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ABSTRACT
In a colloidal suspension at equilibrium, the diffusive motion of a tracer particle due to random thermal fluctuations from the solvent is
related to the particle’s response to an applied external force, provided this force is weak compared to the thermal restoring forces in the
solvent. This is known as the fluctuation-dissipation theorem (FDT) and is expressed via the Stokes-Einstein-Sutherland (SES) relation
D = kBT/ζ, where D is the particle’s self-diffusivity (fluctuation), ζ is the drag on the particle (dissipation), and kBT is the thermal Boltzmann
energy. Active suspensions are widely studied precisely because they are far from equilibrium—they can generate significant nonthermal
internal stresses, which can break the detailed balance and time-reversal symmetry—and thus cannot be assumed to obey the FDT a priori.
We derive a general relationship between diffusivity and mobility in generic colloidal suspensions (not restricted to near equilibrium) using
generalized Taylor dispersion theory and derive specific conditions on particle motion required for the FDT to hold. Even in the simplest
system of active Brownian particles (ABPs), these conditions may not be satisfied. Nevertheless, it is still possible to quantify deviations from
the FDT and express them in terms of an effective SES relation that accounts for the ABPs conversion of chemical into kinetic energy.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5081725

I. INTRODUCTION

The fluctuation-dissipation theorem (FDT) states “a general
relationship between the response of a given system to an exter-
nal disturbance and the internal fluctuations of the system in the
absence of the disturbance.”1 This is true across a variety of sys-
tems, whether the fluctuations be thermal (classical), e.g., Johnson-
Nyquist noise in a resistor, or quantized such as the fluctuations of
an electric field in a vacuum.2 The key assumptions of the FDT are
that the system is in equilibrium in the absence of the disturbance—
the probability distribution of states is Boltzmann-distributed with
respect to the Hamiltonian of the system—and that the external dis-
turbance is sufficiently weak that the tenets of linear response theory
apply.3

One of the most well-known manifestations of the FDT is the
Brownian motion of a tracer particle suspended in a fluid. At ther-
mal equilibrium, the motion of the tracer particle fluctuates due to
collisions with the molecules of the solvent, giving rise to Brownian
motion. The average velocity and displacement of the particle are
zero, and the tracer motion is characterized by its mean-squared dis-
placement (MSD), which grows linearly with time; the time deriva-
tive of the MSD gives the self-diffusivity D. If one applies a weak

external force Fext to the tracer particle and drags it through the
fluid, the velocity of the particle U will be linear in the applied force:
U = MUF

⋅ Fext , where MUF is the hydrodynamic mobility of the
particle—the inverse of the drag on the particle. (The superscript
UF denotes the hydrodynamic coupling between the velocity and
force.) The FDT manifests in the Stokes-Einstein-Sutherland (SES)
relation D = kBTMUF , where kB is Boltzmann’s constant and T is
the temperature of the system. (We will refer to the quantity kBT as
the temperature in this article, as kB and T will never appear inde-
pendently of one another.) Alternatively expressed, the product of
the self-diffusivity (fluctuation) and drag (dissipation) is precisely
equal to the system temperature D ⋅ (MUF

)
−1

= kBTI (where I is the
isotropic tensor).

This theorem does not require us to say anything about the
probe particle or the medium through which it moves—the rela-
tionship between the drag and the self-diffusivity is specified only
by the temperature of the system. Indeed, if we instead consid-
ered the motion of a tracer particle in a suspension of other
particles (see Fig. 1), this relation would be true regardless of
any interactions among the particles, the concentrations of other
species, or the spatial distribution of the particles (the microstruc-
ture). While both D and (MUF

)
−1 are dependent on suspension
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FIG. 1. Sketch of the fluctuation-dissipation theorem (FDT) in a colloidal sus-
pension. Left: A tracer particle diffuses in a suspension of bath particles due to
random Brownian motion. The time derivative of the mean squared-displacements
due to Brownian motion ⟨x′x′⟩ is proportional to the self-diffusivity of the par-
ticle ⟨D⟩. Right: The same tracer particle moves through the same suspension
under the action of an external force Fext . The speed of this particle is linear in
the external force, with the constant of proportionality being the average mobil-
ity ⟨MUF

⟩. The FDT states that these two problems are fundamentally related
by ⟨D⟩ ⋅ ⟨MUF

⟩
−1
= kBTI, where kBT is the temperature of the system

and is independent of all other suspension properties (composition, interparticle
interactions, etc.).

properties, their product is always equal to the temperature of
the system and nothing else. This is true on all time scales
long compared to the momentum relaxation time of the parti-
cle, when the tracer motion is diffusive.4 Thus, for systems that
obey the FDT, one can do a single experiment—tracking the dis-
placements of the tracer particle to compute D or applying a
weak external force to the tracer and measuring its average speed
to infer MUF—to characterize both the internal fluctuations of
the system and the response to an external stimulus at a given
temperature.

Active systems have recently generated substantial interest
among soft-matter and statistical physicists. The constituents of
these systems are able to self-propel through some physicochemi-
cal mechanism, which generates internal stresses that drive the sys-
tem out of equilibrium without the influence of external forces.5,6

One cannot assume a priori that the FDT may be applied because
the steady-state internal fluctuations are not an equilibrium pro-
cess. Indeed, it is not even clear how one might define the chem-
ical potential, free energy, or temperature for active systems—a
challenge which has fueled a spirited debate in the literature.7–9

Any attempts have concluded that an effective temperature depends
not only on the particle activity but also on suspension prop-
erties such as concentration and composition. Despite this com-
plication, experimental and theoretical predictions of enhanced
tracer diffusion10–18 and reduced shear viscosity and microviscos-
ity in active systems19–24 are at least qualitatively consistent with
the FDT.

To illustrate this, consider as a minimal model of active sys-
tems a single active Brownian particle (ABP) of size a which “swims”
at some constant speed U0 in a direction q that changes randomly
over a time scale τR. At times long compared to τR, the ABP diffuses

with a long-time “active” self-diffusivity Dact = DT + Dswim, where DT
is its thermal Stokes-Einstein-Sutherland (SES) diffusivity and the
purely mechanical, isotropic “swim” diffusivity is Dswim

= U2
0τR/6

(in 3-D). The drag on an ABP in a Newtonian solvent is given
by its usual translational Stokes drag ζs. In the spirit of the SES
relation and FDT, we can write ζsDact = kBT + ksTs, where
ksTs ≡ ζsDswim defines the “activity” of the particle. For a single
active particle, we thus have a generalized SES relation that states
that the product of the drag and the active self-diffusivity is equal
to the thermal energy of the solvent, plus the “kinetic energy” of the
swimmer. Note that we have not specified anything about the swim-
ming mechanism, only that the particle undergoes an active random
walk.

This simple single-particle result shows promising similarity
with classical manifestations of the FDT. But how general is it? It
only shows that if one uses an active particle as a tracer in a sol-
vent, the SES is modified by the addition of “internal” active fluc-
tuations of the tracer itself. But what if one were to instead place
a passive tracer particle in a fluid that also contained a dispersion
of active particles? Is the relation between the fluctuations of the
tracer particle and the drag as it moves through the suspension
still linear in kBT + ksTs? Does the fluctuation-dissipation rela-
tion depend on the activity only, or also on the volume fraction,
etc., of the swimmers? Both the active or long-time self-diffusivity
(LTSD) of a tracer in an active bath, as well as the “tempera-
ture” of an active bath, have been shown to depend on properties
of the system such as particle size, swimmer fraction, swimming
mechanism, etc.7,8,10,11,13,15,17,25–28 At present, there are few measure-
ments of the self-drag on a tracer in an active suspension.23,25,29,30

Both the drag and the diffusivity are needed to characterize the
fluctuation-dissipation relation—and departures from it—in an
active suspension.

It should be appreciated that for active systems to even approxi-
mately obey the FDT is remarkable. In a passive system, the diffusiv-
ity of a particle decreases with increasing suspension concentration
due to the crowding effect of other particles (see Fig. 1). The par-
ticle’s drag, on the other hand, increases from this same crowding
effect. Their product is the constant temperature. But just the oppo-
site must occur in an active bath: the diffusivity of a tracer particle
is enhanced by activity, while its drag must, therefore, decrease with
activity. How and why the drag decreases, and the validity of the
FDT, is the subject of this study. As we show, determining the drag
is equivalent to the microrheology problem and thus our results are
more broadly applicable than just the FDT.

In this article, we use generalized Taylor dispersion theory to
make a direct connection between fluctuation and dissipation, deriv-
ing expressions for the average velocity (and thus, drag) and LTSD
of a tracer (probe) particle in a generic colloidal suspension. The
complete derivations for all suspension concentrations, bath particle
activities, or any other nonequilibrium effects (e.g., external shear
flow) are given in Appendixes A and B.

To illustrate the general behavior, consider a dilute suspension
where only pairwise interactions between the tracer particle (1), and
a single bath particle (2) are considered—this is depicted in Fig. 2.
(The condition for diluteness is that the volume fraction � based
on the bath particle size is small � ≪ 1.) In the absence of exter-
nal forces, the average diffusivity ⟨D⟩ of the probe in this dilute
suspension is
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FIG. 2. Schematic of the model system: a Brownian probe particle of size R
immersed in a suspension of ABPs with size a at number density n∞—the center-
to-center separation distance upon a collision is denoted by Rc = R + a. The
ABPs swim in a direction q at speed U0; q changes randomly on a time scale
characterized by τR. The probe translates under the action of a constant external
force Fext .

⟨D⟩ = ∫ D11P̂(0,0)
1/1 dr − ∫ U(0)1 d̂(k)dr

+ ∫ (D12 −D11) ⋅ ∇rd̂
(k) dr, (1)

while the average mobility (inverse of the drag) in response to a weak
external force is

⟨MUF
⟩ = ∫ MUF

11 P̂
(0,0)
1/1 dr − ∫ U(0)1 d̂(F)dr

+ ∫ (D12 −D11) ⋅ ∇rd̂(F) dr. (2)

In these expressions, P̂(0,0)
1/1 (r) is the probability of finding the bath

particle at some position r relative to the probe in the absence of any
forcing. (Here, in this section, r is a short-hand for both the position
and orientation of the bath particle relative to the probe.) The diffu-
sivity tensors, D11 = kBTMUF

11 and D12 = kBTMUF
12 , are given by the

well-known hydrodynamic self- and pair-mobility of the probe par-
ticle, respectively.31 The velocity of the probe particle due to activity,
interparticle forces, external shear, etc., is U(0)1 ; this velocity excludes
only the velocities due to the external force MUF

11 ⋅ Fext and Brown-
ian motion. The long-wavelength fluctuations in the probe’s position
due to Brownian forces in the solvent are described by the displace-
ment field d̂(k), and its fluctuations due to the action of the external
force are given by d̂(F).

Equations (1) and (2) show that the diffusivity and mobility are
formally identical (modulo a factor of kBT) under the lens of general-
ized Taylor dispersion theory. For the FDT to hold, we only require
that d̂(k) = kBTd̂(F). The motion due to the fluctuating Brownian
force −ikkBT must be mechanically identical to that from the exter-
nal force Fext ; this is the mechanical underpinning of the FDT for
systems in thermodynamic equilibrium.

Fluctuations arising from the thermal forces in the solvent are
described by (see Appendixes A and B)

∂d̂
(k)

∂t
+∇r ⋅

⎛

⎝
[U (0)

2 −U (0)
1 ]d̂

(k)
−Drel

⋅ ∇rd̂
(k)⎞

⎠

= P̂(0,0)
1/1 (⟨Uprobe

⟩ −U(0)1 ) + 2(D12 −D11) ⋅ ∇rP̂(0,0)
1/1

+ P̂(0,0)
1/1 ∇r ⋅ (D12 −D11), (3)

while those from the external force are described by

∂d̂
(F)

∂t
+∇r ⋅

⎛

⎝
[U (0)

2 −U (0)
1 ]d̂

(F)
−Drel

⋅ ∇rd̂
(F)⎞

⎠

= ∇r ⋅ [(MUF
12 −MUF

11 )P̂(0,0)
1/1 ]. (4)

The quantity Drel = D11 + D22 − D21 − D12 is the relative hydrody-
namic mobility multiplied by kBT.

The two fluctuations are the same only when the local probe
velocity in the absence of the external force

Uprobe
= U (0)

1 − (D12 −D11) ⋅ ∇r ln P̂(0,0)
1/1 , (5)

is equal to its suspension average over P̂(0,0)
1/1

⟨Uprobe
⟩ = ∫ U(0)1 P̂(0,0)

1/1 dr − ∫ (D12 −D11) ⋅ ∇rP̂(0,0)
1/1 dr. (6)

In general, the detailed and average probe velocities are not
the same. They are the same, and the FDT is satisfied for
a passive equilibrium suspension. In equilibrium, the velocity
U(0)1 = −(M12 − M11) ⋅ ∇rVP

(r), where VP(r) is the
interparticle potential, and the pair-probability is Boltzmann:
P̂(0,0)

1/1 ∼ exp(−VP
(r)/kBT), and so Uprobe = 0, as does its average.

This was the case in the work of Zia and Brady.32

In Sec. II, we show that this condition is not met in general for
a dilute active suspension and therefore the product ⟨D⟩ ⋅ ⟨MUF

⟩
−1

depends on the geometry and activity of the suspension. However,
in certain limits, we can recover the same fluctuation-dissipation
relation as found for a single active particle moving in a Newtonian
fluid.

II. MODEL SYSTEM
Consider the motion of a tracer particle of size R with Stokes-

Einstein-Sutherland (SES) diffusivity DP in an active suspension. In
addition to Brownian fluctuations from the solvent, the tracer moves
under the action of a constant external force Fext . The suspension
is composed of ABPs with size a, (constant) swim speed U0, SES
diffusivity DT , and a characteristic reorientation time τR in a Newto-
nian solvent of viscosity ηs. For simplicity, we neglect hydrodynamic
interactions (HI) and assume the suspension to be sufficiently dilute
(� = 4πn∞a3/3 ≪ 1, where n∞ is the constant volumetric num-
ber density of swimmers far from the probe) that we only need to
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consider pairwise particle interactions. The dynamics of this system
are described by the following Smoluchowski equation:

∂P2

∂t
+∇z ⋅ jTP +∇r ⋅ (jTs − j

T
P) +∇R ⋅ jRs = 0, (7)

where ∇R = q × ∇q is the orientation-space gradient operator for
an axisymmetric particle. This is a conservation statement for the
probability P2(z, r, q, t) of finding a swimmer with position r and ori-
entation q relative to a probe at position z (we neglect orientational
degrees of freedom for the probe). The translational flux of the probe
is jTP =MUF

⋅ FextP2 −DP∇zP2 + DP∇rP2; MUF = I/ζP is the bare
probe mobility in the absence of HI and ζP is its (Stokes) drag coeffi-
cient. The translational flux of the swimmer is jTs = U0qP2 −DT∇rP2
and its rotational flux is jRs = −τ−1

R ∇RP2. The boundary conditions
for the Smoluchowski equation are no flux at contact between the
probe and an active bath particle and a uniform random distribution
of bath particles far from the probe.

The average motion of the probe is governed by the single-
particle equation

∂P̂1

∂t
+ ik ⋅ ⟨ĵTP⟩ = 0, (8)

where the angle brackets represent an average over the swimmer
configurations—over drdq—and we have taken a Fourier transform
with respect to z. The average flux of the probe is

⟨ĵTP⟩ = P̂1

⎡
⎢
⎢
⎢
⎢
⎣

MUF
⋅ Fext

− ikDP + DP ∫ ∫ ∇rP̂1/1drdq
⎤
⎥
⎥
⎥
⎥
⎦

, (9)

where P̂2(k, r,q, t) = P̂1/1(k, r,q, t)P̂1(k, t). The long-time self-
diffusivity of the probe is given by the long-wavelength (small
k) fluctuations in the conditional probability P̂1/1 so we write

P̂1/1 = P̂(0)1/1 + ik ⋅ d̂
(k)

+ O(k2
) as in previous works.28,32,33

Expanding the average probe flux with respect to
k (⟨ĵTP⟩ = P̂1[⟨Uprobe

⟩ − ik ⋅ ⟨D⟩ + . . .]) defines the average velocity
and long-time self-diffusivity (LTSD)

⟨Uprobe
⟩ ≡MUF

⋅ Fext + DP ∫ ∇rP̂(0)1/1 drdq, (10)

⟨D⟩ ≡ DP

⎡
⎢
⎢
⎢
⎢
⎣

I − ∫ ∇rd̂
(k)

drdq
⎤
⎥
⎥
⎥
⎥
⎦

. (11)

When the external force is weak compared to Brownian
motion, we can also expand the microstructure with respect to
Fext : P̂(0)1/1 = P̂(0,0)

1/1 − Fext
⋅ d̂
(F)

+ O((Fext
)

2
). The average speed of

the probe is now

⟨Uprobe
⟩ = DP ∫ ∇rP̂(0,0)

1/1 drdq
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⟨Udrift
⟩

+Fext
⋅

⎡
⎢
⎢
⎢
⎢
⎣

MUF
−DP ∫ ∇rd̂

(F)
drdq

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⟨MUF

⟩

.

(12)

The first term in the above equation is the probe’s drift
velocity—the average velocity resulting from nonzero suspension-
averaged forces acting on the probe (other than the external force).
For a passive thermal system, there is no net motion of any

particle at equilibrium regardless of the particle shape. For an active
system, however, spontaneous motion of a nonspherical probe par-
ticle can arise when the run length of the active bath particles,
U0τR, is comparable to the radius of curvature of the probe par-
ticle;34–36 this spontaneous motion is captured by this drift veloc-
ity. This is most easily seen by using the divergence theorem to
write

⟨Udrift
⟩ = −DP ∮ nn0 dS, (13)

where n is the outer normal to the probe surface and n0 = ∫ P̂(0,0)
1/1 dq

is the local number density of bath particles at contact [see (14)
below] where the no-flux condition is imposed for hard parti-
cles. For active bath particles n0 can be nonuniform over the sur-
face of contact resulting in a net force and motion of the probe
particle.36

The expression (12) for ⟨MUF
⟩ is formally identical to (11) for

⟨D⟩—the LTSD of the probe is the same as its mobility under the
action of a small external force (modulo a factor of kBT). Although
the formal relations are the same, the mobility of the particle is not
identical to its self-diffusivity unless d̂

(k)
= kBTd̂

(F)
. In the intro-

duction (and more generally in Appendix B), we showed that the
two fluctuation fields are not governed by the same equations for
a generic suspension not in equilibrium. For the model suspen-
sion considered here, the FDT is not satisfied unless ∇r ln P̂(0,0)

1/1 = 0.

For passive hard particles, P̂(0,0)
1/1 is constant everywhere and the

FDT is obeyed. However, active particles accumulate at no-flux sur-
faces,37,38 P̂(0,0)

1/1 is not constant, and thus the FDT is not obeyed in
general.

For a single ABP, there are no accumulation no-flux sur-
faces, and thus, a modified FDT is possible: the product of the
active diffusivity and the drag, ζsDact = kBT + ksTs, is linear in
the “temperature.” An analogous statement for the passive tracer
in an active suspension would thus be ⟨MUF

⟩
−1
⋅ ⟨D⟩ = kBT + Eact ,

where the “active energy” Eact only depends on the activity,
ksTs, of the bath particles. It is the purpose of this paper to
investigate under what conditions such a modified FDT might
hold.

To determine the generalized SES relation for active sus-
pensions, we thus need to solve for ⟨D⟩ and then separately for
⟨MUF

⟩ (or Eact). In a previous paper, Burkholder and Brady,28

we determined the diffusivity of a tracer in a dilute active
bath (see Sec. III B). In this paper, we solve the problem for
the average mobility (or average drag) and thus can assess the
validity of the FDT. Determining the average drag is precisely
the fixed-force microrheology problem for a probe in an active
bath, and thus, our results have applications beyond the present
discussion.

We solve the Smoluchowski Eq. (7) using the familiar method
popularized by Saintillan and Shelley39 and expand the pair-
distribution function in terms of orthogonal tensor harmonics
in q

P̂(0,0)
1/1 (r,q; t) = n0(r; t) + q ⋅m0(r; t)

+ (qq −
I
3
) : Q0(r; t) + (qqq −

α ⋅ q
5

) ⊙ B0 + . . . , (14)
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û ⋅ d̂
(F)

(r,q; t) = n′(r; t) + q ⋅m′(r; t)

+ (qq −
I
3
) : Q′(r; t) + (qqq −

α ⋅ q
5

) ⊙ B′ + . . . , (15)

where I is the identity tensor, and α is the fourth-order isotropic
tensor. The unit vector in the direction of the external force is û. The
zeroth moment n is the concentration field, m is the polar order, Q
is the nematic order, and so on.39,40 In the absence of external forces,
the closure Q0 = 0 results in qualitative and often good quantitative
agreement between calculations of the particle-phase pressure using
theory and Brownian dynamics simulations—the closure B0 = 0 pro-
vided nearly exact quantitative agreement between theory and sim-
ulation.37 We examine both closures in this problem and provide a
comparison to the exact solution in 2D in Appendix D.

The governing equations for n0, m0 and Q0 may be found in
the appendix of Yan and Brady.37 Applying the moments-averaging
procedure to the governing equation and boundary conditions for
û ⋅ d̂

(F)
yields a system of coupled PDEs governing the steady-state

perturbed microstructure

∇r ⋅ [U0m′ −Drel
∇n′] =MUF

⋅ Fext
⋅ ∇n0, (16)

∇r ⋅ [U0(I
n′

3
+ Q′) −Drel

∇m′
] + 2DRm′ =MUF

⋅ Fext
⋅ ∇m0, (17)

∇r ⋅[U0(
α ⋅m′

5
−I

m′

3
)−Drel

∇Q′]+ 6DRQ′ =MUF
⋅Fext

⋅∇Q0, (18)

where we have neglected terms of O(ik), as they are not necessary
to determine the average probe speed. The relative translational dif-
fusivity is the sum of the bare probe and swimmer SES diffusivi-
ties Drel = DP + DT . Note that these governing equations are valid
even when the external force is not weak—i.e., when the expansion
P̂(0)1/1 = P̂(0,0)

1/1 −Fext
⋅d̂
(F)

+O((Fext
)

2
) is no longer valid—and can thus

be applied to the nonlinear microrheology problem (see Burkholder
and Brady41).

At particle contact r = Rc ≡ R + a, there can be no translational
flux

n ⋅ [U0m′ −Drel
∇n′] = n ⋅MUF

⋅ Fextn0, (19)

n ⋅ [U0(I
n′

3
+ Q′) −Drel

∇m′
] = n ⋅MUF

⋅ Fextm0, (20)

n ⋅ [U0(
α ⋅m′

5
− I

m′

3
) −Drel

∇Q′] = n ⋅MUF
⋅ FextQ0, (21)

where n is the outward-pointing unit normal of the probe. In the
far-field, there is no long-ranged order P̂(0)1/1 = n∞/4π as r→∞, and
thus, the fluctuations are zero

n′,m′,Q′ ∼ 0, r →∞. (22)

One may solve this system analytically when Q′ = 0 (see
Appendix C). For Q′ ≠ 0, the solution must be obtained numerically,
which we do using a second-order finite difference scheme.42

III. PROBE SPEED AND SELF-DRAG
In the linear-response regime, the probe velocity is linear in the

applied external force

⟨Uprobe
⟩ = Fext

⋅

⎡
⎢
⎢
⎢
⎢
⎣

MUF
−DP ∫ ∇rd̂

(F)
drdq

⎤
⎥
⎥
⎥
⎥
⎦

. (23)

Due to the symmetry of this problem, ⟨Udrift
⟩ is zero, and the probe

mobility is isotropic, ⟨MUF
⟩ = I⟨µ⟩, where ⟨µ⟩ is the mobility coef-

ficient. In general, the mobility problem (the velocity of a particle
due to an applied force) and the resistance problem (the force on a
particle moving at a particular speed) are different. For the simple
case of the probe particle (1) and a single swimmer (2), the probe’s
hydrodynamic self-mobility is

MUF
11 = [RFU

11 − RFU
12 ⋅ (R

FU
22 )

−1
⋅ RFU

21 ]
−1

≠ (RFU
11 )

−1, (24)

where the linear relation between the velocity of particle α and
the force on particle β is MUF

αβ , and the relation between the force
on particle α due to the motion of particle β is RFU

αβ . The self-
drag of the probe RFU

11 is not equal to the inverse of its self-
mobility MUF

11 , in general,31 rather it depends on the hydrody-
namic interactions between all the other particles in the suspension.
Even if the average hydrodynamic mobility and resistance are
isotropic, ⟨MUF

11 ⟩ = ⟨µHI⟩I and ⟨RFU
11 ⟩ = ⟨ζHI⟩I, the mobility

and drag are not necessarily inverses ⟨µHI⟩ ≠ 1/⟨ζHI⟩. In the spe-
cial case under consideration—where we neglect fluid velocity dis-
turbances of the particles—the probe’s hydrodynamic self-drag is
just the Stokes drag ζP and the hydrodynamic self-drag and self-
mobility are inverses. This allows us to easily move from the
mobility formulation of generalized Taylor dispersion theory to
the resistance formulation implicit in discussing the drag on the
probe.

In addition to the hydrodynamic contribution to the mobility
(and drag), there is the interparticle contribution represented by the
integral in (23), which is the entropic restoring force in the bath. The
total drag on the probe—the Stokes drag plus the additional drag due
to interparticle interactions in the dilute bath—is given by

⟨ζ⟩ = ζP[1 +
kBT
Fext ∫Rc

û ⋅ nn′dS], (25)

which we have expressed as an integral of the concentration fluc-
tuation n′ over the contact surface Rc. Note that the interparticle
contribution depends only on interactions at the no-flux bound-
ary, whereas the hydrodynamic (and Brownian) contribution(s) will,
in general, depend on the entire configuration of the suspension.
The “undisturbed” concentration, n0, while not constant owing to
the accumulation of active particles at the probe surface [see (C6)],
is spherically symmetric and does not contribute to the average
drag.

Conventionally, the self-drag ⟨ζ⟩ of the probe is expressed
in terms of a suspension-averaged viscosity: ⟨ζ⟩ = 6π⟨η⟩R, where
⟨η⟩ is known as the microviscosity of the suspension.42,43 In the
absence of any hydrodynamic interactions or interparticle forces,
the microviscosity of a passive suspension is ⟨η⟩ = ηs(1 + �ex),
where the excluded volume fraction is �ex = �(1 + R/a)2/2.
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FIG. 3. Particle contribution to the probe drag scaled by its value in a passive
suspension ζP�ex . The Stokes drag of the probe is ζP , and the excluded volume
fraction of the suspension is �ex = 2πa(R + a)2n∞/3, where n∞ is the num-
ber density, a is the swimmer size, and R is the probe size. This scaled drag
contribution is plotted as a function of `/Rc ≡ U0τR/(R + a), where U0 is the
speed of the swimmers, and τR is their reorientation time. Different colors indi-
cate different strengths of swimming: 6Dswim

/Drel
= U2

0τR/D
rel, where Drel is

the relative thermal diffusivity. Squares are for the closure Q′ = 0 and crosses
are for the closure B′ = 0. The points are calculated from numerical solutions
to the governing Eqs. (16)–(18). The dashed and solid lines serve as guides for
the eye.

The effect of the bath particles is characterized by the micro-
viscosity coefficient ηmicro

≡ (⟨ζ⟩ − ζP)/ζP�ex, where ζP = 6πηsR
is the probe’s Stokes drag coefficient. The microviscosity coef-
ficient is a scalar constant independent of the volume fraction.
We shall discuss the average drag in terms of the microviscosity
coefficient.

A. Swim-thinning

Dimensional analysis of the governing equations for û ⋅ d̂(F)

reveals two dimensionless groups that determine the strength
of activity in the linear-response regime: Pes = U0Rc/Drel and
γ2

= 2R2
c/(DrelτR). The first is a Péclet number relating the strength

of swimming to the strength of Brownian motion, and the sec-
ond compares the rate of thermal diffusion to the reorientation
time of the swimmers. We can define these groups in terms of
three length scales: the run length ` = U0τR, the microscopic
length δ=

√
DrelτR, and the contact length Rc (Pes = `Rc/δ2 and

γ2
= 2R2

c/δ2). Figure 3 shows that the qualitative dependence of
ηmicro on the ratio `/Rc is the same for all activity levels—constant
values of `/δ =

√
6Dswim/Drel ∼

√
ksTs/kBT.

The limit `/Rc ≪ 1 is known as the continuum limit. The
run-length of the swimmers is small compared to the size of the
probe; thus, from the probe’s perspective, the swimmers are sim-
ply “hot” Brownian particles diffusing through the fluid with an
active self-diffusivity DT + Dswim. When they collide with the probe
due to the advective flux (see Fig. 4, left), they can immediately
reorient and diffuse away from the probe. Thus, even though the
number density of particles at the surface may be large [see (C6)]
n0 ∼ n∞(1 + Dswim/DT), the advective disturbance is balanced by
the diffusive restoring flux (DT + Dswim)∇n′. The microviscosity
coefficient is

ηmicro
= 1 −

√
3

2
`

Rc
, (26)

which is what we find in passive suspensions, minus a small correc-
tion that reflects swim-thinning of the suspension.

In the opposite limit, the run length of the swimmers is far
larger than the contact length `≫ Rc. When a swimmer collides with
the probe, it slides along the contact surface until it is able to swim
away again with the same orientation (see Fig. 4, right). This is a
consequence of the no-flux boundary condition. The swimmer does
not reorient during its contact with the probe, and thus, the particles
do not accumulate at the surface of the probe n0 ∼ n∞ [see (C6)].

FIG. 4. Sketch of swimmer trajectories upon collision with the probe particle for various regimes of `/Rc = U0τR/(R + a), where U0 is the speed of the swimmer, τR is its
reorientation time, a is its size, and R is the size of the probe. The background arrows indicate the direction of fluid flow.
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In this case, the weak advective perturbation is simply perturbing a
suspension from a uniform microstructure, and the microviscosity
coefficient is

ηmicro
= 1 −

2
9
Pe2

s , (27)

which is the passive suspension microviscosity coefficient with a
small correction for swim-thinning when `/Rc is large but finite.
Note that Pes = (`/δ)2(Rc/`) is actually small when `/δ is fixed but
`/Rc becomes large.

In the intermediate regime—`/Rc ∼ O(1), illustrated in the cen-
ter panel of Fig. 4—the behavior is different. When a swimmer
collides with the probe, it slides along the surface as it does when
`/Rc ≫ 1, but it may still be near the probe when it reorients. For
example, a swimmer approaching the front of the probe may collide
and then slide around to the back of the probe. Once there, it can
either reorient and swim away from the probe, or it can collide with
the probe again and push it along—the latter scenario would result
in a microviscosity coefficient less than one would find in a passive
suspension. The opposite would be true of a particle approaching
the rear of the swimmer—it could swim away in front or reorient
and hit the probe, thereby increasing the microviscosity coefficient.
When `/Rc ∼ O(1), we find

ηmicro
=
√

8/Pes, (28)

which approaches zero as Pes → ∞. This simply means that the
weak advective disturbance causes more swimmers to collide with
the front of the probe and then slide to the back than vice versa. Some
of these swimmers reorient and push the probe along, decreasing the
microviscosity coefficient.

It should be noted that this particular limit of the microviscos-
ity coefficient—`/Rc ∼ O(1)—is sensitive to the equation closure, as
indicated by the difference between square symbols and crosses in
Fig. 3 (for a detailed discussion, see Appendix D). If nematic order
is included, ηmicro approaches a constant value slightly less than 1/2,
as Pes → ∞, which is consistent with finite element calculations of
P̂1/1 that do not rely on the moment expansion in q. Additionally,
the overshoot in the approach to the large `/Rc value seen in Fig. 3
at large Dswim/Drel is a result of the closure B′ = 0. It is not seen with
the closure Q′ = 0 or in finite-element calculations (Appendix D).

In the absence of any hydrodynamic interactions, activity
decreases the excess drag from the bath particles, but the microvis-
cosity is never reduced below the viscosity of the embedding solvent,
⟨η⟩ > ηs. This agrees with previous simulations which compute a
decreased mobility in an active bath without hydrodynamic inter-
actions.30 However, Reichhardt and Reichhardt30 found that the
mobility monotonically decreases—the drag increases—with `/Rc at
fixed Pes, the opposite of what we find here. It should be noted that
their simulations have no Brownian motion and, thus, cannot be
in the linear response regime. Their findings of an effective drag
coefficient greater than the Stokes drag stand in contrast to many
theoretical predictions and measurements of reduced shear viscos-
ity in bacterial suspensions21,22,24,44 and reduced microviscosity in
an active nematic.23

B. Connections to a generalized SES relation
To connect dissipation to fluctuation, in addition to the probe

drag, we need its diffusivity. In Fig. 5, we reframe the results of

FIG. 5. Particle contribution to the probe diffusivity scaled by (DP + Dswim)�ex .
The SES diffusivity of the probe is DP , and the excluded volume fraction of the
suspension is �ex = 2πa(R + a)2n∞/3, where n∞ is the number density, a is the
swimmer size, and R is the probe size. Dswim

= U2
0τR/6 is the swim diffusivity,

where U0 is the constant speed of the swimmers and τR is the reorientation time of
a swimmers. This is plotted as a function of `/Rc ≡ U0τR/(R + a). Different colors
indicate different strengths of swimming, 6Dswim

/Drel
= U2

0τR/D
rel, where Drel

is the relative thermal diffusivity.

Burkholder and Brady28 for the diffusivity of a probe particle of
radius R in a dilute bath of active particles in the context of the
present discussion.

As mentioned previously, when `/Rc ≪ 1, the probe sees
the swimmers as “hot” Brownian particles with effective diffusiv-
ity DT + Dswim. This results in an enhanced probe diffusivity that
scales as ksTs, as seen in Fig. 5 when Dswim

≫ DT (ksTs ≫ kBT).
This enhanced diffusivity is in competition with the usual steric
hindrance −DP�ex, and when ksTs/kBT ≪ 1, the steric hindrance
dominates (the black line in Fig. 5). In the opposite limit, `/Rc ≫ 1
(the right-hand side of Fig. 5), the active contribution to the
probe’s diffusivity decreases28 because the swimmers can no longer
share their full activity with the probe. When an active parti-
cle collides with the probe it can only displace it of order the
probe size R, not its run length `, and thus, the diffusivity when
scaled with Dswim decreases with `/Rc. The plateaus are of dif-
fering heights due to the factor of Dswim in the denominator;
the active enhancement to the diffusivity can be smaller than
the steric hindrance in this limit resulting in the negative values
in Fig. 5.

In a dilute suspension of passive Brownian hard spheres
in the absence of HI, Squires and Brady showed that
⟨ζ⟩ = 1/⟨µ⟩ = ζP/(1 − �ex), while Zia and Brady later showed
⟨D⟩ = DP(1 − �ex) using generalized Taylor dispersion theory.32,43

The product of ⟨D⟩ and 1/⟨µ⟩ is, thus, precisely kBT; as we show
here, the FDT holds for all concentrations and conditions for an
equilibrium suspension.

For active systems, we can investigate the validity of the FDT
in the following manner. To leading order in the concentration
of bath particles, the diffusivity and mobility can be written as
⟨D⟩ = DP + α�ex and ⟨µ⟩ = µP + β�ex, respectively, where
µP = 1/ζP is the probe’s Stokes mobility. The drag is thus
⟨ζ⟩ = 1/⟨µ⟩ = ζP/(1 + ζPβ�ex). The functions α and β are contained in
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Figs. 3 and 5. The product of the diffusivity and drag is thus

⟨D⟩⟨ζ⟩ =
ζPDP + ζPαφex

1 + ζPβφex ∼ kBT + ζPφex
(α − kBTβ), φex

≪ 1. (29)

For passive particles, α − kBTβ = 0, recovering the FDT. We can
thus characterize the departure from the FDT due to nonequilibrium
effects—in this case, the activity of the bath particles—by examining
how α − kBTβ varies with activity. This quantity can be thought of
as an “excess” energy Eact imparted to the probe by the active bath

Eact
≡ ζP(α − kBTβ)φex. (30)

In Fig. 6, we plot these nonequilibrium fluctuations,
Eact/(ksTs�ex), of the probe particle as a function of the quantity
`/Rc, similar to the plots of the self-drag and self-diffusivity above. In
the continuum limit, `/Rc ≪ 1, the excess fluctuations of the probe
are ksTs�ex, independent of how active the swimmers are. Here, the
run length is small compared to the contact length `/Rc ≪ 1, so
the probe sees the swimmers as effectively Brownian particles with
an active self-diffusivity Dact = DT + Dswim. The probe experiences
many small kicks of O(kBT) from the solvent molecules, and kicks
of O(ksTs) from the swimmers. The volume fraction dependence
of Eact necessarily reflects the fact that the active fluctuations come
from the particles only, whereas thermal fluctuations come from the
solvent.

For fixed levels of activity, Fig. 6 shows that as the persistence
length of the swimmers’ increases, these nonequilibrium fluctua-
tions go to zero. In this limit, the active contribution to the probe’s
diffusivity also vanishes28 because the swimmers can no longer share
their full activity with the probe particle. In addition, recall from
the discussion of the microviscosity coefficient that the microstruc-
ture of the suspension is essentially uniform in the absence of probe
motion when `≫ Rc. The swimmers simply keep moving along their

FIG. 6. Particle contribution to the probe fluctuations scaled by ksTs. The activity
of the swimmers is ksTs = ζsU2

0τR/6, where U0 is the constant speed of the
swimmers and τR is the reorientation time of a swimmer, and ζs is their Stokes
drag. This is plotted as a function of `/Rc ≡ U0τR/(R + a). Different colors indicate
different strengths of swimming: 6Dswim

/Drel
= U2

0τR/D
rel
∼ ksTs/kBT, where

Drel is the relative thermal diffusivity.

desired trajectories upon collisions with the probe. Thus, the diffu-
sive motion of the probe is not affected by the activity of the bath,
and the FDT holds true.

That the FDT applies in the limit of large `/Rc is really a state-
ment that activity no longer matters. As defined in (29) the when
the fluctuation is zero ⟨D⟩⟨ζ⟩ = kBT. The effect of activity on the
probe can only come about through “collisions” with the active bath
particles and thus is fundamentally proportional to their volume
fraction �ex. Thus, the FDT that we should expect is one where
⟨D⟩⟨ζ⟩ = kBT + ksTs�ex, where the coefficient of �ex is only the
activity ksTs, which is what we see in the limit of small `/Rc.

This motivates us to look more carefully at the excess energy
Eact imparted to the probe by the active bath. One can employ
kinematic arguments analogous to those used in Burkholder and
Brady28 to examine the functional forms of the excess energy to
elicit the dependence on particle activity and suspension geom-
etry/microstructure. Rather than to confuse the reader with the
introduction of time scales used in that paper, we can examine the
limiting behavior in terms of `/Rc.

(1) In the continuum limit `≪ Rc, the probe is in a “hot” bath of
Brownian particles, where the total temperature of the bath is
kBT + ksTs�ex. Accordingly, the nonequilibrium fluctuations
of the probe are

Eact
= ksTs(

R
Rc

)φex, (31)

just as in the simple result for a single ABP. In the limit
a/R→ 0, Eact = ksTs�ex, and in the limit a/R→∞, Eact = ksTs�.

(2) When the swimmers are persistent (` ≫ Rc), the detailed
calculations give

Eact
=

34
9

ksTs(
ksTs

kBT
)(

R
`
)

2
φex, (32)

regardless of the swimmer-to-probe size ratio a/R (when
a/R ≪ 1 the bare volume fraction � takes the place of the
excluded volume fraction �ex). This is consistent with the
scaled nonequilibrium energy decaying to zero as (R/`)2 in
Fig. 6.

(3) In the intermediate regime, where ` ∼ Rc, we find

Eact
=

2
√

3
ksTs(

R
`
)(

2 +
√

2Rc/δ
1 +

√
2Rc/δ

)φex. (33)

In this limit, a swimmer collides with the probe and remains
nearby when it reorients. This result is also insensitive to the
swimmer-probe size ratio a/R. It manifests only in �ex, which
simply becomes � for point tracers.

In general then, the fluctuation-dissipation relation in active
systems reads

⟨D⟩ ⋅ ⟨MUF
⟩
−1

= kBTI + Eact
(a/R,φ, `/Rc, . . .), (34)

which is a weaker statement than the FDT for equilibrium systems.
Indeed, though Eact is isotropic in the case studied in this article,
it may be anisotropic in other scenarios. For the cases studied here
Eact

∼ ksTs�ex, which is linear in the activity and concentration of
active bath particles, but the coefficient that may depend on `/Rc,
etc. Only in the continuum limit `/Rc→ 0 do we find that the product
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⟨D⟩ ⋅ ⟨MUF
⟩
−1 depends solely activity of the bath particles ksTs �ex—

in this limit the probe is large enough that the random active motion
of the bath particles is instantaneous and microscopic on the scale
of its own motion, just like in an equilibrium suspension. Finally,
though these calculations specifically address 3-D systems, the same
physical arguments are expected to apply in 2-D.

IV. CONCLUSIONS
Using generalized Taylor dispersion theory, we showed that,

although the long-time self-diffusivity and self-mobility are for-
mally identical the displacement fields are not, and the fluctuation-
dissipation theorem (FDT) does not hold in general for nonequilib-
rium systems. Nevertheless, for a dilute active bath we showed that
a modified form of the FDT applies with the product of the diffusiv-
ity and drag now proportional to the thermal energy, kBT plus the
active energy, Eact

∼ ksTs�ex, the latter of which may also depend on
the ratio of the run length to probe size, `/Rc, etc. In the continuum
limit where the run length of the swimmer is much smaller than the
center-to-center separation of the probe and swimmer upon con-
tact `≪ Rc the active energy is strictly promotional to ksTs and the
modified FDT is valid.

In finding the effective fluctuation-dissipation relation, we nec-
essarily calculated the linear viscous response of an active suspen-
sion to a tracer particle being dragged by a fixed external force.
We find that the suspension, in the absence of hydrodynamic
interactions (HI), is uniformly swim-thinning. The microviscos-
ity coefficient reaches a minimum value of approximately 1/2 of
that seen in passive suspensions when the run length and contact
length are commensurate ` ∼ Rc; this is illustrated in the center
of Fig. 3. The precise value of the minimum predicted microvis-
cosity coefficient will depend on the closure of the Smoluchowski
equation.

Notably, we did not find a negative microviscosity in this
investigation—the swimmers always increase the effective suspen-
sion microviscosity no matter how active they become, as demon-
strated in simulations30 but in contrast to measurements of the
microviscosity of an active nematic.23 There are two explanations
for this. First, we have implicitly assumed a fixed-force mode of
microrheology in using generalized Taylor dispersion theory. Neg-
ative suspension viscosities are precluded in this mode of measure-
ment because a negative viscosity would result in the speed of the
probe increasing until the effective drag was once again positive.44

No matter how small the pulling force, as the viscosity goes to zero
the probe speed increases to where the relevant Péclet number for
the motion is no longer small.

Second, in neglecting HI we do not consider any effects related
to the swimmers’ gait, as in previous theoretical investigations.22,23

We expect that hydrodynamic interactions are essential to find-
ing the observed viscosity reduction in active suspensions. Even
in the case where the swimmers exert no hydrodynamic stress on
the fluid, Takatori and Brady44 showed that the swim stress—the
macroscopic mechanical stress associated with the random run-
and-tumble motion of the active particles—is affected by an ambi-
ent viscometric flow, and indeed they predict a viscosity reduc-
tion in active suspensions regardless of swimming gait or shape
of the swimmers. We examine the effects of HI in a forthcoming
study.
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APPENDIX A: GENERALIZED TAYLOR DISPERSION
THEORY IN NONEQUILIBRIUM SYSTEMS

Consider a suspension of N particles embedded in a Newto-
nian fluid. The suspension dynamics may be described by a Smolu-
chowski equation for PN({xα}, t), the probability of finding the N-
particles in some phase-space configuration {xα} at time t (xα is
taken to represent the laboratory frame position and orientation of
each particle)

∂PN
∂t

+
N
∑
α=1

∇α ⋅ jα = 0, (A1)

with the general constitutive expression for the flux jα:

jα = UαPN −
N
∑
β=1

Dαβ ⋅ ∇βPN . (A2)

The thermal diffusivity of particle α relative to β is described by
Dαβ = kBTMUF

αβ , where MUF
αβ is the hydrodynamic mobility31,45 cou-

pling the velocity of particle α, Uα to the force on particle β, Fβ.
We take U to represent both translational and angular velocities
of the particles, and F to represent both forces and torques. We
have explicitly written the particle fluxes arising from Brownian
motion; the velocity Uα contains all other contributions to the par-
ticle motion, whether it be from activity, external forces or flows, or
interparticle forces.

To probe the suspension properties, we select a test particle at
x1 ≡ z, and rewrite the equation in terms of particle coordinates
relative to the test particle rα = xα − x1

∂PN
∂t

+∇z ⋅ j1 +
N
∑
α=1

∇rα ⋅ (jα − j1) = 0, (A3)

where

j1 = U1PN −D11 ⋅ ∇zPN −
N
∑
α=1

(D1α −D11) ⋅ ∇rαPN , (A4)

jα = UαPN −Dα1 ⋅ ∇zPN −
N
∑
β=1

(Dαβ −Dα1) ⋅ ∇rβPN , (A5)

according to the chain rule.46

Fluctuations in the test-particle coordinate z are unbounded,47

so we may take a Fourier transform with respect to z derive

∂P̂N
∂t

+ ik ⋅ ĵ1 +
N
∑
α=1

∇rα ⋅ (ĵα − ĵ1) = 0, (A6)

where

ĵ1 = U1P̂N − ik ⋅D11P̂N −
N
∑
α=1

(D1α −D11) ⋅ ∇rα P̂N , (A7)

ĵα = UαP̂N − ik ⋅Dα1P̂N −
N
∑
β=1

(Dαβ −Dα1) ⋅ ∇rβ P̂N . (A8)
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We have assumed that the velocity of the test particle is independent
of its absolute position z. This may not be true if, for example, the
particle experiences motion due to an external potential fixed in the
laboratory frame.43

We may average the N-particle equation over the relative con-
figurations of the N − 1 other particles to get an equation of motion
for the test particle

∂P̂1

∂t
+ ik ⋅ ⟨ĵ1⟩N−1 = 0, (A9)

which makes use of the condition that there be no relative particle
flux at contact or at infinity: n1α ⋅ (ĵα − ĵ1) = 0, where n1α is the unit
vector pointing from particle 1 to particle α along the line of center.
The average flux of the test particle is

⟨ĵ1⟩N−1

P̂1
= ∫ U1P̂N−1/1drα − ik ⋅ ∫ D11P̂N−1/1drα

− ∫

N
∑
α=1

(D1α −D11) ⋅ ∇rα P̂N−1/1 drα, (A10)

which has been simplified by the substitution

P̂N = P̂1(k, t)P̂N−1/1(k,{rα}, t).

The long-time self-diffusivity of the test particle will be deter-
mined by the long wave length (small k) fluctuations in its posi-
tion so we expand the relative microstructure with respect to
ik: P̂N−1/1 = P̂(0)N−1/1 + ik ⋅ d̂(k) + O(k2

). From this, we can define
an effective dispersion relation

⟨ĵ1⟩N−1 ≡ [⟨Uprobe
⟩ − ik ⋅ ⟨D⟩ + . . .]P̂1, (A11)

where

⟨Uprobe
⟩ = ∫ U1P̂(0)N−1/1drα − ∫

N
∑
α=1

(D1α −D11) ⋅ ∇rα P̂
(0)
N−1/1 drα,

(A12)

⟨D⟩ = ∫ D11P̂(0)N−1/1drα − ∫ U1d̂(k)drα

+ ∫
N
∑
α=1

(D1α −D11) ⋅ ∇rα d̂
(k) drα. (A13)

This is a generalization of the 2-particle result for equilibrium sus-
pensions derived in Ref. 32; recall that U1 can have nonequilibrium
contributions, which contribute to the diffusivity through d̂(k). Note
that the last integral in Eq. (A13) is convergent for a quadrupo-
lar fluctuation field, and conditionally convergent for a dipolar
fluctuation. We return to this point later.

Consider separately the motion of the test particle due to an
applied external force, U1 = U(0)1 + MUF

11 ⋅ Fext , where U(0)1 can
still contain contributions from shear flow, activity, etc. The average
velocity of the test particle is now

⟨Uprobe
⟩ = ∫ (U(0)1 + MUF

11 ⋅ F
ext

)P̂(0)N−1/1 drα

− ∫

N
∑
α=1

(D1α −D11) ⋅ ∇rα P̂
(0)
N−1/1 drα. (A14)

If the external force is weak, we can also do a regular pertur-
bation expansion of the microstructure in moments of the force:
P̂(0)N−1/1 = P̂(0,0)

N−1/1 − Fext
⋅ d̂(F) +O(Fext

)
2. The fluctuation field arising

from the external force has units of length per energy; one could also
define the wave vector Fext/kBT instead so that the units of d̂(F) are
also length. The average test particle velocity is

⟨Uprobe
⟩ =

⎛

⎝
∫ U(0)1 P̂(0,0)

N−1/1drα −∫
N
∑
α=1

(D1α −D11) ⋅ ∇rα P̂
(0,0)
N−1/1 drα

⎞

⎠

+Fext
⋅
⎛

⎝
∫ MUF

11 P̂
(0,0)
N−1/1drα − ∫ U(0)1 d̂(F)drα

+ ∫
N
∑
α=1

(D1α −D11) ⋅ ∇rα d̂
(F) drα

⎞

⎠
. (A15)

If we define ⟨Uprobe
⟩ ≡ ⟨Udrift

⟩ + ⟨MUF
⟩⋅Fext , then we have an expres-

sion for ⟨Udrift
⟩ that is formally identical to Eq. (A12), and an

expression for ⟨MUF
⟩ that is formally identical to Eq. (A13). From

this generalized Taylor dispersion perspective, dispersion driven by
Brownian motion of the bath particles is equivalent to dispersion
driven by an applied external force Fext = −ikkBT.

APPENDIX B: GOVERNING EQUATIONS
FOR THE FLUCTUATION FIELDS

The fluctuation-dissipation theorem for colloidal suspensions
requires that the long-time self-diffusivity is proportional to the
hydrodynamic mobility ⟨D⟩ = kBT⟨MUF

⟩—a result derived by
Einstein, Sutherland, and von Smoluchowski independently.45,48,49

Qualitatively, this states that the random fluctuating motion of a test
particle is related to the effective drag that the test particle would
feel if it were pulled through the fluid by an external force. Although
the expressions for the mobility and diffusivity are formally iden-
tical (modulo a factor of kBT), the fluctuation-dissipation theorem
is satisfied only if d̂

(k)
= kBTd̂

(F)
. We can derive equations for the

fluctuation fields from Eq. (A6) from substitution of Eq. (A9) and
P̂N = P̂1(k, t)P̂N−1/1(k,{rα}, t)

∂P̂N−1/1

∂t
+

N
∑
α=1

∇rα ⋅ (ĵα − ĵ1) = ik ⋅ ([⟨ĵ1⟩N−1/P̂1]P̂N−1/1 − ĵ1), (B1)

with boundary conditions of no relative flux at contact and infinite
separation

n1α ⋅ (ĵα − ĵ1) = 0. (B2)

1. Thermal fluctuations
The governing equations for P(0)N−1/1 are

∂P̂(0)N−1/1

∂t
+

N
∑
α=2

∇rα ⋅
⎛

⎝
[Uα −U1]P̂(0)N−1/1 −D

rel
αβ ⋅∇rβ P̂

(0)
N−1/1

⎞

⎠
= 0, (B3)

N
∑
α=2

n1α ⋅
⎛

⎝
[Uα −U1]P̂(0)N−1/1 −Drel

αβ ⋅ ∇rβ P̂
(0)
N−1/1

⎞

⎠
= 0, (B4)
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where Drel
αβ ≡ ∑

N
β=2(Dαβ −Dβ1 −D1α +D11), and the fluctuation field

is governed by

∂d̂
(k)

∂t
+

N
∑
α=2

∇rα ⋅
⎛

⎝
[Uα −U1]d̂

(k)
−Drel

αβ ⋅ ∇rβ d̂
(k)⎞

⎠

= P̂(0)N−1/1(⟨U
probe

⟩ −U1) + 2
N
∑
α=1

(D1α −D11) ⋅ ∇rα P̂
(0)
N−1/1

+ P̂(0)N−1/1

N
∑
α=1

∇rα ⋅ (D1α −D11), (B5)

with the no-flux condition

N
∑
α=2

n1α ⋅
⎛

⎝
[Uα −U1]d̂

(k)
−Drel

αβ ⋅ ∇rβ d̂
(k)⎞

⎠

=
N
∑
α=2

n1α ⋅ (D1α −D11)P̂(0)N−1/1. (B6)

If we integrate Eq. (B5) with respect to rα, apply the no-flux bound-
ary condition (B6) and make use of ∫ P̂N−1/1drα = 1, then we find the
same equation for ⟨Uprobe

⟩ as given in Eq. (A12).50

For the simplest case of pairwise interactions between hard
spheres at equilibrium, d̂

(k)
= −(1/4)r/r3. The fluctuation field is

dipolar, and thus, the integral determining the effective diffusiv-
ity is conditionally convergent. Using the divergence theorem, one
can convert the integral to a surface integral at particle contact and
infinity

− ∫ D11∇rd̂
(k) dr = ∫

Sc
D11nd̂

(k)dS + ∫
S∞

D11nd̂
(k)dS. (B7)

Recognizing the singular nature of the small k expansion at large
interparticle distance r, we assume that the integral over S∞ is
zero, when, in fact, it should precisely cancel the contribution from
the surface. This is because the dipolar solution is technically not
the correct far-field form for d̂(k). Our small k expansion of the
microstructure is regular within a distance rα ∼ k−1 from the test
particle, but there is a convective-diffusive boundary-layer at large
distances.51 The correct far-field solution is really a screened dipole
(making the surface integral over S∞ unconditionally convergent).
If one wanted to consider these boundary-layer effects, one could
solve the boundary-layer problem for all k using matched asymp-
totic expansions, evaluate the average flux (A7), and then take the
limit for small k (see Rallison and Hinch52).

2. External fluctuations
The equation for the unforced microstructure P̂(0,0)

N−1/1 is the
same as Eq. (B3) for the forced microstructure

∂P̂(0,0)
N−1/1

∂t
+

N
∑
α=2

∇rα ⋅
⎛

⎝
[U(0)α −U(0)1 ]P̂(0,0)

N−1/1 −Drel
αβ ⋅ ∇rβ P̂

(0,0)
N−1/1

⎞

⎠
= 0,

(B8)

N
∑
α=2

n1α ⋅
⎛

⎝
[U(0)α −U(0)1 ]P̂(0,0)

N−1/1 −Drel
αβ ⋅ ∇rβ P̂

(0,0)
N−1/1

⎞

⎠
= 0, (B9)

but the fluctuation field is

∂d̂
(F)

∂t
+

N
∑
α=2

∇rα ⋅
⎛

⎝
[U(0)α −U(0)1 ]d̂

(F)
−Drel

αβ ⋅ ∇rβ d̂
(F)⎞

⎠

=
N
∑
α=2

∇rα ⋅ (M
UF
1α −MUF

11 )P̂(0,0)
N−1/1, (B10)

with the no-flux condition
N
∑
α=2

n1α ⋅
⎛

⎝
[Uα −U(0)1 ]d̂

(F)
−Drel

αβ ⋅ ∇rβ d̂
(F)⎞

⎠

=
N
∑
α=2

n1α ⋅ (MUF
1α −MUF

11 )P(0,0)
N−1/1. (B11)

The governing equations for the two different fluctuation fields are
clearly different. Notably, the governing equation for d̂(F) is not
forced by the average velocity.

Indeed, we find the following condition for the fluctuation-
dissipation theorem to be satisfied (⟨D⟩ = kBT⟨MUF

⟩): the local
probe velocity

Uprobe
= U1 −

N
∑
α=1

(D1α −D11) ⋅ ∇rα ln P̂(0)N−1/1 (B12)

must be everywhere equal to the average probe velocity as given in
Eq. (A12). This can only be true if both Uprobe and P̂(0)N−1/1 are spa-

tially uniform, or if Uprobe = 0. For the equilibrium, hard-sphere
suspension studied in Ref. 32, the probability distribution P̂(0)N−1/1 is

uniform, and Uprobe = 0; the theorem is satisfied. This would also be
satisfied for the Boltzmann distribution P̂(0)N−1/1 = P0e−V(rα)/kBT

⟨Uprobe
⟩ = U1 +

N
∑
α=1

(MUF
1α −MUF

11 ) ⋅ ∇rαV . (B13)

The second term will precisely cancel the velocity of particle one due
to interparticle forces. If there are no other forces acting on the test
particle (e.g., no shear), then the fluctuation dissipation relation is
again satisfied.

3. Quantifying departures from the FD theorem
We define a difference field between force-induced and ther-

mally induced fluctuations, d̂(k) = kBTd̂(F) + d′, and assert that
Fext = −ikkBT. We can then subtract the equations for the thermal
and external fluctuations to find

∂d′

∂t
+

N
∑
α=2

∇rα ⋅
⎛

⎝
[Uα −U (0)

1 ]d′ −Drel
αβ ⋅ ∇rβd

′
⎞

⎠

= P̂(0,0)
N−1/1(U

probe
−U1) +

N
∑
α=1

(D1α −D11) ⋅ ∇rα P̂
(0,0)
N−1/1, (B14)

with the boundary condition

N
∑
α=2

n1α ⋅
⎛

⎝
[Uα −U (0)

1 ]d′ −Drel
αβ ⋅ ∇rβd

′
⎞

⎠
= 0. (B15)

For suspensions that satisfy fluctuation-dissipation, the right-hand
side of Eq. (B14) is zero, and the boundary condition allows the null
solution d′ = 0.
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APPENDIX C: MICROSTRUCTURE, Q′ = 0
The governing equations for the microrheology problem in 3

dimensions are

∇r ⋅ [U0m′ −Drel
∇n′] =MUF

⋅ Fext
⋅ ∇n0, (C1)

∇r ⋅ [U0I
n′

3
−Drel

∇m′
] + 2DRm′ =MUF

⋅ Fext
⋅ ∇m0, (C2)

with the boundary conditions

n ⋅ [U0m′ −Drel
∇n′] = n ⋅MUF

⋅ Fextn0, r = Rc, (C3)

n ⋅ [U0I
n′

3
−Drel

∇m′
] = n ⋅MUF

⋅ Fextm0, r = Rc, (C4)

n′,m′
∼ 0, r →∞. (C5)

The natural dimensionless groups that arise in scaling the equations
are the swim Péclet number Pes = U0Rc/Drel, the rotational param-
eter γ2

= 2DRR2
c/Drel, and the Péclet number Pe = UprobeRc/Drel. In

this article, Pe≪ 1 but Pes and γ2 may take any non-negative value.
The unit vector û points in the direction of the applied external

force (or the probe’s prescribed external velocity), and the solutions
for n0 are known37

n0

n∞
= 1 +

Pe2
s /3

γ2 + 2(1 + λ)
e−λ(r−1)

r
, (C6)

where λ =
√
Pe2

s /3 + γ2 and the polar order is proportional to
the gradient in the number density m0 = Pe−1

s ∇n0. Note that λ
is dimensionless here, but has units of inverse length in the main
text. The governing equations are linear and may be solved via the
same screened harmonic decomposition methods used to determine
the equilibrium solution.28 The only difference here is that both
governing equations are now forced by the divergence of the equi-
librium advective flux, and so one must find a particular solution
in addition to the homogeneous solutions found via the multipole
expansion.

In 3-D, the concentration disturbance n′ in terms of two
undetermined coefficients is

n′ = û ⋅ n
⎛

⎝
B1

1
r2 −

1
9Pe

4
s /λ4

2(λ + 1) + γ2 e
−λ(r−1)

(
λ
r

+
1
r2 )

−A1
Pes
λ2 e−λ(r−1)

(
λ
r

+
1
r2 ) −

1
3Pe

2
s /λ2

2(λ + 1) + γ2 (
1
3
Pe2

s

λ2 + 1)e−λ(r−1)

×(
3

4λ2
1
r2 +

3
4λ

1
r

+
1
2
)
⎞

⎠
, (C7)

where the coefficients A1 and B1 are coupled to the polar order
disturbance

m′
= C1e−γ(r−1)û ⋅ {

I
r
−

1
γ2 [(3

nn
r3 −

I
r3 ) + γ(3

nn
r2 −

I
r2 ) + γ2 nn

r
]} + B1

1
3
Pes
γ2 û ⋅ (3

nn
r3 −

I
r3 ) −

1
Pes

1
2(λ + 1) + γ2 e

−λ(r−1)

× û ⋅ [(3
nn
r3 −

I
r3 ) + λ(3

nn
r2 −

I
r2 ) + λ2 nn

r
] −

1
3Pes/λ

2

2(λ + 1) + γ2 e
−λ(r−1)û ⋅ [(3

nn
r3 −

I
r3 ) + λ(3

nn
r2 −

I
r2 ) + λ2 nn

r
]

+
1

2(λ + 1) + γ2
2λ2

− γ2

λ2Pes
(

1
3
Pe2

s

λ2 + 1)e−λ(r−1)û ⋅ [(3
nn
r3 −

I
r3 ) + λ(3

nn
r2 −

I
r2 ) + λ2 nn

r
]

+
1
λ2 A1e−λ(r−1)û ⋅ [(3

nn
r3 −

I
r3 ) + λ(3

nn
r2 −

I
r2 ) + λ2 nn

r
] +

1
3Pes

2(λ + 1) + γ2 (
1
3
Pe2

s

λ2 + 1)e−λ(r−1)

× û ⋅ [
3

4λ2 (λr + 1)(
I
r3 − 3

nn
r3 ) +

1
2
(
I
r
−
nn
r

) − λnn(
3

4λ2r
+

1
2
)]. (C8)

The coefficients A1, B1, and C1 are determined by the no-flux boundary condition at particle contact. This results in a linear system of three
equations that may be solved to find algebraic expressions for n′

2B1(1 +
Pe2

s

3γ2 ) − 2C1Pes(
1 + γ
γ2 ) = 1 − 2C0

(1 + λ)
λ4 , (C9)

B1
Pes
γ2 −C1(2 +

3
γ2 +

3
γ

+ γ)+A1(1 +
3
λ

+
3
λ2 ) =

C0

λ2 [(
3
λ2 +

3
λ

+ 1)(1 +
3
Pe2

s
−

3(2λ2
− γ2

)
2

λ6Pe2
s

)−(1 +
Pe2

s

3λ2 )(
1
2

+
9

4λ2 +
3

2λ
+
λ
2
=

3(1 + λ)
4λ

)],

(C10)

−B1Pes(
γ2 + 9

3γ2 ) + C1(4 +
9
γ2 +

9
γ

+ γ) − A1(λ + 4 +
9
λ

+
9
λ2 ) + A1

(1 + λ)Pe2
s

3λ2 −
C0(1 + λ)

2λ2 −
C0

λ4 (2λ2
− γ2

)

×(
5
4

+
27

4λ2 +
9

2λ
+

5λ
4

+
λ2

2
+

9(1 + λ)
4λ

) − C0(9 + 9λ + 4λ2 + λ3
)( −

1
λ4 −

3
λ2(Pe2

s )
+

(2λ2
− γ2

)
2

λ6(λ2 − γ2)
)

=
Pes
3

[
C0Pe3

s (1 + λ)
3λ6 +

C0(2λ2
− γ2

)

λ4 (
1
2

+
3(1 + λ

4λ2 )], (C11)

where we define C0 = (Pe2
s /3)/(γ2 + 2(1 + λ)) for brevity.
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The analysis in d = 2 follows precisely the same formula, but the
solution will be in terms of gradients of the modified Bessel function
K0(λr).37

The microviscosity coefficient is determined by n′

ηmicro
= 2[B1 −

1
9Pe

4
s /λ4

2(λ + 1) + γ2 (λ + 1) − A1
Pes
λ2 (λ + 1)

−

1
3Pe

2
s /λ2

2(λ + 1) + γ2 (
1
3
Pe2

s

λ2 + 1)(
3

4λ2 +
3

4λ
+

1
2
)], (C12)

where we have left the expression in terms of the coefficients A1
and B1 for both brevity and generality—this construction for the
microstructure is valid even when the contact boundary condition
is not one of no translational flux. When Pes = 0, n′ = B1û ⋅ n/r2 and
B1 = 1/2, so ηmicro = 1.

APPENDIX D: EFFECTS OF CLOSURE
Figure 3 reveals that the closure of the Smoluchowski equa-

tion seems to make a larger quantitative difference than in previ-
ous studies;28,36–38 this may be explained by simple geometric argu-
ments. When the probe is stationary the only vector with which the
swimmers may align is the probe’s outward-pointing unit normal
n, and the polar order (whether the swimmers are moving toward
or away from the probe) is the most important ordered field. The
nematic order would contain terms proportional to nn and I, which
do not significantly affect the kinetic boundary-layer structure, even
if the probe were of some arbitrary shape.36 With the introduction
of an external force (or orienting field) in a fixed direction û, the
swimmers may now be swimming toward or away from the probe
m′

∼ û ⋅ nn or with or against the external field m′
∼ û, as the

solution in Appendix C reveals. This implies that the nematic order
may have terms proportional to ûn, (û ⋅ n)I, and (û ⋅ n) nn. These
correlations between the external force director û and the unit nor-
mal of the surface n must make a more significant quantitative
impact in this problem. Here, we consider a test problem—the lin-
ear microrheology of an active suspension confined to an interface
(d = 2)—and systematically investigate the effects of various closures
on the computed probability distribution and its physically relevant
moduli.

1. Closures of the Smoluchowski equation
For problems near “equilibrium”—meaning the microstructure

is nearly isotropic—the most common assumption is to say that all
higher order moments are isotropic

⟨qq⟩ =
1
d
In, (D1)

⟨qqq⟩ =
1

d + 2
α ⋅m, (D2)

⟨qqqq⟩ =
1

d(d + 2)
αn +

1
2(d + 4)

κ : Q . . . , (D3)

where α is the fourth-order isotropic tensor and κ is the sixth-order
isotropic tensor in d dimensions. Isotropic closures are used in the
main text to truncate the tensor harmonic expansion of P, and in

previous calculations of the force on a boundary,37 as well as other
works.53,54

Isotropic closures—which amount to a truncation of the expan-
sion of the probability distribution in tensor harmonics of q—
are derived such that there can be no steady state tensorial order
in the absence of spatial fluctuations: an unbounded suspension
at steady state should be isotropic. For calculations of the force
on a boundary, assuming isotropic nematic order Q = 0 correctly
predicts the number density profile near the wall. This remains
true in the presence of hydrodynamic interactions, as they do
not substantially influence the geometry of the problem.38 From
a purely mathematical perspective, we only need an accurate pre-
diction of the zeroth moment n to compute the pressure at the
wall. Assuming Q = 0 correctly predicts the number density, but
not the polar order m. However, the important dynamic feature—
that the polar order indicates that the swimmers move toward
the wall on average—is captured with this closure. If we needed
to compute a vector quantity—which would directly or indirectly
depend on the polar order—we need to include Q so that the pre-
diction of m is correct. Indeed, one could deduce that numeri-
cally accurate predictions for Q would require the calculation of
B = ⟨qqq⟩ − α ⋅m/(d + 2).

One alternative approach that circumvents the need for higher
moments is to explicitly include the effects of long-ranged spatial
fluctuations in the equation closures. For example, one could “slave”
the nematic order to the polar order

Q = −
`/Rc

2d(d + 2)
[∇m + (∇m)

†
− I(∇ ⋅m)] (D4)

and compare this to predictions of the microviscosity coefficient
from solving the full Smoluchowski equation in position and orien-
tation space. Here, we explicitly compare solutions of the full Smolu-
chowski equation with solutions of the moments expansions using
closures (D1), (D2), and (D4).

2. Full Smoluchowski equation: No closure
Consider the motion of a probe particle through a suspension

of ABPs; the dynamics are described by

∂P
∂t

+∇xP ⋅ j
T
P +∇xs ⋅ j

T
s +∇qP ⋅ j

R
P +∇qs ⋅ j

R
s = 0, (D5)

where P(xP, xs, qP, qs, t) is the probability of finding the probe at
position xP pointing in the direction qP, and the swimmer at posi-
tion xs pointing in the direction qs at time t. We wish to rewrite
the equation in terms of a conditional probability of finding the
swimmer at some point (r, q) in phase space, given that the probe
is at the point (z, p). Transforming the position-space equations
into a relative coordinate frame is simple vector addition—z′ ≡ xP,
r′ ≡ xs − xP—but moving into a frame where the swimmer rotates
relative to the probe requires a matrix operator R(qP) that rotates
these position vectors into the appropriate frame: z = z′, r = R ⋅ r′,
p = qP, q = R ⋅ qs. In the microrheology problem, the direction of
the probe velocity (or external force) û determines the orientation of
the probe, so we require R(qP) ⋅ qP = û.55 For d = 2, this rotation is
parameterized only by the polar angle. In 3-D, the rotation matrix
would be defined in the same manner, but we would require both a
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polar and azimuthal coordinate to parametrize the rotation. The 3-D
rotation is not unique.

For simplicity, we will assume that we are working in two-
dimensions, and that the probe is moving in the x-direction û = ex
(see Fig. 7). The unit normal of the probe—the unit vector point-
ing along r′—is thus given by n = cos θex + sin θey. We can
assume that z′ is at the origin. The orientation of the swimmer
is qs = cos ψex + sin ψey. The fluxes of each particle are now as
follows:

jTP = UprobeexP −DP∇
′

zP + DP∇
′

rP, (D6)

jTs = U0qsP −DT∇
′

rP, (D7)

jRP = −DR∇qPP, (D8)

jRs = −
1
τR
∇qsP, (D9)

where DP is the thermal translational diffusivity of the probe,
and DR is the probe’s rotational diffusivity. The speed of the
swimmers is U0, their reorientation time is τR, and their transla-
tional diffusivity is DT . Here, we have chosen to represent changes
in reorientation by gradients with respect to qP and qs; Bren-
ner showed that ∇2

R = ∇
2
q, so either representation is equiva-

lent in the final equation.56 For the microviscosity, we are not
concerned with fluctuations in the absolute position (and ori-
entation) of the probe—more care is needed when computing
the effects of activity on the effective long-time self-diffusivity
of the probe. All rotations are isometries and members of the
special orthogonal group SO(d); consequently R−1 = R† and the
dot product is invariant under rotation. Thus, we circumvent
the need to write the flux expressions in rotating coordinates,
and may write down the final, scalar equation in the coordinates
r, θ, and β ≡ ψ − θ

FIG. 7. Sketch of the probe-swimmer coordinate system. The probe has a position
xP and orientation ex in the fixed coordinate frame. The swimmer has a position
xs and orientation qs (parametrized by the angle ψ) in the fixed frame. The relative
separation between the particles is r , and the polar angle of the swimmer’s position
with respect to the probe is θ. The orientation of the swimmer relative to the probe
is parametrized by the angle β = ψ − θ.

∂P
∂t

+ U0( cosβ
∂P
∂r

−
sinβ
r

∂P
∂β

+
sinβ
r

∂P
∂θ

)

−Uprobe
( cos θ

∂P
∂r

−
sin θ
r

∂P
∂θ

+
sin θ
r

∂P
∂β

)

−Drel
(
∂2P
∂r2 +

1
r
∂P
∂r

+
1
r2
∂2P
∂β2 +

1
r2
∂2P
∂θ2 )

−(τ−1
R + DR)

∂2P
∂β2 −DR

∂2P
∂θ2 = 0. (D10)

The derivatives with respect to β are lost if one does not carefully
consider the transformation to a frame rotating with the probe.

When Uprobe
≡ 0 there can be no dependence on the angle θ, as

there is no symmetry breaking without directed motion. For small
perturbations away from equilibrium, we know that the probability
distribution should take the form P = P0(r, β) + Pe cos θf (r, β), where
Pe = UprobeRc/Drel. So we now do a moments expansion in θ rather
than in β. Indeed, this is most appropriate when we allow the magni-
tude of activity to be arbitrary, but consider only small perturbations
due to external forces.

The governing equations in the absence of probe motion are as
follows:

Pes( cosβ
∂P0

∂r
−

sinβ
r

∂P0

∂β
) −

∂2P0

∂r2 −
1
r
∂P0

∂r
− (

1
r2 + γ2

)
∂2P0

∂β2 = 0,

(D11)

Pes cosβP0 −
∂P0

∂r
= 0, r = 1, (D12)

P0 ∼ n∞/2π, r →∞, (D13)

where Pes = U0Rc/Drel, γ2
= R2

c/Drel
(τR −D−1

R ). The O(Pe) equations
are

Pes( cosβ
∂f
∂r

−
sinβ
r

∂f
∂β

) −
∂P0

∂r
−
∂2f
∂r2 −

1
r
∂f
∂r

+
f
r2

−(
1
r2 + γ2

)
∂2f
∂β2 = 0, (D14)

Pes cosβf − P0 −
∂f
∂r

= 0, r = 1, (D15)

P1 ∼ 0, r →∞. (D16)

The governing equation for f is obtained by multiplying the full
O(Pe) equation by cos θ and integrating with respect to θ. Thus, the
microviscosity coefficient will simply be ηmicro = ∫f (1, β)dβ.

3. Finite-element results, d = 2
Finite-element solutions for P0(r, β) and f (r, β) are done in

FreeFEM++,57 which uses a standard Galerkin P2-FEM method with
adaptive mesh refinement. From P0 and f, we can directly compute
the various moments of P as a Fourier series expansion

P(r, θ,β) =
∞

∑
i=0

ai(r, θ) cos(iβ) + bi(r, θ) sin(iβ), (D17)
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FIG. 8. Microviscosity coefficient (d = 2) as a function of `/Rc at `/δ = 10 for various
closures of the moments expansion of P. The squares and crosses are from finite
difference solutions of the 2-D governing equations in MATLAB, and the circles are
from finite element simulations of the full Smoluchowski equation in FreeFEM++.57

where

ai(r, θ) =
1
π ∫

P cos(iβ)dβ, (D18)

bi(r, θ) =
1
π ∫

P sin(iβ)dβ, (D19)

and i is some positive integer (in the special case of a0, the coefficient
of the integral is 1/2π). These coefficients in the series expansions are
the moments in the field equations introduced previously: n = a0,
m = a1er + b1eθ, etc.

In Fig. 8, we plot the microviscosity coefficient as a function
of `/Rc for various closures. Even the simplest closure Q = 0 cor-
rectly captures the limiting behavior for `/Rc → 0 and `/Rc → ∞,
and the qualitative shape of the distribution. Allowing for fluctua-
tions in nematic order by slaving Q to∇m improves the quantitative
accuracy, but B = 0 provides the best quantitative match to the exact
solution.

All closures capture the trend with respect to `/Rc. We can
check the limiting behaviors in the microviscosity coefficient from a
boundary-layer analysis. Equations (D11) and (D14) can be rewrit-
ten in terms of a boundary-layer coordinate Y = Pes(r − 1) when
Pes ≫ 1. If γ/Pes ≪ 1 (`/Rc ≫ 1), then one finds that the micro-
viscosity coefficient approaches 1 as Pes → ∞. Near the viscosity
minimum, we must retain terms ∼ O(γ/Pes)2 to capture the min-
imum properly; unfortunately, the boundary-layer analysis breaks
down here. We conclude that B = 0 is the best closure to use in the
microrheology problem, and indeed may be the best closure when
computing any vector quantity in active suspensions.
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