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Abstract  17 

Accurately mapping plate boundary types and locations through time is essential for 18 

understanding the evolution of the plate-mantle system and the exchange of material 19 

between the solid Earth and surface environments. However, the complexity of the Earth 20 

system and the cryptic nature of the geological record make it difficult to discriminate 21 

tectonic environments through deep time. Here we present a new method for identifying 22 

tectonic paleo-environments on Earth through a data mining approach using global 23 

geochemical data. We first fingerprint a variety of present-day tectonic environments utilising 24 

up to 136 geochemical data attributes in any available combination. A total of 38301 25 

geochemical analyses from basalts aged from 5–0 Ma together with a well-established plate 26 

reconstruction model are used to construct a suite of discriminatory models for the first order 27 

tectonic environments of subduction and mid-ocean ridge as distinct from intraplate hotspot 28 

oceanic environments, identifying 41, 35, and 39 key discriminatory geochemical attributes, 29 

respectively. After training and validation, our model is applied to a global geochemical 30 
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database of 1547 basalt samples of unknown tectonic origin aged between 1000–410 Ma, a 31 

relatively ill-constrained period of Earth’s evolution following the breakup of the Rodinia 32 

supercontinent, producing 56 unique global tectonic environment predictions throughout the 33 

Neoproterozoic and Early Paleozoic. Predictions are used to discriminate between three 34 

alternative published Rodinia configuration models, identifying the model demonstrating the 35 

closest spatio-temporal consistency with the basalt record, and emphasizing the importance 36 

of integrating geochemical data into plate reconstructions. Our approach offers an extensible 37 

framework for constructing full-plate, deep-time reconstructions capable of assimilating a 38 

broad range of geochemical and geological observations, enabling next generation Earth 39 

system models. 40 

 41 

Keywords:  42 

plate tectonics, geochemistry, geodynamics, supercontinents, rodinia, big data  43 

 44 

 45 

1. Introduction and background  46 

 The global continental configurations since the time of Pangea are relatively well 47 

established  (Schettino and Scotese, 2005; Torsvik et al., 2008; Stampfli et al., 2013), 48 

however continental motions in isolation offer limited insight into the complete tectonic 49 

system in operation through deep time. The availability of data describing global seafloor 50 

spreading histories has driven the development of self-consistent kinematic reconstructions 51 

with continuous plate boundaries, together providing the clearest window into Earth’s 52 

tectonic history to date (Gurnis et al., 2012; Seton et al., 2012; Müller et al., 2016). Finding 53 

ways to apply this ‘full-plate’ philosophy to periods predating the present-day seafloor to 54 

reconstruct the Paleozoic and beyond is at the very frontier of current tectonic research, and 55 

continues to present a significant challenge to the global tectonics community (Domeier and 56 

Torsvik, 2014; Matthews et al., 2016; Merdith et al., 2017a). A fundamental obstacle lies in 57 
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the difficulty of identifying the nature and paleo-location of dynamic oceanic tectonic 58 

environments associated with plate configurations through time, specifically subduction 59 

zones, mid-ocean ridges and hotspot interactions of upwelling plumes and the oceanic crust.  60 

 61 

Traditionally, geochemical analyses of igneous rocks, commonly basalt due to its abundance 62 

and large environment-specific variation in potentially diagnostic element compositions, are 63 

used as a discriminatory tool to identify the tectonic environment within which a given 64 

sample formed (Pearce and Cann, 1973; Shervais, 1982; Pearce, 2008). The approach 65 

involves evaluating the relationships of typically two or three measured element abundances 66 

from a given sample set by plotting them overlaying a suite of discriminatory element ratio 67 

fields previously established from geochemical analyses of rocks sourced from known 68 

tectonic environments. However, outcomes of such an approach are often ambiguous with 69 

the statistical probability of solutions difficult to evaluate. Figure 1A shows the tectonic 70 

discrimination diagram of Shervais (1982), derived by evaluating the ratio of measured Ti/V 71 

from n = ~500 identified samples. These analyses suggest that volcanic rocks with Ti/V 72 

ratios between 10 and 20 are likely sourced from subduction (ARC) systems, volcanic rocks 73 

with a Ti/V of between 20 and 50 are associated with mid-ocean ridge (MOR) systems, and 74 

volcanic rocks with Ti/V ratios of between 50 and 100 are ocean-island (OIB) hotspot related. 75 

To explore the robustness and predictive ability of these models with a larger and more 76 

diverse dataset, we evaluate n = 4914 global basalt samples aged 0–5 Ma with 77 

measurements for both Ti and V extracted from the EarthChem portal 78 

(http://www.earthchem.org), with each sample environment geographically classified using 79 

the present-day tectonic configuration of Müller et al. (2016). The resulting Ti/V 80 

discrimination diagram produces the same three distinct ratio fields as presented by 81 

Shervais (1982), trending from ARC to MOR to OIB as Ti abundance increases. However, 82 

when derived from the larger data sample the discrimination fields are systematically shifted 83 

towards higher Ti/V ratios as the global dataset contains a greater distribution and dynamic 84 

range of measured Ti abundances. The resulting modified discrimination fields with upper 85 
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and lower bounds calculated by 2σ distribution about each population mean suggest Ti/V 86 

ratios between 25.9 and 49.5 represent ARC related rocks, Ti/V ratios of 41.4–70.61 87 

represent MOR, and Ti/V ratios of 61.4–166.3 represent OIB environments. Figure 1B 88 

shows the same data points with calculated 0.9 and 0.1 probability contours for each 89 

environment, indicating that Ti/V ratio diagrams are unlikely to be able to discriminate 90 

between tectonic environment for volcanic rocks with Ti values between ~ 7.5 and 16 and V 91 

values between ~ 180 and 360 as all data fields exist within this ratio space. It is also 92 

apparent the MOR field almost entirely overlaps with the OIB field, suggesting that only 93 

MOR samples with the highest V abundances or the lowest Ti abundances have the 94 

potential for identification using this method. 95 

 96 

Although powerful and useful tools when applied to well-understood sample sets with 97 

unambiguous geochemical signatures, methods that rely on directly comparing ratios from 98 

only a small number of geochemical sample data types are limited both in their resolution 99 

and discriminatory ability. Such limitations have long been recognized, and a number of 100 

more successful and sophisticated alternative approaches have been developed. Statistical 101 

methods including linear discrimination analysis (LDA) of raw data and LDA with log-ratio 102 

transformations of major-element data (Agrawal et al., 2004; Verma et al., 2006; Verma, 103 

2010) are able to predict the tectonic environments of a small set of randomly-chosen 104 

samples from each known environment with reported success rates of ~76%–96% and 105 

~83%–97%, respectively (25 and 100 samples were taken from databases of 2732 and 1159 106 

samples respectively). For each study, databases were constructed with predominantly 107 

Pliocene basic and ultrabasic rocks of known tectonic affinity, with selection criteria based 108 

on each sample requiring 10 pre-prescribed major-element measurements. An alternative 109 

has arisen from the development of semi-automated methods, each utilizing a classification 110 

tree (CT) exclusionary filter approach (Vermeesch, 2006a, b). This approach requires a 111 

large number of pre-prescribed element and isotopic measurements (up to a maximum of 112 

51), and uses a database of 756 samples of known tectonic affinity (sample ages are not 113 
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considered) to predict the source tectonic environment from basaltic rocks. In addition, this 114 

method requires a set of a priori assumptions of optimal measurement abundances (used to 115 

make the decisions within the classification tree), which together with the high number of 116 

required measurements per sample limit possible applications. The reported successful 117 

tectonic environment identification rate is 89% and 84% for trees requiring 51 and 28 118 

measurements, respectively. From the reported results of LDA and CT, it is clear both these 119 

methods have high success rates in predicting ‘unknown’ tectonic environments provided 120 

the a priori assumptions are both sufficiently geologically accurate and objective, the 121 

‘unknown’ sample environments are known before the experiments in order to evaluate 122 

success, and the datasets themselves are filtered to contain only data with all the pre-123 

prescribed geochemical values required to perform the selected analyses.  124 

 125 

In cases where relatively young, adequately sampled and geologically well understood data 126 

are available, these methods demonstrate the best predictive capabilities. However, for 127 

investigations into Earth’s long term tectonic history, the geological record is rarely 128 

sufficiently complete or well understood. Geological data, particularly for times prior to 50 Ma, 129 

are both temporally and geographically sparsely sampled (see Supplementary Fig. S2). Of 130 

these sparse data, the quantity and type of available geochemical measurements per 131 

sample are highly variable, rendering the use of methods with strict input criteria such as 132 

Ti/V discriminatory diagrams and statistical methods like LDA and CT, unsuitable for deep 133 

time tectonic studies where data are fewest and most spatially and temporally inconsistent. 134 

To directly address both this limitation of the available data and the subsequent analysis 135 

limitations of most previous approaches, one of the primary aims of this study is the 136 

development of a robust method able to tolerate inconsistent data. This approach provides a 137 

practical method able to analyze any sample regardless of the number of type of attribute 138 

measurements available. 139 

 140 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 6

2. New approach to an old problem  141 

Building on this research, we explore the design and application of a new and highly flexible 142 

method for identifying the source tectonic environments of sparse basaltic rock data of 143 

entirely unknown origin incorporating a significantly wider and variable range of potentially 144 

discriminatory attributes without the need for a priori assumptions, prescribed sampled 145 

attributes or consistency of measured quantities between samples. In this new approach, we 146 

focus on utilizing the structures or ‘fingerprints’ present within a freely available large basalt 147 

geochemistry database to construct data models representative of the first-order tectonic 148 

environments ARC, MOR and OIB. Like the fingerprint analogy, each environment model 149 

possesses a unique data pattern (Fig. 3), a blueprint that can be used to identify the source 150 

tectonic setting when compared with patterns of unknown basalt samples. The dataset was 151 

generated using the entire EarthChem Portal database (http://www.earthchem.org) as of 152 

July 2015. A total of n = 894,439 individual samples were processed for data quality, 153 

assessing each for valid ages, labelling, sample site coordinates and consistent 154 

measurement units. Any data that could not be corrected, failed any criteria, or could not be 155 

converted to SI units were discarded. From the remaining data, a total of n = 97,952 basalt 156 

samples with ages ranging from 1000–0 Ma were identified by their respective EarthChem 157 

“ROCK NAME” label and extracted from the database. Tectonic environment data fingerprint 158 

models were built using all available basalt data aged 5–0 Ma (n = 38,301). Sample data 159 

were geographically assigned the one of three first-order tectonic environment labels of 160 

“MOR” for mid-ocean ridges (n = 18,213), “ARC” for subduction zones (n = 1858), and “OIB” 161 

for oceanic hotspot related upwellings (n = 7891) by comparing sample site locations with 162 

classification polygons derived from known present-day tectonic environment geometry and 163 

distribution (Müller et al., 2016). For each environment model, the EarthChem dataset 164 

contains up to a total of 136 possible sample discriminatory attributes, comprising of a 165 

combination of major and minor element measurements and element ratios. In order to 166 

analyze the sample data structure and not the individual geochemical measurement values 167 

all samples were normalized using feature scaling making values non-dimensional. In order 168 
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to use the most representative and robust samples sets for training, only samples with 169 

attribute values between the 2.5th and 97.5th percentiles (representing a 2σ distribution) in 170 

the environment model training dataset (5–0 Ma) were included. To build a given tectonic 171 

environment model, available normalized attribute data from each labelled sample are 172 

sorted into 10 equal attribute magnitude bins, generating a frequency distribution for sample 173 

attribute occurrences for the given model within the dataset. A diagnostic weighting function 174 

is calculated for each model to isolate model attributes with the greatest discriminatory ability 175 

(i.e. entirely unique attributes or common attributes found to have unique magnitudes in a 176 

single model), positively weighting model discriminatory attribute and negatively weighting 177 

common or non-diagnostic attributes. The resulting function weights diagnostic attributes to 178 

comprise 50% of the total model fit score, with all non-diagnostic attributes making up the 179 

remaining model fit. To classify a basalt sample of unknown tectonic affinity, the individual 180 

sample attribute data is normalized using feature scaling using the defined the 5–0 Ma 181 

model 2σ distribution. The normalized model attribute data is then cross-referenced with all 182 

available environment models, returning a goodness-of-fit score for each attribute based on 183 

the match of the data structure of the unknown sample and the data structure of the given 184 

tectonic environment model. A maximum individual attribute score of 10 represents a perfect 185 

match with a given attribute highest frequency bin and a score of 1 represents a match with 186 

the lowest frequency bin. A total model fit is returned for all given environment models, and 187 

is the weighted sum of each available attribute fit score. A prediction confidence estimate is 188 

calculated for each total model fit using the number of attributes present in the unknown 189 

model compared to the number of attributes present in the given tectonic environment model 190 

and is weighted by the unknown sample fit to discriminatory attributes. As multiple samples 191 

exist at the same geographic localities combined with the use of rigid-plate reconstructions 192 

that do not account for deformation processesand significant reconstruction uncertainty for 193 

the Neoproterozoic, labelled sample predictions of congruent age and sample site are 194 

averaged using a 5º global mesh grid, producing a spatio-temporally averaged predicted 195 

sample set of n = 1561 from 1000–5 Ma. 196 
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 197 

To evaluate robustness and predictive ability, first-order tectonic fingerprint models were 198 

evaluated in two ways. Cross validation was performed on the 5–0 Ma dataset of n = 38,301 199 

labelled samples used to build the fingerprint models. A total of 1000 independent validation 200 

tests were performed where the 5–0 Ma data were split into two sets; a randomly sampled 201 

training set consisting of 70% of the data (n = ~26,800), and a testing set consisting of the 202 

remaining 30% (n = ~11,500). For each validation test new first-order models were built for 203 

MOR, ARC, and OIB environments from the given validation training set, then used to new 204 

make environment predictions on the given validation testing set. For validation, a 2º global 205 

mesh grid was used for geographical averaging as opposed to the 5º global mesh grid used 206 

in the case study as the 5–0 Ma data is sampled in active present-day tectonic environments 207 

and is subsequently of higher spatial sampling precision. Resulting predictions were then 208 

compared against the original 5–0 Ma training set labels. From 1000 random cross 209 

validation tests, first order models predicted the present-day labelled 5–0 Ma training data at 210 

a mean success rate of 77.8% with a 2σ standard deviation of 1.45. The distribution of cross 211 

validation test success rates is shown in Fig. 2. The second evaluation of the method was to 212 

benchmark predictions of all available ‘unknown’ basalt data of n = 11,468 aged 30–5 Ma 213 

against labels for the same data points geographically classified by a given plate model 214 

(Muller et al., 2016). The plate model classification labelling process for the 30–5 Ma data 215 

was identical to the process used to label the 5–0 Ma training data in the main study and 216 

predictions were made using the full 5–0 Ma training dataset (n = 38,301). The full set of test 217 

data aged from 30–5 Ma had an overall mean prediction success rate of 73.2%, consistent 218 

with the results of the cross validation tests, with individual success rates of 84.4% for 10–5 219 

Ma, 69.0% for 15–10 Ma, 69.6% for 20–15 Ma, 66.7% for 25–20 Ma, and 78.6% for 30–25 220 

Ma. 221 

 222 

Each resulting first-order fingerprint (FP) model contains up to a maximum of 136 223 

discriminatory data attributes to describe the geographically classified environment (Fig. 3). 224 
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The predictive ability of the method shows significant tolerance and robustness to imperfect 225 

data as the method does not rely on inter-attribute correlation. Though potentially reducing 226 

the predictive ability of the method when analyzing highly consistent datasets, the 227 

independent nature of the proposed attribute analysis makes this method most practically 228 

applicable to deep time tectonic investigations where data are most spatio-temporally sparse 229 

and inconsistent. Using this new method, a sample of unknown origin containing any 230 

number or type of attributes can be classified by evaluating the available data attributes 231 

present in the sample against those present in the models (with predictive confidence 232 

proportional to the number and type of sample attributes present in the sample relative to the 233 

total number of attributes present in the model). In comparison with the case described in 234 

Section 1, using FP models without the restriction of requiring both Ti and V abundance 235 

measurements, it is possible to build tectonic discrimination models with almost 8 times the 236 

number of individual sample data from the same EarthChem dataset (n = 38,301 as 237 

opposed to n = 4914 data points). In contrast to traditional methods which evaluate the 238 

relationships between geochemical abundances to make predictions, this approach allows 239 

us to analyze the structure of the dataset itself to identify the source environment 240 

characteristics of a given sample. The discriminatory data structures in the models created 241 

in this study (as shown in Fig. 3) allow us to visualize and compare the unique data attribute 242 

characteristics of each first-order tectonic environment. Figure 3A–C show the data structure 243 

for MOR (103 attributes from 18213 samples), ARC (94 attributes from 1858 samples), and 244 

OIB (102 attributes from 7891 samples) models, respectively. In each plot, the x-axis 245 

represents a given non-dimensional sample attribute (full attribute list can be found in 246 

Supplementary Table S2), and the y-axis represents the 10 normalized histogram bins, with 247 

color opacity representing the frequency of data occurrence within a given bin. Cells marked 248 

in black represent the bin mode, that is the bin with the highest frequency occurrence for the 249 

given non-dimensional attribute. Each identified environment model from the 0–5 Ma training 250 

set produces a unique attribute ‘fingerprint’, showing very different data availability, 251 

distributions and patterns of highest frequency cells between models (Fig. 2A–C). It is this 252 
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frequency structure that is used to ‘map’ the data of a given tectonic environment based on 253 

the training set and be used to identify unknown samples.  254 

 255 

3. Tectonic discrimination  256 

As the bulk geochemical composition of basalt formed within each first-order tectonic 257 

environment is very similar, there is a critical need to isolate key diagnostic attributes that 258 

can differentiate between given environments. Consistent with the assumptions behind the 259 

development of the traditional two- and three-dimensional discrimination diagrams, the 260 

tectonic environment FP models presented in this study seek to identify all key diagnostic 261 

attributes present in each environment model, that is attributes and associated values that 262 

are unique to a single model providing a robust discriminatory mechanism. Unidentified 263 

sample data found to contain any number of these key attributes are positively weighted 264 

towards the given environment identification, with sample data containing only weakly 265 

discriminatory attributes negatively weighted. Fig. 3D shows Fig. 3A–C plotted in grayscale 266 

and stacked with only identified model key diagnostic attribute values shown in color, 267 

demonstrating the uniqueness of each model attribute distribution. The full list of identified 268 

key diagnostic attributes for each tectonic environment can be found in Table 1. This 269 

approach presents a unique and flexible multi-variable tool to rapidly identify the first-order 270 

source environment of rocks of unknown tectonic affinity, in particular for samples that are 271 

either spatially or temporally inconsistently sampled and do not have all the specific 272 

measurements required by traditional limited-variable methods. Ti is identified as a key 273 

diagnostic attribute in n = 38,301 basalt samples, in agreement with traditional discrimination 274 

methods, increasing through bins 2, 3, and 4 for ARC, MOR and OIB respectively. However, 275 

V is not identified as a key diagnostic attribute in any model, rendering the 2D comparison of 276 

Ti/V like that of Shervais (1982) useful but potentially non-unique. Zr is identified in all 277 

models as diagnostic (bins 0, 1, and 3 for ARC, MOR and OIB respectively), and like the 278 

trend reported in Pearce and Cann (1973), the models suggest MOR basalts display low Zr 279 

and low-medium Ti (bins 0.0–0.1 and 0.3–0.4), OIB have low-medium Zr and medium Ti 280 
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(bins 0.3–0.4 and 0.4–0.5), however, ARC models generally have both low Zr and low Ti 281 

(bins 0.0–0.1 and 0.2–0.3). The ternary plots presented in Pearce and Cann (1973) are not 282 

replicated in this study as neither Y nor Sr are identified as strongly diagnostic from the 283 

overall dataset. 284 

 285 

4. Case study: Supercontinent formation and breakup  286 

For more than 40 years, alternative models of the tectonic behaviour of pre-Pangea Earth 287 

have been published, suggesting a wide variety of interpretations of both the available 288 

geological data and the developing understanding of the supercontinent cycle itself (Piper et 289 

al., 1976; Bond et al., 1984; Dalziel, 1991; Moores, 1991; Torsvik et al.,1996; Dalziel, 1997; 290 

Meert and Torsvik., 2003; Pisarevsky et al., 2003; Collins and Pisarevsky, 2005; Li et al., 291 

2008, 2013; Evans, 2009; Johansson, 2014, Merdith et al., 2017a). These models can be 292 

divided into 3 broad model classes, with one model from each class used in this case study. 293 

The most common class is referred to as the ‘continental drift’ type in which models are 294 

primarily focussed on the evolution of continental configuration through time and contain 295 

very little explicit plate boundary location or geometry information (Li et al., 2008). The 296 

second class of models is an augmentation of the traditional continental drift approach, 297 

producing ‘hybrid’ models primarily focussed on continental behaviours, but also containing 298 

predicted non-continuous boundary evolution information (Evans, 2009). The third class 299 

represents the most recent set of published models, namely ‘full-plate’ models. These 300 

models attempt to predict both continental and plate boundary evolution information and 301 

produce globally self-consistent predictions as the model operates as a ‘closed’ system 302 

(Gurnis et al., 2012; Merdith et al., 2017a). Although a significant evolution in development 303 

of tectonic reconstructions, the prediction of specific boundary environment types and 304 

evolution in deep time full-plate models remains challenging as the primarily data constraint 305 

of paleomagnetism does not contain explicit boundary information, and supporting 306 

geological data are limited. The FP algorithm was applied to n = 1547 unclassified dated 307 

samples labelled as basalt taken from the EarthChem portal. Samples were all aged 308 
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between 1000 Ma and 410 Ma (representing only those rocks not included in the fingerprint 309 

models) in an attempt to self-consistently identify the tectonic environment from within which 310 

a given sample formed and evaluate the boundary predictions against those in a range of 311 

published pre-Pangea tectonic reconstructions. The resulting suite of 56 first-order 312 

predictions are listed in Table 2 and shown in Fig. 3D.  313 

 314 

The relationship between China and Australia forms a key component of the Rodinian ‘core’ 315 

prior to breakup, with both the location and age of appearance of the Yangtze and Cathaysia 316 

blocks within Rodina varying greatly between published reconstructions. These differences 317 

reflect a critical divergence and uncertainty in the published interpretations of South China 318 

geology between ca. 1000Ma and 700 Ma. However, to practically discriminate alternative 319 

Rodinia configurations during this period is difficult, as there are few observations 320 

constraining this aspect of Rodinia’s configuration. Previously, this problem has been 321 

assessed via plate kinematic data extracted from a range of published Rodinia-Gondwana 322 

transition reconstructions together with paleomagnetic data to evaluate the competing 323 

broader-scale Australia-Laurentia configurations during this period. This was achieved by 324 

comparing motion path geometries and plate velocities to identify configurations providing 325 

optimal kinematic behaviours (Merdith et al., 2017b). In our case-study, we apply tectonic 326 

environments predicted using the FP algorithm to evaluate contrasting configurations of the 327 

Australian block relative to the Yangtze and Cathaysia blocks from 1000–720 Ma from three 328 

alternative plate reconstructions of Rodinia; (i) Li et al. (2008), hereby referred to as L2008 329 

(Fig. 3A), (ii) Evans (2009), hereby referred to as E2009 (Fig. 3B), and (iii) Merdith et al. 330 

(2017a), hereby referred to as M2017 (Table 2, Fig. 3C, and Supplementary Figs. S1 and 331 

S2). 332 

 333 

Developing a method to consistently and objectively evaluate the fit of contrasting time-334 

dependent plate model geometries using the tectonic environment predictions listed in Table 335 

2 presents a significant challenge. As each class of model present different levels of 336 

component detail, such as the inclusion of continuous plate boundaries, or plume location 337 
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predictions, models described in this case study were analyzed using the following simplified 338 

framework: (1) if a tectonic environment prediction for a given time is derived from samples 339 

located on a present-day continental block, then only models explicitly defining the given 340 

continental block at the given sample age will be considered, 2) where possible, all predicted 341 

tectonic environments are directly compared spatially with explicitly defined plate model 342 

topology geometries, and 3) if plate model topologies are not explicitly defined, where 343 

possible we consider the motion of individual blocks relative to neighboring blocks (either 344 

divergent or convergent), together with the location of the prediction site within the context of 345 

the surrounding model configuration. 346 

 347 

L2008 suggests both the Yangtze and Cathaysia blocks have formed by 1100 Ma and are 348 

partially separated from each other by a subduction system as Cathaysia is connected to 349 

Laurentia at this time. Both move progressively southward from a relatively high latitudinal 350 

position of ~60ºN following the path of Laurentia from 1100 Ma through to 900 Ma, with 351 

complete South China Block amalgamation occurring between 1000 Ma and 900 Ma. 352 

Alternatively, M2017 suggests a significantly more dispersed continental configuration at 353 

1000 Ma, with the Yangtze Block not considered in this model prior to ~850 Ma, and 354 

Cathaysia at a latitude of ~30ºN, straddled to the south by a subduction system and located 355 

almost antipodally to the forming Rodinia core. Similar to L2008, the E2009 model implies 356 

both Yangtze and Cathaysia are present at least by 1070 Ma and are connected via an 357 

inferred orogenic belt. However, unlike L2008 the South China Block is not centrally located 358 

within Rodinia in model E2009, but instead at the outer southeastern boundary 359 

approximately antipodal to the L2008 location, progressively moving northward from a 360 

latitude of ~60ºS to ~15ºS. 361 

 362 

Tectonic environment predictions suggest subduction related basalts were forming at both 363 

~980–970 Ma and ~950–940 Ma on the western and northwestern margins of the Yangtze 364 

block. This prediction is consistent with the suggestion of long-lived subduction (existing 365 

prior to 1100 Ma and ending between 1000 Ma and 900 Ma) outboard of the eastern, 366 
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northern and western boundaries of the Yangtze Block as found in L2008, and the inferred 367 

environments surrounding South China in the E2009 model on the outer edge of Rodinia. 368 

The predicted presence of subduction adjacent to Cathaysia during this time is also in 369 

agreement with M2017, though drawing meaningful conclusions for this model is limited for 370 

times when the Yangtze Block is not properly considered. The next two predictions between 371 

~910 Ma and ~890 Ma, although intraplate in nature, demonstrate good fits with to the MOR 372 

environment model indicating a possible plume or upwelling-related magmatic source. The 373 

first between ~910 Ma and ~900 Ma predicts either mid-ocean ridge or hotspot-related 374 

magmatic activity (prediction fits are within 3% of each other are treated as non-definitive) on 375 

the eastern margin of Yangtze, followed by a hotspot prediction between ~900 Ma and 890 376 

Ma located on the northwestern margin of Yangtze. Both sites are located on present-day 377 

Yangtze; therefore M2017 cannot resolve these features. The configuration of the South 378 

China Block during this period in the E2009 model does not contradict these predictions; 379 

however, South China remains at the southeastern margin of Rodinia at this time and does 380 

not provide any explicit evidence for plume-related environments. Predictions of plume-381 

related rocks appearing at the northwestern margin of Yangtze are consistent with 382 

predictions of precursory magmatism sourced from the proposed superplume in L2008, 383 

potentially indicating the initial stages of Rodinia breakup (Li et al., 2008). Between ~830 Ma 384 

and 810 Ma, during the period of protracted breakup of Rodinia, three subduction related 385 

predictions are made on the central Yangtze block close to the Yangtze-Cathaysian suture. 386 

At this time, the South China block is completely landlocked within the core of Rodinia in the 387 

L2008 model. Therefore it is uncertain how this series of basalts with an arc-related 388 

signature of this age could be found in this region, as South China is both fully amalgamated 389 

and significantly inboard of the eastern Rodinian margin at this time. However, this 390 

prediction cannot exclude the scenario that the signature being detected by the environment 391 

models could be an inherited signature from rocks related to the subduction outbound of 392 

Yangtze and its estimated cessation at ~900 Ma. Equally E2009 is unable to provide an 393 

explanation for the presence of subduction related rocks at this location, apart from the 394 
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general inference that a subduction girdle may have existed surrounding Rodinia (Li et al., 395 

2008). For this period, M2017 suggests the recently fully amalgamated South China block 396 

(from ~850 Ma onwards) is located significantly northwest of the Rodinia core and closely 397 

bound to the west by a subduction zone which is consistent with the predictions (Fig. 3C). As 398 

few observations exist to constrain both India and the Yangtze-Cathaysian system during 399 

the Neoproterozoic, the prediction of subduction-related basalts continuing to form along the 400 

margin of Yangtze and Cathaysia as late as ~820 Ma suggests South China was likely still 401 

forming, and a more complex suite of subduction systems may have been active in this 402 

region at this time. Temporally concurrent with the formation of these subduction-related 403 

rocks forming within the Yangtze-Cathaysia boundary, for the following ~30–40 million years 404 

a long series of either mid-ocean ridge or plume-related basalts are predicted to form within 405 

the South China block (primarily within Yangtze). Beginning with two first-order mid-ocean 406 

ridge (upwelling) predictions forming along the present-day southwestern Yangtze boundary 407 

at ~820 Ma, followed by a hotspot prediction at ~810 Ma in the same region, then at ~800 408 

Ma by two additional predictions of hotspot and a mid-ocean ridge magmatism located in the 409 

present-day northeastern Yangtze and Cathaysia blocks, respectively, and finally at ~780 410 

Ma a plume signature predicted within the central South China Block (Fig. 3A–C). During 411 

this period, three mid-ocean ridge related igneous signatures are also predicted in present-412 

day southern Australia, the first at ~820 Ma, and both the second and third at ~800 Ma, all 413 

temporally congruent with the timing of equivalent signatures within the South China block. 414 

Although explicitly supporting the existence of subduction-related basalts throughout this 415 

period, the continued positioning of South China significantly northwest of the Rodinia 416 

M2017 does not provide defined predictions directly compatible with any of the mid-ocean 417 

ridge or plume-related predictions located in Yangtze or Cathaysia between ~820 Ma and 418 

780 Ma (Fig. 3C). The southern Australian MOR signatures at ~820 Ma is also not supported 419 

by the M2017 boundary configuration at this time, but the two later MOR predictions at ~800 420 

Ma support the M2017 configuration with initiation of the Proto-Pacific Ocean separating 421 

Laurentia from Australia, Antarctica, North China and Tarim (Fig. 3C). Dependent on the 422 
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uncertainty of the constraints used to nominate the beginning of Rodinia core breakup in 423 

M2017, precursory upwellings associated with the initiation of spreading may account for the 424 

slightly older mid-ocean ridge predictions of this study in southern Australia at ~830 Ma and 425 

~820 Ma. Alternatively, the configuration of South China relative to Australia presented in 426 

L2008 from ~820 Ma through to ~780 Ma is consistent with the predictions of this study (Fig. 427 

3A). The generation of mantle upwelling-related rocks appearing simultaneously within both 428 

South China and southern Australia at this time appear to resemble the result of a radial 429 

dyke swarm-like feature centered between South China, Australia, and Mawson (Li et al., 430 

2008). The final hotspot prediction within the South China block at ~780 Ma coincides 431 

precisely with the initiation of Rodinia breakup in L2008 (Fig. 3A), resulting in Australia-432 

Mawson and Laurentia both beginning separation from South China as a result of a newly 433 

formed triple-ridge junction in the Proto Pacific Ocean. The final prediction of a mid-ocean 434 

ridge-related basalt at ~720 Ma in central Cathaysia does appear to be supported by the 435 

continued presence of a suggested superplume beneath South China in L2008; however the 436 

configuration presented in M2017 at this time, although not excluding the possibility, does 437 

not provide any explicit explanation for this prediction. Throughout this period, E2009 438 

predicts the continued location of South China at the southwestern boundary of Rodinia from 439 

~820 Ma to 780 Ma (Fig. 3B), a supercontinent location more typically associated with 440 

subduction systems (Li et al., 2008; Li et al., 2013; Merdith et al., 2017a), and does not 441 

provide explicit prediction or motion evidence to support upwelling within South China during 442 

this period. 443 

 444 

From the simple analysis performed above in the case study according to the defined 445 

framework, the respective spatio-temporal configurations of the South China and Australian 446 

Blocks proposed within the Rodinia reconstruction of Li et al. (2008) appears to demonstrate 447 

the greatest consistency with the new paleo-environment fingerprint database, particularly 448 

for configurations related to Rodinia formation and breakup. The alternative configurations 449 

proposed in the models of Evans (2009) and Merdith et al. (2017a), although demonstrating 450 
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compatibility with predictions related to early Rodinia formation (E2009) and stable core 451 

configurations (M2017), respectively, are less consistent with many of the tectonic paleo-452 

environment predictions throughout the supercontinent cycle. However, these results need 453 

to be interpreted in the context of a number of considerations. The first one is the apparent 454 

~850 Ma appearance time of the Yangtze Block in M2017, preventing evaluation prior to this 455 

time using tectonic environment predictions. It is acknowledged that as the M2017 model 456 

describes Cathaysia associated with subduction systems between 1000 Ma and 850 Ma, the 457 

Yangtze Block is likely to be a suprasubduction-related accretionary complex during this 458 

period (Cawood et al. 2013, 2017), and subsequently not included as a ‘cratonic’ block in the 459 

model (Merdith et al., 2017a). If taken into account, both the previously unconsidered 460 

‘Yangtze’ subduction (ARC) predictions at 980 Ma and 950 Ma, respectively, would be 461 

consistent with M2017 predictions. The second important consideration in evaluating these 462 

results are the time-dependent kinematic implications of each model geometry. A key 463 

difference between L2008 and M2017 (E2009 is a unique solution) is the choice of the 464 

Australia-Laurentia configuration model, with L2008 adopting a Missing-Link geometry (Li et 465 

al. 1995, 2008), and M2017 incorporating an AUSWUS (Australia-Western United States) 466 

type configuration (Karlstrom et al., 1999, 2001). Kinematic analyses of each configuration 467 

type presented by Merdith et al., (2017b) concluded that during the period of Rodinia break-468 

up ca. 800 Ma, the Missing-Link configuration produces the highest average spreading rates 469 

of up to ~90 km/Ma compared with ~57 km/Ma for AUSWUS, the lowest result of the study. 470 

For configurations containing a proposed later breakup at c.a. 725 Ma, spreading rates of 471 

~150 km/Ma and ~130 km/Ma were calculated for Missing-Link and AUSWUS respectively. 472 

The study also found that motion paths for AUSWUS-based configurations for significantly 473 

simpler than those of Missing-Link-based geometries, as the latter require more complex 474 

plate motions to meet geological constraints. Although not explicitly considered in this case-475 

study for evaluating alternative Rodinia configurations, these kinematic analyses reinforce 476 

the dependency of each configuration on the primary constraints considered, identifying the 477 

potential for over-fitting certain constraints at the expense of others. 478 
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 479 

5. Conclusions  480 

Geochemical analysis is a key instrument in the study of long-term tectonics on Earth. When 481 

coupled with auxiliary geological and geophysical datasets able to contribute 482 

paleogeographic constraints such as paleomagnetics, it provides the unique ability to isolate 483 

the subtle yet highly diagnostic chemical attributes of rock samples which can identify the 484 

rock type and source environment. In this paper we demonstrate the limited application, 485 

scope and diagnostic ability of published geochemical discrimination methods to accurately 486 

identify tectonic source environments from basaltic geochemistry for use as constraints in 487 

deep-time tectonic reconstructions without the need for fixed a priori assumptions, highly 488 

filtered datasets, and strict input data requirements. Applying a new flexible framework to 489 

this long standing problem, from an unfiltered geochemistry database of n = 38,301 basalt 490 

samples of Pliocene age or younger, we present a newly derived and robust set of first-order 491 

discriminatory tectonic environment models for mid-ocean ridge (MOR), subduction (ARC), 492 

and oceanic hotspot (OIB) environments respectively. Using these discriminatory 493 

environment models, we analysed a sparse, inconsistent and unfiltered geochemical 494 

database of n = 1547 basalt samples of unknown tectonic affinity ranging in age from 1000 495 

Ma and 410 Ma. From this analysis, we present a new suite of 56 identified first-order 496 

tectonic paleo-environments spanning the Neoproterozoic, Cambrian, Ordovician and 497 

Silurian, together forming a practical dataset directly applicable to both reconstructing new, 498 

and evaluating existing models of Rodinia supercontinent amalgamation, stability, and 499 

dispersal. To demonstrate this, we analysed the predicted Proterozoic motion histories of the 500 

South China and Australian Blocks, together forming a key component within published 501 

Rodinia configurations, from three alternative published reconstructions for consistency with 502 

the new paleo-environment dataset. From these analyses, the Rodinia reconstruction L2008 503 

of Li et al. (2008) demonstrated the highest degree of both spatial and temporal fit with 504 

paleo-environment predictions, with the new dataset in particular informing upwelling or 505 

plume-related environments through periods of supercontinent formation and dispersal. 506 
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However, the case-study framework also highlighted a lesser degree of fit with subduction 507 

environment predictions, specifically related to prediction from samples sourced in present-508 

day South China. Conversely, subduction environment predictions appear more consistent 509 

with the configurations presented in M2017 (Merdith et al., 2017a), whereas explicit hotspot-510 

related predictions were not present. Model E2009 (Evans, 2009), although more 511 

experimental in its nature, also shows consistency with South China subduction predictions 512 

as these blocks maintain positions on the margins of Rodinia throughout the study period, 513 

but demonstrates less consistency with the other prediction types. Further, when assessed 514 

in the context of the kinematic analyses of key alternative Rodinia configurations as 515 

described in Merdith et al. (2017b), L2008 although demonstrating increased fit with the 516 

tectonic environment predictions derived from the EarthChem geochemistry database in this 517 

study, requires both a more complex and higher velocity plate motion evolution history than 518 

that of M2017, highlighting a key consideration in the development of deep-time plate 519 

reconstructions. 520 
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Figure Captions 680 

 681 

 682 

Figure 1. Titanium / Vanadium (Ti/V) ratio tectonic environment discrimination diagrams 683 

derived from n = 4914 basalt samples taken from the EarthChem portal 684 

(http://www.earthchem.org). All samples are aged between 5 Ma and present-day and were 685 

classified using the Müller et al. (2016) plate reconstruction. Blue points are samples 686 

classified as subduction zone related basalts (ARC), orange points are samples classified as 687 

mid-ocean ridge related basalts (MOR), and red points are classified as oceanic hotspot 688 

related basalts (OIB). Gray dashed trend lines and associated grey labels represent 689 

reference discriminatory bounding ratios of Ti/V = 10, 20, 50, and 100 (Shervais, 1982). (A) 690 

Blue, orange, and red trend lines represent updated reference discriminatory bounding ratios 691 

representing a 2σ distribution about each classified population mean. The shaded gray 692 

regions represent overlap between the discriminatory bounds. (B) Outer blue, orange and 693 

red polygons represent 0.9 probability contours and inner polygons represent 0.1 probability 694 

contours for each tectonic environment calculated using probability density functions. 695 

 696 

 697 

Figure 2: Results from 1000 independent cross validation tests using a 2º spatial grid, each 698 

performing a 70% / 30% random split of the 0–5 Ma data for training and testing data 699 

respectively. Blue bars represent probability (0.0–1.0) of individual success rates. Red 700 

dotted line shows the gaussian distribution of cross validation test results. 701 

 702 

 703 

Figure 3. Tectonic environment data fingerprint models for (A) mid-ocean ridge (colored 704 

orange), (B) subduction (colored blue), and (C) oceanic hotspot (colored red). Color opacity 705 

gradient indicates normalized attribute bin frequency. Black cells represent maximum 706 

frequency bin for associated attribute. White space indicates zero data available for 707 

associated attribute. (D) Stacked composite of models A, B and C colored in gray, with 708 

individual model attribute maximum frequency bins colored by model type (A, B or C) 709 

visualizing the key discriminatory attributes for each FP model. For full attribute number key, 710 

see Supplementary Table S2. 711 

 712 

 713 

Figure 4.  Alternative tectonic configurations of Rodinia at 780 Ma as predicted by the three 714 

published reconstructions of (A) Li et al. (2008), (B) Evans (2009), and (C) Merdith et al. 715 

(2017a). Solid yellow lines represent mid-ocean ridges, with dashed yellow lines 716 

representing poorly constrained or inferred mid-ocean ridge predictions. Blue solid lines are 717 

subduction zones and solid black lines represente passive / transform boundary segments. 718 

Reconstructed first-order tectonic environment predictions aged 780 ± 20 Ma are shown as 719 

filled circles at ~800 Ma, filled squares at ~780 Ma, and filled hexagons at ~760 Ma. 720 

Predictions are labelled as per ID listed in Table 2 and color-coded by type: blue = ARC, 721 

yellow = MOR, and red = OIB. Green filled polygons = Australia, cyan filled polygons = 722 

Cathaysia, and yellow filled polygon = Yangtze. A, Australia; A-A, Afif-Abas Terrane; Am, 723 

Amazonia; Az, Azania; Ba, Baltica; By, Bayuda; Ca, Cathaysia (South China); C, Congo; 724 

DML, Dronning Maud Land; G, Greenland; I, India; K, Kalahari; L, Laurentia; Ma, Mawson; 725 

NAC, North Australian Craton; NC, North China; Pp, Paranapenema; Ra, Rayner 726 

(Antarctica); RDLP, Rio de la Plata; SAC, South Australian Craton; SF, São Francisco; Si, 727 

Siberia; SM, Sahari Megacraton; WAC, West African Craton; Yg, Yangtze (South China). (D) 728 

Graphical representation of tectonic environment classification predictions and associated 729 

model fits from 1000–420 Ma as listed in Table 2. Calculated fits to all predicted first-order 730 

environment models of subduction (ARC), mid-ocean ridge (MOR), and oceanic hotspot 731 

(OIB) are shown as filled blue, red and orange circles respectively. Circle size is directly 732 

proportional to prediction confidence, with larger circles indicating higher prediction 733 
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confidence. Results are divided by reconstruction snapshot age (as presented directly above 734 

each cell), with individual prediction ID labels as per Table 2 presented directly below each 735 

cell. A full suite of all reconstruction snapshots overlaid with predictions can be found in the 736 

supplement. 737 

 738 

 739 

 740 

 741 

Table captions 742 

 743 

 744 

Table 1.  Identified key discriminatory attributes and their non-dimensional frequency 745 

magnitudes for each first-order environment model. ARC model calculated from n= 1858 746 

samples, MOR model calculated from n = 18213 samples, and OIB model calculated from n 747 

= 7891 samples. Freq. = Normalized data frequency bin, Att no. = Model attribute ID number, 748 

Att ref. = Reference sample data measurement name taken from EarthChem Portal. Full Att 749 

no. and Att ref. listed in Supplementary Table S2. 750 

 751 

 752 

Table 2. First-order tectonic environment predictions from 1000–410 Ma grouped into 10 Ma 753 

age bins. ID = Data point ID., ARC, MOR, OIB fit% = calculated percentage fit of the given 754 

sample against each environment model. Bold values indicate best fit model. Italic values 755 

indicate multiple results within threshold of 3%. ARC, MOR, OIB conf. = calculated 756 

confidence parameter for each prediction, Site lat =  present-day sample site latitude, Site 757 

lon =  present-day site longitude.  758 

 759 

 760 

 761 

 762 
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Freq. Att no. Att ref. Att no. Att ref. Att no. Att ref.

0.9 - 1.0 92 Nd-143/Nd-144 61 Pa-231

2 Al2O3 50 Fe

92 Nd-143/Nd-144 99
�

Nd

123 Al

47 Sc 5 FeO

52 Mn 114 In

52 Mn 1 TiO2

87 Pb-206/Pb-204 9 CaO

46 Mg

71 U-238/Pb-204

123 Al

5 FeO 19 Cr2O3 52 Mn

9 CaO 63 U-234/U-238 56 Cu

47 Sc 91 Th-230/U-238 97 P

50 Fe 2 Al2O3 27 Eu

56 Cu 33 Tm 28 Gd

86 Pb-207/Pb-204 77 Lu-176/Hf-177 47 Sc

88 Pb-208/Pb-204 105 Te 48 Ti

106 Pt 53 Co

58 Ga

63 U-234/U-238

69 Th-232/Pb-204

89 Sn

44 K 32 Er 26 Sm

58 Ga 48 Ti 29 Tb

53 Co 57 Zr

56 Cu 107 Hf

114 In

116 Pb-210/Ra-226

46 Mg 1 TiO2 2 Al2O3

48 Ti 27 Eu 32 Er

53 Co 28 Gd 33 Tm

77 Lu-176/Hf-177 29 Tb 37 Be

58 Ga 44 K

107 Hf

27 Eu 26 Sm 91 Th-230/U-238

28 Gd 57 Zr 105 Te

29 Tb 76 Xe-129/Xe-132 106 Pt

32 Er 89 Sn 117 Ag

33 Tm 97 P

37 Be

84 Sr-87/Sr-86

94 Ra-226/Th-230

1 TiO2 37 Be 19 Cr2O3

26 Sm 44 K 60 Ra-226

57 Zr 46 Mg 67 Th-232/U-238

89 Sn 61 Pa-231 78 Hg

97 P 69 Th-232/Pb-204

107 Hf 71 U-238/Pb-204

114 In 94 Ra-226/Th-230

124 Be-10/Be-9 96 I

106 Pt

117 Ag

123 Al

0.8 - 0.9 9 CaO

5 FeO

ARC MOR OIB

0.0 - 0.1

0.7 - 0.8

0.6 - 0.7

0.5 - 0.6

0.4 - 0.5

0.3 - 0.4

0.2 - 0.3

0.1 - 0.2
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ACCEPTED MANUSCRIPTAge (Ma) ID ARC fit % MOR fit % OIB fit % ARC conf. MOR conf. OIB conf. Site lat Site lon

1000-990 A 66.89 71.45 68.43 15.4 14.26 14.5 47.1 -84.7

B 77.81 78.4 65.54 30.76 28.16 28.3 72.76 -80.5

980-970 A 66.3 64.55 70.17 41.45 38.92 39.38 60 136

B 67.64 57.95 63.22 27.39 26.79 27.11 24.59 102.07

950-940 A 80.93 73.19 57.15 33.42 30.64 30.75 33 107.6

910-900 A 74.09 79.31 77.37 37.89 35.11 35.47 26.9 101.57

900-890 A 57.84 58.17 62.83 25.84 23.49 23.75 33 107.6

830-820 A 72.35 79.96 68.66 28.61 26.65 26.89 -30.64 139.13

B 80.11 66.99 51.33 40.24 37.63 37.27 28.58 112.34

C 83.28 74.87 68.71 41.19 38.13 38.58 25.72 109.87

820-810 A 78.54 69.6 57.17 28.67 26.93 26.89 28.59 112.33

B 64.18 68.56 65.9 35.48 33.8 34.03 32.5 107

C 69.31 75.03 69.78 43.6 41.34 40.24 32.5 105

D 77.43 83.24 74.67 26.1 23.83 24.05 -30 133

810-800 A 66.95 62.44 75.29 35.88 33.58 34.05 29.16 102.8

800-790 A 64.82 61.34 69.45 35.84 33.23 34.01 27.63 117.89

B 73.93 76.9 74.54 36.21 32.96 33.31 29.97 120.2

C 73.91 82.23 72.54 50.87 45.97 46.58 -25.23 131.51

D 75.45 79.68 72.37 47.75 43.13 42.43 -23.75 134.11

780-770 A 59.38 55.59 61.16 25.33 25.99 26.8 27.53 110.72

760-750 A 64.37 67.1 61.57 13.68 12.71 13 41.58 86.86

750-740 A 62.87 66.33 79.58 46.27 44.41 45.16 -25.05 123.76

720-710 A 56.37 58.98 58.85 17.21 16.45 15.71 23.4 111.72

620-610 A 68.7 66.21 62.87 27.38 25.59 26.23 45.5 -64.1

B 57.94 61.63 66.43 20.21 19.12 18.71 58 6

600-590 A 73.61 74.13 71.14 19.83 18.27 18.38 42.22 -70.88

600-590 B 74.91 71.28 57.25 10.51 10.33 10.44 36.39 -78.98

580-570 A 69.78 62.25 65.28 29.81 27.92 28.21 22 29

560-550 A 55.61 62.07 69.58 17.43 16.21 16.12 46.03 -71.64

550-540 A 57.36 57.92 63.27 23.44 21.56 21.9 29.9 35.1

B 58.77 61.16 59.2 18.88 17.11 17.81 30.63 35.5

540-530 A 67.22 65.93 60.48 26.29 25.3 25.41 48.1 -68.5

B 73.1 72.87 61.87 38.77 35.35 35.3 -17.27 128.72

520-510 A 64.91 67.15 66.65 22.12 21.05 21.14 -30.71 142.04

B 72.01 66.16 57.88 32.24 30.21 30.73 38 94

C 69.58 71.26 61.41 38.36 35.07 34.94 -27.05 125.16

D 69.32 70.3 65.18 18.89 17.51 17.68 45.39 -66.22

E 57.3 69.35 73.39 22.74 20.51 22.77 39.21 -112.95

F 67.48 69.31 73.19 29.11 25.77 27.75 37.08 -77.7

G 66.02 69.04 76.74 44.61 40.48 45.2 36.64 -81.73

500-490 A 45.44 42.33 49.62 24.65 26.55 27.14 46.63 -70.98

B 85.68 75.78 56.62 32.09 29.5 29.83 48.55 -56.65

480-470 A 72.37 73.47 66.78 22.2 20.78 21.06 46.6 -60.5

B 63.85 62.77 65.95 30.12 27.24 28.39 46.63 -68.63

470-460 A 76.58 85.16 68.68 41.45 38 38.57 44.3 -69.32

B 73.57 67.6 55.88 10.76 9.81 9.92 45.4 -71.9

C 72.28 70.41 62.81 35.57 32.6 35.08 46.53 -67.93

D 65.61 70.97 71.35 29.03 27.02 27.12 49.92 -55.83

E 76.3 77.35 61.61 22.69 21.78 21.34 -24.53 -66.47

F 81.11 80.25 70.04 46.3 43.3 43.36 -32.35 -69.18

G 76.27 78.31 72.95 17.56 16.6 16.73 40.42 -76.47

H 75.76 83.93 80.91 9.68 9.67 10.44 35.65 -80.1

460-450 A 75.73 75.99 64.17 30.78 28.23 29.4 46.54 -68.59

430-420 A 76.31 78.31 70.7 33.09 29.79 32.45 44.48 -68.01

B 68.8 66.23 70.59 38.89 37.64 38.03 48 -65

420-410 A 62.94 62.12 67.61 35.58 34.86 36.43 48.29 -65.3
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• New method leveraging big data to characterize first-order tectonic environments 

• Identification of 115 key discriminatory geochemical attributes in basaltic rocks 

• Tectonic fingerprints used to evaluate and constrain supercontinent cycles 

 


