Angewandte
 Eine Zeitschrijt der Gesellschaft Deutscher Chemiker Chemie

Supporting Information

for
Angew. Chem. Int. Ed. Z52352
© Wiley-VCH 2003
69451 Weinheim, Germany

The Molecule-Electrode Interface in Single-Molecule Transistors

Hongbin Yu, Yi Luo, Kristen Beverly, Hsian-Rong Tseng, J. Fraser Stoddart and James R. Heath ${ }^{*}$
[*] Prof. J. R. Heath, Dr. H. Yu, Dr. Y. Luo, K. Beverly
Division of Chemistry and Chemical Engineering
California Institute of Technology, M/C 127-72
1200 East California Boulevard
Pasadena, CA 91125
E-mail: heath@caltech.edu
Prof. J. F. Stoddart, Dr. H.-R. Tseng
The California NanoSystems Institute and
Department of Chemistry and Biochemistry
University of California, Los Angeles
405 Hilgard Avenue, Los Angeles, CA 90095-1569 (USA)
E-mail: stoddart@chem.ucla.edu
[**] This work was supported by Department of Energy (DOE) and the Defense Advanced Research Projects Agency (DARPA). We acknowledge helpful discussion with Professor Hongkun Park and Wenjie Liang.

Synthesis of [2]Rotaxane $\mathrm{AR}^{2} \cdot \mathbf{4 P F} 6$ and $\mathrm{SR}_{\mathbf{~}} \cdot \mathbf{4 P F}$, and Their Precursor DumbbellShaped Compounds AD and SD.

The routes employed to synthesize the [2]rotaxane $\mathbf{A R} \cdot 4 \mathrm{PF}_{6}$ and $\mathrm{SR} \cdot 4 \mathrm{PF}_{6}$, via their respective dumbbell-shaped compounds AD and SD, are outlined in Schemes S1-S3. The aldehyde 3 (Scheme S1) was obtained in 81\% yield by reacting 4-hydroxy-3,5-diisopropyl-benzaldehyde ${ }^{[1]}$ (1) with 2-(2-chloroethoxy)ethanol (2) under alkylation conditions $\left(\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{KI} / \mathrm{DMF}\right)$ at $100^{\circ} \mathrm{C}$. Treating 3 with TsCl in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution gave the tosylate $\mathbf{4}$ which was then reacted, without purification, with NaBH_{4} in MeOH , to afford the benzyl alcohol 5 in an overall yield of 67%. Alkylation $\left(\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{LiBr} / 18 \mathrm{C} 6 / \mathrm{MeCN}\right)$ of 1-acetoxy-5-hydroxynaphthalene ${ }^{[2]}$ (6) with 5 produced the intermediate ester 7, which was subjected to saponification $(\mathrm{KOH} / \mathrm{MeOH})$ to yield the diol 8 (overall 72%).

Preparation of the [2]rotaxane $\mathbf{A R} \cdot 4 \mathrm{PF}_{6}$ (Scheme S2) is completed by alkylating $\mathbf{8}$ with the tosylate ${ }^{[4]} \mathbf{9}$ in MeCN in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{LiBr}$, and 18 C 6 to afford the alcohol 10 in 68% yield. This alcohol was converted to the dumbbell-shaped compound AD by reacting it with thioctic acid (11) under esterification conditions $\left(\mathrm{DCC} / \mathrm{DMAP} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The template-directed synthesis of the [2]rotaxane $\mathbf{A R} \cdot 4 \mathrm{PF}_{6}$ was accomplished by reacting $\mathbf{A D}$, the dicationic $\operatorname{salt}^{[3]} \mathbf{1 2} \cdot 2 \mathrm{PF}_{6}$, and $1,4-$ bis(bromomethyl)benzene (13) in DMF at RT for 10 d . The [2]rotaxane $\mathbf{A R} \cdot 4 \mathrm{PF}_{6}$ was isolated after addition of $\mathrm{H}_{2} \mathrm{O}$ in 77% yield as an analytically pure green solid after chromatography on silica gel using a $1 \% \mathrm{NH}_{4} \mathrm{PF}_{6}$ solution in $\mathrm{Me}_{2} \mathrm{CO}$ as the eluent.

The sequence steps employed in the synthesis of [2]rotaxane $\mathrm{SR} \cdot 4 \mathrm{PF}_{6}$ and its precursor dumbbell-shaped compound $\mathbf{S D}$ is summarized in Scheme S3. The aldehyde $\mathbf{1 5}$
was produced in 58% yield by alkylating 1 with the tosylate ${ }^{[4]} 14$ using conventional conditions $\left(\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{LiBr} / 18 \mathrm{C} 6 / \mathrm{MeCN}\right)$. Subsequent tosylation of $\mathbf{1 5}$ with TsCl afforded the tosylate $\mathbf{1 6}$ in 86% yield. The moderate yielding (27\%) alkylation of $\mathbf{8}$ with $\mathbf{1 6}$ was achieved in MeCN in the presence of 18 C 6 to produce the alcohol 17. A two-step reaction involving firstly a reduction using NaBH_{4} in MeOH and then an esterification (DCC/DMAP/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) of the alcohol with thioctic acid (11) converted 17 into the dumbbell-shaped compound $\mathbf{S D}$ in an overall yield of 93%. The template-directed synthesis of the [2]rotaxane $\mathbf{S R} \cdot 4 \mathrm{PF}_{6}$ was achieved in 34% yield from $\mathbf{S D}$ using the protocol already described for the preparation of $\mathbf{U R} \cdot 4 \mathrm{PF}_{6}$.

Experimental Section

General Methods: Chemicals were purchased from Aldrich and used as received. The compounds 4-hydroxy-3,5-diisopropyl-benzaldehyde ${ }^{[1]}$ (1), 1-acetoxy-5-hydroxynaphthalene ${ }^{[2]}$ (6), $\alpha, \alpha^{\prime}-[1,4$-phenylenebis (methylene)]bis(4,4'-bipyridium) bis(hexa fluorophosphate $)^{[3]}\left(\mathbf{1 2} \cdot 2 \mathrm{PF}_{6}\right)$, and the tosylates ${ }^{[4]} \mathbf{9}$ and $\mathbf{1 4}$ were all prepared according to literature procedures. Solvents were dried following methods described in the literature. ${ }^{[5]}$ All reactions were carried out under an anhydrous argon atmosphere. Thin layer chromatography (TLC) was performed on aluminum sheets coated with silica-gel 60F (Merck 5554). The plates were inspected by UV light and, if required, developed in I_{2} vapor. Column chromatography was carried out by using silica-gel 60 (Merck 9385, 230-400 mesh). Melting points were determined on an Electrothermal 9100 melting point apparatus and are uncorrected. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on either (i) a Bruker ARX500 (500 MHz and 125 MHz , respectively) or (ii) a Bruker

Avance 500 (500 MHz and 125 MHz , respectively), using residual solvent as the internal standard. Samples were prepared using $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$ or $\mathrm{CD}_{3} \mathrm{CN}$ purchased from Cambridge Isotope Labs. All chemical shifts are quoted using the δ scale, and all coupling constants (J) are expressed in Hertz (Hz). Fast atom bombardment (FAB) mass spectra were obtained using a ZAB-SE mass spectrometer, equipped with a krypton primary atom beam, utilizing a m-nitrobenzyl alcohol matrix. Cesium iodide or poly(ethylene glycol) were employed as reference compounds. Electrospray mass spectra (ESMS) were measured on a VG ProSpec triple focusing mass spectrometer with MeCN as the mobile phase. Microanalyses were performed by Quantitative Technologies, Inc.

Alcohol 3. A solution of 4-hydroxy-3,5-diisopropylbenzaldehyde (1) ($2.06 \mathrm{~g}, 10 \mathrm{mmol}$), 2-(2-chloroethoxy)ethanol (2) (1.31 g, 11 mol$), \mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{~mol})$ and $\mathrm{KI}(20 \mathrm{mg})$ in DMF was stirred at $100^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature, DMF was removed in vacuo and the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right.$: EtOAc/hexane, 1/1) to give the alcohol $3(2.38 \mathrm{~g}, 81 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 2.25(\mathrm{bs}, 1 \mathrm{H}), 3.38$ (septet, $J=6.9 \mathrm{~Hz}, 2$ H), $3.70(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{t}, J$ $=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 2 \mathrm{H}), 9.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=23.7,26.4$, $61.8,70.2,72.5,73.9,126.2,133.1,143.0,158.4,191.8 ;$ MS (EI) m / z (\%) 295 (37) $[M+1]^{+}$.

Benzyl Alcohol 5. A solution of the alcohol $3(1.62 \mathrm{~g}, 5.5 \mathrm{mmol}), \mathrm{TsCl}(1.14 \mathrm{mg}, 6.0$ mmol), DMAP (10 mg) and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was
stirred for 16 h at room temperature. After addition of $\mathrm{SiO}_{2}(7.0 \mathrm{~g})$, the mixture was concentrated and the residue was purified by a short-path column $\left(\mathrm{SiO}_{2}\right.$: EtOAc/hexane, 1:4) to afforded the tosylate 4 as a colorless oil. The tosylate was then dissolved in $\mathrm{MeOH}(80 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(380 \mathrm{mg}, 10 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for 2 h . After work-up, the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$: EtOAc/hexane, 1:4) to give the benzyl alcohol 5 (1.68 mg , overall 67%) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $12 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.36$ (septet, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.83-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.89(\mathrm{t}, J=4.6$ Hz, 4 H), 4.26 (t, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.68 ($\mathrm{s}, 2 \mathrm{H}$), 7.13 ($\mathrm{s}, 2 \mathrm{H}$), 7.38 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=21.5,23.9,26.2,65.5,68.8$, 69.1, 70.6, 73.6, 122.8, 127.9, 129.7, 132.9, 136.8, 141.9, 144.7, 152.3; MS (EI) $m / z(\%)$ 450.2 (47) $[M]^{+}$.

Diol 8. A solution of benzyl alcohol (5) ($1.35 \mathrm{~g}, 3.0 \mathrm{mmol}$), 1-acetoxy-5hydroxynaphthalene (6) ($708 \mathrm{mg}, 3.5 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(828 \mathrm{~g}, 6.0 \mathrm{mmol}), \mathrm{LiBr}(15 \mathrm{mg})$ and 18C6 (10 mg) in $\mathrm{MeCN}(50 \mathrm{~mL})$ was heated under reflux for 16 h . After cooling down to room temperature, the reaction mixture was filtered and the solid was washed with $\mathrm{MeCN}(100 \mathrm{~mL})$. The combined organic filtrate was concentrated and the crude compound 7 was then dissolved in $\mathrm{MeOH}(100 \mathrm{~mL})$. $\mathrm{KOH}(561 \mathrm{mg}, 10 \mathrm{mmol})$ was added and the reaction mixture was stirred at room temperature for 4 h . After work-up, the crude product was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right.$: EtOAc/hexane, 1:2) to give the diol 8 (948 mg , overall 72%) as an off-white solid. M.p. $68-70{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 3.41$ (septet, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.95-$
$3.97(\mathrm{~m}, 4 \mathrm{H}), 4.00-4.02(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.64(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=6.9,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37$ (dd, $J=7.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1$ H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=24.0,26.3,65.6,68.0,70.0,70.7,73.9,105.5$, $109.3,114.0,114.5,122.9,125.0,125.1,125.4,127.0,136.6,142.0,151.3,152.6,154.4 ;$ MS (EI) m / z (\%) 438.2 (53) $[M]^{+}$.

Alcohol 10. A solution of the diol $\mathbf{8}(131.6 \mathrm{mg}, 0.3 \mathrm{mmol})$, the tosylate $9(315.8 \mathrm{mg}, 0.3$ $\mathrm{mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(82.9 \mathrm{mg}, 0.6 \mathrm{~mol}), \mathrm{LiBr}(10 \mathrm{mg})$ and $18 \mathrm{C} 6(10 \mathrm{mg})$ in $\mathrm{MeCN}(50 \mathrm{~mL})$ was heated under reflux for 16 h . After work-up, the crude product was subjected to column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{EtOAc} /\right.$ hexane, 1:1) to give the alcohol $10(270 \mathrm{mg}, 68 \%)$ as a yellow solid. M.p. $104-107^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta=1.18-1.25(\mathrm{~m}, 15$ H), $1.35(\mathrm{~s}, 18 \mathrm{H}), 2.63(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.49$ (septet, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.70(\mathrm{~m}$, 6 H), 3.76-3.79 (m, 2 H), 3.80-3.83 (m, 2 H), 3.97-4.00 (m, 6 H), 4.08-4.12 (m, 4 H), $4.31-4,35(\mathrm{~m}, 6 \mathrm{H}), 4.39(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.58,4.59(2 \mathrm{x} \mathrm{s}, 2 \mathrm{H}), 6.46,6.49,6.50$, and $6.51(4 \mathrm{x} \mathrm{s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H})$, 7.10-7.17 (m, 14 H$), 6.98-7.02$ (m, 2 H), 7.33 (dd, $J=7.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=$ $7.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.8,23.4,25.9,27.8,30.7,63.0,63.9,67.2,67.5,67.5,67.6,67.6$, $67.8,68.0,69.1,69.1,69.2,69.2,69.4,69.4,69.4,70.3,70.3,70.5,70.5,74.0,105.6$, $109.8,113.1,114.2,116.3,116.4,116.4,116.5,122.2,124.0,125.0,125.1,126.6,130.4$, 130.7, 131.8, 134.7, 134.8, 138.2, 139.5, 141.1, 141.3, 144.3, 144.6, 148.1, 152.0, 154.4, 154.4, 156.8; MS (FAB) $m / z(\%) 1318$ (100) $[M]^{+}$.

Dumbbell-Shaped compound AD. A solution of the alcohol 10 ($250 \mathrm{mg}, 0.2 \mathrm{mmol}$), thioctic acid (11) ($62 \mathrm{mg}, 0.3 \mathrm{mmol}$), DCC ($62 \mathrm{mg}, 0.3 \mathrm{mmol}$) and DMAP (3 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred for 16 h at room temperature. After addition of $\mathrm{Al}_{2} \mathrm{O}_{3}(1 \mathrm{~g})$, the mixture was concentrated and the residue was purified by a column $\left(\mathrm{SiO}_{2}\right.$: EtOAc/hexane, 1:2) to afford the dumbbell-shaped compound AD (267 mg, 97\%) as an yellow solid. M.p. $56-58{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H})$, $1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 18 \mathrm{H}), 1.40-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.83-$ 1.94 (m, 1 H), $2.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.07-3.18 (m, 2 H), 3.40 (septet, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.52-3.57$ (m, 1 H), $3.63(\mathrm{t}, J=4.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.66(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.85(\mathrm{~m}$, $2 \mathrm{H}), 3.95(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.98-4.00(\mathrm{~m}, 6 \mathrm{H}), 4,08-4.12(\mathrm{~m}, 6 \mathrm{H}), 4.28-4.31(\mathrm{~m}, 2$ H), $4.35(\mathrm{t}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 6.46,6.47$ and $6.49(3 \mathrm{x} \mathrm{s}, 2 \mathrm{H}), 6.76-6.78(\mathrm{dd}$, $J=2.4,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 4$ H), 7.10-7.17 (m, 12 H$), 7.33$ (dd, $J=7.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.8,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$; MS (FAB) m/z (\%) 1506 (100) $[M]^{+}$.
[2]Rotaxane AR•4PF6. A solution of the dumbbell-shaped compound AD (150 mg, 0.1 mmol), $\mathbf{1 2} \cdot 2 \mathrm{PF}_{6}$ ($211 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1,4-bis(bromomethyl)benzene (13) ($80 \mathrm{mg}, 0.3$ mmol) in anhydrous DMF (10 mL) was stirred at room temperature for 10 d . The reaction mixture was subjected directly to column chromatography $\left(\mathrm{SiO}_{2}\right)$ and unreacted AD was recovered with $\mathrm{Me}_{2} \mathrm{CO}$, whereupon the eluent was changed to $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{NH}_{4} \mathrm{PF}_{6}(1.0 \mathrm{~g}$ $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in 100 mL Me 2 CO) and the green band containing the [2]rotaxane $\mathbf{A R} \cdot 4 \mathrm{PF}_{6}$ was
collected. After removal of solvent, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and the resulting precipitate was collected by filtration to afford [2]rotaxane $\mathbf{A R} \cdot 4 \mathrm{PF}_{6}(201 \mathrm{mg}, 77 \%)$ as a green solid. M.p. $162^{\circ} \mathrm{C}$ (decomp); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.09-1.17(\mathrm{~m}, 15 \mathrm{H}), 1.22-1.24$ (m, 18 H$), 1.38-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{t}, J=7.4$ Hz, 2 H), $2.35-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.18$ (m, 2 H$), 3.40(\mathrm{~m}, 2$ H), 3.52-3.57 (m, 1 H), 3.62-4.45 (m, 28 H), 5.04 (s, 2 H), 5.47-5.69 (m, 8 H), 6.01, 6.07, 6.17 and 6.26 ($4 \mathrm{x} \mathrm{s}, 2 \mathrm{H}$), 6.57-6.89 (m, 4 H), 7.10-7.65 (m, 36 H), 8.65-9.04 (m, 8 H); MS (FAB) $m / z(\%) 2462$ (10) $\left[M-\mathrm{PF}_{6}\right]^{+}, 2317$ (28) $\left[M-2 \mathrm{PF}_{6}\right]+, 2173$ (15) [M$\left.3 \mathrm{PF}_{6}\right]^{+}$.

Alcohol 15. A solution of the tosylate $\mathbf{1 4}(1.19 \mathrm{~g}, 2.0 \mathrm{mmol}), 4$-hydroxy-3,5-diisopropylbenzaldehyde (1) ($618 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(690 \mathrm{mg}, 5.0 \mathrm{~mol}), \mathrm{LiBr}(10 \mathrm{mg})$ and 18 C 6 $(10 \mathrm{mg})$ in $\mathrm{MeCN}(50 \mathrm{~mL})$ was heated under reflux for 16 h . After work-up, the crude product was subjected to column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}, 97: 3\right)$ to give the alcohol $15(729 \mathrm{mg}, 58 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta=1.23(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 3.47-3.51$ (m, 4 H$), 3.56-3.60(\mathrm{~m}, 6 \mathrm{H}), 3.65-3.66$ (m, 2 H$), 3.69-3.72$ (m, 2 H), 3.83-3.87 (m, 2 H), 3.99 (t, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.30 (d, $J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.36$ (s, $2 \mathrm{H}), 6.53$ and $6.55(2 \mathrm{x} \mathrm{s}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 2 \mathrm{H}), 9.93(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta=23.1,26.1,60.9,67.5,67.5,67.6,69.1,69.3,70.1,70.4,72.6,74.6$, $116.4,116.5,116.5,125.6,133.4,134.7,134.7,134.8,134.8,143.0,158.5,191.3 ; \mathrm{MS}$ (FAB) $m / z(\%) 628$ (100) $[M]^{+}$; HRMS (MALDI-TOF) calcd $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{~S}_{4}: 628.1657$; found 628.1652 .

Tosylate 16. A solution of the alcohol $\mathbf{1 5}(1.27,2.0 \mathrm{mmol}), \mathrm{TsCl}(576 \mathrm{mg}, 3.0 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}, 9 \mathrm{mmol})$ and DMAP $(20 \mathrm{mg})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was stirred for 16 h at room temperature. After addition of $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \mathrm{~g})$, the mixture was concentrated and the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}, 99: 1\right)$ to afforded the tosylate $\mathbf{1 6}(1.35 \mathrm{~g}, 86 \%)$ as an yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta$ $=1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.47(\mathrm{~m}, 6 \mathrm{H}), 3.58-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.64-$ 3.66 (m, 2 H), 3.79 (t, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$, 4.21-4.22 (m, 2 H), 4.30 (s, 2 H), 6.44 and 6.49 ($2 \mathrm{x} \mathrm{s}, 2 \mathrm{H}$), 7.39 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.65(\mathrm{~s}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 9.88(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=$ $20.4,23.0,26.0,67.4,67.6,68.2,68.9,69.2,69.5,69.9,70.0,70.3,74.1,109.7,116.3$, $116.3,116.4,116.4,125.5,127.6,129.7,133.2,133.3,134.5,134.5,134.6,134.6,142.9$, 144.6, 158.4, 191.1; MS (FAB) $m / z(\%) 782$ (100) $[M]^{+}$; HRMS (MALDI-TOF) calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{9} \mathrm{~S}_{5}$: 782.1745; found 782.1739.

Alcohol 17. A solution of the tosylate $\mathbf{1 6}(177 \mathrm{mg}, 0.23 \mathrm{mmol})$, the diol $\mathbf{8}(131 \mathrm{mg}, 0.30$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{~mol}), \mathrm{LiBr}(5 \mathrm{mg})$ and $18 \mathrm{C} 6(5 \mathrm{mg})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ was heated under reflux for 16 h . After work-up, the crude product was subjected to column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{EtOAc} /\right.$ hexane, $\left.2: 1\right)$ to give the alcohol $17(65 \mathrm{mg}, 27 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta=1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.29(\mathrm{dd}, J=$ $1.3,6.9 \mathrm{~Hz}, 12 \mathrm{H}), 3.48-3.55(\mathrm{~m}, 4 \mathrm{H}), 3.68-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.74-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.78-$ 3.80 (m, 2 H), 3.87-3.90 (m, 2 H), 3.97-4.13 (m, 10 H), 4.35-4.37 (m, 4 H), 4.39-4.41 (m, 4 H), 4.58 (s, 2 H), 6.52, 6.53, 6.58 and $6.60(4 \mathrm{x} \mathrm{s}, 2 \mathrm{H}), 7.01$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=7.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.6$,
$8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.76 (s, 2 H), 7.89 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.91 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.98$ (s, 1 $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta=23.1,23.4,25.9,26.1,59.5,63.7,63.9,67.6$, $67.6,67.9,68.0,69.2,69.2,69.4,69.6,70.0,70.4,70.5,70.5,74.0,74.2,105.6,109.7$, $109.8,114.2,114.2,116.3,116.4,116.5,122.2,125.0,125.1,125.6,126.7,133.4,134.7$, 134.7, 134.7, 134.8, 138.2, 141.1, 143.0, 152.0, 154.3, 154.4, 158.5, 169.8, 191.2; MS (FAB) m / z (\%) 1048 (39) $[M]^{+}$; HRMS (MALDI-TOF) calcd for $\mathrm{C}_{56} \mathrm{H}_{72} \mathrm{O}_{11} \mathrm{~S}_{4}$: 1048.3957; found 1048.3916 .

Dumbbell-Shaped Compound SD. $\mathrm{NaBH}_{4}(7.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added to a solution of the alcohol $17(60.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ and the reaction mixture was stirred for 2 h at room temperature. After work-up, the crude compound was dissolved in a solution of thioctic acid (11) ($74.0 \mathrm{mg}, 0.36 \mathrm{mmol}$), DCC ($74.0 \mathrm{mg}, 0.36 \mathrm{mmol}$) and DMAP (1.0 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was stirred for 16 h at room temperature. After addition of $\mathrm{Al}_{2} \mathrm{O}_{3}(1 \mathrm{~g})$, the mixture was concentrated and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{EtOAc} /\right.$ hexane, $\left.1: 2\right)$ to give the dumbbell-shaped compound $\mathbf{S D}(76.0 \mathrm{mg}, 93 \%)$ as an yellow solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta=1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.40-1.46(\mathrm{~m}, 4$ H), 1.56-1.69 (m, 8 H), 1.81-1.87 (m, 2H), $2.01(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.38-2.44(\mathrm{~m}, 2 \mathrm{H})$, 3.04-3.09 (m, 2 H), 3.12-3.17 (m, 2 H), 3.39-3.49 (m, 4 H), 3.51-3.57 (m, 2H), 3.613.64 (m, 4 H), 3.67-3.69 (m, 2 H), 3.72-3.75 (m, 2 H), 3.77-3.80 (m, 2 H), 3.87-3.90 (m, 2 H), 3.93-3.96 (m, 6 H$), 4.05(\mathrm{t}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.28-4.31(\mathrm{~m}, 4 \mathrm{H}), 4.33-4.36(\mathrm{~m}$, $4 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 6.44,6.45,6.51$ and $6.52(4 \mathrm{x} \mathrm{s}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (s, 2 H), 7.12 (s, 2 H), 7.34 (dd, $J=7.6,8.5 \mathrm{~Hz}, 1$
H), $7.36(\mathrm{dd}, J=7.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta=23.4,23.4,24.5,25.5,25.9,33.5,34.3,38.1,39.9$, $56.1,65.6,67.6,67.7,67.9,68.1,69.2,69.2,69.4,69.6,70.2,70.5,70.5,74.0,74.1$, 105.6, 109.7, 109.8, 114.2, 114.2, 116.4, 116.4, 116.5, 116.5, 124.0, 124.0, 125.0, 125.1, 126.6, 132.5, 134.7, 134.8, 134.8, 141.7, 153.0, 153.0, 154.3, 154.4, 172.4; MS (FAB) $m / z(\%) 1426(39)[M]^{+}$.
[2]Rotaxane $\mathbf{S R} \cdot \mathbf{4 P F}$ 6. A solution of the dumbbell-shaped compound $\mathbf{S D}$ ($55 \mathrm{mg}, 0.04$ mmol), $\mathbf{1 2} \cdot 2 \mathrm{PF}_{6}$ ($108.8 \mathrm{mg}, 0.15 \mathrm{mmol}$) and 1,4 -bis(bromomethyl)benzene (13) (40.7 $\mathrm{mg}, 0.15 \mathrm{mmol}$) in DMF (5 mL) was stirred at room temperature for 10 d . The reaction mixture was subjected directly to column chromatography $\left(\mathrm{SiO}_{2}\right)$ and $\mathbf{S D}$ was recovered with $\mathrm{Me}_{2} \mathrm{CO}$, whereupon the eluent was changed to $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{NH}_{4} \mathrm{PF}_{6}\left(1.0 \mathrm{~g} \mathrm{NH}_{4} \mathrm{PF}_{6}\right.$ in 100 mL Me 2 CO) and the green band containing the [2]rotaxane $\mathrm{SR} \cdot 4 \mathrm{PF}_{6}$ was collected. After removal of solvent, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the resulting precipitate was collected by filtration to give the pure [2]rotaxane $\mathbf{S R} \cdot 4 \mathrm{PF}_{6}$ ($32 \mathrm{mg}, 34 \%$) as a green solid. M.p. $139^{\circ} \mathrm{C}$ (decomp); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.08-1.22(\mathrm{~m}, 24 \mathrm{H}$), $1.42-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.69-1.73(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.39(\mathrm{~m}, 4 \mathrm{H}), 2.42-$ 2.47 (m, 2 H), 3.11-3.14 (m, 2 H), 3.15-3.21 (m, 2 H), 3.37-3.45 (m, 4 H), 3.57-3.61 (m, $2 \mathrm{H}), 3.71-4.42(\mathrm{~m}, 28 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 5.47-5.76(\mathrm{~m}, 8 \mathrm{H}), 6.00,6.07$, 6.19 and $6.23(4 \times \mathrm{s}, 2 \mathrm{H}), 6.76-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.77(\mathrm{~m}, 24 \mathrm{H}), 8.68-9.05(\mathrm{~m}, 8 \mathrm{H})$; MS (FAB) $m / z(\%) 2528$ (10) $\left[M-\mathrm{PF}_{6}\right]^{+}, 2383(30)\left[M-2 \mathrm{PF}_{6}\right]^{+}, 2238(11)\left[M-3 \mathrm{PF}_{6}\right]^{+}$.

References:

1. B. Roth, D. P. Baccanari, C. W. Sigel, J. P. Hubbell, J. Eaddy, J. C. Kao, M. E. Grace, B. S. Rauckman, J. Med. Chem. 1988, 31, 122-129.
2. J. Becher, O. A. Matthews, M. B. Nielsen, F. M. Raymo, J. F. Stoddart, Synlett 1999, 330-332.
3. P. R. Ashton, G. R. Brown, N. S. Isaacs, D. Giuffrida, F. H. Kohnke, J. P. Mathias, A. M. Z. Slawin, D. R. Smith, J. F. Stoddart, D. J. Williams, J. Am. Chem. Soc. 1992, 114, 6330-6353.
4. H.-R. Tseng, S. A. Vignon, P. A. Celestre, J. Perkins, J. O. Jeppesen, A. Di Fabio, R. Ballardini, M. T. Gangolfi, M. Venturi, V. Balzani, J. F. Stoddart, Chem. Eur. J. Submitted.
5. D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals, Pergamon Press, New York, 1998.

Scheme S1

