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Recent experiments with strongly interacting, driven Rydberg ensembles have introduced a promising setup
for the study of self-organized criticality (SOC) in cold atom systems. Based on this setup, we theoretically
propose a control mechanism for the paradigmatic avalanche dynamics of SOC in form of a time-dependent
drive amplitude. This gives access to a variety of avalanche dominated, self-organization scenarios, prominently
including self-organized criticality, as well as sub- and supercritical dynamics. We analyze the dependence of
the dynamics on external scales and spatial dimensionality. It demonstrates the potential of driven Rydberg
systems as a playground for the exploration of an extended SOC phenomenology and their relation to other
common scenarios of SOC, such as e.g. in neural networks and on graphs.

I. INTRODUCTION

Away from thermal equilibrium and in the absence of de-
tailed balance, (quasi-) stationary states emerge from order-
ing principles different from the equipartition of energy. Out-
standing amongst such out-of-equilibrium ordering mecha-
nism is self-organized criticality. Introduced in the seminal
paper of Bak, Tang and Wiesenfeld [1, 2] to explain the emer-
gence of flicker noise in electrical circuits, SOC has since
then been observed in a variety of diverse, mainly large scale
systems, ranging from earth quakes [3–5], forest fires [6–9]
and solar flares [10, 11] to vortex dynamics in superconduc-
tors [12, 13] and turbulence [14]. Only recently, SOC was
recognized as a possilbe mechanism to establish optimal con-
ditions for information spreading [15–20].

The phenomenon of SOC can be described by simple
means, by balancing dissipation and external drive, a many-
body system is attracted, i.e. it self-organizes, towards a state
with scale invariant correlations [21–23]. In thermal equilib-
rium, scale invariance is associated with dynamics at a critical
point signaling a continuous phase transition [24]. Compared
to a fine tuned critical point, scale invariance due to SOC is be-
lieved to occur in an extended parameter regime, commonly
enabled by a separation of time scales between drive and dis-
sipation [22, 23, 25]. While this makes SOC robust to changes
in the external conditions, the interplay of interactions, drive
and dissipation obscure its origin and only few microscopic
models are found in the literature.

Manifestations of SOC in nature are mostly approached via
phenomenological models [8, 26], either because the micro-
scopic description is too complex or the elementary building
blocks are unknown [16, 27, 28]. This makes both the mi-
croscopic understanding and, even more, the controllability
of SOC extremely challenging [22, 23], especially for effec-
tive models [29, 30]. Consequently, a setup exploring an ex-
tended SOC phenomenology on the one hand and featuring
the knowledge and a large degree of controllability of its ba-
sic elements on the other hand represents a promising tool to
study aspects of SOC in generic nonequilibrium settings.

Only recently a promising candidate has been introduced
in an experiment with a gas of driven Rydberg atoms [31];
above a certain driving threshold, the atomic pseudo-spins
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Figure 1. Driven Rydberg self-organized criticality. a) Three-atom
level scheme: Transitions from the ground |g〉 to the Rydberg state
|r〉 are only resonant inside the facilitation radius rfac of a second
Rydberg atom. b) Excitation avalanche triggered by a single Rydberg
atom (red dots). After a period t ∼ κ−1

t , Rydberg atoms facilitate
the excitation of ground state atoms (blue dots) inside the facilitation
radius (red line), creating avalanches of length s before decaying into
the ground or removed state (white dot) with rates Γ, γ↓0. c) Real
space dynamics of the Rydberg density ρ~x,t on a grid of N = 103

sites. Depending on the pumping strength growth rate λ, avalanches
form a periodic (subcritical) structure, a fractal (SOC) structure or a
random noise patter (supercritical). d) Distribution of avalanche sizes
s (logarithmic scale) in the SOC regime (dots and triangles) and at
the transition to the supercritical regime (squares). e) Zoom-in to the
SOC pattern and illustration of an avalanche lengths.

self-organize towards a transient, scale invariant state, featur-
ing common signatures of SOC [23, 28]. Our work builds up
on this basic setting for SOC in cold Rydberg gases.

We propose the implementation of a control mechanism for
excitation avalanches in driven Rydberg ensembles and ex-
plore the corresponding many-body dynamics. We show how
this gives access to an extended SOC phenomenology, includ-
ing subcritical and supercritical avalanche dynamics. By ad-
justing the proposed mechanism to common control parame-
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ters such as the laser intensity and the detuning, one can access
the paradigms of SOC: a scale invariant avalanche distribu-
tion [9] and a 1

ω
-noise pattern [1, 2].

II. FACILITATED RYDBERG DYNAMICS

We consider the many-body dynamics in a gas of inter-
acting Rydberg atoms [32–37], which move freely inside a
trap. Each Rydberg atom is modeled as an effectively three
level system, consisting of a non-interacting ground state |g〉, a
highly polarizable Rydberg state |r〉 with large principle quan-
tum number n � 1 [38–40] and an auxiliary, removed state
|0〉. The latter is a container state representing a set of internal
states that can be reached via dissipative decay but are other-
wise decoupled from the |g〉 − |r〉 sector [31, 35]. Each atom
obtains a label l and a set of operators σab

l ≡ |a〉〈b|l acting on
its internal states.

The ensemble is subject to a laser, coherently driving the
|g〉 − |r〉 transition with a Rabi frequency Ω and detuning from
resonance ∆. The highly excited Rydberg state is subject to
dissipation originating from dephasing as well as spontaneous
decay into both the ground state |g〉 and the removed state
manifold |0〉 with effective rates labeled by γde, γ↓g, γ↓0 [31].
Due to their polarizability, two atoms, labeled l, l′, in the Ry-
dberg state experience a mutual van-der-Waals repulsion. Its
potential form is V I

l,l′ = C6|~rl −~rl′ |
−6, where C6 is the van-der-

Waals coefficient and ~rl,~rl′ are the atomic positions [41][42].
As a simple but crucial innovation we consider here a time-

dependent Rabi frequency

Ω→ Ωt = Ω0(1 + t
λ

2nc,0
), (1)

with an initial frequency Ω0, a dimensionless density nc,0,
which we define later, and a ramp parameter λ � nc,0Ω0.
This corresponds to a slow, linear increase of the pump laser
intensity. It gives rise to a continuously increasing excitation
probability for the |g〉 ↔ |r〉 transition, counteracting the de-
cay into the removed state and balancing the system at a fixed,
non-zero density of excited states for transient times t < nc,0

λ
.

The microscopic dynamics of the d-dimensional gas are
given by the master equation (~ = 1)

∂tρ̂ = i[ρ̂,H] +
∑

l

Llρ̂ (2)

for the ensemble density matrix ρ̂. The coherent atom-light
and atom-atom interaction is captured by the Hamiltonian

H =
∑

l


∑

l′

C6

2|~rl − ~rl′ |
6σ

rr
l′ − ∆

σrr
l +

Ωt

2

(
σ

rg
l + σ

gr
l

) ,(3)

while dissipative processes are described by the Liouvillian

Llρ̂ = γdeσ
rr
l ρ̂σ

rr
l + γ↓gσ

gr
l ρ̂σ

rg
l + γ↓0σ

0r
l ρ̂σ

r0
l −

Γ

2
{σrr

l , ρ̂}, (4)

where Γ = γde + γ↓g + γ↓0 is the sum of all dissipative rates.
In typical experiments [31, 35, 43], the product of the atomic
mass M and temperature T is ’large’ compared to the density

n0, causing a thermal de-Broglie wavelength λth = h
√

2πMkBT

much smaller than the mean free path da ∼ n−1/d
0 . The mo-

tional degrees of freedom ~rl,l′ thus cannot maintain coherence
between two subsequent scattering events and are treated as
classical variables undergoing thermal motion, see below and
Ref. [31].

We focus on a very large detuning ∆/Γ ∼ O(102−103) [44–
46], leading to strongly suppressed, off-resonant single parti-
cle transitions |g〉 ↔ |r〉 at a rate τt ≡

ΓΩ2
t

Γ2+4∆2 . Due to interac-
tions, an atom in the Rydberg state, however, creates a facilita-
tion shell of radius rfac = (C6/∆)1/6 and width δrfac ∼ rfacΓ/∆.
Inside the shell, the Rydberg repulsion compensates the de-
tuning in Eq. (3), yielding an effective resonant excitation rate
κt ≈ Ω2

t /Γ with κt � τt [47–51].
In the limit of strong dephasing, the atom coherences decay

rapidly in time and the relevant dynamical degrees of freedom
are the Rydberg state density and the density of ’active’ states,
i.e. of atoms in the Rydberg and in the ground state. Their
coarse grained values, averaged over a ’facilitation cluster’ of

volume Vfac =
π

d
2 rd

fac

ΓEuler( d
2−1)

are

ρ~x,t ≡
∑

l,|~rl−~x|≤rfac

〈σrr
l 〉(t), (5)

n~x,t ≡
∑

l s.t. |~rl−~x|≤rfac

〈σrr
l + σ

gg
l 〉(t). (6)

The evolution equations for ρ~x,t and n~x,t are obtained by adi-
abatically eliminating the atom coherences from the Heisen-
berg equations of motion [43, 51–55], yielding the Langevin
equation (see [31, 53])

∂tρ~x,t = D∇2ρ~x,t + (κtρ~x,t + τt)(n~x,t − 2ρ~x,t) − Γρ ~x,t + ξ~x,t. (7)

Equation (7), describes Rabi oscillations inside each cluster
with a total rate κtρ~x,t + τt. It combines the off-resonant oscil-
lation rate τt and the resonant, facilitated rate κtρ~x,t, which is
proportional to number of facilitating atoms ρ~x,t. It prefers a
semi-excited state ρ~x,t =

n~x,t
2 and thus competes with the linear

decay channel ∼ Γ, which prefers the ground state ρ~x,t = 0.
The spreading of excitations from cluster to cluster is de-

scribed by the diffusion term ∼ D∇2ρ~x,t. With D = κtS being
proportional to the facilitation rate and the surface S of the
clusters [31]. In a dissipative environment, each cluster expe-
riences fluctuations of ρ~x,t, which are proportional to the os-
cillation rate [43, 51–53] and covered by the Markovian noise
kernel

〈ξ~x,tξ~y,t′〉 = δ(~x − ~y)δ(t − t′)(τ + κρ~x,t). (8)

Before turning to the evolution of n~x,t, we discuss the mean-
field solution of Eq. (7) in the limit where τt � Γ, κtn~x,t by
setting D = ξ~x,t = 0. Defining a critical density nc,t ≡

Γ
κt

,
one distinguishes two different regimes: an inactive regime
for n~x,t < nc, where the Rydberg density is suppressed and
evolves towards ρ~x,t → τ

Γ
n~x,t and an active regime for n~x,t > nc

where it evolves towards ρ~x,t → 1
2 (n~x,t−nc). The crossover be-

tween the two regimes at n~x,t = nc,t [56] features a maximal
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correlation length of ξ|| =
√

D
√

8Γτt
. It turns into a sharp, sec-

ond order phase transition in the limit τt → 0 [51–53, 57, 58].
The evolution of the density n~x,t is governed by thermal mo-

tion of the atoms, the decay into the removed state and density
fluctuations. It is summarized in the Langevin equation [31]

∂tn~x,t = Dn∇
2n~x,t − γ↓0ρ~x,t + η~x,t (9)

with a Markovian noise kernel 〈η~x,tη~y,t′〉 = δ(~x − ~y)δ(t −
t′)γ↓0ρ~x,t and a thermal diffusion constant Dn. It has minor
impact on the dynamics but reduces geometrical constraints
due to rare, inhomogeneous configurations of n~x,t [59].

III. DERIVATION OF THE LANGEVIN EQUATIONS

In this section, we present the detailed derivation of the
Langevin equations (7), (3) from the master equation (2).
Readers interested in the effective dynamics may continue
with its discussion in the following section.

Due to the exponential growth of the Hilbert space, the mas-
ter equation Eq. (2) becomes too complex to solve for realistic,
macroscopic system sizes. In order to reduce the complexity,
the dynamics are projected onto the relevant long-wavelength
degrees of freedom, i.e. the Rydberg density ρ and the active
density n as defined in Eqs. (5), (6). This procedure has been
discussed for the case of λ = γ↓0 = 0 in Refs. [51, 53] and for
the case λ = 0, γ↓0 , 0 in Ref. [31].

For strong dephasing γde � Ωt the decay of the atomic co-
herences σrg

l , σ
r0
l towards their steady state value is the fastest

process in the quantum master equation. They can be adiabat-
ically eliminated by formally solving the steady state equation
for the average (α = g, 0)

0 !
= ∂t〈σ

rα
l 〉 = Tr

σrα
l

i[ρ̂,H] +
∑

l

Llρ̂

 . (10)

Inserting the solution of Eq. (10) and the completeness rela-
tion σrr

l + σ
gg
l + σ00

l = 1 into the full Heisenberg-Langevin
equations for σrr

l , σ
gg
l yields

∂tσ
gg
l = −∂tσ

rr
l − γ↓0σ

rr
l + ξ

g
l , (11)

∂tσ
rr
l =

Ω2
t Γ(σgg

l − σ
rr
l )

Γ2 + 4(∆ −
∑

l′,l V I
l,l′σ

rr
l′ )

2
− Γσrr

l + ξr
l . (12)

The Markovian noise operators ξr,g
l are added in order to en-

force the fluctuation-dissipation relation of the driven dissipa-
tive master equation. They are local in space and time and
fulfill the generalized Einstein relation

〈(ξr
l )2〉 = ∂t〈(σrr

l )2〉 − 2〈σrr
l ∂tσ

rr
l 〉. (13)

Since the operators σrr
l , σ

gg
l are projection operators with

eigenvalues 0, 1, any function f of, say σrr
l , can be expressed

as f (σrr
l ) = f (0) + ( f (1) − f (0))σrr

l . Extending this to the

whole set of {σrr
l , σ

gg
l }, one rewrites

Ω2
t Γ

Γ2 + 4(∆ −
∑

l′ V I
l,l′σ

rr
l′ )

2
=

Ω2
t Γ

Γ2 + 4∆2︸     ︷︷     ︸
=τt

+

∑
l′,l

 Ω2
t Γ

Γ2 + 4(∆ − V I
l,l′ )

2
− τt

σrr
l′ + O(σrr

l′ σ
rr
l′′ ). (14)

This expression is independent of the form of the interaction
potential V I

l,l′ and exact up to second order powers in the pro-
jection operators. It separates off-resonant single particle tran-
sitions with rate τ and facilitated, two-particle transitions. For
2|∆−V I

l,l′ | < Γ, the facilitation rate deviates significantly from
zero. Depending on the interaction potential, this defines the
facilitation radius rfac, i.e. for a typical van der Waals potential
Vl,l′ =

C6
r6 one finds rfac ≡ (C6/∆)1/6 and the facilitation shell

|~rl − ~rl′ | ∈ [rfac − ∆rfac, rfac + ∆rfac] with ∆rfac = rfac
Γ

12∆
. We

introduce a real space projector Πll′ with Πll′ = 1 if |~rl − ~rl′ | is
inside the facilitation shell and zero otherwise. This yields

∂tσ
rr
l =

τ +
Ω2

t

Γ

∑
l′,l

Πll′σ
rr
l′

 (σgg
l − σ

rr
l ) − Γσrr

l + ξr
l . (15)

This provides a good approximation for the facilitation rate
when the density of excitations is small. For a number of
m ≥ 1 excited states inside a single shell, the exact solu-
tion shows a growth of the shell radius as r(m)

R = m1/6rR (in
d = 3 dimensions). The facilitation rate for m > 1 then grows
∝
√

m, compared to the ∝ m prediction of Eq. (15). If one
bears in mind, however, the weak off-resonant excitation rate,
configurations of m ≥ 1 are suppressed by a factor o(10−4).

The equation of motion for ρ~x,t =
∑

l Θ(rfac − |~x − ~rl|)〈σrr
l 〉

and n~x,t =
∑

l Θ(rfac − |~x − ~rl|)〈σrr
l + σ

gg
l 〉 yield

∂tρ~x,t =
∑

l

(
〈∂tσ

rr
l 〉 + 〈σ

rr
l 〉∂t~rl~∇

)
Θ(rfac − |~x − ~rl|) (16)

and similar for n~x,t. For a homogeneous density, the drift term
∼ ∂t~rl can be approximated to be zero (see below for an inho-
mogeneous setting). This yields

∂tn~x,t = −γ↓0ρ~x,t + η~x,t,

∂tρ~x,t =

(
τ +

Ω2
t

Γ
F~x(ρ~z,t)

)
(n~x,t − 2ρ~x,t) − Γρ~x,t + ξ~x,t, (17)

where F~x(ρ~z, t) is some linear, quasi-local functional of ρ~x,t.
F~x(ρ~z,t) has support only around |~x − ~z| = rfac, enabling a

Taylor expansion of the density. Since the Rydberg facilitation
mechanism is isotropic in space, the expansion contains only
even powers of derivatives. It reads as

F~x(ρ~z,t) = F~x(1)ρ~x,t +
F~x(~z2)

2
∇2ρ~x,t + O(∇4ρ~x,t). (18)

The noise 〈ξ~x,tξ~y,s〉 =
∑

l,m Θ(rfac − |~x − ~rl|)Θ(rfac − |~y −
~rm|)〈ξl,tξm,s〉 = δ(s− t)δ(|~x−~y|)

[
κtρ~x,t + τt

]
remains Markovian

and δ-correlated on length scales of the facilitation radius.
Making a conservative estimate for the temperature of the

motional degrees of freedom T = O(10µK) and the atomic
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mass M = O(20u) [31], one finds a thermal de Broglie wave-
length λT = h

√
2πMkBT

≈ 200nm. For an atomic density
of n0 ≈ 1011cm−3 the mean free path in three dimensions

amounts to da =
(

6
πn0

)1/3
∼ 2µm, which is at least one or-

der of magnitude larger than λT . Consequently, coherence in
the motional degrees of freedom is lost between two subse-
quent scattering events and they can be treated classically. In
the absence of an external trapping potential, the particles per-
form Brownian motion, i.e. thermal diffusion in a dilute van
der Waals gas. This allows us to treat the atomic positions as
slowly diffusing and uniformly distributed in space.

Including Brownian motion with diffusion constant Dn the
final form of the Langevin equations is

∂tn~x,t = Dn∇
2n~x,t − γ↓0ρ~x,t + ξ~x,t,

∂tρ~x,t = D∇2ρ~x,t + (κtρ~x,t + τt)(n~x,t − 2ρ~x,t) − Γρ~x,t + ξ~x,t.(19)

Here κt = F~x(1) Ω2
t

Γ
is the facilitation rate. The diffusion con-

stant D = F~x(~z2) Ω2
t

2Γ
(n~x,t − 2ρ~x,t) + Dn ≈ F~x(~z2) Ω2

t
2κt

is dominated
by the facilitated spreading, which is proportional to the aver-
age density, i.e. n~x,t − 2ρ~x,t ≈ Γ

κt
. This makes D, apart from

local density fluctuations, time independent.

IV. SELF-ORGANIZED CRITICALITY AND AVALANCHE
DYNAMICS

In order to observe self-organization towards a long-range
correlated state, the dynamics should push any initial density
n~x,0 close towards n~x,t → nc,t and thereby maximize the corre-
lation length ξ||. This is achieved by the combination of loss
into the auxiliary state ∼ γ↓0 and the continuously growing
pump strength ∼ λ.

Their interplay is best understood by expanding the critical
density nc,t up to first order in λt, yielding nc,t = nc,0 − λt,
which is valid for λt < nc,0. For active densities n~x,t ≈ nc,t,
the Rydberg state ρ~x,t experiences a large correlation length,
leading to long-lived and and far spreading excitations, i.e.
the formation of avalanches. Once an avalanche has formed,
parts of it decay into the removed state, leading to a decrease
of n~x,t. It reaches a stationary point when the decay of both
n~x,t and nc,t compensate each other, i.e. for λ = γ↓0ρ~x,t.

On times t < λ
nc,0

, this is the only homogeneous solution of
Eqs. (7), (9) with

ρ~x,t =
λ

γ↓0
and n~x,t = nc,t +

2λ
γ↓0

+
γ↓0τt

κλnc,t
. (20)

It is reached after a time t ≈ max{κ−1
t , γ−1

↓0 } and it survives up
to times of order t ≈ nc,0

λ
. On larger times, effects of order λ2t2

set in and the active density depletes to zero, i.e. ρ~x,t, n~x,t → 0.
Imposing a double separation of time scales on the dynam-

ics via i) τt
λ
→ 0+ and ii) λ

γ↓0
→ 0+, the above solution predicts

the self-organization towards a long-lived and long-range cor-
related state with ρ~x,t = 0+, n~x,t = nc,t + 0+ and ξ|| → ∞. We
thus call i) + ii) the conditions for SOC in our driven Rydberg
setup. The degree up to which both conditions are met, i.e.
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Figure 2. Experimental observables. a) Time evolution of the inte-
grated density Rt, Eq. (21), in three different regimes (nc,0 ≈ 4 for
comparison). b) Fourier decomposition ρω of the Rydberg density,
same parameters as in a). c) Time averaged mean R̄, standard de-
viation σR and peak value of the integrated density Rt in dimensions
d = 1, 2. A sharp drop of R̄, σR marks the onset of SOC, i.e. a regime
of scale invariant avalanche distributions (colored region). Arrows
indicate the values of λ used in the plots a) and b).

SOC is realized, can be adjusted experimentally via the Rabi
frequency Ωt, the detuning ∆ or the decay γ↓0.

Such double separation of scales is a common requirement
for realizations of SOC without energy conservation [60, 61]
[62]. Since both our Hamiltonian and the Lindblad dynamics
do not conserve the energy, the conditions i)+ii) can be seen as
the present manifestations of this phenomenon. One may now
argue that such strict requirements do not really differ from
parameter fine tuning in conventional criticality. We, however,
show that the dynamics of Eqs. (7) and (9) display SOC even
for very weak realizations of i) and ii), e.g. for τt

λ
∼ 10−4 and

λ
γ↓0
∼ 0.1, making it accessible to experiments.

We emphasize that for t < nc,0

λ
the increase of Ωt with λ

is identical to loading ground state atoms with rate λ into the
system. The excitation avalanches of ρ~x,t depend only on the
difference n~x,t − nc,t = n~x,t + λt − nc,0 and are insensitive to-
wards nc,t being decreased or n~x,t being increased with rate λ.
Experimentally, however, a controlled repopulation with rate
λ is often less feasible than adjusting the drive strength.

In order to confirm the prediction of emergent SOC from
the homogeneous treatment above and to observe its paradig-
matic avalanche dynamics, we simulate the full time evolution
of the Rydberg density via Eqs. (7), (9) in spatial dimensions
1 ≤ d ≤ 3. The equations are integrated on a d-dimensional
grid of linear lattice spacing ∆x and we use dimensionless
rates, expressed in units of ∆x2/D. The integration scheme
is a derivative of the splitting scheme for stochastic differen-
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tial equations with multiplicative noise [63], adapted to the
noise kernel of Eq. (7), see App. A.

For the simulations we set κ0 = Γ = ∆x2

2D , τ0 = 10−7Γ and
γ↓0 = 10−2Γ, which is consistent with recent experiments [31,
35, 55]. Different degrees of scale separation are realized by
varying λ within the interval λ ∈ [0, 0.2Γ]. We point out that,
as for our choice of parameters, any realistic experiment will
realize the conditions i) and ii) only on an approximate level.

Our simulations reveal an extended dynamical regime,
which is governed by the formation, propagation and decay
of avalanches containing a significant number of excitations,
ρ~x,t �

λ
γ↓0

, (see Fig. 1c). Parametrically it coincides well with
the criterion τt < λ < γ↓0, matching i) and ii). In general, the
distribution Pava(s) of avalanche sizes s varies with λ. In the
vicinity of a critical value λ ≈ λsoc it, however, approaches a
scale invariant form Pava(s) ∼ s−α with an exponent α > 0.

In d = 1, we obtain α = 1.44 ± 0.1, which is consistent
with results obtained from other SOC models, e.g. the forest
fire model [64] or activity patterns in the cortex [65], and is
associated with the underlying directed percolation universal-
ity class [17]. Its statistical error results from our sampling
procedure, which dynamically counts avalanches from a finite
number of patches of 104 × 104 sites (time and space). For
d > 1, we predict α ≈ 1.5, however, with larger errors due to
our avalanche counting scheme.

The scale invariant avalanche distribution is the hallmark
of SOC [21–23]. It is accompanied by fractal spatio-temporal
Rydberg excitation patterns (see Fig. 1c) and paradigmatic 1

ω
-

fluctuations [1, 2] in the Rydberg density ρ~x,ω ≡
∫
ρ~x,teiωtdt ∼

ω−β, with β / 1 (see Fig. 2d). This clearly demonstrates a
dynamical regime with SOC in the driven Rydberg gas. Its
location at λ ≈ λsoc can be understood as a trade-off in opti-
mizing i) and ii) simultaneously for fixed values of τt, γ↓0. For
dimensions d > 1 it approaches the estimate λsoc ∼

√
τtγ↓0.

Moving λ away from λsoc, Pava(s) remains scale invariant in
a finite range |λ − λsoc| < η. We found η ≈ 0.2λsoc for system
sizes of N = 106 lattice sites and our set of parameters. For
larger deviations |λ − λsoc| > η, the algebraic form of Pava(s)
persists only for avalanche sizes s < s||(λ), i.e. below a λ-
dependent cutoff scale s||(λ). Estimating the cutoff scale from
the mean-field correlation length, i.e. s||(λ) = ξ||, which is
justified far away from the SOC regime, one finds s||(λ) ∼√

Dγ↓0
2κtλ

for λ � τt and s||(λ) ∼
√

Dλ
κtτt

for λ � γ↓0.
The behavior on distances above s|| in the two regimes

λ ≶ λsoc manifestly differs from each other. For supercriti-
cal values λ � λsoc, the critical density nc,t decreases rapidly,
leading to a large avalanche triggering rate and a high density
of avalanches. On sizes s > s||(λ) different avalanches start to
overlap, which makes them indistinguishable and generates a
random excitation pattern (displayed in Fig. 1c), revealing the
underlying avalanches only for s < s||(λ), (squares in Fig. 1d).

The slow decrease of nc,t in the subcritical regime, λ � λsoc
makes two subsequently following avalanches unfavorable
and enforces a relative delay. It destroys the scale invariance
above s||(λ) in favor of periodically triggered avalanches with
increasing length s � s||(λ). This transforms the fractal real
space structure found in the SOC regime into a time-periodic

pattern, which is dominated by thermodynamically large exci-
tation avalanches, shown in Fig. 1c. The period between two
subsequent avalanches appears to be the time by which nc,t
decreases by an integer value, i.e. δt ≈ λ−1.

V. EXPERIMENTAL OBSERVABILITY

While the real space evolution of excitation avalanches is
hard to access in experiments, the statistics of excitations,
i.e. ρ~x,t and n~x,t, can be measured via the particle loss rate
∝ γ↓0ρ~x,t [31, 35]. A robust, time-translational invariant ob-
servable is the integrated density

Rt ≡ n0 + λt −
∫ t

0
dt′γ↓0〈ρ~x,t′〉V , (21)

where n0 is the total initial density and 〈...〉V = 1
V

∫
V dd x de-

notes the spatial average over the system volume. Its meaning
becomes clear when comparing it with the initial critical den-
sity nc,0 at times tλ � nc,0, yielding Rt − nc,0 = 〈n~x,t〉V − nc,t.

Both ρ~x,ω and Rt display very characteristic features in the
three different regimes. For subcritical λ, the real time evolu-
tion of Rt shows large, periodic amplitude fluctuations, reflect-
ing individual, periodically triggered, extended avalanches.
Instead, both the SOC and the supercritical regime feature
much smaller amplitude fluctuations around Rt ≈ nc,o (SOC)
or Rt � nc,o (supercritical) as shown in Fig. 2a. In the subcrit-
ical (supercritical) regime, ρ~x,ω departs from its scale invariant
form at SOC and one finds instead suppressed (pronounced)
density fluctuations at intermediate frequencies, see Fig. 2b.

Significant information is encoded in the statistics of Rt,

especially its mean R̄ ≡ λ
∫ λ−1

0 Rtdt and fluctuations σ2
R ≡

λ
∫ λ−1

0 R2
t dt − R̄2 as displayed in Fig. 2c. For subcritical λ

both R̄ and σR increase with λ faster than the linear mean-
field prediction. At the onset of SOC, however, both R̄ and
σR experience a sharp drop, manifest in a non-analytic kink in
their λ-dependence. While R̄ → nc,0 rapidly approaches the
critical density, the fluctuations decrease by several orders of
magnitude. Upon further increasing λ, R̄ reaches a valley at
≈ nc,0 and subsequently increases again into the supercritical
regime. σR is featureless at the SOC-supercritical transition.

In order to reason the observability of SOC for realis-
tic conditions, where the atomic cloud is confined inside a
trap, we expose n~x,t to a potential of the form Vtrap(~x) =

V0 exp(−|~x|2/ξ2
trap), e.g. resulting from a Gaussian trapping

laser with beam waist ξtrap [31]. For a mean free path da �

ξtrap, the effect of Vtrap(~x) can be treated within the relaxation
time approximation, see App. B. This adds a drift ∼ −~v~x · ~∇n~x,t
to the R.H.S. of Eq. (9). Here ~v~x = da√

MkBT
~∇Vtrap is the re-

laxation velocity. The dynamics following this drift at low
temperatures T ( V0da√

MkBT
= 0.7D) is displayed in Fig. 3a. On

distances |~x| < ξtrap, avalanches remain well defined and both
their fractal real space pattern and the scale invariant statistics
are observable below the trap scale, see Fig. 3b.
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Figure 3. Avalanches in a trap (d = 1). a) Real space dynamics and
b) distribution of avalanches in a Gaussian trap of width ξtrap = 103

lattice sites in the SOC regime (λ = 2.36 × 10−3). Both the spatial
and the temporal avalanche size follow the same scaling exponent.

VI. EFFECT OF THE SPATIAL DIMENSION

Apart from Rydberg atoms, the continuum model in Eq. (7)
may also serve as a coarse grained description for activity
spreading in sparse networks [17]. In this picture, each Ry-
dberg atom represents a node and the parameters κ, τ,Γ de-
scribe its reaction to external stimuli and the decay of infor-
mation. The density n~x,t represents a ’node energy’, which is
consumed by active nodes with rate γ↓0ρ~x,t and recharged with
rate λ.

Optimal networks are expected to operate close to SOC
[15–20]. Their natural tuning parameter is the average con-
nectivity z of the nodes, which is adjusted to match exter-
nal conditions [19, 20, 66–68]. Figure 2c confirms that here
the dimensionality d acts as a second ’control parameter’.
Changing d from d = 1 to d = 2 shifts the scale invariant
regime (shaded region) and increases its range. For a given
set τ, λ, γ↓0, there may exist an ’optimal’ d, for the system
to display SOC. In Rydberg experiments d can be controlled
by adjusting the trapping geometry. Combined with the tune-
ability of λ and τ, this offers many possibilities to study self-
organized criticality in network-like setups.

VII. CONCLUSION

We propose and study an experimentally feasible mecha-
nism to control excitation avalanches in driven Rydberg se-
tups [31]. On large, transient times, one can observe subcriti-
cal, supercritical and self-organized critical avalanche dynam-
ics, depending on the control parameter. Each regime features
unique signatures, including a scale invariant avalanche distri-
bution and 1

ω
-noise, both paradigmatic signals for SOC. This

motivates driven Rydberg ensembles [31] as viable platforms
for the study of SOC and the conditions under which simple
dynamical rules, as imposed by the facilitation condition, can
establish and maintain self-ordering towards complex dynam-
ics structures.

While the crossover from the SOC to the supercritical
regime does not produce a pronounced feature in the inte-
grated density, Fig. 2 reveals a developing non-analyticity in
both the integrated density as well as its fluctuations as τt is
decreased. It hints towards an underlying critical point, on
the one hand such a critical point might describe the SOC uni-

versality class, including avalanche and correlation exponents.
On the other hand, it could be a remnant of the directed perco-
lation critical point, which would be reached for λ, τ → 0. In
both cases, the investigation of this conjectured critical point
and its relation to the SOC universality seems worthwhile for
future work.

Based on the similarity of the corresponding master equa-
tions, we conjecture a relation between driven Rydberg gases
and self-organizing neural networks. The analogy is strength-
ened by frequently observed periodic or random activity pat-
terns in non-optimal operating networks [69, 70]. Exploring
this connection, especially for the role that is played by scale
separation, appears a promising direction to connect driven
Rydberg systems with neurosciences.
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Appendix A: Numerical integration scheme

Numerical integration of Eqs. (7), (9) is performed by an
operator-splitting update scheme [63]. At each time step, the
evolution is decomposed into a stochastic evolution step and a
deterministic step. The former is designed to solve a stochas-
tic differential equation of the form:

∂tρ~x,t = α + βρ~x,t + σ
√
ρ~x,tη. (A1)

Here η is a Markovian noise kernel with mean zero and unit
variance. For small γ↓0, κ, τ, we may approximate α and β to
be constant over each time step. The corresponding Fokker-
Planck equation has the exact solution

P(ρ, δt) = λe−λ(ρ0eβδt+ρ)
(

ρ

ρ0eβδt

)µ/2
Iµ

(
2λ

√
ρ0ρeβδt

)
,(A2)

where we set ρ ≡ ρ~x,t+δ and ρ0 ≡ ρ~x,t as well as λ =
2β

σ2(eβt−1)

and µ = 2α
σ2 − 1 and Iµ(x) is the modified Bessel function of

the first kind with index µ and argument x. This can be ex-
pressed via a mixed Gamma distribution which allows for ef-
ficient sampling:

ρ − ρ0 = Γ[µ + 1 + Poisson[λρeβ∆t]]/λ, (A3)

which is shorthand notation for a random variable which is
drawn from a Gamma distribution with argument µ + 1 + x,
whereas x was drawn from a Poisson distribution with argu-
ment λρeβ∆t.

Given the values of ρ~x,t at time t, its stochastic evolution
ρ~x,t+δt after a step δt can be drawn from the above distribution.
The deterministic part of the equation of motion has a purely
polynomial form and can also be solved exactly. The time
discretization error is therefore only caused by the splitting of
the evolution into a stochastic and a deterministic part.
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A non-zero τt can be incorporated by using the same pro-
cedure with a simple change of variables: u = ρ + τt/κt. The
non-negativity of ρ is enforced after sampling by resetting any
value of u < τt to τ. The well-behaving evolution of n~x,t is per-
formed via an Euler scheme.

Appendix B: Relaxation time approximation in a trap

In the presence of an inhomogeneous background potential
V(~r) for the particles, the drift term in Eq. (16) becomes sig-
nificant. For the active density it yields

∂tn~x,t = ~∇
∑

l

Θ(rfac − |~x − ~rl(t)|)〈σrr
l + σ

gg
l 〉t

~pl

M
(B1)

+
∑

l

Θ(rfac − |~x − ~rl(t)|)∂t〈σ
rr
l + σ

gg
l 〉t

where we applied the chain rule and inserted the momen-
tum ~pl = M∂t~rl. In the relaxation time approximation, the
momentum ~p is reset after a characteristic scattering time

trel = da

√
M

2πkBT , where da is the mean free path and T is the
temperature. This yields the equation of motion

∂t ~pl = −~∇V(~rl) −
1

trel
~pl. (B2)

It is stationary for ~pl = −trel~∇V(~rl) and induces an aver-
age drift for times t > trel. Inserting this result in Eq. (B1)
and neglecting the variation of V on length scales ∼ rfac, i.e.
V(~rl) ≈ V(~x), one finds

∂tn~x,t = −
da

√
2MkBT

~∇V(~x)~∇n~x,t + ..., (B3)

where ... describes the dynamics of the internal states of the
atoms. This approximation works well if both the facilitation
shell and the mean free path are much smaller than the typical
length scale of the potential V .
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V. Abramenko, M. C. M. Cheung, D. Müller, A. Benz, G. Cher-
nov, A. G. Kritsuk, J. D. Scargle, A. Melatos, R. V. Wagoner,
V. Trimble, and W. H. Green, Space Science Reviews 214, 55
(2018).

[29] S. H. Strogatz, Nature (London) 410, 268 (2001).
[30] B. Barzel and A.-L. Barabási, Nature Physics 9, 750 (2013).
[31] S. Helmrich, A. Arias, G. Lochead, M. Buchhold, S. Diehl, and

S. Whitlock, ArXiv e-prints (2018), arXiv:1806.09931 [cond-
mat.quant-gas].

[32] P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild,
A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Nature
(London) 491, 87 (2012), arXiv:1209.0944 [physics.atom-ph].

[33] G. Günter, H. Schempp, M. Robert-de-Saint-Vincent,
V. Gavryusev, S. Helmrich, C. S. Hofmann, S. Whitlock, and
M. Weidemüller, Science 342, 954 (2013).

[34] A. V. Gorshkov, R. Nath, and T. Pohl, Physical Review Letters
110, 153601 (2013), arXiv:1211.7060 [quant-ph].

[35] S. Helmrich, A. Arias, and S. Whitlock, Phys. Rev. A 98,
022109 (2018).

[36] F. Letscher, O. Thomas, T. Niederprüm, M. Fleischhauer, and
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[45] M. Gärttner, K. P. Heeg, T. Gasenzer, and J. Evers, Phys. Rev.
A 88, 043410 (2013).
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