the
natural map

Pr.a—J.(V)
2
is surjective. In particular, J4 (V) is finitely generated over J,. By Lemma (1), J(V) is also
finitely generated over J.
Now Theorem is reduced to show that for every point x € Vi /co(G), the fiber of the
module J; (V) over x has dimension > ry. By the semi-continuity, it is a consequence of the
following.

LEMMA 4.3.7. Quer the generic point of Vi //co(G), the rank of J (V) is ry.

PROOF. Since the map Vg — T;& is T-equivariant, and this T-action commutes with the G x G-
action, it is enough to prove a similar statement for J 1 (V)[p-1(1) = J(V).
If V is a representation of G, the restriction from G to T gives a natural map

(4.3.3) Res{ : J(V) = (k[T] @ V)ce(No),
compatible with the isomorphism J 22 k[T (No) from Proposition We call Res{; the twisted

Chevalley restriction homomorphism. But unlike the case when V is the trivial representation,
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the map in general fails to be an isomorphism and the failure is studied in details in
[Balll, KNV11] (when o = id). In the next section, we will also study in details (a variant of)
this map. Currently, we just notice the following. By Remark and Remark below,
there is an affine open Ny-stable subset

T ={teT |, :={geCG|gto(g) ' =t} =T} CT,
an open subset G of GG, and an isomorphism G xNo To-¢s =, Gos. Tt follows that

LEMMA 4.3.8. The map (4.3.3), regarded as a map of coherent sheaves on G [/co(G) = T J/cy(No),
restricts to an isomorphism over a (non-empty) open subset of T8 Jc,(Ny).

Note that the fiber of (k[T] ® V)% No) gver any point of T8 Jc,(Np) is isomorphic to V17,
whose dimension is dim VI” = ry,. Therefore, the generic fiber of J(V') over Spec J is of dimension
ry. Again, since 0 : Vg — TE;S is T-equivariant, Lemma follows. ]

4.4. Construction of the basis. In this subsection, we assume that chark = 0, and G is
semisimple and simply-connected. Then every representation V' of G admits a good filtration. The
proof of Theorem in fact gives a method to construct a basis of J(V'), from certain basis of
V.

For every weight £ € (o0 — 1)X*(T), let B({) be a basis of V() satisfying the conditions in
Proposition for example, we may choose the MV basis as in §

For each b € B(£) and each simple root «, let ,(b) > 0 be the integer such that b €

fil2 )V (€) — £l )1V (£), i
Ex®)(b) #0, EZ®H(b)=0.
By Lemma there is a unique minimal vy € X*(T')" such that o(1,) — 1, = € and (1, &) >
ga(b) for every aw € A. Then by Proposition we have an isomorphism
go’(yb),z/b : (So-(y";) ® Syb ® V)G — ﬁlVb V(U(Vb) — Vb).

It follows that b comes from a unique element in (SU(,,{;) ® Sy, ® V)&, denoted by foo-

REMARK 4.4.1. Recall that Jo = k[X*(T)"7]. For w € X*(T)"7, let ¢* the corresponding
element in Jy. Let x1 € Spec J( be the point defined by ¢*(z1) = 1 for any w. Then by the proof
of Proposition the fiber of Jo(V') at x1 is canonically isomorphic to ©¢c(o—1)xe(7)V (§), and
the restriction of fy o to x1 is just b.

Since in characteristic zero, Schur and Weyl modules are isomorphic, there is a canonical G-
equivariant map

(4.4.1) Sy, ® SJ(V:;) =W, ® SJ(V?;) — k‘[GO‘]
given by taking (a twisted version of) matrix coefficients. Thus f, o defines an element fi, €

(k[Go]l @ V)¢ = J(V). Explicitly, we write fp o as > 0€¢ ®ej ® vy, where {e;} is a basis of 8,
and {e;} the dual basis, and v;; € V. Then

(442) fb(ga) = Z(U@;,gO’Q» " Vigs

2%
where (-,-) is the natural pairing between S,(,, ) and So(vy)- In fact, (4.4.2) is valid as long as
Su, =W, (even in positive characteristic).

PROPOSITION 4.4.2. The collection {fy | b € Uge(o—1)xe(r)B(§)} forms a basis of J(V) as a
J-module.
25



Proor. This follows from the proof of the freeness of J(V') over J. Indeed, since J (V) =
S (fil,k[G] ® V)¢ (&) and the matrix coefficient map lands in (fil,, k[G] ® V)¢ (&) we may
regard fp as a homogeneous element in J4(V'), denoted as fp, . By definition, Lemma and
from the proof of Proposition the image of {fp +} under the restriction J (V) ®s,
Jo = Jo(V) forms a basis. The proof of Theorem shows that {f, +} forms a basis of J4 (V)
over J . Therefore, {fy,} forms a basis of J(V) = J (V) ®s, J over J. O

5. Chevalley groups with an automorphism

In this section, we establish a few results about Chevalley groups equipped with a pinned
automorphism o. Our conventions and notations are as in § [l In particular, we have a pinned
reductive group (G, B, T, {xq}acn) over k. We further assume that o is a finite order automorphism
of G preserving the pinning, i.e. 00x4 = 75, for a € A. Put A =T/(c —1)T. Let Wy = W7,
which acts on A, and let Ny be the preimage of Wy in N, which acts on T by twisted conjugation
¢, Let (g,b,t,u) denote the Lie algebra of (G, B,T,U). Write Gg for the simply-connected cover
of GG, and Ty the maximal torus of Gy, which is the preimage of T

5.1. Root datum with an automorphism. We start with some discussion of a version of
folding of root systems. We also refer to [Sp06] for some related discussions.
For each o-orbit O C ®(G,T), we write

ao = Z’Y’

yeO

which belongs to X*(A4) = X*(T)? c X*(T). If we pick v € O, then ap =+ oy + - -- 4+ 01971,
where |O| denotes the cardinality of O. Note that ap may be different from the image of v under
the usual norm map X*(7T") — X*(A).

LEMMA 5.1.1. The collection of ap for all o-orbits O C ®(G,T), regarded as a subset of
X*(A), has a structure of a root datum. Let G, denote the corresponding reductive group over k
containing A as a mazimal torusﬁ and let ®(Gy, A) denote the corresponding root system. Then
the map O — «ap establishes a bijection between the set of o-orbits in A and a set of simple
roots in ®(G,, A). With this choice of simple roots of ®(Gy, A), its subset of positive roots are
DGy, A)t ={ap | O C (G, T)"}.

PROOF. Since o lifts to a unique automorphism of the simply-connected cover of the derived
group of G (e.g. see [St68| §9.16]), we may assume that G is semisimple and simply-connected.
Then (G,T) = [[(G;,T;), where G; is simple and simply-connected, and the action of ¢ permutes
the simple factors. To prove the lemma, clearly we may assume that there are r simple factors, all of
which are isomorphic to (Gg, Tp) and are cyclically permuted by o, and that ¢” is an automorphism
of (X*(Tp), ®(Go, Tp)) of order d. Thenif d =1, G, = Go. If d > 1, then ®(G,T) is of type A, Dy,
or Eg, and one can check case by case that the reductive group G, is determined by the following
table (n > 1).

Go | SLon+1 | SLopt2 | Sping, 9,d =2 | Eg | Sping,d =3
Gy | SO2,41 | Sping,, 43 Spay, F4 Go

The detailed calculations for the case Go = SL2,41,SLa,y2 and Sping,,5,d = 2 can be found in
Example [5.1.5], Example and Example below. O

4We choose the notation G, for the group because it has a maximal torus A = T,,. This does not suggest that
it relates to the o-coinvariants of GG, whatever it means.
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REMARK 5.1.2. Assume that G is semisimple and simply-connected. Note that the group of
invariants G? of G under the o-action is a connected semisimple group by [St68, Theorem 8.2]
containing 77 as a maximal torus (note however that the group of invariants is denoted by G, in
loc. cit.). The root system ®(G7?,T7) is isogenous to (G, T,) but in general is not isomorphic to
it. For example, if G = SLy,, (n > 1) with ¢ nontrivial, then G’ = Sp,,,, whereas G, = Sping,, , ;.

REMARK 5.1.3. Let G denote the (adjoint semisimple) Deligne-Lusztig dual group with dual
torus 7' over a finite field s (so that the absolute root datum of (G, T) is dual to the root datum
®(G,T) € X*(T) and the Weil descent datum defining (G,T) over x induces the o-action on
®(G,T)). Then the maximal split torus A of G is dual to A. For example, if G = SL,, with

the non-trivial involution ¢ as in Example Example “ 6| below, then G is isomorphic to
the projectivel unitary group PU,, over k. Then the dual root datum of ®(G,, A) is equal to the

sub-root system of the relative root system ®.j(G, A) € X*(A) consisting of those a¥ € @, (G, A)
such that 2aV & ®..(G, A).

It is easy to see (e.g. by a case-by-case inspection) that every root in ®(G,, A) comes from one
or two g-orbits in ®(G,T'). In the latter case, the cardinality of one orbit is twice of the cardinality
of the other.

DEFINITION 5.1.4. A root in ®(G,, A) is called of type A if there is a unique o-orbit O C ®(G,T)
such that this root is . In this case, the corresponding orbit O is also called of type A. Note that
(o, B) = 0 for all pairs of distinct roots o, 3 € O. If ap is a simple root in ®(Gy, A), then O is a
o-orbit of simple roots of ®(G,T") and all vertices in the sub Dynkin diagram corresponding to O
are isolated.

A root in ®(G,, A) is called of type BC if there are two o-orbits O~ and OT such that this
root is ap- = ap+, and that |O~| = 2|OT|. The orbit O~ (resp. O7) is called of type BC™ (resp.
type BCT). In this case, (¢ la, &) = 1 for every a € O, and 8 := a + ¢/ la € OF. If ap- is
a simple root in ®(G,, A), then O~ is a o-orbit of simple roots in ®(G,T), and the sub Dynkin
diagram corresponding to O~ is a product of |O7| copies of the root system As.

EXAMPLE 5.1.5. Let G be SLo,41 (r > 1) with row and column indices in {—r,...,r}, the
pinning (B, T, e) given by the group of standard upper triangular matrices, the subgroup of diagonal
matrices, and e = Z:_ir E;i41. Then the unique non-trivial pinned automorphism o is given by
(5.1.1) o(X)=JX'J for X € SLyy1,
where J is the anti-diagonal matrix, with entries .J; _; = (—1)" . Then

(D(G,T) = {Ei—sj | —Tgi,j S’f’,’i#j},
where ¢; is the character of T' given by evaluating at the (i,i)-entry. Since o acts on ®(G,T) by
o(gi) = —e_;, the o-orbits on ®(G,T') are
(5.1.2) Oi,j = {671 — €4, & — 51‘}7 O; = {671 — &0, €0 — 61'}, Oj = {671‘ - 61'}
fori € {#1,...,+r} and j € {£1,...,£(|i]| = 1)}. They are of type A, BC™, and BC" respectively.
As A=T/(oc — 1)T, its character group is

X*(4) = @z —e).

The simple roots of ®(G,, A) are e_;_1 —e_;+¢; —€jp1 for i =1,...,r—1 and e_1 — 1. The
former ones are of type A (being equal to ap,,, ;) and the latter one is of type BC (being equal to
ap- = aor).
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EXAMPLE 5.1.6. Let G be SLy, (r > 2) with row and column indices in {—r,...,—1,1,...,7},
the pinning (B, T,e) given by the group of standard upper triangular matrices, the subgroup of
diagonal matrices, and e = Zi—:{r (Biit1+E_i—1 ;) + E_1 1. Then the unique non-trivial pinned
automorphism o is given by

o(X)=JX'J for X € SLy,
where J is the anti-diagonal matrix, with entries J; _; = —J_;; = (—=1)""* fori = 1,...,r. Then
(G, T)={ei—¢gj| —r<i,j<ri#j ij#0},

where ¢; is the character of T' given by evaluating at the (i,7)-entry. Since o acts on ®(G,T) by
o(ei) = —e_;, the o-orbits on ®(G,T) are

Oi,j = {E_i — E_j, Ej — Ei}, Oz = {E_Z' — 61'}

forie{xl,...,£r} and j € {£1,...,£(]i| — 1)}. They are all of type A.
As A=T/(oc — 1)T, its character group is

X*(A) =X%(T)° = <éZ(€_i — &)) +Z(Ee—p 4 He_1).
i=1

The simple roots of ®(G,, A) aree_;_1 —e_;+¢e; —egip1 fori=1,...;,r—1land e_; —&3.

LEMMA 5.1.7. The action of the Weyl group Ng, (A)/A on A is identified with the natural
action of Wy on A.

PROOF. For a root a € ®(G,T), let s, denote the corresponding reflection acting on X*(T).
Let ap be a simple root of ®(G,, A) and s,,, the corresponding simple reflection. One checks easily
that s, = HveO sa € Wy if ap is of type A, and sq, = [[oco+ Sa € Wo if ap is of type BC.
Therefore, N¢, (A)/A C Wy as automorphisms of A. It remains to notice that they are isomorphic
as abstract Coxeter groups, as can be checked easily from the table in Lemma [5.1.1 ([l

We discuss subgroups of G associated to o-orbits of roots, which specialize to “root SLs” when
o = id. First, we have the following lemma.

LEMMA 5.1.8. Let a € ®(G,T). If the o-orbit O containing « is of type A or BC™, then
0l% oz = xy. If the o-orbit O containing o is of type BCT, then ol o 2y = —4.

PROOF. First, if a is a simple root, then ¢!°l o z, = z,, since o acts by pinned automorphisms.
In general, every o-orbit O of type A or of type BC™ is conjugated to a o-orbit of simple roots
by an element w € Wy = W?. We can choose a lifting of w to a o-invariant element w in N (see
[St68, (5), p. 55]). For a root a € O, write Ady(FEa) = cEyyq) for some invertible constant c.
Then ord(|O|) = ord(Jw(O)|) and

Ady(Ea) = cBy(a) = 0B ) = 01°(Adw(E,)) = Ady(a!91(EL)).

Therefore, %o To = Ta-
Next, assume that o belongs to a g-orbit O of type BCT, then a = 8 + ¢/971(8) for some
root 8 in a o-orbit O~ of type BC™, and E, = c[Eg,Eg‘oﬂ(ﬁ)] for some invertible constant c.

Note that /@7 will send Ejs to C/Ea_‘oqL‘(ﬁ) and EU‘Oﬂ(B) to ¢ "1Ejg for some invertible ¢/. Hence
J‘OH(EQ) = —F,, and therefore o0t o x, = —2,. O

Now, for a g-orbit O C ®(G,T)" of positive roots, let Go be the subgroup of G generated by

T and root subgroups UL, for a € O. Clearly, this is a o-stable reductive subgroup of G. Let Up

(resp. Up,—) be the subgroup of U generated by U, for o € O (resp. —a € O), and let Bp = UpT'.

If O is a o-orbit of simple roots, we also let U® denote the subgroup of U generated by Ug, for
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those positive roots § that are not in the sub-root system spanned by @. Then B = U®Bp is a
semi-direct product decomposition, and Pp = UnGe is a o-stable standard parabolic subgroup of
G.

Note that (Go,Bo,T,{Ta}aco) is a pinning of Gp. When G is semisimple and simply-
connected, there are essentially two cases for its derived subgroup G ger (Which is always simply-
connected). The following lemma also follows from Lemma (and in fact is equivalent to
Lemma [5.1.8)).

LEMMA 5.1.9. Assume that G is semisimple and simply-connected.

(1) If O is of type A, then Go der = H‘ZZ' SLo where the o acts by permuting factors and
preserves the pinning (up to possibly Tescaling the z4s).

(2) If O is of type BC™, then Go der = H|O| SL3 where the o acts by permuting factors and
ol9/2 qcts on each factor SL3 as in Example which also preserves the pinning (up
to possibly rescaling the x4’s).

(3) If O is of type BC, then Go der = H|O| SLo, where the o acts by

(5.1.3) (915, 910) — (Ad(é _01)(9\0\),91,'--,g|c9|_1>-

Let T = B/U denote the abstract Cartan. Note that ¢ acts on T, and T — B — T is a o-
equivariant isomorphism. Let A = T/(1—0)T, which is canonically isomorphic to A. By transport
of structures, Wy acts on A, and for every root ap € ®(Gy, A), e*© can be regarded as a regular
function on A. Let

(5.1.4) gg:B—-T — A

denote the quotient map.
DEFINITION 5.1.10. Let O C ®(G, A) be a o-orbit. We define a divisor

_J{teAleo(t)=1}  Oisof type A or BC™,
| {te Ale(t)=—1} O is of type BCT.

Note that Ap = A_p. Let
A =A — UpAp,
where the union is taken over all o-orbits O C ®(G,T). This is a Wy-invariant open subset of A.
For a o-orbit O C ®(G,T), let
A=A - | Ao

O'£0O
In particular, it is an open nelghborhood of the generic points of Ap in A.
Let B and T be the preimage of A under the natural projections gg : B> Aand T =T — A.
SImilarly, let BI®! and Bgf),] be the preimage of Al under the projections B — A and Bpr — A.
Finally, via the isomorphism A = A, we have similarly defined spaces Ao, A and Al

REMARK 5.1.11. Note that Ap may not be irreducible nor reduced in general. For example,
if G, = Spy,,, then every long root in ®(G,, A) is twice of a weight of A and therefore the cor-
responding divisor Ap consists of two connected components if char k > 2, and is non-reduced if
char k = 2. On the other hand, if char k > 2, then Ap is always reduced.

LEMMA 5.1.12. Assume that G is semsimple and simply-connected. Then A JWy is isomorphic
to an affine space, and the natural morphism A — A JWy is a finite and flat Wy-cover, with branch

loci UnA . In particular, the restriction A — A//WO s a finite étale Galois cover.
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PrOOF. We may identify the action of W on A with the action of Wy = N¢_ (A)/A on A by
Lemma Note that by table in the proof of Lemma G, is isomorphic to a product of
simply-connected groups and odd orthogonal groups. Therefore, k[A]"? is a polynomial algebra
(see [St75]), and A — A /W, is finite flat. The branch locus of the covering A — A /W, is the
union of divisors {t € A | ap(e*(t)) = 1,ap € ®(G,,A)}. Here dp denotes the coroot of ap,
regarded as a homomorphism &p : G,, - A = A. Its construction is as follows. Let v € O if
ap is of type A or v € O if ap is of type BC. Let 5 be the corresponding coroot, regarded as a
homomorphism G,,, — T. Then & is the composition of this homomorphism with the projection
T — A= A. Again, by checking the table in the proof of Lemma [5.1.1] one sees that ker ¢ is
trivial if ap is of type A and is {£1} if ap is of type BC. The lemma follows. O

5.2. Twisted conjugacy classes. In this subsection, we study o-regular elements of G, gen-
eralizing some of the well-known results of Steinberg [St65] for o = id. Some results with restriction
of the characteristic of k were also obtained by Mohrdieck [Mo03] before.

Let G be a reductive group over k. Recall the o-twisted conjugation (or o-conjugation for
brevity)

¢o : G xGo — Go, (h,go)=hgo(h)™to =:cs(h)(g).
Since o preserves (B, T), it acts on the set A C ®(G,T') of simple roots.

Let I be the centralizer group scheme for the action of G on itself by ¢, i.e. it is the group

scheme over G defined by the Cartesian diagram

I —— G xGo

l lcg XPpry

G —— G xGo,
where pry denotes the projection to the second factor and G — G x Go denotes the “diagonal”
embedding g — (g, go). Its fiber over g € G is denoted by I,.
DEFINITION 5.2.1. Let G°7"°8 denote the o-reqular locus of G. Namely,
G ={geG|diml, =dimT’° =7} C G.
Let B8 := G N B, T = G NT and U8 = G NU.
REMARK 5.2.2. (1) It will be clear from the following discussion that dim I, > r for any g € G.
Therefore, G°"¢ is an open subset of G by semi-continuity.
(2) When chark = 0, dim I, = Liel; = ker(id — Ad4o : g — g). Complication arises in the
positive characteristic case; for example, the center 3 of g, i.e.
3= ﬂ Ker(da : t — k),
ace®(G,T)
may not be trivial even if G is semisimple.
(3) For every automorphism 7 of the algebraic group G, one can define the open subset of
7-regular elements G""° C G as those g € G such that I, achieves the minimal dimension. But

since every 7 differs from some pinned automorphism ¢ by an inner automorphism, the study of
G778 reduces to the study of G778, by virtual of Remark

We first study U7, Let V = [U,U] - (¢ — 1)(][pen Ua) C U, and let
g :U—W=UV

denote the quotient map. The natural conjugation of 7% on U induces an action of 79 on W, and
there is a unique T7-open orbit W C W. Explicitly, if we choose an element o € O for each o-orbit
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of simple roots so that there is an isomorphism

H To G U S W

chosen «

giving a basis of W (as a vector space over k), then v € W if and only if all the coefficients of v
with respect to this basis are non-zero. Let U= q[;l(W) cU.

We say that an element w € W is a o-twisted Cozxeter element in W, if one can choose an
element a € O for each g-orbit O of simple roots and write w as the product of simple reflections
corresponding to these chosen a’s (in some order). Let w be a representative of w in N.

LEMMA 5.2.3. Assume that G is simply-connected. Let w be a o-twisted Coxeter element in W.
Then for every b € B,
dimker(id — Adpyo : g — g) < dim 37 + r.

PROOF. Given the properties of o-twisted Coxeter elements presented in [Sp74l, Theorem 7.6],
the proof of [St65, Lemma 4.3] applies literally to our situation. U

Now we come to the first key result.

PROPOSITION 5.2.4. For each o-orbit of simple roots O C ®(G,T), choose one o € O and
define

x = Hx;l(l) e,

where the product is taken over the chosen simple roots in a fixed order. Then
(1) (id — Adzo) L (u) =7 +u.
(2) Let g € G. If gro(g)~' € U, then g € B. In addition, I, C B.
(3) x € U778, in particular, U8 is nonempty.
(4) U=U""% isq single orbit under the o-conjugation action of T° -U on U. In particular,
I, C B and (id — Ad,o) " (u) = t7 +u for every u € Uo7,

PROOF. Write g, for the Lie algebras of I, and similarly b, and u, for the Lie algebra of I,N B
and I, NU. We have the following lemma.

LEMMA 5.2.5. We have dimu, = |A?| and g, = b, Ct7 +u.

PrRoOOF. The inclusion b, C t7 + u is clear. We prove the two equalities in the statement. We
first assume that G is semisimple and simply-connected. Then r = dim 77 = |A“|. Let wq be the
longest element in the Weyl group and wy € Ny a representative of wg. Then woxwg € BwB for
some o-twisted Coxeter element w. Then as in [St65, Theorem 4.6],

dim 37 + dimu, < dimb, < dimg, < dim3? + .

Therefore dimu, < r and dim(I, NU) < r. On the other hand, U acts on fibers of ¢y via
o-conjugation. Therefore, dim(I, N U) > dimW = r. Putting them together gives dimu, =
dim(I, NU) = r and b, = g,. Now for a general reductive group G, let Gs be the simply-
connected cover of its derived group. Then o lifts to a unique automorphism of Gg. (e.g. see [St68|
§9.16]). Since the central isogeny Gs. — G induces an isomorphism on unipotent subgroups, we
have dim(I, NU) = |A?|. In addition, since the kernels and the cokernels of the two maps bg. — b
and gsc — g are equal, and since (bgc)y = (gsc)z, bz = g2 also holds for G. O

Now we prove the proposition. (1) First, note that (id — Ad,o)(u) C v, where v is the Lie
algebra of V. But since dimu, = dimu — dimwv, we have (id — Adgo)(u) = v. Next, if G is of
adjoint type, then the composition of maps

id—Ad
A TV
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is an isomorphism. It follows that in this case (id—Ad;o)(t7 +u) = u. Since g, = b, C t7 +u, we see
that (id — Ad,o)~!(u) = t° +u. In general, let G,q be the adjoint quotient of G. Since the central
isogeny induces an isomorphism u = 1,4, it is easy to see that (id — Ad,o)~(u) C b. In addition,
if Y € b such that Y — Ad,o(Y) € u, then (Y mod u) € t°. Therefore, (id — Adyo) (u) =t +u
holds in general.

(2) Write ¢ = ujnug under the Bruhat decomposition for some n € N,uj,us € U. Then
nugxo(ug) ™' = uy tuo(uy)o(n) for some u € U. Tt follows that n = o(n) by the uniqueness of the
Bruhat decomposition. Then nugzo(ug) " 'n~" = uy uo(uy) € U. Since gy (ugzo(ug) ™) = qu(x) €
W, we must have n € T and therefore g € B. It follows that 174 C B. Together with g, = b, we
deduce that I, C B.

(3) Let b € I, C B. We write b = tu according to the decomposition B = TU. Then
tur = xo(t)o(u). By projecting along B — T, we see that o(t) = t, and thus ¢t lztz—! =
uzo(u)~tz=t € V. This shows that ¢t € (Naea ker a)?, which has dimension dim 77 — |A?], and
that u € I, NU. Therefore,

dim I, = (dim 77 — |A?|) + dim(I, NU) = dim 77,
i.e. x is o-regular.

(4) Note that g;;'(z) C U is a single orbit under the o-conjugation action of U on itself. Indeed,
since U is unipotent, the orbit through x is a closed subset of qal(:c). On the other hand, since
dim(I, N U) = dim W, the dimension of this orbit is equal to the dimension of ¢;;'(z). Therefore,
q&l(x) is an orbit. Now, let u € U. After taking a conjugation by elements in T, we may assume
that qu(x) = qu(u), and therefore z and u are o-conjugate by an element in U. This shows that
Uc Uoree and Uisa single T? -U-orbit. On the other hand, let u € U8, Since dim [, = dim 7",
the T - U-orbit through w is dim U-dimensional, and therefore must meet U. This implies that
U = U8, The last statement follows from Part (1) and (2). O

LEMMA 5.2.6. An element w € U is o-regular if and only if the set B, = {¢B € G/B |
g luo(g) € B} is finite.

PROOF. Proposition [5.2.4] implies that if v € U%7"8 then B, consists of only one element.
Now, let uw € U — U?7"8. Then after a o-conjugation by an element in U, we may assume that
there is a o-orbit O of simple roots, such that u € U®, where U is the subgroup of U introduced
before Lemma [5.1.9 Then B,, contains a positive dimensional subvariety (Go/Bp)?. The lemma
is proved. O

Next, we study 1797, and then B°7"&. Recall the map ¢ as in and Defintion
For t € T(k), let ®(G,T): C ®(G,T) be the smallest sub-root system containing those o-orbits O
such that gg(to) € Ap(k). We allow ®(G,T); =0 if t € T. Let Gy C G denote the corresponding
reductive subgroup, and By = Gy N B a Borel subgroup of G;. Its unipotent radical U; is the
subgroup generated by {U,}, for those positive roots a € ®(G,T);. We write By = U;T. Let g,
denote the Lie algebra of Gy.

LEMMA 5.2.7. The sub-root system ®(G,T); is exactly the union of o-orbits of roots in (G, T)
of the following three types:
(1) O, if O is of type A and e*° (t) = 1;
(2) O~ UO*, if OF is of type BCT and e*0(t) = 1;
(3) O, if O is of type BCT and e*©(t) = —1.

PROOF. Indeed, the smallest sub-root system containing those o-orbits O such that ¢p(to) €

A (k) would necessarily contain the these roots. Therefore, it is enough to show that they indeed

form a sub-root system of ®(G,T), or equivalently, if Oy, Oy are two o-orbits from the above types,
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and «; € O;, then the o-orbit O containing s,, (;) would also be one of the above types. To check
this, write 8 = sq,(a;), and Bo the sum over the g-orbit of 5. We may assume that 5 # +a; so
in particular a; and «; are in the same irreducible factor of the root system ®(G,T'). Assume that
T = 0" fixes this irreducible factor ®. If (®,7) is as in Example one checks directly that So
also belongs to one of the above types. If (®,7) is not as in Exarm then it is readily to see
that So is an integral linear combination of ap, and ap, and all ap,, ap, and Bo are of type (1).
The lemma is proven. O

LEMMA 5.2.8. Let Ay C ®(G,T): be the set of simple roots (with respect to (B, T)). Then
after possible rescaling x4’s, the automorphism Gy — Gy, g v+ to(g)t™' preserves the pinning

(Gt, By, T, {za }aen,)-

PRrOOF. Note that if O C A; is a g-orbit, then e®©(t) = 1 if O is of type A and BC™, and
e®0(t) = —1if O is of type BCT. Then the lemma follows from Lemma O

LEMMA 5.2.9. Let b = ut € U/T. Then id — Adyo : g/g¢ — 8/9: is an isomorphism. In
particular,

(5.2.1) ker(id — Adyo : g — g) = ker(id — Adyo : g¢ — @¢),
and dim I, = dim(I, N Gy).

PROOF. For i € Z, let ®; denote the set of positive roots « of height i, i.e. («,p) = i, where p is
the half of the sum of positive coroots. We choose the following basis of g (in the given order): first
a basis in g¢; then the standard root basis { E,} associated to the roots in ..., ®;, ®;_1,... but not
in ®(G, T), with o-orbits grouped together; and finally the standard root basis {E,} associated
to the corresponding negative roots in ..., ®;_1, ®;, ... but not in ®(G,T)s, with o-orbits grouped
together. With respect to this choice of basis, the linear operator id — Adyo is represented by a block
upper triangular matrix M, where the first block corresponds to g;, and other blocks correspond
to o-orbits of roots not in ®(G, T);.

Note that a diagonal block that corresponds to a o-orbit O" not in ®(G, T'); is invertible due to:
(i) its determinant is = (e®o (t) — 1) if @’ is of type A or BC™ and £(e®0 (t)+1) if O is of type BCT,
which follows from Lemma and an easy computation; and (i) ¢p(t) ¢ Aes. The first claim
of the lemma follows. Then clearly holds, which in turn implies that Lie(Z, Ifed) C Liel, C gs.
Therefore the neutral connected component of I3°d is a closed subgroup of Gi. The lemma is
proved. [l

A very similar argument yields the following “o-twisted” Jordan decomposition.

LEMMA 5.2.10. Let b= ut € UT. Then b is o-conjugated by an element in U to an element u't
with v’ € U;.

PrOOF. Let u; = u. By induction on ¢, one can show that we can o-conjugate b by an element
in U to wu;t, where wu; is in the subgroup of U generated by U; and U, for a € ®; U®; 1 U---. This
is because if t € Ay, then id — Ad;o is invertible on the space @ncorkFq- O

o

LEMMA 5.2.11. We have equalities T =T

PrROOF. Note that for ¢t € f, Gy =T,and ;NT = T°. It follows from Lemma that
t € ToreE,

Next we show that T8 C T, i.e. if qp(to) € Ap(k) for some g-orbit O C ®(G,T), then I,
contains a unipotent subgroup and therefore dim /; > dim 7" (as clearly T7 C I;). If O is of type
A or BCT, pick a € O and write a; = o’(a) for i = 1,...,|O|. These ;’s are pairwise orthogonal
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and we may assume that o o x4, = Ta,,, fori =1,...,|0] — 1 and thus o o 7|, is equal to z,, if
O is of type A and is equal to —z,, if O is of type BCT. One checks that, for ¢ € k,

10|

H T, (€221 (1) c)
i=1

form a unipotent subgroup of I;.
It remains to consider the case O is of type BC™ and chark # 2. Let d = |0|/2. Pick a € O

and write a; = o'(a) fori =1,...,2d and 3; = o; + a4 for i = 1,...,d. We may assume that
® 00Ty,, =1, 00Ty =Tq,, fori=1,...,2d -1, and
o zo, (U)Tay,, (V) = Tay,, (V)2a, (w)xp, (uv) for i =1,...,d.
This in particular implies that o o x5, = zg,,, fori =1,...,d =1, and 0 o x5, = —xg,. Now one

can check that for every c € k,

d
H (xaz_ (6a2+---+ai (t)c) Tay,, (ea2+---+ad+¢ (t)c) ‘xﬁi( _ %652+"'+6i+a2+“'+0¢d+1 (t)c2)> e,
=1

giving the desired unipotent subgroup. O

REMARK 5.2.12. We say an element ¢t € T strongly o-regular if I; = T?. We claim that they
form a non-empty affine open subset of 1777, sometimes denoted by 75778, Indeed, let t € 10“,
and let g € I;(k). Using the Bruhat decomposition of g = uinug with uy,us € U and n € N, it
is easy to see that g = n € N?, and g € T? if and only if no non-trivial elements in Wy fixes the
image of ¢ under the projection T" — A. But the last condition clearly defines a non-empty affine
open subset of T', verifying the claim. Note that if G is semsimple and simply-connected, then by
Lemma TsoTeg — Toreg — 7,

To continue, we need the following lemma. We identify the tangent space T,G of G' at g with
g via the right translation R, by g. Let (h,go) € G x Go and ¢’ = ¢5(h)(g). A direct calculation
shows the following.

LEMMA 5.2.13. The differential of cs at (h,go) is
dey : ThG & TyoGo — TyGo, (X,Y) = X — Ady(0(X)) + Ady(Y).

Recall that we denote by Ny the preimage of Wy = W2 C W in N. It acts on T via the twisted
conjugation ¢, preserving T°7"°8. Consider the map

(5.2.2) G xNooree @,
LEMMA 5.2.14. The map (5.2.2) is an open embedding.

Let G°™ denote the image of this map, called the o-regular semisimple locus of G. Note that
G NT =T by Lemma [5.2.11

PRroor. It follows from Lemma that the map is étale. It remains to prove that it is also
injective. Assume that gto(g)~! = ' with t,¢/ € T°"8 = T. Using the Bruhat decomposition
g = upnug as in Remark [5.2.12 one deduces that u1 = ug = 1 and to(n) = nt’. The injectivity
follows. g

REMARK 5.2.15. Note that Ny also preserves 75778 and the map G xNo 75978 5 3 is open.
The image is denoted by G*7, called the strongly o-regular semisimple locus of G. Then I|gs.o-rs
is smooth and fiberwise conjugate to 77 in G. By Lemma G577 = G778 if G is semisimple
and simply-connected.
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REMARK 5.2.16. Note that o is of finite order (since it preserves a pinning). If char k& does not
divide the order of o, then G° ¢ is contained in the set of semisimple elements of the non-connected
algebraic group G x (o).

LEMMA 5.2.17. (1) The restriction of ¢, to U x To — Bo is an isomorphism.
(2) For a o-orbit O of simple roots, let U® be the subgroup of U introduced before Lemma .
(0]

Then the restriction of co to U® x By'o — Bl is an isomorphism.

Proor. We only prove (2) since the proof of (1) is similar (and simpler). Note that U? is a
normal subgroup in B and B = U® B as a semidirect product (of algebraic groups).

First, we claim that for any bo € B([g) ]a, the group

{uecU® |bo(u)b™! =u}
is trivial. Indeed, let ®; be as in the proof of Lemma and for ¢ > 1, let U; denote the
group generated by the root groups U, with a € ®; U P, 1 U---. Then we obtain a filtration
U =U; D U; D --- by normal subgroups. Let U,L»(9 = U%NU. Then UZ-O/USrl is abelian,
isomorphic to its Lie algebra. As argued in Lemma {ueUP/UZ, | bo(u)b™! = u} is trivial
because ¢p(b) does not lie in Ao for any o-orbits O’ that appear in U®. The claim follows by
induction.

It follows that the map in Part (2) is a monomorphism, and that the map Lie U O _ Lie U®
given by X + X — Ady(o(X)) is an isomorphism. On the other hand, for any b; € U, and
Y € LieBp,

Y = Ady, Y mod Lie U°.

It follows from Lemma |5.2.13|that U x ng]a — Bl is étale and therefore is an open embedding.
Note that the following diagram is commutative

Co

U° x BS o B

> /

B([g)]o,

where Bl%g — Bgo lo is induced by the projection B = U°Bp — Bp. In addition, for every
point bo € ng]a, the U%-orbit through this point is closed in Bl®o since U is unipotent. It
follows that the B([go } o-morphism ¢, : U® x B([;Q lo = B9 is fiberwise open and closed. Therefore
U® x ng]a — Bl is open and surjective. Part (2) follows. O

We also need the following companion result. If OT is a o-orbit of type BCT such that ap+
is a simple root of ®(G,, A), let O~ denote the corresponding o-orbit of simple roots of type BC™
and we fix an order of roots in O.

LEMMA 5.2.18. Keep the notations as above. Then the restriction
- +
to (U9 % T Ua) x BE o > B
acO~

is an isomorphism, where the product [[,co- Ua is taken with respect to a chosen order.

PROOF. The same proof of Lemma [5.2.17| (2) for the o-orbit O~ shows that the restriction of

_ +
co to U9 x Bgo_ lo = BI®"15 is also an isomorphism. Therefore, it reduces to prove that
+ +
Co - H UaxB([g)Jr}J—)Bg),}a

acO~
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is an isomorphism. This follows from a simple explicit computation. Namely, we set d = |0, fix
aroot a € O, and write a; = o'(a) for 1 <14 < 2d and B; = a; + 0%(«;). Then for b = ¢ [[z, (b;)
with e*©(t) # 1, and u = [[ 2, (ai),

Uba(u)_l =1 H':Uai (6—041' (t)ai - ai—l) H LB, (b;)7

where b, — b; is a polynomial in (ay,...,aq) of degree two (with coefficients involving e®i(t)’s).

Since e*©(t) — 1 is invertible, for every (cq,...,caq), there is a unique (aq,...,asq) such that

¢i = e% (t)a; — a;—1, the map in the lemma is an isomorphism. d
PROPOSITION 5.2.19. (1) The map qp : B8 — A is surjective.

(2) Each fiber of qp : B¢ — A is a single B-orbit for the o-conjugation action.

(3) For every b € B8, (id — Adyo)~(u) = t7 +u.

(4) Assume that G is semisimple and simply-connected. Fix b € B8, Let g € G such that
gbo(g)~! € B and qg(gba(g)~') = qg(b). Then g € B. In addition, I, C B.

PrOOF. (1) For every t € T', consider the automorphism of G; given in Lemma denoted
by to. Applying Proposition to (G, to) gives an element u € U; which is to-regular in Gj.
Let b =ut € UyT. Then I, NGy = {g € Gy | guto(g)~1t~! = g} is the to-twisted centralizer of u in
Gt. Therefore, b = ut is also o-regular in Gy by Lemma [5.2.9

(2) If b € B8, then the dimension of the B-orbit through b under the o-conjugation action
of B on itself is equal to dim qgl(qB(b)). This shows that any two o-regular B-orbits in a fiber of
gp must meet since fibers of qp are irreducible. Therefore, there is exact one B-orbit in each fiber
of qp : B77& — A.

(3) We may assume that b = ut, with u € U; being to-regular in Gy. Then the claims follows
from Lemma [5.2.9] and Proposition

(4) We may assume that b = ut, with u € Uy being to-regular in G;. Write an element g € I;(k)
as g = winug with uj,ug € U and n € N. Then ujnusb = bo(u1)o(n)o(ug). It follows that
o(n) =n, so

nugbo (ug) " 'nt = uytbo(uy).
Taking projection to A, we see that w(qp(t)) = ¢p(t), where w = n mod T'. Since G is simply-
connected, by Lemma [5.1.12] and Lemma [5.2.7, w must be in the Weyl group of G;. Then by
applying the same argument as in the proof of Proposition to Gy, we deduce that w = 1. In
particular, Iged C B. On the other hand,

ker(id — Adyo : g — g) = ker(id — Adyo : g — g¢) = ker(id — Adyo : bN gy — bNgy).

where the first equality follows from Lemma [5.2.9, and the second follows from Lemma [5.2.5
Putting these together, we see that I, C B.

More generally let g € G such that gbo(g)~' € B and qg(gbo(g)™') = qp(b), there is some
¥ € B such that gbo(g)~! = b'bo(b')~!, by Part (2). Therefore g~ € I, C B and g € B. O

COROLLARY 5.2.20. Let K =kerqp = (0 —1)T - U, and let € be its Lie algebra. Then for every
be B8 (id — Adyo) 1(€) = b.

PROOF. Let X € g such that X — Adyo(X) = (1 —0)H +u, with H € t. Then (id — Adyo)(X —
H) € u. Therefore X — H €t +u and X € b. O

COROLLARY 5.2.21. The codimension of B — B is at least two.

Proor. This follows from Lemma[5.2.17| (1) and Proposition [5.2.19 O
COROLLARY 5.2.22. An element b € B is o-reqular if and only if the set By, = {g € G/B |
g~ 1bo(b) € B} is finite.

ProOF. This follows from Lemma [5.2.17] by applying Lemma to u € Uy. O
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5.3. Twisted Grothendieck—Springer resolution. In this subsection, we assume that G
is semisimple and simply-connected.

Note that k[T]¢%(No) = E[A]"o. Then the twisted Chevalley isomorphism (Proposition [4.2.3))
implies that G Jc,(G) = A )Wy := Spec k[A]"0. So we write the (twisted) Chevalley map as

X:G = Gllce(G) = AWy,

which we recall is faithfully flat by Corollary

As in the untwisted case, there is the following commutative diagram

G215 A

| |
G —X— AW,
where the left vertical map
G:={(¢gB,2) € G/Bx G|z € gBo(g) '} — G (9B, x) — z,
is what we call the (o-twisted) Grothendieck—Springer resolution. The map ¢ is induced by
GG xP(Bo) 2 GxB A A,

Together, these two maps induce a proper map 7 : G — G x Ayw, A
Let G777 be the preimage of G778, We have the following proposition.

ProposITION 5.3.1. The induced map GoTe8 —y (GOTe8 X AW, A is an isomorphism.
Proor. We start with the following special case.
LEMMA 5.3.2. Let G be the preimage of G°™. Then the induced map
(5.3.1) o 1 G777 = G7F X4y A
18 an isomorphism.
ProOOF. By and Lemma we have G = G x0T So we can write
G7™ = {(9B,g'to(¢") ") € G/B x (G x" T)| g'to(g') " € gBo(g)'}.

The last condition is equivalent to g 'g¢'to(g~'¢/)~' € B. By Proposition [5.2.19 (4), g~ '¢' €
B xT Ny. From this, we deduce that G =2 G xT T and therefore (5.3.1)) is an isomorphism. [J

We return to the proof of Proposition Since A — A /W) is finite and flat by Lemma
the fiber product G°*® XA JWo A is open and dense in G X 5y, A. But 7 is proper as G/B is, so
7 is surjective. In particular, G x s yw, A is irreducible. Moreover, since A and G are smooth and
G — AWy is flat, G X a yw, A is a complete intersection (in particular Cohen-Macaulay), and it
follows from the above lemma that G — A /W) is generically smooth. Therefore, G x a yy, A is
also reduced. So G X 4 yw, A is a closed subvariety of G x A.

Since G — G is surjective, every element in G is o-conjugate to an element in B. In particular,
Goreg = G xB B8, By Proposition (4), the map G xB B — G x A is injective on
points. By Lemmaand Corollary the tangent map for Gx B B8 — G'x A is injective
at every point, and therefore the morphism is unramified. It follows that GO GO x A is a
closed embedding, with image (as topological space) G x 5 yy;, A. But since G x5 ) A
is also reduced, the map in the proposition is indeed an isomorphism.

Here are some standard corollaries.
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COROLLARY 5.3.3. The morphism x : G778 — A JWy is smooth.
PROOF. This follows from the smoothness of G"™& — A and the flatness of A — A J/W,. [
COROLLARY 5.3.4. The map 7 induces an isomorphism k(G X o yw, A] = I'(G,0).

PROOF. It is enough to show that G'X 4 yw, A is an integral normal scheme. Then it follows that
7 induces an isomorphism between rings of global regular functions, since it is proper birational.

We already seen that G X a yw;, A is integral, and a complete intersection. By Proposition
G778 X A yw, A is smooth. By Corollary!@% the complement of G x a yyyy A in G X yw, A
has codimension at least two. It follows from this lemma that G x 5 yw, A is normal. D

COROLLARY 5.3.5. (1) For every a € AWy, x 1 (a) N G778, is a single G-orbit, and the
codimension of the complement of this G-orbit in x~'(a) at least two.
(2) Each fiber of x is a complete intersection and normal variety.

PrOOF. (1) Pick a € A(k) that lifts a € AJWy. By Proposition the fiber x~!(a) NG 8
is isomorphic to the fiber of ¢ : Goree =~ 3 xB BoT8 4 A at g, which is clearly a single G-orbit
by Proposition (2). On the other hand, by Corollary the fibers of G — G over
G — G778 have positive dimension. Since g5'(a) — (g5'(@) N B°7™8) is a proper closed subset of
g5' (@), ¢ *(a) — (g~ (a) N G™8) has codimension at least two in ¢~ *(a).

(2) Since x : G — A /W, is flat, each of its fiber is a complete intersection and hence Cohen—
Macaulay. By (1), each fiber of y contains a (smooth) G-orbit whose complement has codimension
at least two. So the fiber is also normal. O

6. The determinant of the pairing J(V)® J(V*) — J

AssUMPTION 6.0.1. In this section, assume that chark > 2. Let G be a simply-connected
semisimple group over k. Let V be a finite dimensional representation of G and V* the dual
representation. Assume that both V and V* admit good filtrations.

We keep conventions and notations as in § |51 Then V* is the dual of V as a vector bundle on
[Go/G]. The perfect pairing V @ V* — O|ao /) induces a J-bilinear pairing J(V) @ J(V*) — J of
global sections, which however is not perfect in general. Our main result (Theorem calculates
the determinant of this pairing of two finite free J-modules. A main intermediate step is to study
the failure of the surjectivity of the twisted Chevalley restriction homomorphism .

6.1. Main results.

DEFINITION 6.1.1. For each o-orbit O C ®(G,T'), we choose a € O and view it as a character
of T9 by restriction, which is clearly independent of the choice of . Define the number

(o =Co(V) =Y _ dim Vs (na).
n>1
The main theorem of this section is the following.

THEOREM 6.1.2. Keep Assumption m The determinant of the natural J-bilinear paim’ngﬂ

(6.1.1) (aow: JV)JV*) = J

s of the form

(6.1.2) (some unit in k) - H (e¥0 —1)%0 . H (e®© +1)%0.
O type A or BC— O type BCH+

5Taking the determinant makes sense because Theorem shows that J (V') and J (V™) are both free J-modules
of the same rank.
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REMARK 6.1.3. (1) Note that (o depends only on the Wy-orbits of O, and therefore the
product in does belong to J.

(2) When o is trivial, the rank of J(V) as a J-module is riy = dim V' (0) by Theorem [4.3.2]

In this case, then (p = (, can be alternatively computed via the multi-filtration on the
weight spaces introduced in § as

(o= Y (va)- dimgr,V(0).

vexe(T)+

(3) Similarly we have the pairing J4 (V) ® J4(V*) — J4. Its restriction to SpecJ is the
pairing in the theorem, and restriction to the point 21 € Spec J as defined in Remark [£.4.1]
is the natural pairing between (V|70 )(0) and (V|z-)*(0).

(4) When chark = 0, we have explained in § a construction of a basis of J(V') (resp.
J(V*)) from a certain basis of V (resp. V*) (e.g. the MV basis used in § 3.5). Then
the (-,-)y is represented by a square matrix. It seems to be an interesting (although
probably difficult) question to calculate the entries of this matrix explicitly. See § for
some calculations and further discussions. We also refer to [XZ17] for the arithmetic and
geometric meaning of this square matrix.

In what follows, we shall relate the pairing (6.1.1]) to the twisted Chevalley restriction map

(4.3.3). As we will show in Lemma that Theorem follows from Proposition below.
More precisely, we will not study the Chevalley restriction homomorphism (4.3.3)) itself, but rather

the induced Jr-module homomorphism
(6.1.3) Res{, @ 1: Jg(V) @y, Jr — J1(V),
where explicitly, we may write the target as

(6.1.4) Jr(V)=k[TeV)*D = B kAo V(eE)
£€(o—1)X*(T)

with ve € X*(T) some weight such that o(v¢) —ve = £. In particular, if o = id, J7(V) = E[T|@V (0).

We view Res{, ® 1 as a morphism of coherent sheaves over A. By Lemma (which relies on
Lemma , it is an isomorphism over A (which is defined in Definition

Now, let 7 be a generic point of the divisor | J, Ao (which is reduced since we assumed that
char k > 2; see Remark [5.1.11). Then the complete local ring of A at 7 is isomorphic to k(n)[[=]],
where @w = €@ — 1 or e*© + 1 for some o-orbit O C ®(G,T'). Note that J5(V) is always a torsion
free Jg-module (even if V' does not admit a good filtration). Therefore Jo (V) ®, k(n)[[=]] is
always free, and (6.1.3)), base changed to k(n)[[=]], is a map Res,, of finite free k(n)[[w]]-modules
which becomes an isomorphism when further base changed to k(7)((w)). (Such map is called a
modification of vector bundles on Speck(n)[[ww]] (in the sense as in [XZ17, § 3.1.3]). The top
exterior power of this map Res,, is an element in k(n)[[w]] — {0}, well-defined up to multiplying an
element in k[[w]]*, and therefore gives a well-defined element in

(=] = {0H)/Em[=]* = Zx0.

We call this number the length of the modification.
Here is the main result regarding the map ((6.1.3)).

PROPOSITION 6.1.4. For every G-module V' with good filtration, the length of the modification
(6.1.3)) at every generic point of Ao is exactly (o.

This proposition will be proved in §[6.2l We note the following first.

LEMMA 6.1.5. Proposition [6.1.4) implies Theorem[6.1.3
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ProOF. Consider the following commutative diagram

J(V) X J(VH) — v J

| )

JWV)@sJdr x JVH®5Jr ’ Jr
iRes@@l lRes‘{,*(@l
Jr(V) x Jr(V*) Lol Jr.

By Theorem [1.3.2] J(V) and J(V*) are free J-modules. So second row is simply a base change
of the first row, and hence the matrices for the top two pairings are the same (when choosing
compatible bases). Now the bottom row is a perfect Jp-bilinear pairing (as can be easily seen from
the explicit expression of Jr(V) in (6.1.4)). So the determinant of the middle row is the product
of the determinant of the map Res{, ® 1 and the determinant of the map Res{. ® 1 (up to a unit).
Thus, Proposition would imply that the determinant of , as a divisor on A, is given by

> Co(V)+Co(VH) - Ao.
OC®(G,T)
By Lemma below, this gives the same expression as the formula up to a unit in k[A].
But note that the product in is Wy-invariant, so is the determinant of . It follows
that the ambiguous unit in k[A] belongs to (k[A]"°)*. As mentioned in the proof of Lemma
(see also [Sp06] Corollary 2]), k[A]"° is a polynomial algebra and hence its units are just k*.

Therefore, the determinant of (6.1.1)) is given by (6.1.2)) up to a unit in k. O

LEMMA 6.1.6. For a representation V. of G and a o-orbit O C ®(G,T), we have (p(V) =
Co(V7).
Proor. This follows from the following sequence of equalities
dim V*| 7o (na) = dim V7o (—na) = dim V|70 (na),

where the first equality follows from the duality and the last equality follows from the fact that «
and —« lie in the same W-orbit. ]

6.2. Proof of Proposition We will first reduce Proposition to the cases of SLy
and SL3.

LEMMA 6.2.1. Let V' be a representation of G. The map Jo(V) @y, Jr — Jp(V) is an
isomorphism.

PRrOOF. Recall that by Corollary the pushforward of the structure sheaf along 7 :
[Bo/B] — [Go/G] X o yw, A is the structure sheaf. Then it follows from the projection formula
that

Ja(V) ®yq Jr =D([Go/G] @ yw, A, VR O) =T([Bo/B],n*V) = Jp(V)
is an isomorphism. ]

Using the Wy-action on ®(G,, A), it suffices to prove Proposition for a g-orbit O that
is either a o-orbit of simple roots (of type A or BC™), or a g-orbit of roots of type BCT that are
sum of two roots from a g-orbit O~ of simple roots. In either case, let G be the subgroup of G
generated by T and U, with « € OU —QO; and By the Borel subgroup generated by T' and U, with
ac0.

LEMMA 6.2.2. The map Jg(V) — Jp, (V) is an isomorphism over Al
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PROOF. It follows from Lemma [5.2.17] and Lemma |5.2.18| that [BI®lo/B] = [Bgo]a/Bo]. So

the map in the lemma induces an isomorphism when restricted to Al O

LEMMA 6.2.3. To prove Proposition[6.1.4), it is enough to prove it for two cases:
o G = SLy with 0 =id;
e G = SL3 with o given as in Example and O being a o-orbit consisting of two roots.

PrROOF. By Lemma and Lemma [6.2.2], we reduce Proposition to prove that, for the
o-orbit O considered above and over every generic point 1 of Ap, the map Jp, (V) — Jr(V) is
a modification of length (p. (Note that V|, also admits a good filtration by Theorem (1).)
We consider the central isogeny

= GO,der X ZG@ — G@.

with kernel F' = Gp qer N ZG,,- Let T’ denote the preimage of 7' and A’ = T.. Note that the
right exact sequence F, — T, — T, — 1 is also exact on the left, so the induced map A" — A
is an Fi-torsor. Note that F,, is indeed étale (given the classification of G ger by Lemma
since we assume char k # 2. By Lemma (applied to Bjy = Bo.der X Za, and To der X ZG)
and the fact that modifications commute with étale base change, the length of modification of
JBo, (V) — Jp(V) at every generic point 1 of Ap is the same as the length of modification of
I, (V) = Jr:(V) (or equivalently Jg, (V) ®JG,O Jr — Jr(V) by Lemma at any preimage
of n under the map 7: A’ — A.

We decompose V' = @V, @ ky, according to the central character for the action of Zg, on V/
so that each V;, is a G ger-module. Then by (4.1.1] m

T, (V) = €D 60,0 (Vo) © 26, (k) = D TG00 (Vi) ® T 26, (ko).
P Plzg, =1
(@)
We write Ager = (T0,der)os Where To ger = T N G0 der- Then A’ = Ager X (Zg,,)s, and one checks
that 7 : Ager,0 X (Zgy)o — Ao is surjective. Clearly, the modification

T, (V) =P T o (V) @ T 26, (k) = T (V) = ) T16 00 (Vi) © T 25, (ki)
P P
only happens on the first factor. Since the second factor is of rank one over J Z6o and since
dim(Vlre)(na) = > (Vylrg, ) (na),
Wzgo =1

we see that to prove Proposition it is enough to assume that G = Go ger-

By Lemma there are three cases for Gp ger. By Lemma [5.2.18] and Lemma we
reduce the proof of Proposition to the case G = SLy with ¢ =id, and G = SL3 with o given

as in Example and O being a g-orbit consisting of two roots. This completes the proof of the
lemma. ]

Finally, we treat the above mentioned two cases.
LEMMA 6.2.4. Proposition holds for G = SLs.

PROOF. It is enough to assume that V' is the Schur module 8,, (of dimension n + 1), in which
case we make explicit computations. We set

B={(a ) ack bek}, T={(¢%)|ack*}, and U={(}})]|bek}.
By Lemma [6 we need to show that

(1) Jr(Sy) is zero when n is odd, and
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(2) the length of the modification of Jg(S,) — Jr(S,) at the generic point of T is exactly n/2
when n is even.

(1) is obvious by looking at the action of (' %) € SLy. For (2) (and hence n is even), we

explicitly identify S, = k[2]96=" and Op = k[z*!,y], where B acts on S, by (2 °,)(h)(z) =

0a?!
anh(a—2z — a—lb) and the conjugation action of B on Op is given by
(8 aél )(h)(l‘, y) - h(l‘, a_2y —+ a_lb($ _ 33_1))_

From this, we see that z(z — 2~ !) + y is invariant under the U-action and explicitly

n—1

(05 ©8,)Y = @ ke (2(z — a7 +)".
=0
But an element (§ a91 ) € T acts on (z(z — 2~ ') + y)" by multiplication by a"~ 2. It follows that

(05 @8,)8 2 k[z®Y] - (2(x — 27 + y)"/2

Restricting to T, or equivalently setting y = 0, we see that the map Jp(V) — Jr(V) can be
identified with the inclusion

klzt - (z(z — a7 )% = k[at1] . 22

The length of the modification of the above map at each point of the divisor  — 27! is n/2. This
completes the proof of the lemma. O

LEMMA 6.2.5. Proposition holds for G = SL3 with the automorphism o given in Exam-
ple[5.1.5, at the generic points of Ao for the o-orbit O consisting of two roots.

PROOF. Let o, 0, 5 = a + oa denote the positive roots and let O = {a, oca} so that ap = 3.
We consider the principal SLy of SLs. Its image is exactly H = SO3 = (SL3)?, where SO3

1
is the orthogonal group defined by (1 -1 ), regarded as a symmetric bilinear form. The map

T° — T, = A is the square mapping on G,,. One checks immediately that when chark # 2,
Jr — Jr7o is finite étale of degree two and the induced map

JT(V) ®JT JTU — JTO'(V)

is an isomorphism.

The embedding H — G induces SpecJ g = H//¢(H) — SpecJg = G//cs(G), where ¢ denotes
the usual conjugation of H on H. Here Jy = k[y] (resp. Jg = k[z]) is the space of conjugation
invariant functions on SOg3 (resp. twisted conjugation invariant functions on SL3), with the variable
y (resp. z) representing the character of the standard representation of SO3 (resp. the adjoint
representation of SL3). Note that # = (y — 1)? when viewed as functions on 7°. So k[z,z~'] —
kly, (y — 1)~ is finite étale of degree two.

The point z = 4 is the image of the divisor Ap under the isomorphism A/ Wy = Spec J¢g. Its
preimages under the map Spec J g — Spec J are points represented by y = —1 and y = 3, where
y = 3 corresponds to the Weyl group orbit of the zero of € —1 on 7. Let u = 2 —4, and v = y — 3.
Then the map k[z] — k[y] induces an isomorphism k|[[u]] = k[[v]]. We claim that the natural map

(6.2.1) Ja(V) @i kl[ul]l = T (V) @y k0]

is an isomorphism.
By [St65, Theorem 6.11 ¢) | (or a direct computation), the preimage of y = 3 under the quotient

1
map SO5® — SpecJy = Speckly] is a single H-orbit of g(0) = (1 i i) One can easily check

that the image of ¢g(0) in SLs3, denoted by h(0), is also o-regular. Using the smoothness of the
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Chevalley map SO3™® — Spec k[y], we may lift g(0) to g : Spec k[[v]] — SO5®. Since SL3 " is open
and naturally Spec k[[u]] = Spec k[[v]], we get a composition of maps

h : Spec k[[u]] = Spec k[[v]] & SO3 — SL3

whose image lands in SL3 "*®. Now, viewing ¢g and h as k[[u]]-valued points on SO3® and SL3"®

respectively, the centralizer Zg(g) of g in SO3 is naturally contained in the twisted centralizer I,

of h in SL3. We claim that Zp(g) = Ij. Indeed, this is true over the generic point of Spec k[[u]] =
Spec k[[v]] as both spaces are connected by Lemma[5.2.11} Over the special point, one can compute

explicitly that
1z 122
Zula0) =t = { ("1 ) s e i},

Thus Zp(g) = In. Since a V-valued function is determined by its restriction to the regular locus,
by Corollary (1), we deduce that

Tu(V) @y kllu]] = (V © k[[u]) 77D = (V © k[[v]))" = J6(V) @4 K[o]].

This shows that is an isomorphism.

Now we immediately reduce the lemma to the SLa-case (Lemma by the same argument as
in the last two paragraphs of the proof of Lemma (based on Lemma, provided that we
can show that Vl]so, admits a good filtration. It suffices to check this for Schur modules S, +bus,
with a,b > 0, where w; and wy are the fundamental weights of SL3. We check by induction on
a + b. This is true for wy; and wy as they are standard representations of SO3, and therefore true
for s¥% ® sE° by Theorem (2). By the Frobenius reciprocity, there is a unique zero (up to
scalar) map S&* ® S5 — Suu, 4pw,. One easily identify the kernel V' as (S2% @ S2°) 0+, in
Lemma (2), and therefore admits a good filtration (whose graded pieces are Schur modules
with highest weights strictly lower than aw;+bws). So the restriction of V' to SO3 admits a filtration
by inductive hypothesis. Moreover, by Lemma @l (2), 82" ® Sfj);’ — Saw;+bw, 1S surjective. By
Theorem (3), we conclude that Sy, 4, admits a good filtration when restricted to SO3. [

REMARK 6.2.6. As in the proof of the lemma, we have an analogous map
Ja(V) @ klle —4]] = Ju(V) @y klly + 1]].

But it is not an isomorphism in general. The reason is that y = —1 lies on T /W, so every regular
element in SO5™® that maps to the point y = —1 in Spec k[y] is conjugate to the semisimple matrix

-10 0
( Lo ); yet this matrix when viewed inside SLj3 is not o-regular.

6.3. The ring End(V). Motivated by some applications in [XZ17], in this subsection we

study the endomorphism ring End(V') of the vector bundle V' on [Go/G]. Here are some basic
facts.

(1) The ring End(V) is a J-algebra. In particular, if W is a representation of G x (o), its
character xyw, restricted to Go, defines a regular function on [Go/G| and therefore an
element in End(V), still denoted by Xy

(2) The Chevalley restriction map is the pullback map End(V) — End(‘~/|[TU /1)) along [T'o/T] —
[Go/G]. Note that

End(V|i7471) 2 (k[T] ® Endg V)77
So (6.1.3)) gives an injective map

Resfgy- © 1: End(V) @, Jr — (k[T] ® Endga V) T/T7,
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which is an isomorphism generically over Jr. It follows that End(V) is commutative if
and only if V' is multiplicity free as a T?-module.

(3) Assume that V' is the restriction of a representation p : G x (0) — GL(V') to G. There is
an element 7yt € End(v), given by a tautological automorphism of V. Namely, consider
the trivial vector bundle Og, ® V over Go. There is the tautological automorphism of this
bundle whose restriction to the fiber over go € Go is given by the automorphism p(go)
of V. This automorphism commutes with the G-equivariant structure on Og, ® V, and

therefore descends to the desired ~¢aut. Note that

(RGS?/QZ)V* ® 1)(7taut) = Z ea(u) & ou,
m

where the sum is taken over all weights in V' and o, : V(u) — V(o(p)) is the natural
isomorphism.

PROPOSITION 6.3.1 (Cayley—Hamilton). Write d = dim V. Define a degree d polynomial f(x) €
J[z] as
F@) = S (=D

Then there is an injective map of J-algebras defined by

(6.3.1) Jz]/(f(z)) = End(V), 2~ Ytaut-
In particular,
(6.3.2) D (1) X iy Haue = 0

as elements in End(V).

ProoF. For G = GL,, ¢ = id and V = std being the standard representation, the usual
Cayley—Hamilton theorem gives . In general, the representation defines a homomorphism
G % (o) — GL(V), which induces [Go /G| — [GL(V)/GL(V)]. The pullback of the bundle std on
[GL(V)/GL(V)] along this map is exactly V, the pullback of the tautological automorphism ~iaut
of std is the tautological automorphism of V, and the pullback of the regular function yaigyq 1S
just xaiyy. Therefore, holds in general. Or equivalently, (6.3.1]) is well-defined. It remains
to show that it is injective.

If G = GL,,0 =id and V = std, by Lemma below, (6.3.1)) is an isomorphism. On the
other hand, for a representation G x (o) — GL(V'), the map

End(std) QJarv Jg — EndCoh([Ga/G})(‘/)
is injective. Therefore, the injectivity of (6.3.1]) in the general case follows. O
REMARK 6.3.2. Note that the proof of the above proposition holds for any algebraic group G.

REMARK 6.3.3. We also briefly explain how to study End(V) if V is not a representation of
G x (o), but only a representation of a subgroup G x (), where 7 = ¢f. In this case, we have the
map

[Go/G] = [GT/G],  go = (90)) = ga(g)a®(g)---0! ! (g)r.
Then we can pullback everything from [G7/G]. Note that for a representation W of G x (1),
W®oW)®---® ol Y(W) is a natural representation of G' x (o), usually called the tensor
induction representation. Let us denote it by ®ZW. Then the pullback of xw to [Go/G] is xgew.
So we have
Z(_1)1X®Z(Ad_i‘/)’%ant =0.
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As mentioned above, for a general V' which is not multiplicity free as a T?-module, the ring
End(V) is non-commutative. So End(V') is not generated by 7taut as a J-algebra. Even if End(V')
is commutative, (6.3.1)) will only be an isomorphism away from a divisor on Spec J . However, we

can say more in the following special case.

LEMMA 6.3.4. The map (6.3.1) is an isomorphism if

e (G = GL,, or SL,, equipped with the trivial o-action, and V is the standard representation
or its dual.
o (G = 8py, and V is the standard representation;

PRrROOF. It is enough to show that Jg[z]/(f(x)) @5, Jr = Jrlz]/(f(z)) = End(V) @5, J7 is
an isomorphism. For this, we calculate the composition

(6.3.3) Jalx)/(f(x)) @5, Jr = Jr[z]/(f(z)) = End(V) 4, Jr — Jr @ Endr (V).

Under this map , the image of Yo is > e ®idy(y;), where the sum is taken over all weights
{Aj} of V, and idyy,) is the identity map of V/(\;). Then the image of 7f,, is Y et ® idya,)-
Since V' is minuscule, {idy(y;)} form a basis of J7 ® Endz(V') as a Jp-module. By Vandermonde,
the determinant of the composed map is

H(e)\j _ e)\j/) — e/L H(l _ e)\j—>\j/),

j<g’ Jj<y’
from some p € X*(T'). For the cases in the lemma, the difference A\; —\;/ is a root «, which is equal
to the determinant (up to a unit in Jr) of the second map in (6.3.3)) by Proposition (Note that
Proposition also holds for GL,,.) Therefore, the first map in (6.3.3) is an isomorphism. O

6.4. Some examples. In this subsection, we present some examples of the calculation of the

determinant of (6.1.1).

ExAMPLE 6.4.1. Consider the case where G = Hle SLo and o permutes all d factors, and let
V=V, X---KV,, be the exterior tensor product representation, where V; is the ath symmetric
power representation of SLy (i.e. the representation of SLy on the space of homogeneous polynomials
in (z,y) of degree a). By Lemma this is equivalent to the case where G = SLo, 0 = id, and
V=V, :=Vo ® - ®V,, (so that ry =V,,(0) # 0). Now assume that a1 + -+ + aq is even. In
this case, Theorem says that the determinant of the matrix is equal to

c-(e¥—1)5(e *—1)¢
for some ¢ € kX, where

dimV,, — dim V(0
(=Y dim Vi n) = e = A0 Ve )

n>1

In fact, the matrix for the pairing (for some appropriate basis) can be obtained via a
combinatorial description in terms of periodic meanders, which carries a quantum deformation. In
the special case when G = SLsg, d is even, and a; = --- = a4 = 1, this matrix is the Gram
matrix for the periodic meanders (see [TX14]).

ExXAMPLE 6.4.2. Consider the case when G = SLo,y1 with the non-trivial pinned o-action as
explained in Example [5.1.50 We use freely the notation therein. In particular, X*(7T') is generated
by the characters e_,, ..., e, with the relation that >, & =0, and o acts by o(e;) = —e_; for
each i. The Bruhat partial order on X*(T') is generated by ¢; > ;41 for i = —r,..., 7 — 1. For
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A=T/(c - 1T, X*(A) =X*(1)7 = B;_,Z- (c—i — &i). The absolute Weyl group W = So, 14
permutes €_.,...,&,, and its o-invariant elements are
Wo = W7 = ((i, —i), (ij)(—i,—j) | i,j = 1,....,7) = (ZJ2Z)" x S,.
Recall the o-orbits of roots in (5.1.2)); in particular, ap,- = ap+ = —¢; for i = 1,...,7.

Write ©; for the i¢th elementary symmetric power in %01 4 701 | Y0 4 ¢7*Or then
J = k[Go]® 2 kX (A 2 K[y, ...,6,] C k[X(T)] = klet—, ... Tt e . ]
When r =1, J = k[e*0:1 4 e~@0:1],

We consider the standard representation V' =S, = std of G = SLgy,4+;. Observe that the only
nonzero weight space of V' with weights in (¢ — 1)X*(7") is V'(eg). We write

eo=o0()—v, for v=e_,+ - 4e_.

The representation S, = S,(,)~ = A"std is the rth wedge product of the standard representation.
Then it is easy to see that

(Sowe) ®8, @ V)E = (A"std ® A"std @ std)” = (A*std)C =k,

Let b denote the element on the left hand side that corresponds to 1 € k, or more precisely
€é_r A=+ Ae.. Then the recipe in defines a function fp, € J(V) (note that in our case
W, = 8,). We will compute its restriction to To.

Let e_,,...,e,. denote the standard basis of the representation std. Then A"std has a basis
(er)rcg—r,....r},|1j=r> Where for I = {i1,...,i,} with elements ordered increasingly, we write e; =
iy A -++ Aej,. The natural map o : §, = A'std — S,(,) = (A"std)" is given by sending e; to
(—1)%2@ So o(es) = sgn(I) - e* ;, where —I = {—i,,...,—i1} and sgn(I) = (—1)+Firtrr=1)/2,
Using this notation, we write explicitly

b = E er@ep @vrp, folto) = § (er,toep) -vrp,
[I|=m,|1"|=r [I|=r,|1'|=r

where vr r € V = std, t € T, and the sums run through all subsets I, I’ of {—r,...,r} of cardinality
r. In the expression for fi,(to), the pairing (es,toer) is nonzero precisely when I’ = —I. In the
expression for b, the vector vy s is nonzero precisely when I and I’ are disjoint. So we need only
to discuss the case when there is s = {s1,...,s,} € {£1}" such that I = I; = {s;-1,...,s,-7} and
I' = —1. In this case, sgn(—1I,) = (—1)7r+D/2470=1)/2 — (_1)" is independent of s. Moreover, we
may take vy = (—1)"sgn(s) - eg, where the sign sgn(s) = (—1)* with u equal to the number of
—1’s in s. Thus,
-
Res¥(fo) = > sgn(s)e =22 () gg = [[ (€57 —e™) - eg € Jo(V).
se{£1}" i=1

In the dual picture, we consider an element
bY € (Vo) ® Vir @ V) = ((A"std*) @ (A7std*) @ std*)” = (A2 Hstd*)C =

Explicitly, we write

bv = E er ® 6?/ [ U}/,I” fbV(tU) = E <e[,t0—€;/> . 6}/’11.
[=r,|1"|=r |=r,1"|=r

6This is in fact (—1)" times the natural map given by (5.1.1).
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Similar to above, we need only to discuss the case when I = I, for some s € {£1}" and I’ = —1.
In this case, we may choose vy = (—1)"sgn(s) - €. Thus,

T

Res{-(fov) = Z sgn(s)ef s Te-2ep T terar (1) o — H (5t —e%) e € Jp(V™).
se{£1}" i=1
Now we compute (fp, fpv) under the pairing J(V) @y J(V*) - J = J:,WO:

T s s

oo =TT =) T =) =TT ("7 - e

i=1 i=1 i=1
This agrees with Theorem by noting that (,- (V) = 1 and {,+(V) = (o, ,(V) = 0, for the
o-orbits in ((5.1.2)).

EXAMPLE 6.4.3. Consider SLy with row and column indices in {—2,—1,1,2}, the pinning
(B,T,e) given by the subgroup of standard upper triangular matrices, the subgroup of diago-
nal matrices, and e = F_o _1 + E_11 + E12. The unique non-trivial pinned automorphism o is

0001
given by o(X) = JIX~1J7! for X € SLy, with J = < 0 (1)018)

—Q

O —1)).

1000
Let ¢; for i = +1, 42 be the character of T given by evaluating at the (i, )-entry; so that X*(T")
is generated by these ¢; with the relation e_9 +e_1 + 1 + €3 = 0. Under the o-action o(g;) = —¢;,

the following are the o-orbits of (G, T):
O; ={e—i —&i}, Oso41={er2 —e51,641 — €42}, Oxo41 = {42 — 51,641 — €2}
with ¢ € {£1,42}. They are all of type A. For A =T/(c — 1)T,
X*(A) =X*(T)? =Z(c_o — e2) DZ(e_1 +£_2).

(Note that (e_a — e2) + (621 — €1) = 2(e—2 + €-1).) The root system ®(G,, A) consists of
short roots ap, and long roots ap,;; the group G, = Spins. The absolute Weyl group of
O(G,T) is W = Sy given by permuting the g;’s, and its o-invariant elements are Wy = W7 =
<(_1’ 1)a (_27 2)7 (L 2)(_17 _2)> = (Z/2Z)2 o 52' Write

61 — ef-17¢1 + efl1—E-1 + ef—27¢82 + 662_6*2, 62 — 68*2+E*1 + e E-27¢6-1 4 e€1+€2 + e E17¢e2
Then
J = k[Go]9 = k[X*(A)|"0 = k[&,, &,
C k[X.(T)] — k,[e:ta_g’e:l:s_l’e:l:al’e:tag]/(ea_2+a_1+£1+£2 _ 1).

Consider the minuscule representation V' = S, ,;. , of SLy; it is isomorphic to A2std for
the standard representation std of SLy. There are two nonzero weight spaces with weights in
(c —DX*(T): V(A1) and V(A2) with \; = e_; + ;. They are both of one-dimensional. So 7y = 2.
The minimal dominant weights v; (in the sense as in Lemma |4.3.6|) satisfying o(v;) —v; = A; are

vVl = €E_9, V9 = —&9.

We remark here that for SL,, with n > 5 and the non-trivial automorphism o, and for V = A%std,
we have 7y = |§] and some (or rather most) of the minimal dominant weights v above are no
longer minuscule. So the computation will be much more involved.

Back to our case, S, & S,(,,)« = std and S, = S;(,,,)» = std”. In what follows, we will describe
nonzero elements

b1 € (So(y): @81, ®V)E = (std@std@A%std)”, by € (S,(s) ®51, ®V) = (std*®@std* @A%std)“,
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use the recipe in to defines a function fy,, fb, € J(V) (note that in our case W,, = S,,), and
describe the restriction of fy, to T'o.

Write {e_2,e_1,e1,e2} for the standard basis of std and {e*,,e*,e],e5} the dual basis; and
the isomorphism o : std & std* is given by

e_grrey €1 —e], e ey, e —e,.
With this notation, we write explicitly,
b = E e ®ej v, [fo, (to) = E (e, t0€j> “ Vg,
ije{£1,+2} ije{£1,4£2}

where v;; € V = A?std and ¢ € T. In the expression for fp, (to), the pairing (e;, toe;) is nonzero

precisely when ¢ = —j. In the expression for by, the vector v;; is nonzero precisely when ¢ # j.
So we need only to discuss the case when ¢ = —j € {£1,+2}. In this case, we may choose
Vo992 = —Uy 9= —€_1/Ae] and v_11 = —Vi,-1 = —€_gNea. Thus,

Res{ (fb,) = (e 2 +e 2)e_1 Nep — (e e He_aNexy € Jp(V).
In a similar way, we may compute (up to choosing a sign for bag)
Resy (fb,) = (et +€et)e_1 ANep — (2 +e2)e_a ANeg € Jp(V).
On the dual side, we choose elements
by € (So(u)®Sur@V*)E = (std*@std* @A%std*)C, by € (S5(,,) @8, RV ™) = (std@std@A’std*),
and a computation similar to above gives the explicit formulas (up to choosing a sign for bY)
Res{(foy) = (52 +e)elj Aef — (e + e )ely Aey € Ir(V7)
ResV(fpy) = (75" +e ™ )ely Nef — (e +e P )ely Ney € Ip(V7).
From this, we deduce that under the natural J-linear pairing J(V') x J(V*) — J, we have
(fous foy) = (foos foy) = (€2 +e2) (€752 +e7=2) + (e e )(e* ! +e7) =61 + /4,
(Fous Foy) = (fons foy) = 251 4 e751) (€752 4 e722) = (€51 4+ ¢1) (€52 + €°2) = 2655,
(Note that ec—2te-1teitez — 1,

<fb17fb}/> <fb17fb
det <<fb2,fby> (Foas fi

(
) We can compute the determinant of the pairing as
)
)

D) = (@ T ) ) )]
2
—4(e"t e ) (e e (e et (572 + e?)

((ea 2+682)(€ 5_2+€—52)_( e_1 +ee1)(e—a_1 +e—51))2
((ee 272 _ (E-17E1) (] _ f2E-2tE1 e )2

=(e"9-2-1 — 1)(e"%-21 — 1)(e"2-1 — 1)(e%21 —1).
One can compare this with the computation that (o, (V) = 0 and (o, ., (V) = (04 1 (V) = 1.

EXAMPLE 6.4.4. Assume that chark = 0. Consider the case of G = Spin,,. More precisely,
consider Q := k®%" with basise_,.,...,e_1,e1,..., e, and a symmetric quadratic form (e;, e_j) = dij.
Let

Cl=CUQ) = 1™ & = (P Q™) [ (wew - Hw,w); w e Q)
n>0
denote the associated (Z/2Z-graded) Clifford algebra. There is a natural (anti-commutative) invo-

lution e on CI generated by sending w € Q to —w. The pin group Piny, is formed by all elements
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x € Ol such that x - 2! = 1, and Q' C Q. The spin group Spin,, := Ping, N CI1°¥*" is the neutral
connected component of Piny,. The maximal torus 7" of Spin,, is given by the image of

r:G;j, Spiny,.
(z1,-- -, z) —liq (zieiefi + Zfleiefi)a
where the kernel is {(z1,...,2,) € {£1}" | 21---2. = 1}. Let 5,..., % denote the usual basis of

the character group of GJ,; then
r—1
X(T)=Z 3(e1+- +e)OPZ-e
i=1

A weight Y7, a;e; is dominant if a1 > -+ > a,—1 > |ay|.
We equip with Spin,, with the outer automorphism o, induced by the conjugation by e, +e_;.
A simple computation shows that

Zieie_; + z;leie_i ifi#£r

(er +e_y)(zicie—; + zi_leie_i)(er +e,) = { T o
z ere_y + 2zpepe_, ifi=r

So o fixes €1,...,e,—1 and maps &, to —&,. So for A =T /(o — 1)T, its character group X*(A4) =
X*(T)? is the free abelian group with basis €1,...,&,-1.

The absolute Weyl group W = H, x S, C {£1}" x S,, where H, C {£1}" is the subgroup
consisting of even number of —1’s, S, permutes €1, ..., and (hq,...,h,) € H, sends ¢; to h;e; for
i=1,...,r. The o-invariant elements of W are Wy := W7 = {£1}""! % S,_1, where S,_1 permutes
€1y...,6r—1 and (hy,..., h,) € {£1}""! sends ¢; to h;e; for each i = 1,...,7 — 1. It follows that
the invariants of C[X*(A)] under Wy are

J:=CX (A" =C[6y,...,6,.1],

where &; for ¢ = 1,...,r — 1 is the ith elementary symmetric polynomial in et +e7%1 ... =1 4
e Er=t,

The root system ®(G, T') consists of £e;4¢; and +¢;F¢j fori € {1,...,r}and j € {1,...,i—1}.
The o-orbits of these roots are

ij = {+e; £ ¢}, O]il = {£e; F¢j}, O;t ={te; + &, te; — &},

withi € {1,...,7},7 € {1,...,i—1}; they are all of type A. Thus the root system ®(G,, A) consists
of short roots a+ = d¢; & ¢; and long roots a,+ = +2¢;.
¥ 7

We shall consider V' = S, = @), the vector representation of G = Spin,,. Its nonzero weight
spaces with weights in (o — 1)X*(T) are V(—¢,) and V(&,). We write

Fer=o0(vy) —ve for vy = %(61 + e ep).
(Be careful with the signs here.) So o(v4+) = v+. We shall see that
(6.4.1) (So(vy) © Sus ® V)G ~ k.

Indeed, since V' is minuscule, S,, ® V' is a direct sum of S,, 1, with all 7 € {%e;,...,%e,} such
that v4 + 7 is dominant. In particular, v+ is among those weights v4 + 7. Dually, we have

(6.4.2) (So(ws) ® 8y ®VH)E k.
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LEMMA 6.4.5. There exist bases by of (6.4.1) and bases bY of (6.4.2) such that if we use
for € J(V) and fpy € J(V*) to denote the associated class functions via the recipe (4.4.2), then

L <fb+7fb:’/_> <fb+7sz> . <ZZZO even 2r_1_i6i Zz 0 odd 2T_1_i6i>
(643)  M:= (<fb,fb1> (Fo_s fov >) T o TS Sy e 2, )

The determinant of MM is

This agrees with our Theorem because, for i # j € {1,...,r — 1}, one can check easily
that Co_i(v) =1, (@i_(v) =0.
[ i,

PROOF. Consider the (isotropic) subspace U = @,_, ke; of Q and its (Z/2Z-graded) wedge
product space A*U = (A*U)®V™ @ (A*U)°44. A basis of the latter is given by e; = e;; A--- Ae;,,
for I = {i1,...,4%mn} in which elements are ordered so that i; > -+ > iy,. (Our unusual ordering
is to avoid the appearance of unnecessary signs later.) The pin group Ping, acts on A*U as, for
1< <m,

(6.4.4) o (Ul A ANp) =€ Aup A= A Up,

e_i®(ur A Aug) =S (=) e ug) cug A AT A A Uy
Restricting to Spins,., both (A*U)**" and (A*U)°44 are irreducible representations; when 7 is even,
their highest weights are v = (g1 +---+¢,) and v_ = (g1 + - +&,_1 — &), respectively; when
r is odd, the highest weights are exchanged. In what follows, we assume that r is even. The other

case can be treated similarly. We henceforth identify S,, & (A*U)®*® and 8, = (A*U)°4d. More
generally, the weight of ey (with I = {i1,...,im,}) is

€, T+ &, — Vi
Moreover, the action also defines natural morphisms
Ve (/\*U)even s (/\*U)odd’ V® (/\*U)odd N (/\*U)even.
The isomorphism o : S,, — S,(,,) =S, may be identified with the natural map
(A*U)R — (AU, 2 (e, +e_,) o,

intertwining the natural action of Spin,, on the source and the o-twisted action of Spin,, on the
target. Explicitly, this map sends ey to eja(yy, where IA{r} is the symmetric difference.
With this discussion, we may express a basis element of

(Sa(u+)* X Sz/+ ® V)G = ((/\*U)Odd7* ® (/\*U)even Q V)G

and its class function as

b= Y G@enoun, fo )= S Y (atoen) v

|I| odd |I"| even |I] odd |I’| even

for v;p € V and t € T, where the sum is taken over all subsets I, J C {1,...,r} whose sizes are of
the specified parity. In the expression for fy(to), the pairing (e}, oey) is nonzero precisely when
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I' = IA{r}; in this case, we may rewrite {I,I'} as {J,J U {r}} for some J C {1,...,r — 1}, and
we may take the vector vy v to be e, if r € I and to be e_, if r ¢ I. Therefore, we have

fo (to) = Y (€ e T (Does) e+ > (e e T (e ugy) ey

|J] even |J] odd
- Z eEITETVE (L) - ey + Z eIV () - ey,
|J] even |J]| odd
where the sums are taken over subsets J C {1,...,7 — 1} whose sizes are of the given parity, and
for J ={i1,...,im}, €5 =€i, + -+ +¢€;,,. To simplify notation, we put
Co=e™ 3 &, o= Y e
|J| even |J| odd

so that Res{,(fp,) = Cye -e, +C_-e_, € Jp(V).
Similarly, we may choose a basis element

b_ e (Sg(y,)* RS, X V)G — ((/\*U)even,* ® (/\*U)odd & V)G,

with class function
Resy (fo_ ) =C_e" e, +Cy -e_, € Jp(V).
On the dual side, we choose elements
* * o * even,* «\G
bY € (So(,) @S @ VH)E = (AU)M @ (AU)™ ™ @ V*)7,
bY ¢ (Sa(u,) ® S, ® V)G — ((/\*U)even ® (/\*U)odd,* ® V)G

i = eV+.
If we WI‘lte. p+ ="
have restrictions

Res¥-(foy) = Dye™ -eg+D_ e, Respu(fpv)=D-e " -eg+Dy-el, € Jp(V7).

€. D_ =Vt 'Z\J\ odd € 7, the class functions fyv, fpv € J(V*)

even e

Combining all above, we deduce that

N — <fb+7fbi> <fb+7fb\i> _ <C+D++C_D_ C+_D_ ‘l‘C_D_;,_) '
<fb,,fb)’r> <fb77fbﬁ> C+D—+C—D+ C+D++C_D_

Now the formula ((6.4.3)) follows from the following identity
CiDy+C.D_= Y 27778, CyD_+C.Dy= Y 27'e,

>0 even >0 odd
It is easier to compute the determinant of 97 in the following way:

detM = (CyDy +C_D_)> - (C.D_+C_Dy)*=(Cy +C_)(Dy+D_)(Cy —C_)(Dy—D_).
On the other hand, it is easy to see that

r—1 r—1
CyxC=e [[1+e”), DyxD_=e [[(1£e ™).
=1 i=1
So
m—1
det M = H ((1 _ 6267;)(1 _ 672Ei)), 0
=1
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Appendix A. A remark on freeness

Stephen Donkirl]

Let G be a semisimple, simply connected algebraic group over an algebraically closed field k.
Then conjugation gives rise to a G-module structure on the coordinate algebra k[G] and the algebra
of class functions C(G) is the invariant algebra. Let V be a finite dimensional rational G-module
which admits a good filtration. In Theoremit is shown that the space of invariants (k[G]®V )¢
is free as a C(G)-module.

We here obtain this as a special case of Theorem below. However, we would like to stress
that this does not cover the freeness of Jo(V') and J (V) established in Theorem nor does
it cover the cases in which the action on the coordinate algebra is twisted via an automorphism,
considered by the authors.

In [3] we considered the situation in which G acts rationally on a finitely generated k-algebra A,
see [3], 1.5 Theorem and deduced freeness over the algebra of invariants, in some cases, in particular
in the case A = k[G] with the conjugation action. The argument we give below is essentially a
re-run of the argument from [3], but where we now consider invariants of a finitely generated A-
module and rational G-module. Our argument relies on flatness and we should mention that in
the cases considered in § [2}-§ ] a more constructive approach is taken and flatness is obtained as a
corollary of freeness.

A.1. Some General Recollections. By a G-algebra we mean a commutative k-algebra on
which G acts rationally as k-algebra automorphisms. We will denote the action of g € G-algebra
ona € Abyg-a. Let Abea G-algebra. By an (A, G)-module we mean a k-space M which is an
A-module and a rational G-module in such a way that g(am) = (g - a)gm, for all g € G, a € A,
m € M. The space of invariants of a G-module M will be denoted M and C denotes A“.

We here modify the arguments of [3], pp139-140, to give a generalization to (A4, G)-modules of
the main result of [3]. We begin by describing some properties of (A, G)-modules. These are no
doubt well known but we include them for the convenience of the reader.

Recall that, from the Mumford Conjecture (proved by Haboush in [5]) if A is finitely generated
then so is C. Moreover, if 7 : A — B is a surjection of G-algebras then for b € BY we have
b* = 7(a) for some a € A and positive integer n (see [7], p54). In particular B is integral over
7(A%) and so if A is finitely generated then B¢ is a finitely generated A%-module.

Now suppose that A is finitely generated and that M is a finitely generated (A, G)-module.
We claim that M is finitely generated as a C' = A%-module. If this holds we say that M has the
finite generation property. Note that a submodule of an (A, G)-module with the finite generation
property has the finite generation property. Note also that an extension of (A, G)-modules with
this property also has this property: Suppose 0 - X — Y — Z — 0 is a short exact sequence of
(A, G)-modules and X, Z have the property. Then we have a short exact sequence of C-modules

0 XYY 5 (X4+Y9/X 0.

Now X + Y%/X embeds in (Y/X)“ and so is finitely generated as a C-module. Thus X% and
(X +Y%)/X are finitely generated C-module so that Y is finitely generated too.

We consider the case in which M is generated by a non-zero invariant mg € M. Thus
M = Amgy and M is isomorphic to A/I, where I is the annihilator of mg. We have the natural
map 7 : A — B = A/I and by the above B¢ is integral over By = n(A%). Hence BY is finitely
generated as a C-module and M has the finite generation property.

"Department of Mathematics, University of York, York YO10 5DD. E-mail address:
stephen.donkin@york.ac.uk
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Now consider the general case. Let M be a finitely generated (A,G)-module and let X be a
submodule maximal subject to the condition that it has the finite generation property. If (M/X)% =
0 then M% = X© so that M has the required property. Otherwise we choose mg € M\X with
(mo + X) € (M/X)%. Put Y = X + Amg. Then Y/X is generated by an invariant so has the
property. Hence X and Y/X have the finite generation property and therefore so has Y. But X is
strictly contained in Y so we have a contradiction.

Thus we have the following.

(1) If A is a finitely generated G-algebra and M is a finitely generated (A, G)-module then
M is a finitely generated AC-module.

We need to improve (1) so that we can take invariants for the action of a subgroup of G. Now
suppose that H is a Grosshans subgroup of G, i.e., a closed subgroup such that the the algebra

k[H\G] = {f € k[G]|f(hg) = f(g) for all h € H,g € G}

is finitely generated. (In fact we only in which need the case H is a maximal unipotent subgroup of
G.). Suppose that A is a finitely generated G-algebra and M is a finitely generated (A, G)-module.
We shall need that M* is finitely generated as an A¥-module. By Frobenius reciprocity and the
tensor identity one has M = (M ® kE[H\G])® as k-spaces and (A ® E[H\G])¢ = AT so the
argument should be to regard (M ® k[H\G]) as an A ® k[H\GJ-module and take invariants.

To see that this really works we write down explicitly the maps involved in identifying H-
invariants and G-invariants. This is a slight extension of the context of [8], Theorem 4.

Let o : k[G] — k[G] be the antipode, so o(f)(z) = f(z™ 1), for f € k[G], x € G. Let A be a
G-algebra and let M be an (A, G)-module. We choose a k-basis (m;)cr of M. Let f;; € k[G] be
the corresponding coefficient functions so that

gmi = _ filg)m;
Jel
forge G,iel.
It is easy to check that there are inverse k-linear isomorphisms ¢y : (M ® k[H\G])¢ — M7
and ¥y - MH — (M ® K[H\G))® satisfying

Sn(Y_mi@b) = bi(1)m;
el il
for >,c;mi ®b; € (M ® k[H\G])¢ and

Y (Y Nimi) = > Aimy @ o(f5i)
el ijel
ﬂn‘}ZieIAinu S MH.

For a € A" and m € M one checks that ¥y (am) = 1 (a)pp(m). We regard M ® k[H\G]
as an (A ® k[H\G], G)-module in the natural way. By (1), (M ® k[H\G])% is a finitely generated
(A ® k[H\G])%module, i.e.,

(M @ K[H\G)® = (A® k[H\G)y;
i=1
for some y1,...,y, € (M @ k[H\G])®. Let 2; € M* be such that ¥y (z;) = y; for 1 <4 < n and
put D =", Az; < M. Then
V(D) =D a(AM)par(xi) = Y (A@ K[H\G)%y; = (M © K[H\G))“
i=1

= =1
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and so D = M¥ and M* is finitely generated.
To summarise, we have the following.

(2) If A is a finitely generated G-algebra, H is a Grosshans subgroup of G and M is a finitely
generated (A, G)-module then M™ is a finitely generated A™-module.

A.2. Freeness. We are now in a position to extend the main result of [3] to the context of
(A, G)-modules. We adopt the notation of [6]. In particular we have the maximal torus 7" and Weyl
group W. We attach a root system to G, with respect to T, and let B denote the negative Borel
subgroup. We have the character group X (7') with natural partial order < and set of dominant
weight X (7). For A € XT(T) we write L()) for the irreducible rational G-module with highest
weight A, write k) for the one dimensional B-module on which 7" acts via A\ and write V() for
the induced module ind%ky. A subset 7 of Xt (T) is said to be saturated if whenever A € = and
p € XT(T) with g < X then p € . For 7 a saturated subset of X*(7T') and V a rational G-module
the set of submodules of V' which have all composition factors belonging to {L(A\)|A € 7} has a
unique maximal element, which we denote O (V).

Theorem 1.5 in [3], which we now extend to the context of (A, G)-modules, is obtained via three
Propositions. The first, Proposition 1.2. and the third, Proposition 1.4, require no modification.

The modified Proposition 1.3 and its proof require only minimal changes, given the remarks
on finite generation above, but we give it again for the sake of completeness, in the form of the
following lemma.

LEMMA A.2.1. Let A be a finitely generated G-algebra and let C = AS. Suppose that M is a
finitely generated (A, G)-module and that M has a good filtration. Then, for every finite saturated
subset ™ of XT(T), the C-module O (M) is a finitely generated.

PROOF. Let A be a maximal element of 7 and let 7’ = w\{\}. Then
Ox(M) /O (M) = C ® O (M)*, by [3], 1.2 Proposition. By induction on the size of 7 it therefore
suffices to prove that O, (M) is a finitely generated C-module. Moreover, multiplication by a
coset representative of wg (the longest element of the Weyl group W) induces an isomorphism
O (M)* — O (M)™0*, so it suffices to show that O, (M)“0? is finitely generated.

Let My = MY and Ay = AY. Since wg) is a lowest weight of O (M), we have O, (M)wo* <
M°*. On the other hand M®* = 0, by [2], (12.1.6) and (1.5.2), where where M = (M/O,(M))Y,
so that O (M)"0A = MY°*. Furthermore, My is a T-module and A} = AP = AC by [1], (2.1)
Theorem. Moreover, U is a Grosshans subgroup, e.g., by [4], so that Ag is finitely generated and,
by (2), My is a finitely generated Ag-module. Hence we may (and do) replace M by MY and G
by T'. So it suffices to prove that if A is finitely generated T-algebra and M is a finitely generated
(A, T)-module then for any pu € X (T) the weight space M* is a finitely generated A”-module. We
choose a finite dimensional T-invariant subspace of M which generates M, as a (A, T)-module.
Then we have a surjective (A,7T)-module map A ® V' — M inducing a surjection on invariants
(by complete reducibility of T-modules). Hence we may assume M = A ® V and, by complete
reducibility of T-modules again, that V' is one dimensional, with weight 7 say. Then (A ® V)#
is isomorphic to A*~7. Hence it suffices to prove that A* is a finitely generated A”-module, for
A€ X(T). Solet x = —\. Then A ® k[x] is a finitely generated T-algebra and so (A ® k[x])? is
finitely generated by a; ® x% say, for 1 <i < n, d; > 0. Then A* is generated as a AT-module by
{a;:1<i<nandd; =1} O

Now the proofs of [3] 1.5 Theorem and its Corollary go through in the context of (A, G)-modules
with Lemma replacing [3], Proposition 1.3, and we obtain the following.
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THEOREM A.2.2. Suppose that A is a finitely generated G-algebra whose algebra of invariants
C = A€ is a free polynomial algebra. Suppose that M is a finitely generated (A, G)-module such
that M is flat as an A-module and has a good filtration (as a G-module).

Let 7 be any finite saturated subset  of X (T), let X be a mazimal element and put 7’ = w\{\}.
Then, as a (C,G)-module, Or(M)/On(M) is isomorphic to E & C, where E is isomorphic to a
direct sum of finitely many copies of V().

Given a C-module N and a k-space of G-module E we write |E|® N for the vector space EQ N
viewed as a C-module with action c(e®@n) =e®cn, force C,e € E, n € N.

For a finite dimensional G-module E admitting a good filtration and A\ € X1 (T'), we write
(E : V(X)) for the multiplicity of V(A) as a section in a good filtration of E.

COROLLARY A.2.3. Under the hypotheses of the Theorem, M has an ascending (C, G)-module
filtration 0 = My, My, . .., where M;/M;_1 = |E;| ® C, E; is a finite direct sum of copies of V(\;)
(i > 1) and A\, A, ... is a labelling of the elements of XT(T) such that i < j whenever \; < ;.
For a given labelling the multiplicity (E; : V()\;)) is independent of the choice of such a filtration.

In particular M is a free C-module.

We specialize further to the situation of this paper, Theorem [1.0.1

COROLLARY A.2.4. Regard k[G] as a G-module via the conjugating action and let V be a finite
dimensional rational G-module which admits a good filtration. Then (k[G]®@V)¢ is free over C(G).

Note that C(G) is a free polynomial algebra by [10], 6.1 Theorem. Moreover, k[G] ® V is free,
and hence flat over k[G] and k[G] is flat over C(G), by [9], Proposition 2.3, so that k[G]® V is flat
over C'(G). We take A = k[G], considered as a G-algebra via the conjugating representation and
M = k[G] ® V and m = {0}. Then M has a good filtration, by [6], II, 4.20 Proposition and 4.21

Proposition so we may apply Corollary .

References

[1] E. Cline, B. Parshall , L. Scott and W. van der Kallen, Rational and generic cohomology, Invent. Math. 39,
(1977), 143-163.

[2] S. Donkin, Rational Representations of Algebraic Groups: Tensor Products and Filtrations, Lecture Notes in
Math. 1140, Springer (1985).

[3] S. Donkin, On Conjugating representations and adjoint representations of semisimple groups, Invent. math. 91,
(1988), 137-145.

[4] Frank Grosshans, Observable subgroups and Hilbert’s fourteenth problem, Amer. J. Math. 95, (1973), 229-253.

[5] W. J. Haboush, Reductive groups are geometrically reductive: a proof of the Mumford conjecture, Ann. of Math.
(2), 102 (1975), 67-83.

[6] Jens Carsten Jantzen, Representations of Algebraic Groups, second ed., Math. Surveys Monogr., vol 107, Amer.
Math. Soc., (2003).

[7] P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research,
Bombay 1978.

[8] V. L. Popov, Contraction of the actions of reductive algebraic groups, Math. USSR, Sb. 58 (2), (1987), 311-335.

[9] R. W. Richardson, The conjugating representation of a semisimple group, Invent. Math. 54, (1979), 229-245.

[10] R. Steinberg, Regular elements in semisimple groups, Publ. LH.E.S. 25, (1965), 49-80.

56



	1. Introduction
	2. Filtered vector spaces and Rees modules
	3. Filtration on representations
	4. Vector-valued twisted conjugation invariant functions
	5. Chevalley groups with an automorphism
	6. The determinant of the pairing bold0mu mumu JJJJJJ(V)bold0mu mumu JJJJJJ(V*)bold0mu mumu JJJJJJ
	References
	Appendix A. A remark on freeness
	References

