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Abstract—We present an automated model reduction algorithm
that uses quasi-steady state approximation based reduction to
minimize the error between the desired outputs. Additionally,
the algorithm minimizes the sensitivity of the error with respect
to parameters to ensure robust performance of the reduced model
in the presence of parametric uncertainties. We develop the
theory for this model reduction algorithm and present the imple-
mentation of the algorithm that can be used to perform model
reduction of given SBML models. To demonstrate the utility of
this algorithm, we consider the design of a synthetic biological
circuit to control the population density and composition of a
consortium consisting of two different cell strains. We show how
the model reduction algorithm can be used to guide the design
and analysis of this circuit.

I. INTRODUCTION

Model reduction is an indispensable tool in most engineering
applications where mathematical models are used for design
and analysis of systems. Due to the high complexity of
physical systems, it is possible to create arbitrarily large
and detailed mathematical models of the different processes,
however, to use these models for design of systems can
be challenging and the analysis of the system response
using these models can be convoluted in various ways.
Hence, it is common to model various processes that we
are interested in using a “reduced” order model. A reduced
order model is a lower dimensional model that has a simple
representation, is computationally much faster, and is easier
to use for system design compared to any other higher order,
more complex mathematical model. For biological systems,
usually, we do not have enough information about the various
mechanistic interactions to model these processes effectively.
This limitation is manifested in the lack of information about
the parameters of a biological model. Due to these reasons, it
is even more important to be able to have reduced models to
model various biological processes. There are multiple ways
and scales at which biological systems are modeled such as
using the mass-action kinetics of the chemical reactions [1],
using the chemical master equation [2], the chemical
Langevin equation [3], or using methods from statistical
mechanics [4]. Mass-action kinetic based modeling uses
reaction rate equations where dynamics of various processes
are approximated by modeling the concentration of various
species. With mass-action kinetics based modeling of chemical
reactions describing a biological system, it is possible to
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create models that are low-dimensional and simple compared
to other methods. The most widely used model reduction
methods utilize the separation of time scales [5] in a model,
or use balanced truncation [6–8] that transforms the original
model into a lower dimensional system while preserving
the input-output behavior. A combined approximate method
using singular perturbation theory and balanced truncation
is developed in [9]. Other methods such as parameter
sensitivity analysis based reduction [10, 11], optimization
based methods [12, 13], lumping of parameters [14] of
the model, non-dimensionalization [15], and conservation
analysis are also common. In [16] some of these different
methods have been combined together for an improved model
reduction method. Generally, the choice of model reduction
is dependent on the kind of application and is driven by
the questions we want to answer using a reduced model.
See [17–19] for a detailed review of some of the well known
model reduction methods with applications to biological
systems and the current best practices.

Among the methods based on time-scale separation, the
Computational Singular Perturbation (CSP) [5] algorithm is
one of the most popular numerical methods that identifies the
fast and slow time-scales for a model. But, apart from being
stiff and laborious to solve, it is not always clear for many
applications how fast and slow time-scales can be separated.
The Intrinsic Low-Dimensional Manifold (ILDM) [20, 21] is
another numerical method based on time-scale separation in
which the original model is linearized and then the Jacobian
of the resulting linearized system is transformed to identify
slow and fast states. But, state transformations are introduced
in this method due to which the structure and the physical
meaning in the original model are lost. Although balanced
truncation based methods can give good error bounds, we
face a similar problem since the transformations introduced
might lead to the loss of the structure of the original model.
Hence, it would be difficult to use such methods to guide the
design of biological systems where experimental connections
of the model states and parameters are important.

Quasi-steady state approximation (QSSA) [22–25] is
one of the most widely used approaches used in practice. The
theory driving QSSA based reduction is derived from singular
perturbation theory [26] of nonlinear dynamical systems. We
will discuss singular perturbation theory in more detail later
as our algorithm in this paper is motivated from this method
of model reduction. However with QSSA, one needs to be
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careful when collapsing states into algebraic relations, as
it might not always give correct results. A counterexample
in [1] elucidates this in detail. The rigorously correct way
of performing a QSSA would be when it can be formulated
in singular perturbation theory framework. But, it is often
the case that the conditions with singular perturbation are
too strict and it is not possible for many applications to
formulate the model in this framework. Hence, it is important
to carefully navigate this gap between the rigorously correct
singular perturbation and using QSSA directly. Our algorithm
in this paper works within this gap and finds reduced order
models that minimize the error in desired outputs along with
ensuring robust performance of the reduced models.

In this paper, we present a structured automated model
reduction algorithm that systematically finds a reduced model
while retaining the structure of the original model. We start
by briefly discussing some of the preliminary results and
formulating the problem in Section II before presenting our
main results in Section III. We first present the results for
systems with linear dynamics and then move on towards the
extension of the results for nonlinear dynamics. Subsequently,
we give an algorithm that builds on the model reduction
procedure for nonlinear dynamics developed. In Section IV,
we consider two examples to demonstrate the utility of the
developed algorithm. First, we consider a simple example of
a toggle switch circuit and then present the model reduction
of a population density and composition control circuit where
we show how our algorithm plays an important role in
identifying a reduced model that could be used for design
and analysis of this circuit.

II. PROBLEM FORMULATION

Definition 1 (Full model). For a state vector x ∈ Rn, a vector
consisting of all model parameters Θ ∈ Rp and the vector of
output measurements y ∈ Rk, we define the nonlinear dynamic
model

ẋ = f(x,Θ)

y = Cx

for initial conditions x(0) = x0 ∈ Rn.

Definition 2 (Reduced model). For a full model as defined
above, we define a reduced model with a lower dimensional
state vector x̂ ∈ Rn̂ where n̂ < n as

˙̂x = f̂(x̂,Θ)

ŷ = Ĉx̂

for initial conditions x̂(0) = x̂0 ∈ Rn̂ and ŷ ∈ Rk.

Note that in the reduced model we have reduced the number of
states (from n to n̂) but we have the same number of outputs
that depend only on the reduced states. It is clear that in the
reduced model some parameters from the full model will be
lumped together, hence reducing the number of parameters
in the model as well. We will see later how this structure

of the reduced model is beneficial for synthetic biological
circuit models. Further, we will need the following definitions
to formulate the model reduction problem that we solve in this
paper.

Definition 3 (Sensitivity coefficients). For any state, xi for
all i = 1, 2, ..., n, the sensitivity coefficient for the state with
respect to a parameter θj ∈ Θ for all j = 1, 2, ..., p is defined
as

sij =
∂x

∂θj
.

We also define Sj =
[
∂x1

∂θj
∂x2

∂θj
. . . ∂xn

∂θj

]T
, the vector

of sensitivity coefficients for all states with respect to the
parameter θj

Lemma 1. The sensitivity coefficients satisfy a linear differ-
ential equation given by,

Ṡj = JSj + Zj , S(0) = S0,

where Zj ∈ Rn consists of partial derivatives ∂fi
∂θj

and J ∈
Rn×n is the Jacobian matrix,

Zj =



∂f1
∂θj
∂f2
∂θj

.

.

.

∂fn
∂θj


, J =



∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

. . . . . .

. . . . . .

. . . . . .

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn


.

Proof. Follows from chain rule of differentiation [27].

Similarly, for the reduced model we can define Ŝj , Ẑj and Ĵ
and we have,

˙̂
Sj = Ĵ Ŝj + Ẑj .

Remark. The initial conditions for the sensitivity coefficients

S0 =
∂x0

∂θ

will be equal to zero if the initial conditions x0 are independent
of parameters. If the initial conditions x0 are dependent on
parameters then the corresponding initial condition for the
sensitivity coefficients will be equal to 1.
As discussed in the previous section, in our approach we
carry over the essential information from the full model to
the reduced model by collapsing some of the states’ dynamics
into algebraic relations. This process is reminiscent of singular
perturbation based model reduction algorithms. In the next
theorem, we briefly introduce this topic and refer the interested
reader to [26] for more theoretical details and [5] for its
applications to model reduction.

Theorem 1. Suppose we have

ẋ1 = f(x1, x2, ε), x1(0) = x10, x1 ∈ Rn1 ,

εẋ2 = g(x1, x2, ε), x2(0) = x20, x2 ∈ Rn2 ,
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for 0 < ε� 1 and both functions f(x1, x2, 0), g(x1, x2, 0) are
well defined. With these conditions, if we are only interested
in the slow time-scale dynamics (i.e. x1), we can write
the reduced model for this system described by the set of
differential equations above. Then,

˙̂x = f(x̂, h(x̂), 0) x̂(0) = x10, x̂ ∈ Rn1 ,

describe the fast dynamics of the system where x2 = h(x1) is
called the slow manifold. If the eigenvalues of the Jacobian
obtained by linearizing g(x1, x2) with respect to x2 on the
slow manifold have negative real part, then there exist positive
constants ε∗ and M such that

‖x1 − x̂‖ ≤Mε, ‖x2 − h(x̂)‖ ≤Mε.

provided ε < ε∗. Hence, the reduced model converges locally
to the full model in the limit.

Proof. See [26].

In the model reduction algorithm that we present in the
next section, we use the following definition for the error in
reduction and the sensitivity of the error.

Definition 4. We define the error in reduction for the output
yi as ei = yi − ŷi for all i = 1, 2, ..., k. We also define the
sensitivity of this error with respect to the model parameter
θj ∈ Θ as seij = ∂ei

∂θj
for all j = 1, 2, ..., p.

We formulate the desired properties of the reduced models
with a view towards how we would like to use these reduced
models in design and analysis of synthetic biological circuits.
There are two major ways in which reduced models are
useful. Firstly, we would like to have simple models that
represent the design of a circuit reasonably well so as to use
these models to get insights about and improve the design
of the various components of the circuit. Secondly, since
it is often the case for biological circuits that we can only
observe a few states (for e.g. fluorescent outputs), hence,
models are often non-identifiable. Reduced models with lower
number of states and lumped parameters would decrease the
number of non-identifiable parameters in a model. With these
applications in mind, we will formulate our assumptions
accordingly for the model reduction algorithm that we develop.

Given the dynamics of a full model, our objective is
to minimize the weighted norm of the error e (as in
Definition 4) for all time. But, if for a given model we
have multiple reduced models that satisfy the desired error
tolerance, we would like to have a reduced model that is
robust to the uncertainties in the model parameters. We would
also like the reduced model to have the least number of states
and parameters, to the extent possible. The model reduction
algorithm presented in this paper takes into account all of
these objectives.

III. RESULTS

A. Linear dynamics

Consider the case when the dynamics of the full model are
linear of the following form,

ẋ = A(Θ)x, x(0) = x0,

and we want to construct,

˙̂x = Â(Θ̂)x̂, x̂(0) = x̂0,

where we assume that A and Â are stable (A ∈ Rn×n and
Â ∈ Rn̂×n̂) and dependent on the parameters. For outputs, we
have y = Cx and ŷ = Ĉx̂. To construct the reduced models,
we can choose the states that we would like to collapse and
replace their dynamic equation by an algebraic relationship
and create a vector of all such collapsed state variables xc.
This procedure to obtain model reduction is similar to the
singular perturbation based model reduction in Theorem 1.
We can write

x = T

[
x̂
xc

]
=
[
T1 T2

] [ x̂
xc

]
,

where T is a permutation matrix consisting of only zeros and
ones with the condition that there can only be one non-zero
element in a row and a column. Note that here T1 ∈ Rn×n̂
and T2 ∈ Rn×(n−n̂). With this structure for T , we ensure
that the states do not lose their meaning in the reduced model
and reduced states are a strict subset of the states of the full
model. The model reduction problem then is that of choosing
the matrix T so that the error in reduction is minimized and the
reduced model is robust to parametric uncertainties. Towards
that end, we will first consider only the minimization of the
two norm of the error for all time. We will use the results
from [28] for this case. Subsequently, we will extend these
results to improve the model reduction algorithm so that the
performance of the reduced models is robust to uncertainties
in parameters.
Define x̄ =

[
x x̂

]T
, then we can write e from Definition 4

as e =
[
C −Ĉ

]
x̄

∆
= C̄x̄. We can write the dynamics of x̄,

˙̄x =

[
A 0

0 Â

]
x̄ := Āx̄.

Our objective is to minimize ‖e‖22 =
∫∞

0
eT (t)e(t)dt from an

initial condition x̄0 =

[
x0

x̂0

]
.

Theorem 2. Suppose that there is a matrix P = PT � 0
that solves the continuous-time Lyapunov equation for the
augmented system, ĀTP + PĀ + C̄T C̄ = 0, then the norm
of the error in reduction can be upper bounded by the largest
eigenvalue of a matrix Q,

max
‖x̄0‖22=1

‖e‖22 = max (λQ) ,

where

Q =

[
TT1 P11T1 + TT1 P12 + P21T1 + P22 T1P11T2 + P21T2

TT2 P11T1 + TT2 P12 TT2 P11T2

]
,
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where we partition P as,

P =

[
P11 P12

P21 P22

]
,

so that P11 ∈ Rn×n and P22 ∈ Rn̂×n̂.

Proof. See [28].

The above theorem gives us an upper bound on the error in
model reduction and can be formulated as an optimization
problem to solve for the “best” reduced model out of all
possible permutation matrices T . With the next theorem,
we will extend this result to improve the model reduction
algorithm so that we are able to choose the reduced models
that are least sensitive to uncertainties in parameters. We begin
with a lemma that gives us the dynamics of the sensitivity of
the error, which we then use in the theorem that follows that
gives the main result for minimization of the sensitivity of the
error for the linear case.

Lemma 2. The sensitivity of error (Definition 4) can be
described as an output of the linear dynamical system of the
augmented sensitivity vector.

˙̄S = ĀS̄ +

(
∂Ā

∂θ
x̄

)
,

where S̄ =

[
S

Ŝ

]
, then the sensitivity of the error is given by,

Se = C̄S̄.

Proof. Using the results from lemma 1 for S̄,

Ṡ =
∂Ax

∂θ

Ṡ = AS +
∂A

∂θ
x.

Similarly,

˙̂
S = ÂŜ +

∂Â

∂θ
x̂,

which gives S̄ = ĀS̄ +
(
∂Ā
∂θ x̄

)
and

Ṡe =
∂

∂θ
(CAx))− ∂

∂θ

(
ĈÂx̂)

)
.

Simplifying, we get the desired result, Se = C̄S̄ and Ṡe =

C̄ ˙̄S.

For the next step of our algorithm, our goal is to minimize
‖Se‖22 =

∫∞
0
STe (t)Se(t)dt. From computational point of

view, if we were to set out to implement this we would
have to perform the sensitivity analysis of the full model and
all possible reduced models for all time to get S̄ and then
use the previous lemma to associate the error sensitivity cost
with each reduced model. Clearly, this procedure would be
computationally very inefficient. The next theorem gives us a
result to simplify this computation by giving a simpler way to
get an upper bound on the norm of the sensitivity of the error.

We can use the results of this theorem to compute this bound
for all possible reduced models and then make a conclusion
about the best reduced model along with the results obtained
for the minimization of the error.

Theorem 3. Suppose that there is a matrix P = PT � 0 that
solves the continuous time Lyapunov equation ĀTP + PĀ =
−C̄T C̄, then the norm of the sensitivity of the error can be
upper bounded as follows,

‖Se‖22 ≤ λmax(P ) + 2N max
t

∥∥∥∥∥
[
x̂
xc

]T
M̄

[
∂x̂
∂θ

∂xc

∂θ

]∥∥∥∥∥
2

,

where N is a positive constant, and

M̄ =

[
M11 M12

M21 M22

]
, P =

[
P11 P12

P21 P22

]
,

M11 = TT1
∂A

∂θ

T

P11T1+TT1
∂A

∂θ

T

P12+
∂Â

∂θ

T

P21T1+
∂Â

∂θ

T

P22,

M12 = TT1
∂A

∂θ

T

P11T2 +
∂Â

∂θ

T

P21T2,

M21 = TT2
∂A

∂θ

T

P11T1 + TT2
∂A

∂θ

T

P12,

M22 = TT2
∂A

∂θ

T

P11T2,

where M11 ∈ Rn̂×n̂ and M22 ∈ Rn̂×(n−n̂).

Proof. We will prove this theorem in the more general case
of nonlinear dynamics in the next section. The proof for the
linear case will follow as a special case.

B. Nonlinear dynamics

For error minimization in the case of nonlinear dynamics, we
no longer have the simple analytical results as in Theorem 2.
For networked systems with large n, i.e. for models with
a large number of states the combinatorial procedure of
forming possible reduced models and then calculating the
error in reduction will be an inefficient algorithm with
exponential time-complexity. A greedy algorithm method
based on SOSTOOLS [29] to bound the error in reduction for
such systems is given in [28]. It gives sub-optimal results and
an approximate bound on the error but it is computationally
efficient for such systems. However, for our application, we
consider minimal ODE models that use Hill functions to
approximate the reaction model dynamics in a way that is
suitable for experimental design and analysis. With these
models, we often do not have a large n. Moreover, usually,
the states are directly related to the different components of
the circuit that we are designing and hence it would not be
wise to take a greedy algorithm approach with these models.
So, for system dynamics where n is not large (< 20), we can
computationally calculate the error in model reduction for
all possible reduced order models in a brute force way. We
discuss this in more detail later when we present the algorithm.
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The second part of the model reduction method that
we presented for the linear case is the minimization of the
sensitivity of the error in model reduction. Using this, we can
identify the reduced models that have robust performance in
the presence of parametric uncertainties. For the nonlinear
dynamics, we have similar results as obtained earlier for
the linear case that we now present beginning with the next
lemma that shows the sensitivity of error as the output of the
augmented sensitivity system.

Lemma 3. The sensitivity of error as defined in Definition 4
for the nonlinear dynamics can be described as an output
of the linear dynamical system of the augmented sensitivity
vector,

˙̄S = J̄ S̄ + Z̄,

where J̄ =

[
J 0

0 Ĵ

]
and Z̄ =

[
Z

Ẑ

]
. The error in sensitivity is

then given by,
Se = C̄S̄.

We can also write the dynamics of the sensitivity of the error
Ṡe = C̄J̄ S̄ + C̄Z̄.

Proof. The proof follows similar to the proof for Lemma 2
where now we have the Jacobians (J and Ĵ) of the system
dynamics and the matrices (Z and Ẑ) as defined in Section II
instead of A, Â and ∂A

∂θ ,
∂Â
∂θ .

It is possible to use this lemma to implement an algorithm
that solves for the sensitivity of the error by integrating the
error sensitivity dynamics equations along with the system
dynamics. However, with the next theorem we show a result
that gives a method to upper bound the norm of the sensitivity
of the error that can be computationally more efficient than the
brute force sensitivity analysis of all possible reduced order
models.

Theorem 4. Suppose that there is a matrix P = PT � 0 that
solves the continuous-time Lyapunov equation for the system
matrix J̄ in the sensitivity system in Lemma 3, i.e., J̄TP J̄ +
P J̄ = −C̄T C̄, then the norm of the sensitivity of the error
for the nonlinear model reduction can be upper bounded as
follows for some N > 0,

‖Se‖22 ≤ λmax(P ) + 2N max
t

∥∥∥∥∥
[∂f
∂θ

∂f̂
∂θ

]
Qs

[
∂x̂
∂θ

∂xc

∂θ

]∥∥∥∥∥
2

, (1)

where we partition P ,

P =

[
P11 P12

P21 P22

]
,

for P11 ∈ Rn̂×n̂, P22 ∈ R(n−n̂×(n−n̂) and

Qs =

[
P11T1 + P12 P11T2

P21T1 + P22 P21T2

]
.

Proof. See Appendix A.

C. Algorithm
In this section, we present a brute force algorithm based on
the results presented in the previous section to compute the
sensitivity of the error efficiently for all reduced models. Note
that the set R in the algorithm is the set of all possible
combinations of states that we attempt to reduce. This set is
created by simply creating combinations of all states but also
ensuring that the states corresponding to the outputs are never
collapsed. For the purpose of implementation, the permutation
matrix T in the algorithm consists of indices of states that
will be collapsed (as opposed to the 0s and 1s as used above
for the theoretical results, where 1 corresponded to the states
that were collapsed). The time-complexity of the algorithm is

Algorithm 1: Automated model reduction algorithm

GetReducedModel (SBML model, C, tole, tolSe):
x̂← [ ], xc ← [ ], f̂ ← [ ], fc ← [ ]
R← Set of all T ’s
f, x← Convert SBML model to symbolic model
for j = 1:length(R) do

T = R[j]
for i = 1:length(x) do

if i in T then
xc[i]← x[i]
fc[i]← f [i]

else
x̂[i]← x[i]

f̂ [i]← f [i]
end

end
for k = 1:length(xc) do

for k = 1:length(f̂ ) do
f̂ [k]← Solution of fc[i] = 0 for xc[i]

end
end
Solve ODEs for x and x̂ and compute y and ŷ
e[j]← ‖y − ŷ‖2
Se[j]← ‖Se‖2 from equation (1)

end
if min(e) < tole and min(Se) < tolSe then

index min = index of min(e)
reduced model = f̂ [index min]

else
reduced model = None

end
return reduced model

exponential with n, the size of the full model, since we search
for the best reduced model over all possible combinations
of the matrix T . However, it is possible to implement the
algorithm efficiently when n is not large, that is for system
dynamics that are not networked dynamics with a large number
of states. Particularly, an estimate of the number of states of
the full model for which it would be possible to use this
algorithm would be n < 20. For our application of model
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reduction of synthetic biological circuit models, this algorithm
is suitable, since we often have coarse-grained models that use
Hill function modeling [1] to obtain simple enough models that
describe the system dynamics effectively. We will demonstrate
the utility of the algorithm in the next section with a simple
example first and then also for a circuit that implements
population density and composition control of two cell strains
in a consortium.

IV. EXAMPLES

We will start by considering a simple example of a toggle
switch model.

A. Toggle Switch

1) Model: The toggle switch is a two species system where
both proteins A and B repress each other. We consider the
following toggle switch system where proteins TetR and LacI
repress each other’s expression. LacI binds with the promoter
for protein TetR to prevent the transcription of the TetR gene to
form its mRNA and hence repressing the production of protein
TetR. Similarly, TetR binds with the promoter of the LacI
gene to prevent its transcription to form mRNA, which in turn
causes the repression in the expression of LacI protein. This
simple two species transcriptional regulation system is shown
in Fig. 1. It shows bistability — has two stable equilibrium

Fig. 1. A two species toggle switch where LacI and TetR repress each other’s
expression. We can control the strength of each repression using inducers,
which effectively control the values of the parameters bT and bL in the model
given in equation (2)

points and one unstable equilibrium [1]. Here we consider
one of the stable equilibrium points and attempt to get a
reduced model around this equilibrium. The derivation for the
nonlinear ODEs of this system is given in [1]. The final model
is

ṁT =
KbnT

bnT + pnL
− dTmT ,

ṁL =
KbnL

bnL + pnT
− dLmL, (2)

ṗT = βTmT − δT pT ,
ṗL = βLmL − δLpL.

If we consider the two proteins as output species then

C =

[
0 0 1 0
0 0 0 1

]
.

According to the algorithm proposed in the previous section,
the possible number of reduced models will be three. The cor-
responding list R will be {(1, 3, 4), (2, 3, 4), (3, 4)} where 1

corresponds to the state mT and so on for the other three
states. For a particular set of parameters where βi, δi � bi, di,
we can express the model in equation (2) in the singular
perturbation theory framework defined earlier in Theorem 1.
From singular perturbation theory based reduction, we get the
following reduced model (See [1])

f̂ =

 βTKb
n
T

dT (bnT +p̂nL) − δT p̂T
βLKb

n
L

dL(bnL+p̂nT ) − δLp̂L

 .
We can use this as a proposed reduced model to validate
with the algorithm and the theory we developed in this paper.
Particularly, we will see how the conditions when this reduced
model is valid imply that the sensitivity of the error in
reduction converges to zero. The singular perturbation based
reduction is a special case of the model reduction approach
using the algorithm presented in the previous section. For this
special case, we will see that the error sensitivity with respect
to parameters takes a simple form that we can evaluate.

e1
∆
= pT − p̂T , e2

∆
= pL − p̂L,

fm1

∆
=

KbnT
bnT + pnL

, fm2

∆
=

KbnL
bnL + pnT

.

For a parameter θj ∈ Θ and i = 1, 2, we have,

Sj =

[
∂mi

∂θj
∂pi
∂θj

]
, Ŝj =

[
∂p̂i
∂θj

]
,

Zj =

[
∂
∂θj

(fm(y)− dimi)

∂
∂θj

(βimi − δipi)

]
, Ẑj =

[
∂
∂θj

(βifm(ŷ)− δip̂i)
]
,

J =

[
−di ∂fm

∂pi

βi −δi

]
, Ĵ =

βi
di

∂fm

∂p̂i
− δi.

Now, using Lemma 3, we get,

C̄J̄ S̄ = βi
∂

∂θj

(
mi −

fm(ŷ)

di

)
− (δi + 1)

∂

∂θj
(pi − p̂i) .

Also from the Lemma 3, for θj = βi, we have C̄Z̄ = mi− fm
di

and

Ṡe =

(
mi −

fm
di

)
+ βi

∂
(
mi − fm

di

)
∂βi

− δi
∂ (pi − p̂i)

∂βi
,

⇒ Ṡe =

(
mi −

fm
di

)
+ βi

∂
(
mi − fm

di

)
∂βi

− δiSe. (3)

For θj = δi, we have, C̄Z̄ = −(pi − p̂i),

Ṡe = −(pi − p̂i) + βi
∂
(
mi − fm

di

)
∂δi

− δi
∂ (pi − p̂i)

∂δi
,

⇒ Ṡe = −(pi − p̂i) + βi
∂
(
mi − fm

di

)
∂δi

− δiSe. (4)
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For θj = di, C̄Z̄ = βifm
d2i

,

Ṡe =
βifm
d2
i

+ βi
∂
(
mi − fm

di

)
∂di

− δi
∂ (pi − p̂i)

∂di
,

⇒ Ṡe =
βifm
d2
i

+ βi
∂
(
mi − fm

di

)
∂di

− δiSe. (5)

Hence, using equations (3), (4) and (5), the sensitivity of the
error in model reduction converges to zero if,

mi =
fm(ŷ)

di
⇒ mT =

KbnT
dT (bnT + pnL)

, mL =
KbnL

dL(bnL + pnT )
,

(6)
and trivially, the other condition is that the outputs are alike
y = ŷ.

We run the full model in equation (2) through the automated
model reduction algorithm with the desired tolerance levels
for the error and the sensitivity of the error. The reduced
model returned by our algorithm is given below. It is evident
that in this case the reduced model is the same as that given
by the singular perturbation theory:

˙̂pT =
βTKb

n
T

dT (bnT + p̂nL)
− δT p̂T

˙̂pL =
βLKb

n
L

dL(bnL + p̂nT )
− δLp̂L.

However, if we tune the error margins and desire lower
tolerance levels then the algorithm returns a different reduced
model which would be one with additional states. It would
be difficult to derive such a reduced model using singular
perturbation approach. Hence, we can use the automated
model reduction algorithm to control the tradeoff between the
number of states and error in model reduction along with the
sensitivity of the error to find reduced models that would be
otherwise elusive to find using other existing methods. We
will see with the next example that minimizing the error in
reduction is not enough as it returns a set of reduced models
that all have similar error bounds. We will use the automated
model reduction algorithm to find out the reduced model that
has the best robust performance in presence of parametric
uncertainties to choose one final reduced model out of the
multiple possibilities we might have when minimizing only
the error.

B. Population and composition control circuit

In this example, we consider a synthetic circuit designed to
control a consortium of two different cell strains. Two coupled
feedback controllers are designed using various components
that control the total population density of the consortium to a
desired value and to control the fraction of the two cell types
in the consortium. In [30], the theory behind the design of
these controllers has been discussed and [31] discusses the
details of the implementation of this circuit. In this circuit,
each cell in the consortium promotes the production of a toxin
that kills itself. At the same time, each cell also signals the

production of anti-toxin in the cells of the other type using
signaling molecules that can transport over from one cell
to other. The production of anti-toxin rescues the cell from
killing itself by binding the toxin in that cell. Amount of two
different inducers can be used to control the expression of
these signaling molecules. There are two different fluorescent
output readouts corresponding to each cell type. Hence, this
system has two outputs (C1 and C2 in the model).
1) Mathematical model: The model dynamics can be de-
scribed by the ODE model given in equation (7). The descrip-
tion of the model species and the model parameters are given
in Appendix B. For more details on the parameter values and
description, the reader is referred to [31].

dT1

dt
= βS1

(
lS1 +

S2
1

KS1 + S2
1

)
− kbA1T1 − dTT1

dA1

dt
= KrβS2

(
lS2

+
S2

2

KS2
+ S2

2

)
− kbA1T1 − dTA1

dS1

dt
= βtac

(
ltac +

I2

Ktac + I2

)
C1 − dSS1

dS2

dt
= βsal

(
lsal +

L2

Ksal + L2

)
C2 − dSS2

dT2

dt
= βS2

(
lS2 +

S2
2

KS2 + S2
2

)
− kbA2T2 − dTT2 (7)

dA2

dt
= KrβS1

(
lS1 +

S2
1

KS1
+ S2

1

)
− kbA2T2 − dTA2

dC1

dt
= kC

(
1− C1 + C2

Cmax

)
C1 − dcC1

T1

Ktox + T1
− dC1

dC2

dt
= kC

(
1− C1 + C2

Cmax

)
C2 − dcC2

T2

Ktox + T2
− dC2.

2) Model reduction: For the model of this system, using
singular perturbation theory to reduce the model is not possible
as it is not clear how this model can be expressed in the
singular perturbation framework as defined in Theorem 1.
We will show how the automated model reduction developed
earlier can be used to reduce the model to get a reduced model
that has 4 states, down from a total of 8 in the full model. As
discussed earlier, this model reduction could be beneficial in
both the design guide for the circuit and the analysis using
the model. With the four state reduced model, we can make
easier and direct connections with the tunable parameters in
the system since there are only two inputs and two outputs in
the system. Using simulations, we can study the response of
the system for different parameters and make connections with
the experimental setup to guide the design of the experiment.
Moreover, the control functions implemented in this circuit
can be conceptually achieved in multiple ways. For instance,
in the circuit described above, both cells kill self and rescue
the other. There are other possible configurations that could
implement similar control functions in principle (repressing
growth/promoting death of the other cell etc.), we need to scan
over all such possibilities to determine which one could be
implemented experimentally to give the desired results. Using
reduced models for such purpose is important as working
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with complicated models can be disconnected from the control
functions whereas with a reduced model this is not the case as
much. The advantages of using a reduced model for parameter
identification are clear, since, we only have two measurements
and 24 parameters in the full model. However, as we will
see in the final reduced model there are only 4 states and 13
parameters. Hence, the number of non-identifiable parameters
will be much lesser, giving better estimation of parameters.
Using the automated model reduction algorithm for this model,
we get four different reduced order model (all with 4 states)
that perform similar on the normed error metric. The results
are presented in Fig. 2. Running the algorithm with both

Time

To
ta

l 
p
o
p
u
la

ti
on

     Full model
---   Reduced models  

Fig. 2. Control of total population density of the consortium to a desired level
compared for the full model and the different reduced models obtained when
only considering the normed error metric. It is clear that all of the four models
have similar performance and so it is not clear from this metric what the final
reduced model choice should be. Note that the total population response of
two of the reduced models are stacked on top of others in this figure.

the minimization of sensitivity of error metric (Fig. 3) and
the minimization of the normed error, we can find out the
following reduced model that has robust performance in total
population density control.

f̂1 =

(
lS1 +

βS1x
2
7

x2
7 +KI0

)
− dTx1

−
βS2kbx1

(
Ka0lS2 + x2

8

)
kbx1x2

8 +Ka0kbx1 + dTx2
8 +Ka0dT

,

f̂2 =

(
lS2 +

βS2x
2
8

x2
7 +Ka0

)
− dTx5

−
βS1kbx5

(
KI0lS1 + x2

7

)
kbx5x2

7 +KI0kbx5 + dTx2
7 +KI0dT

,

f̂3 = kc

(
1− x7 + x8

Cmax

)
x7 −

dcx1x7

x1 +Ktox
− dx7, (8)

f̂4 = kc

(
1− x7 + x8

Cmax

)
x8 −

dcx5x8

x5 +Ktox
− dx8.

Here x̂ =
[
x1 x5 x7 x8

]T
and the lumped parameters

are derived in Appendix C.
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Fig. 3. (top) The total sensitivity of output y1, that corresponds to the
population of C1, with time for all four reduced models. The legend indicates
the state indices that form the reduced model state vector x̂. (bottom) The
total sensitivity of output y2, that corresponds to the total population of C2,
with time for all four reduced models. Observe that for both outputs we see
that the reduced model with x̂ =

[
x1 x5 x7 x8

]T has the lowest
total sensitivity. Note that the total sensitivity of an output is the sum of the
sensitivities of the output with respect to all model parameters. For detailed
sensitivity analysis, refer to the Appendix C.

V. CONCLUSION

We proposed an algorithm based on quasi-steady state ap-
proximation model reduction that collapses the dynamics of
a subset of states of the full model to algebraic relationships.
Motivated by applications to reduce synthetic biological circuit
models, we developed a structured model reduction algorithm
that minimizes the error and its sensitivity between the full
model and the reduced model. The algorithm returns a reduced
model that not only has similar output responses as the full
model but also is robust to parametric uncertainties. Towards
that end, we extend the results of [28] by including sensitivity
of error in the objective cost to search for reduced models.
We show using an example of a toggle switch circuit how
this additional constraint relates to the singular perturbation
theory based model reduction. Moreover, using an example of
a circuit designed to control the population and composition of
a consortium consisting of two cell strains we show that error
minimization as the only constraint does not give satisfactory
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results in finding a reduced order model that best represents
the full model. For this example, we show the application
of our algorithm that minimizes the sensitivity of the error
along with the error itself to return a final reduced model that
has robust performance to parametric uncertainties. We also
give theoretical results that bound the sensitivity of the error
both for autonomous linear and nonlinear dynamics with linear
output relationships. A direct extension of this work would be
to derive results for more general system dynamics with inputs
and nonlinear output relationships. It would also be interesting
to look for ways to improve the computational efficiency of
our algorithm, both by improving the theoretical results and
by improving the algorithmic implementation.
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APPENDIX

A. Proof of Theorem 4

Recall that
˙̄S = J̄ S̄ + Z̄,

Se = C̄S̄.

Assume that we want to bound the norm of the sensitivity of error for a finite time until which the system reaches steady state.
Let us denote the final time by N . It can be chosen to be a time after which the system states have reached their equilibrium
values. We have

‖Se‖22 =

∫ N

0

S̄C̄T C̄S̄dt.

Given that there exists a P = PT � 0 such that J̄TP + P J̄ = −C̄T C̄, consider a function V (S̄) = S̄TPS̄. Differentiating
this function with respect to time, we have using Lemma 3,

dV

dt
= S̄T (J̄TP + P J̄)S̄ + (Z̄TPS̄ + S̄TPZ̄).

Now, integrating the expression from 0 to N and then substituting the expression for ‖Se‖22,

‖Se‖22 =

∫ N

0

−dV
dt
dt+

∫ N

0

(Z̄TPS̄ + S̄TPZ̄)dt,

‖Se‖22 = −V (S̄N ) + V (S̄0) +

∫ N

0

(Z̄TPS̄ + S̄TPZ̄)dt,

Since, P is a positive semidefinite matrix, V will be a non-negative function. Using this fact, we have the inequality

‖Se‖22 ≤ S̄
T
0 PS̄0 +

∫ N

0

(Z̄TPS̄ + S̄TPZ̄)dt. (9)

For the first part of this equation, since at time zero the sensitivity coefficients are all zero or equal to 1 when the initial
condition is dependent on parameters, we can write ∣∣S̄T0 PS̄0

∣∣ ≤ λmax(P ) (10)

where we used We will now evaluate the second part in equation (9),∫ N

0

(
Z̄TPS̄ + S̄TPZ̄

)
dt ≤

∥∥∥∥∥
∫ N

0

(
Z̄TPS̄ + S̄TPZ̄

)
dt

∥∥∥∥∥
2

≤
∫ N

0

∥∥(Z̄TPS̄ + S̄TPZ̄
)∥∥

2
dt

≤ 2N max
t

∥∥Z̄TPS̄∥∥
2
. (11)

Recall that we have
x = T

[
x̂
xc

]
, (12)

where T is the permutation matrix, x̂ is the state vector for the reduced model and xc is the vector of all collapsed states as
defined in Section III. Using the definition of the augmented sensitivity system from Lemma (3), we can now write

S̄ =

[
S

Ŝ

]
=

[
T1

∂x̂
∂θ + T2

∂xc

∂θ

∂x̂
∂θ

]
, Z̄ =

[∂f
∂θ

∂f̂
∂θ

]
.

Substituting in equation (11),

Z̄TPS̄ =

[∂f
∂θ

∂f̂
∂θ

]T [
P11T1

∂x̂
∂θ + P11T2

∂xc

∂θ + P12
∂x̂
∂θ

P21T1
∂x̂
∂θ + P21T2

∂xc

∂θ + P22
∂x̂
∂θ

]
,

=

[∂f
∂θ

∂f̂
∂θ

]T [
P11T1 + P12 P11T2

P21T1 + P22 P21T2

][ ∂x̂
∂θ

∂xc

∂θ

]
.
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Hence, ∫ N

0

(
Z̄TPS̄ + S̄TPZ̄

)
dt ≤ 2N max

t

∥∥∥∥∥∥
[∂f
∂θ

∂f̂
∂θ

]T
Qs

[
∂x̂
∂θ

∂xc

∂θ

]∥∥∥∥∥∥
2

,

where Qs is as defined in the Theorem. Combining the two parts and substituting in equation (9), we get the desired result.
Substituting f = Ax and f̂ = Âx̂, we can prove Theorem 3 by using equation 12 and regrouping terms as desired.

B. Population and composition control circuit details

Strain A Strain B

Seq

ccdB

AHL1I

AHL1R

AHL2R

AHL2R

AHL2I

ccdB

Seq

AHL1R

1

2

Fig. 4. Schematic of the composition and population density control synthetic biological circuit of a two-member bacterial community. Figure and caption
adapted from [31] with permission. It is a symmetric circuit motif in its two cells to create cis-acting negative feedback loops on each member and trans acting
rescues from negative feedback from each member to the other. Negative feedback and sequestration rescue are effected by ccdB toxin (Ti in the model)
and its ccdA antitoxin (Ai), respectively. Signals S1 and S2 are chemical inducers that activate transcription of AHL synthase genes. The observations are
fluorescent outputs corresponding to the population of each cell strain C1 and C2. Note here that the Strain A corresponds to C1 and Strain B to C2.

TABLE I
MODEL PARAMETERS

S.no. Parameters Description Unit Guess
1 βS1 Max transcription rate of Lux inducible promoter con./hr 6
2 lS1

Leak constant of Lux inducible promoter N/A 2e-3
3 KS1

Activation constant of Lux inducible promoter con. 430
4 kb Binding rate between toxin and anti-toxin 1/con.hr 30
5 βS2

Max transcription rate of Cin inducible promoter con./hr 6
6 lS2

Leak constant of Cin inducible promoter N/A 2e-3
7 KS2

Activation constant of Cin inducible promoter con. 30
8 βtac Max transcription rate of inducible promoter Ptac con./hr 19.8e-3
9 ltac Leak constant of inducible promoter Ptac N/A 1.5e-3
10 Ktac Activation constant of inducible promoter Ptac con. 1.4e5
11 βsal Max transcription rate of inducible promoter Psal con./hr 14.4e-3
12 lsal Leak constant of inducible promoter Psal N/A 2.1e-4
13 Ksal Activation constant of inducible promoter Psal con. 4.3e4
14 kC Cell Division rate 1/hr 0.6
15 Cmax Population cap conc. 5500
16 dc Cell death rate 1/conc.hr 0.8
17 S2 Max induced Cin concentration con. 100
18 I Max induced IPTG concentration con. 1e6
19 S1 Max induced Lux concentration con. 1e3
20 Sal Max induced Sal concentration con. 1e5
21 Ktox Repression coefficient of toxin to proliferation con. 5
22 dS Degradation constant of AHLs 1/hr 0.1
23 d Basal degradation of each cell 1/hr 0.01
24 dT Basal degradation of toxins and antitoxins 1/hr 0.01
25 Kr Ribosome scaling factor N/A 5
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TABLE II
MODEL SPECIES

Species Description
T1 Average toxin (ccdB) con. in C1 population
A1 Average anti-toxin (ccdA) con. in C1 population
S1 Signal 1 (S1), Lux con. in consortia
S2 Signal 2 (S2), Cin con. in consortia
T2 Average toxin (ccdB) con. in C2 population
A2 Average anti-toxin (ccdA) con. in C2 population
C1 Cell type 1 (C1) population count
C2 Cell type 2 (C2) population count

C. Model reduction of population control circuit

When the dynamics for x2, x3, x4, x6 are collapsed into algebraic relationships, i.e. x̂ =
[
x1 x5 x7 x8

]T
, we get the

following reduced order model,

f̂1 = βS1

 β2
lacx

2
7

(
I2llac + I2 +Klacllac

)2
d2
S (I2 +Klac)

2
(
KS1 +

β2
lacx

2
7

d2S(I2+Klac)2
(I2llac + I2 +Klacllac)

2
) + lS1



−
βS2kbx1

(
KS2lS2 +

β2
tetlS2x

2
8

d2S(Ktet+atc2)2

(
Ktetltet + atc2ltet + atc2

)2
+

β2
tetx

2
8

d2S(Ktet+atc2)2

(
Ktetltet + atc2ltet + atc2

)2)
KS2dT +KS2kbx1 +

β2
tetdT x

2
8

d2S(Ktet+atc2)2
(Ktetltet + atc2ltet + atc2)

2
+

β2
tetkbx1x2

8

d2S(Ktet+atc2)2
(Ktetltet + atc2ltet + atc2)

2
− dTx1

f̂2 = −
βS1kbx5

(
KS1lS1 +

β2
laclS1x

2
7

d2S(I2+Klac)2

(
I2llac + I2 +Klacllac

)2
+

β2
lacx

2
7

d2S(I2+Klac)2

(
I2llac + I2 +Klacllac

)2)
KS1dT +KS1kbx5 +

β2
lacdT x

2
7

d2S(I2+Klac)2
(I2llac + I2 +Klacllac)

2
+

β2
lackbx5x2

7

d2S(I2+Klac)2
(I2llac + I2 +Klacllac)

2

+ βS2

 β2
tetx

2
8

(
Ktetltet + atc2ltet + atc2

)2
d2
S

(
KS2 +

β2
tetx

2
8

d2S(Ktet+atc2)2
(Ktetltet + atc2ltet + atc2)

2
)

(Ktet + atc2)
2

+ lS2

− dTx5,

f̂3 = −dx7 −
dcx1x7

Ktox + x1
+ kc

(
1− x7 + x8

Cmax

)
x7,

f̂4 = −dx8 −
dcx5x8

Ktox + x5
+ kc

(
1− x7 + x8

Cmax

)
x8.

Lumping parameters together, we get

f̂1 = −dTx1 −
βS2kbx1

(
Ka0lS2 + x2

8

)
kbx1x2

8 +Ka0kbx1 + dTx2
8 +Ka0dT

+

(
lS1 +

βS1x
2
7

x2
7 +KI0

)
, Kta

∆
=
(
Ktetltet + atc2ltet + atc2

)2
,

f̂2 = −dTx5 −
βS1kbx5

(
KI0lS1 + x2

7

)
kbx5x2

7 +KI0kbx5 + dTx2
7 +KI0dT

+

(
lS2 +

βS2x
2
8

x2
7 +Ka0

)
, KlI

∆
=
(
I2llac + I2 +Klacllac

)2
,

f̂3 = − dcx1x7

x1 +Ktox
+ kc

(
1− x7 + x8

Cmax

)
x7 − dx7, Ka

∆
=
(
Ktet + atc2

)2
,KI

∆
=
(
Klac + I2

)2
,Ka0

∆
=
KS2

Kβa
,

f̂4 = − dcx5x8

x5 +Ktox
+ kc

(
1− x7 + x8

Cmax

)
x8 − dx8, Kβa

∆
=
β2
tetKta

d2
sKa

,KβI
∆
=
β2
lacKlI

d2
sKI

,KI0
∆
=
KS1

KβI
.

As we can see we have reduced the total number of parameters in the reduced model from a total of 24 in the full model to
13 in the reduced model. Other reduced models with four states are obtained by collapsing the dynamics for (x2, x3, x4, x5),
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Fig. 5. Normalized sensitivity coefficients of the two outputs, y1 (left) and y2 (right) corresponding to x7 and x8, i.e. the population of each cell type, with
respect to the model parameters for the reduced model shown above with x̂ =

[
x1 x5 x7 x8

]T .

or (x1, x3, x4, x5), or (x1, x3, x4, x6). All four of these reduced models have four states and minimize the error metric. In
Fig. 5, we show the sensitivity analysis heatmap for the two outputs of the reduced model derived above with respect to all
model parameters. Similar heatmap plots can be obtained for all of the other reduced models, given in Fig. 6. Since it is hard
to visually get a comparison of the sensitivities from these heatmaps, we used the norm of the total sensitivity of an output
with respect to all parameters as in Fig. 3. Using this we then conclude that the reduced model in equation 8 has the lowest
sensitivity out of all the others and hence has robust performance in the presence of parametric uncertainties.
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Fig. 6. Normalized sensitivity of the two outputs, y1 and y2 corresponding to x7 and x8, i.e. the population of each cell type, with respect to the model
parameters for different reduced models. (top) We have the reduced model with x̂ =

[
x1 x6 x7 x8

]T . (bottom left) We have the reduced model with
with x̂ =

[
x2 x5 x7 x8

]T and (bottom right) we have x̂ =
[
x2 x6 x7 x8

]T . Note that the left plot is the sensitivity analysis for the output
y1 and the right is for the second output y2 in each case.
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